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ABSTRACT

Symbolic knowledge graphs (KGs) have been constructed either by expensive
human crowdsourcing or with complex text mining pipelines. The emerging large
pretrained language models (LMs), such as BERT, have shown to implicitly encode
massive knowledge which can be queried with properly designed prompts. How-
ever, compared to the explicit KGs, the implict knowledge in the black-box LMs
is often difficult to access or edit and lacks explainability. In this work, we aim at
harvesting symbolic KGs from the LMs, and propose a new framework for auto-
matic KG construction empowered by the neural LMs’ flexibility and scalability.
Compared to prior works that often rely on large human annotated data or existing
massive KGs, our approach requires only the minimal definition of relations as
inputs, and hence is suitable for extracting knowledge of rich new relations that
are instantly assigned and not available before. The framework automatically
generates diverse prompts, and performs efficient knowledge search within a given
LM for consistent outputs. The knowledge harvested with our approach shows
competitive quality, diversity, and novelty. As a result, we derive from diverse LMs
a family of new KGs (e.g., BERTNET and ROBERTANET) that contain a richer
set of relations, including some complex ones (e.g., "A is capable of but
not good at B") that cannot be extracted with previous methods. Besides,
the resulting KGs also serve as a vehicle to interpret the respective source LMs,
leading to new insights into the varying knowledge capability of different LMs.

1 INTRODUCTION

Symbolic knowledge graphs (KGs) encode rich knowledge about entities and their relationships,
and have been one of the major means for organizing commonsense or domain-specific information
to empower various applications, including search engines (Xiong et al., 2017; Google, 2012),
recommendation systems (Wang et al., 2019a; 2018; 2019b), chatbots (Moon et al., 2019; Liu et al.,
2019b), healthcare (Li et al., 2019; Mohamed et al., 2020; Lin et al., 2020), etc. The common practice
for constructing a KG is crowdsourcing (such as ConceptNet (Speer et al., 2017), WordNet (Fellbaum,
2000), and ATOMIC (Sap et al., 2019)) , which is accurate but often has limited coverage due to the
extreme cost of manual annotation (e.g., ConceptNet covers only 34 types of commonsense relations).
Prior work has also built text mining pipelines to automatically extract knowledge from unstructured
text, including domain-specific knowledge (Wang et al., 2021b) and commonsense knowledge (Zhang
et al., 2020; Romero et al., 2019; Nguyen et al., 2021). Those systems, however, often involve a
complex set of components (e.g., entity recognition, coreference resolution, relation extraction, etc.),
and applicable only to a subset of all the knowledge, which is explicitly stated in the text.

On the other hand, the emerging large language models (LMs) pretrained on massive text corpora,
such as BERT (Devlin et al., 2019), ROBERTA (Liu et al., 2019a), and GPT-3 (Brown et al., 2020),
have been shown to encode a large amount of knowledge implicitly in their parameters. This has
inspired the interest in using the LMs as knowledge bases. For example, recent work has focused
on manually or automatically crafted prompts (e.g., "Obama was born in ") to query the
LMs for answers (e.g., "Hawaii") (Petroni et al., 2019; Jiang et al., 2020; Shin et al., 2020; Zhong
et al., 2021) . Such probing also serves as a way to interpret the black-box LMs (Swamy et al., 2021),
and inspires further fine-tuning to improve knowledge quality (?Newman et al., 2021; Fichtel et al.,
2021). However, the black-box LMs, where knowledge is only implicitly encoded, fall short of the
many nice properties of explicit KGs (AlKhamissi et al., 2022), such as the easiness of browsing
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Method Knowledge source Outcome Arbitrary relation

Text mining text corpus KG ✗

Factual probing LMs tail entity ✓
COMET LMs + Existing Knowledge tail entity ✗
Symbolic KD GPT-3 (+ existing KGs) KG ✓∗

BertNet (Ours) LMs KG ✓

Table 1: Categorization of works on automated knowledge graph construction. Compared with others, our
framework is more flexible as it relies on LMs as knowledge source, generates a full KG, applies to arbitrary
relations. The details are presented in Section 2.

the knowledge or even making updates (Zhu et al., 2020; Cao et al., 2021) and the explainability
for trustworthy use by domain experts. Can we automatically harvest KGs from the LMs, and hence
combine the best of both worlds, namely the flexibility and scalability from the neural LMs, and the
access, editability, and explainability in the symbolic form?

This paper makes a step towards this end—given a pretrained LM (e.g., BERT, ROBERTA), our
automatic framework extracts a KG from it in an efficient and scalable way—this results in a family
of new KGs (referred to as, e.g., BERTNET, ROBERTANET) that permit a new extendable set of
knowledge beyond the existing hand-annotated KGs such as ConceptNet. As Table 1 suggests,
our framework is more flexible compared with previous works to construct knowledge graphs
automatically.

The new goal of extracting KGs purely from any LMs poses unique challenges. First, it is difficult
to extract knowledge reliably from LMs, as the LMs have shown to generate inconsistent outputs
given prompts of slightly different wording (e.g., " originally aired in " vs
" premiered on ") (Elazar et al., 2021; Newman et al., 2021). Automatically learning
the optimal prompts (Lester et al., 2021; Zhong et al., 2021; Qin & Eisner, 2021) typically requires
many existing entity pairs as training data, which is often not available especially for new relations
that are instantly assigned. While West et al. (2021) extracted commonsense knowledge of high
quality from GPT-3, this method doesn’t apply to other LMs, since it relies on the extreme few-shot
learning ability and the large capacity of GPT-3 model. To this end, we apply an unsupervised method
that automatically paraphrases an initial prompt and create a diverse set of alternative prompts with
varying confidence weights. We then search for entity pairs that consistently satisfy the diverse
prompts. The second challenge lies in the search phase due to the large space of entity (one or
multiple tokens) tuples. We devise an efficient search-and-rescoring strategy that strikes the balance
between knowledge accuracy and coverage.

The minimal dependence on other sources besides the powerful LM itself allows maximal flexibility
of our framework to extract novel knowledge, such as those about complex relations like “A is
capable of, but not good at, B” that expresses sophisticated meaning and “A can
do B at C” that involves multiple entities. Besides, the resulting KGs can readily serve as a
symbolic interpretation of the respective black-box LMs, for users to browse and understand their
knowledge storage and capability.

We apply the framework to harvest KGs from a wide range of popular LMs, including ROBERTA,
BERT, and DISTILBERT, of varying model sizes, respectively. The experiments show our approach
can harvest large-scale KGs of diverse concepts, and performs well on user-defined complex relations.

Compared with other KGs trained with existing knowledge bases or human annotations, the outcome
KGs of our framework, with solely a LM as the knowledge source, shows competitive quality,
diversity and novelty. The further analysis illustrates the better balance of knowledge accuracy and
coverage than baselines. Comparison between the resulting KGs from different LMs offers new
insights into their knowledge capacities due to different factors, such as model sizes, pretraining
strategies, and distillation.
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2 RELATED WORK

Knowledge graph construction Popular knowledge bases or KGs are usually constructed with
heavy human labor. For example, WordNet (Fellbaum, 2000) is a lexical database that links words
into semantic relations; ConceptNet (Speer et al., 2017) is a large commonsense knowledge graph
in the conventional KG format that consists of (head entity, relation, tail entity) triples; ATOMIC
(Sap et al., 2019) is a social commonsense KG by crowdsourcing consisting of if-then statements.
Automatic Knowledge Graph Construction has been focused by academics. We summarize different
categories of works in Table 1. Text mining based works aim to extract knowledge from text. A
typical information extraction system (Angeli et al., 2015) decomposes the task to a set of sub-tasks,
such as co-reference resolution, named entity recognition, and relationship extraction. There are also
works on commonsense knowledge extraction, like WebChild (Tandon et al., 2014), TransOMCS
(Zhang et al., 2020), DISCOS (Fang et al., 2021b), Quasimod o(Romero et al., 2019), ASCENT
(Nguyen et al., 2021). These extraction pipelines are based on linguistic pattern, and involve complex
engineering such as corpus selection, term aggregation, filtering and so on. Recently there are
attempts to make use of language models. Wang et al. (2021a) finetuned LMs to predict missed links
in KGs. COMET (Bosselut et al., 2019) is a finetuned generative LM trained to generate tail entities
given head entities and relations. Symbolic knowledge distillation (KD) (West et al., 2021) distil
the knowledge in GPT-3 to a generative LM. As a intermediate product, they got ATOMIC10x by
prompting GPT-3 (Brown et al., 2020) with examples. However, this method only applies to GPT-3
for the need of strong few-shot learning ability. Factual probing (Petroni et al., 2019; AlKhamissi
et al., 2022; Razniewski et al., 2021) measures the amount of knowledge in LMs by the accuracy
when filling a blank in a prompt, which is human-written, from text mining, or learned with a large
amount of existing knowledge. We summarize their difference to our work in the caption of Table 1
To the best of our knowledge , our framework is the first to construct a knowledge graph via extracting
knowledge purely from LMs (with minimal definition of relations as input).

LMs as knowledge bases It is easy to query knowledge in knowledge bases, while the implicit
knowledge in LMs are difficult to access. The retrieval of knowledge in LMs often requires finetuning
(Da et al., 2021; Wallat et al., 2020) or prompt tuning (Qin & Eisner, 2021; Jiang et al., 2020;
Adolphs et al., 2021; Davison et al., 2019; Petroni et al., 2019) with existing knowledge, limiting
their methods to query new relations without existing tuples. Together with the success of pretrained
LMs , recent work has developed various ways to understand their internal mechanisms, such as
analyzing the internal states of LMs, and extracting structured linguistic patterns (Tenney et al., 2019;
Hewitt & Manning, 2019). Factual probing aims to quantify the factual knowledge in pretrained
language models, which is usually implemented by prompting methods and leveraging the masked
language model pretraining task. Specifically, the amount of factual knowledge is estimated by a
set of human-written cloze-style prompts, e.g., "Dante was born in ". The accuracy
of the model prediction on the blank represents a lower bound of the amount of knowledge in the
model. LAMA (Petroni et al., 2019) collects a set of human-written prompts to detect the amount of
factual information that a masked language model encodes. LPAQA (Jiang et al., 2020) proposes
to use text mining and paraphrasing to find and select prompts to optimize the prediction of a
single or a few correct tail entities, instead of extensively predicting all the valid entity pairs like
in our framework. AutoPrompt (Shin et al., 2020) and OPTIPrompt (Zhong et al., 2021) search
prompts automatically. Though making prompts unreadable, they achieve higher accuracy on the
knowledge probing tasks. Instead of measuring knowledge inside an LM as an accuracy number, our
framework explicitly harvests a KG from the LM. Consistency is a significant challenge in knowledge
probing and extraction, which refers to a model that should not have predictions contradicting each
other. Basically, models should behave invariantly under inputs with different surface forms but
the same meaning, e.g., paraphrased sentences or prompts. Several benchmarks are proposed to
study consistency in LMs (Elazar et al., 2021; Hase et al., 2021). Elazar et al. (2021) analyzes the
consistency of pretrained language models with respect to the factual knowledge. They show that
the consistency of all LMs is poor in their experiment. In our framework, the extracted entity pairs
for each relation would consistently satisfy a diverse set of prompts. Unlike traditional KGs, it is
also non-trivial to edit knowledge in LMs, though there is some preliminary research on editing facts
in LMs (Zhu et al., 2020; Cao et al., 2021), via forcing the model to change predictions on some
data points while keeping the same for other data points. There is also another line of works that
utilize LMs to score entity pairs (Feldman et al., 2019; Bouraoui et al., 2020; Fang et al., 2021b;a)
. However, these works only use LMs to filter candidate knowledge tuples that are collected either
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Seed entity pairs
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Figure 1: An overview of the knowledge harvesting framework. Given the minimal definition of the relation
as input (an initial prompt and a few shot of seed entity pairs), the approach first automatically creates a set of
prompts expressing the relation in a diverse ways (§3.1). The prompts are weighted with confidence scores. We
then use the LM to search a large collection of candidate entity pairs, followed by re-scoring/ranking that yields
the top entity pairs as the output knowledge (§3.2).

from the Internet or existing KGs, but they don’t direclty extract knowledge inside the LMs as our
framework.

3 HARVESTING KGS FROM LMS

This section presents the proposed framework for extracting a relational KG from a given pretrained
LM, where the LM can be arbitrary fill-in-the-blank models such as BERT (Devlin et al., 2019),
ROBERTA (Liu et al., 2019a), BART (Lewis et al., 2020), or GPT-3 (with appropriate instructions)
(Brown et al., 2020). The KG consists of a set of knowledge tuples in the form <head entity
(h), relation (r), tail entity (t)>. Specifically, we automatically harvest from the
LM all appropriate entity pairs (h, t) for any given relation r. This presents a substantially more
challenging problem than the popular LM probing tasks (Petroni et al., 2019; Jiang et al., 2020; Shin
et al., 2020; Zhong et al., 2021) which predict a particular tail entity given both the head entity and
relation. In contrast, given only the relation, we need to search for hundreds or thousands of head/tail
entity pairs both accurately and extensively in an efficient manner.

To extract knowledge tuples of a particular relation (e.g., "potential_risk" as illustrated in
Figure 1), our approach requires only minimal input information that defines the relation of interest,
namely an initial prompt (e.g., The potential risk of A is B) together with a few shot
of seed entity pairs (e.g., <eating candy, tooth decay>). The prompt offers the overall
semantics of the relation, while the seed entity pairs serve to eliminate any possible ambiguities. For
new relations not included in existing KGs, it is impractical to require a large set (e.g., hundreds) of
seed entity pairs as in previous knowledge probing or prompt optimization methods (Petroni et al.,
2019; Jiang et al., 2020; Shi et al., 2019; Zhong et al., 2021). Instead, our approach needs only a very
small set, such as 5 example pairs in our experiments, which can easily be collected or written by
users.

A key challenge of directly feeding the initial prompt and asking the LM to generate head/tail
entities is that the outputs are often inconsistent: for example, slightly changing the wording of
the prompt (while keeping the same semantic) can easily lead to different irrelevant LM outputs
(Elazar et al., 2021; Hase et al., 2021). The inconsistency renders the extracted knowledge unreliable
and often inaccurate (as also shown in our experiments). Inspired by and generalizing the prior
knowledge probing work (Petroni et al., 2019; Jiang et al., 2020; Shin et al., 2020; Zhong et al.,
2021), we overcome the challenge by automatically creating diverse weighted prompts describing
the same relation of interest, and searching for those entity pairs that are consistently favored by the
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multiple prompts under the LM. Interestingly, we found that those automatically created prompts,
though stemming from the initial prompt (often written by a human), are often better alternatives
than the initial prompt itself for drawing more accurate knowledge from the LMs, as studied in our
experiments.

In the following sections, we describe the core components of our approach, namely the automatic
creation of diverse prompts with confidence weights (§3.1) and the efficient search to discover
consistent entity pairs (§3.2) that compose the desired KGs. Figure 1 illustrate the overall framework.

3.1 AUTOMATIC CREATION OF DIVERSE WEIGHTED PROMPTS

Given the input information of a relation, namely the initial prompt and a few shots of seed entity
pairs, we automatically paraphrase the initial prompt to a large set of prompts that are linguistically
diverse but semantically describe the same relation. Each of the prompts is further associated with a
confidence weight for an accurate measure of knowledge consistency in the next section.

Specifically, starting with the initial prompt, we randomly sample an entity pair from the seed set and
insert it into the prompt to form a complete sentence. We then use an off-the-shelf text paraphrase
model (see §4.1 for more details) to produce multiple paraphrased sentences of the same meaning.
By removing the entity names, each paraphrased sentence results in a new prompt that describes
the desired relation. To ensure diverse expressions of the relation, we keep those prompts that are
sufficiently different from each other in terms of edit distance. We repeat this process by continuing
the paraphrasing of the newly created prompts, until we collect at least 10 prompts for the relation.

The automatic creation of prompts is inevitably noisy. Some of the resulting prompts are less precise
in expressing the exact meaning of the desired relation. we define a reweighting score for each prompt
to calibrate its effect in the next knowledge search step. Specifically, we measure the compatibility
of the new prompts with the seed entity pairs, and derive the prompt weights with the compatibility
scores. Intuitively, given an entity pair ⟨h, t⟩, a compatible prompt p should induce a high likelihood
under the LM for each single entity plugged into the prompt. That is, the minimum likelihood of
h and t should be high. Besides, we also expect a high joint likelihood of h and t. Formally, the
compatibility score is written as:

fLM (⟨h, t⟩, p) = α logPLM (h, t|p) + (1− α)min {logPLM (h|p), logPLM (t|p, h)} (1)

where the first term is the joint log-likelihood under the LM distribution PLM , the second term is
the minimum individual log-likelihood given the prompt (and the other entity), and α is a balancing
factor for which we set α = 2/3 in our experiments.

We compute the average compatibility score of each created prompt over all seed entity pairs. The
weight of the prompt is then defined as the softmax-normalized score across all prompts.

3.2 EFFICIENT SEARCH FOR CONSISTENT KNOWLEDGE TUPLES

Given the above set of prompts with confidence weights, we next harvest entity pairs that consis-
tently satisfy all the prompts. Each entity consists of one or more tokens. We reuse the above
prompt/entity-pair compatibility function (Eq.1) and intuitively define the consistency of a new entity
pair ⟨hnew, tnew⟩ as the weighted average of its compatibility with the different prompts:

consistency(⟨hnew, tnew⟩) =
∑

p
wp · fLM (⟨hnew, tnew⟩, p) (2)

where wp is the prompt weight and the sum is over all automatically created prompts as above.
Therefore, an entity pair that is compatible with all prompts are considered to be consistent.

Based on the consistency criterion, we devise an efficient search strategy for consistent entity pairs. A
straightforward approach is to simply enumerate all possible pairs of entities, measure the respective
consistency scores as above, and pick the top-K entity pairs with highest scores as the resulting
knowledge for the KG. The approach can be prohibitively slow given the large vocabulary size V and
the high time complexity of the enumeration (e.g., O(V 2) assuming each entity consists of only one
token).

To this end, we an appropriate approximation that leads to a more efficient search and re-scoring
method. More concretely, we first use the minimum individual log-likelihoods (namely, the second
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term in the compatibility score Eq.1), weighted averaged across different prompts (similar as in Eq.2),
to propose a large set of candidate entity pairs. The use of the minimum individual log-likelihoods
allows us to apply a pruning strategy, as described more in the appendix. Once we collect a large
number of proposals, we re-rank them with the full consistency score in Eq.2 and pick the top-K
instances as the output knowledge.

We describe more nuanced handling in the search procedure (e.g., the processing of multi-token
entities) in the appendix.

Generalization to complex relations Most existing KGs or knowledge bases include relations that
are predicates connecting two entities, e.g., "A is capable of B". Yet, many relations in the
real life can be more complex. Our approach is flexible and easily extensible to extract knowledge
about those complex relations. We demonstrate in our experiments with two cases: (1) highly
customized relations that have specific and sophisticated meaning, such as "A is capable of,
but not good at, B". Such sophisticated knowledge is often hard for human to manually
write down massively. Our automatic approach naturally supports harvesting such knowledge given
only an initial prompt and few seed entities; (2) n-ary relations involving more than 2 entities,
such as "A can do B at C". Our approach can straightforwardly be extended to deal with
n-ary relations by generalizing the above compatibility score and search strategy accordingly to
accommodate more than two entities.

Symbolic interpretation of neural LMs The harvested knowledge tuples, as consistently recog-
nized by the LM cross varying prompts, can be seen as the underlying “beliefs” (Stich, 1979; Hase
et al., 2021) of the LM about the world. The interpretable symbolic tuples allow us to easily browse
those beliefs, analyze the knowledge capability of the black-box LM, and make intrinsic comparisons
between different LMs to understand the effect of diverse configurations, such as model sizes and
pretraining strategies, as we showcased in the experiments.

4 EXPERIMENTS

We validate the effectiveness of the proposed knowledge harvesting framework with extensive
experiments. We conduct human evaluation of our outcome KGs, and illustrate the effectiveness
of the automatically created prompts in our framework. Besides, using our framework as a tool to
interpret the LM knowledge storage, we make interesting observations about several knowledge-
related questions on the black-box LMs.

We will release the whole family of extracted KGs, as well as the code implementation of our
framework (included in the supplementary materials), upon acceptance.

4.1 SETUP

Relations We extract knowledge about a large diverse set of relations. We collect relations from
two existing knowledge repositories, and also test on a set of new relations not included in existing
KGs. Specifically, our relations include (1) ConceptNet (Speer et al., 2017) is one of the most
popular commonsense KGs and is widely used for evaluating knowledge extraction. Following Li
et al. (2016), we filter the KG and subsample a set of 20 common relations (e.g. has_subevent,
motivated_by_goal). The initial prompts for the relations are from the ConceptNet repository,
and we randomly sample seed entity pairs from the ConceptNet KG for each relation. (2) LAMA
(Petroni et al., 2019) is a popular benchmark for factual probing, containing knowledge tuples from
multiple sources. Following the recent work (Jiang et al., 2020; Shin et al., 2020; Zhong et al., 2021),
we use the T-REx split 41 Wikipedia relations, such as capital_of, member_of). For each
relation, the human-written prompt provided in Petroni et al. (2019) is used as the initial prompt and
we randomly sample seed entity pairs for each relation. (3) New Relations: To test the flexibility of
our framework for harvesting novel knowledge, we write 14 new relations of interests that can hardly
be found in any existing KGs, and manually write initial prompts and seed entity pairs for them. The
resulting relations include complex relations as described in §3.2. More details, e.g., initial prompts,
and seed entities of relations, can be found in the appendix.
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Head entity Relation Tail entity Head entity Relation Tail entity

humidity prevent excessive temprature viruses potential risk virus transmission

care prevent harm prolonged sleep potential risk sleep disorders

local council can help village serious offence potential risk conviction

therapist can help client electricity ingredient for electric lamp

lake place for picnic tables rice ingredient for soup

studios place for live shows milk ingredient for butter

apple tree can but not good wood locomotive can but not good speed trains

Relation: A can do B at C (people, communicate, web) Relation: A needs B to C (singers, vocal accompaniment, dance)

Relation: A can do B at C (adult couples, marry, marriage) Relation: A needs B to C (human lives, survival, flourish)

Relation: A can do B at C (skier, ski downhill, mountain) Relation: A needs B to C (actors, dialogue, portray characters)

Figure 2: Examples of knowledge tuples harvested from DISTILLBERT (Randomly sampled).

Hyperparameters We use 5 seed entity pairs for each relation. To automatically collect prompts
(§3.1), we use GPT-3 with the instruction "paraphrase:{sentence}" as the off-the-shelf
paraphraser. In the entity pair searching (§3.2), we restrict every entity to appear no more than 10
times to improve the diversity of generated knowledge and search out at most 50,000 entity tuples for
each relation. We finally use various scoring thresholds to get the outcome KGs in different scales,
including (1) 50%: taking a half of all searched-out entities with higher consistency (Eq. 2). (2)
base-k: Naturally there are different numbers of valid tuples for different relations (e.g. tuples of
CAPITALOF should not exceed 200 as that is the number of all the countries in the world). We design
a relation-specific thresholding method, that is to set 10% of the k-nd consistency as the threshold
(i.e., 0.1 ∗ consistencyk), and retain all tuples with consistency above the threshold. We name the
settings base-10 and base-100 when k is 10 and 100, respectively.

4.2 EVALUATION

4.2.1 EVALUATING OUTCOME KGS

Method Tuple Diversity Novelty% Acc%

WebChild 4,649,471 - - 82.0∗

ASCENT 8,600,000 - - 79.2∗

TransOMCS 18,481,607 100,659 98.3 56.0∗

COMETCN
base-10 6,741 4,342 35.5 92.0

COMETCN
50% 230,028 55,350 72.4 66.6

ROBERTANETCN
base-10 6,741 6,107 64.4 88.0

ROBERTANETCN
base-100 24,375 12,762 68.8 81.6

ROBERTANETCN
50% 230,028 80,525 87.0 55.0

ROBERTANETNew
base-10 2,180 3,137 - 81.8

ROBERTANETNew
base-100 7,329 6,559 - 68.6

ROBERTANETNew
50% 23,666 16,089 - 58.6

Table 2: Statistics of KGs constructed with different methods. Diversity refers
to the number of unique entities in a KG, and Novelty refers to the proportion of
entities that don’t appear in ConceptNet. The acceptance rate with ∗ are from
the original papers and subject to different evaluation protocol. Given COMET
can only predict the tail entity given a source entity and a relation, we generate
KGs with COMET by feeding it the head entity and relation of our RobertaNet.
The first two blocks of this table corresponds to the first two blocks in Table 1,
which includes three popular text mining methods: WebChild (Tandon et al.,
2014), ASCENT (Nguyen et al., 2021), and TransOMCS (Zhang et al., 2020).

We apply our framework
to extract knowledge graph
of ConceptNet (CN) re-
lations and New relations
from language models, and
then conduct human eval-
uation on the accuracy of
the extracted knowledge
with Amazon MTurk. The
correctness of each ex-
tracted knowledge tuple is
labeled by 3 annotators with
True/False/Unjudgeable. A
tuple would be "accepted"
(acc) if at least 2 annota-
tors think it is true knowl-
edge, and "rejected" (rej) if
at least 2 annotators rate it
as false. We provide more
details of human evaluation
in the appendix.

The statistics of the gener-
ated KGs from our frame-
work (ROBERTANET) and
other knowledge extraction methods are mentioned in Table 2, and the samples of the extracted KG
from DISTILLBERT can be found in Figure 2. The acceptance rate, indicating the precision of
KGs, in Table 2 are not comparable to each other, and only serves for a rough sense. From those
statistics, we can see that with solely the LM as the knowledge source, and without any training data,
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Figure 3: Precision-recall on ConceptNet relations.
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Figure 4: Precision-recall curve on LAMA rela-
tions.

Methods Acc Rej

AUTOPROMPT 0.33 0.47
HUMAN PROMPT 0.60 0.27

TOP-1 PROMPT (Ours) 0.69 0.23
MULTI PROMPTS (Ours) 0.73 0.20

Table 3: The portions of accepted and rejected tu-
ples in human evaluation across settings, with the
ROBERTA-LARGE as the LM.

Source LMs Acc Rej

DISTILBERT 0.67 0.24
BERT-BASE 0.63 0.26

BERT-LARGE 0.70 0.22
ROBERTA-BASE 0.70 0.22

ROBERTA-LARGE 0.73 0.20

Table 4: The portions of accepted and rejected tuples
in human evaluation across different LMs, using the
MULTI-PROMPTS approach.

our framework extracts KGs with competitive accuracy. Compared to COMET, our precision is a
little lower, which is expected due to the big compromise we make in the setting, and our searching
constraints ensure better diversity and novelty of ROBERTANET over COMET.

4.2.2 EVALUATING AUTOMATIC PROMPT CREATION

To evaluate the effect of our automatic creation of prompts, we compare the generated KGs under
these settings of prompts on the human-written new relations: (1) Multi-Prompts refers to the the
full framework described in §3 which use the automatically created diverse prompts in knowledge
search. (2) Top-1 Prompt: To ablate the effect of ensembling multiple prompts, we evaluate the
variant that uses only the prompt with largest weight (§3.1) for knowledge extraction. (3) Human
Prompt: To further understand the effectiveness of the automatically created prompts, we assess the
variant that uses the initial prompt (typically written by human) of each relation. (4) AutoPrompt
(Shin et al., 2020), which was proposed to learn prompts by optimizing the likelihood of tail entity
prediction on the training set. To fit in our setting, we adapt it to optimize the compatibility score
(Eq.1) on the seed entity pairs. We omit other prompt tuning work (e.g., Zhong et al., 2021; Qin &
Eisner, 2021) because they either are difficult to fit in our problem or require more training data and
fail with only the few shot of seed entity pairs in our setting.

The human-annotated accuracy is shown in Table 3. Our TOP-1 PROMPT significantly improves
the accuracy up to 9% over the HUMAN PROMPT, indicating our prompt searching algorithm can
produce high quality prompts. MULTI-PROMPTS further improves the accuracy by around 4%, which
means the combination of diverse prompts better capture the semantics of a relation. The method
using the optimized prompt by AUTOPROMPT gives a lower accuracy than the one with the human or
searched prompt, because the small set of seed knowledge tuples are insufficient for learning effective
prompts for the desired relations.

Based on the results above, we move a step forward to see how the created prompts influence the
subsequent module in the framework. Specifically, we evaluate if the automatically created prompts
(§3.1) bring the consistency scoring (§3.2) better balance of knowledge accuracy (precision) and
coverage (recall), by comparing various scoring methods on existing terms in ConceptNet and LAMA
dataset. To be more detailed, we use the knowledge tuples from ConceptNet and LAMA as positive
samples (§4.1), and synthesize the same amount of negative samples with the same strategy in Li
et al. (2016) by random replacing entities or relations in the true knowledge. Each evaluated method
estimates a score of each sample being positive (i.e., true knowledge), and ranks the samples based
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on the scores. We can then compute both the precision and recall of positive samples at different
cut-off points along the ranking, and plot the precision-recall curves for each method.

The automatic evaluation setting on given knowledge terms also enables us to adapt existing prevalent
works, e.g., KG completion and factual probing (Table 1), for comparison with our approach: (1)
COMET (Bosselut et al., 2019) is a transformer-based KG completion model trained to predict the
tail entity t conditioning on the head entity and relation (h, r) on ATOMIC (Sap et al., 2019). The
model has encoded rich commonsense knowledge. We thus test it on the ConceptNet commonsense
data, and use its log-likelihood logP (t|h, r) as the score for each given knowledge tuple. (2) LPAQA
(Jiang et al., 2020) collects a set of prompts on LAMA with text mining and paraphrasing, and
ensembles them to optimize the factual probing task (and thus cannot extract new knowledge like
ours). We report the best performance of its three variants.

The resulting precision-recall curves on ConceptNet and LAMA knowledge are shown in Figure 3 and
Figure 4, respectively. The variant of our TOP-1 PROMPT from our automatically-collected prompt
set is significantly better than the HUMAN PROMPT. This is because the human-written prompts
often fail to effectively account for possible ambiguities in the expression, which are eliminated in
our approach by leveraging the seed entity pairs with compatibility measure. Increasing the number
of prompts (MULTI-PROMPTS) provides further improvements, showing the multiple automatically
created prompts can represent the desired relations more accurately and better guide the LMs for
consistency. Our approach also substantially outperforms other baselines, like COMET on ConceptNet
and LPAQA on LAMA, indicating better knowledge correctness (precision) and coverage (recall) of
our framework in the context. On both datasets, AUTOPROMPT, with only 5 seed entity pairs as its
training data, gives inferior performance than other approaches, indicating that the current prompt
optimization is not feasible for discovering knowledge of new relations without large training data.

4.3 ANALYSIS OF KNOWLEDGE IN DIFFERENT LMS

As discussed in §3, the outcome knowledge graphs can be treated as a fully symbolic interpretation
of pretrained language models. We use MULTI-PROMPTS to harvest KGs from 5 different LMs and
evaluate them with human annotation. The results are shown in Table 4, which sheds some new light
on several knowledge-related questions regarding the LMs’ knowledge capacity.

Does a larger LM encode better knowledge? For BERT (and RoBERTa), the large version and
the base version share the same pretraining corpus and tasks, respectively, while the large version
has a larger model architecture than the base version in terms of layers (24 v.s. 12), attention heads
(16 v.s. 12), and the number of parameters (340M v.s. 110M). We can see that BertNet-large and
RoBERTaNet-large are around 7% and 3% higher than their base version, separately, so the large
models indeed encoded better knowledge than the base models.

Does better pretraining bring better knowledge? RoBERTa uses the same architecture as BERT
but with better pretraining strategies, like dynamic masking, larger batch size, etc. In their extracted
knowledge graphs from our framework, RoBERTaNet-large performs better than BertNet-large (0.73
v.s. 0.70), and RoBERTaNet-base is also better than BertNet-base (0.70 v.s. 0.63), which indicates
the better pretraining indeed bring the better knowledge learning and storage.

Is knowledge really kept in the knowledge distillation process? DistilBERT is trained by distilling
BERT-base, and reduces 40% parameters from it. Interestingly, the knowledge distillation process
instead improves around 4% of accuracy in the result knowledge graph. This might be because the
knowledge distillation is able to remove some noisy information from the teacher model.

5 CONCLUSION

We have developed an automatic framework that extracts a KG from a pretrained LM (e.g, BERT,
ROBERTA), in an efficient and scalable way, resulting in a family of new KGs, which we refer to
as BERTNET, ROBERTANET, etc. Our framework is capable of extracting knowledge of arbitrary
new relation types and entities, without being restricted by pre-existing knowledge or corpora. The
resulting KGs also serve as interpretation to the source LMs, bringing new insights of the knowledge
capability in various LMs. Our current design and experimental studies are limited on LMs in
the generic domain, and are not yet been studied in specific domains such as extracting healthcare
knowledge from relevant neural models. We leave the exciting work of harvesting knowledge from
various kinds of neural networks across applications and domains in the future work.
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Ethical considerations In this work, the harvested knowledge is automatically generated by LMs.
We would like to note that the language models could possibly generate unethical knowledge tuples,
same with the risks of other applications using language models for generation. We hope that the
knowledge extraction study could offer techniques to better interpret and understand the language
models, and in turn foster the future research of language model ethics. Since the knowledge graph
only consists simple phrases, we think filtering sensitive words would be effective. No foreseeable
negative societal impacts are caused by the method itself.
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A APPENDIX

A.1 COMPUTE RESOURCE

All of our experiments are running on a single Nvidia GTX1080Ti GPU. Harvesting a knowledge
graph of one relation with Roberta-large takes about one hour.

A.2 THE LICENSE OF THE ASSETS

All the data we used in this paper, including datasets, relation definitions, and seed entity pairs, etc.,
are officially public resources.

A.3 PREPROCESSING OF CONCEPTNET

We filter out some linguistic relations (e.g. etymologically derived from) and some trivial
relations (e.g. related to). We only consider the tuples with confidence higher than 1, and filter
out relations comprising less than 1000 eligible tuples. We don’t directly take the test set from Li et al.
(2016) because they reserve a lot of tuples for training, resulting in a small and unbalanced test set.

A.4 RELATION DEFINITIONS

The initial prompts of ConceptNet are from its repository 1. For LAMA relations, we use the human
written "template" for every relation as the initial prompt, which are all included in the LAMA dataset.
All the New relations, together with the generated prompts, are shown in Table 5 and the list below.

A.5 PROCESSING OF MULTI-TOKEN ENTITIES

Each entity may take more than one BPE tokens when conducting the mask-filling task. In our entity
searching step, before searching the tokens to fill the mask, we enumerate the number of masks for
every entity and in our setting, each entity has one or two BPE tokens. We showcase the likelihood
calculation of multiple tokens in Figure 7.

In the candidate entity pairs proposal step, we use the minimum individual log-likelihoods (shorted
as MLL) instead of the full Equation 2, which allows us to apply a pruning strategies. For example,
when we are searching for 100 entity tuples, we maintain a minimum heap to keep track of the MLL
of the existing entity pair set. The maximum size of this heap is 100, and the heap top can be used
as a threshold for future search because it’s the 100-th largest MLL: When we are searching for a
new entity tuple, once we find the log likelihood at any time step is lower than the threshold, we can
prune the continuous searching immediately, because this means the MLL of the this tuple will never
surpass any existing tuples in the heap. If a new entity tuple is searched out without being pruned, we
will pop the heap and push the MLL of the new tuple. Intuitively, the pruning process makes sure
that the generated part of the tuple in searching is reasonable for the given prompt.

A.6 HUMAN EVALUATION

The wage is $0.15 for each three questions. The average time for answering a question is about
15 seconds, so the estimated wage of an hour is $12 per hour. The total cost on human annotation

1https://github.com/commonsense/conceptnet5/wiki/Relations (the "Description" column.)
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Figure 5: The instruction to annotators

Figure 6: The questions to annotators

is $1580. We present the screenshot of the instruction in Figure 5 and question in Figure 6. The
inter-annotator agreement (Krippendorff’s Alpha) is 0.27, showing fair agreement.

Relation Initial prompts Seed entity pairs
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somebody do something atENT0 can ENT1 in ENT2

(people, work out, gym)
(bird, fly, sky)

(student, study, classroom)
(player, play, ground)

(sodier, fight, battleground)

prevent ENT0 prevents ENT1

(mask, virus)
(exercise, disease)

(study hard, fail the exam)
(reading, stupid)

(insurance, bankruptcy)

help ENT0 can help ENT1

(doctor, patient)
(teacher, student)

(housekeeper, housewife)
(teaching assistant, professor)

(police, victim)

place for ENT0 is the place for ENT1

(gym, exercise)
(classroom, study)

(office, work)
(hosipital, medical treatment)

(mart, shopping)

antonym ENT0 is the opposite of ENT1

(fat, thin)
(happy, sad)

(north, south)
(woman, man)

(pass, fail)

separated by the ocean ENT1 and ENT0 are separated by the
ocean

(China, Japan)
(Australia, New Zealand)

(United Kingdom, the Continent)
(United State, Cuba)

(Spain, Morocco)

ingredient for ENT0 is an ingredient for ENT1

(flour, cake)
(beef, hamburger)

(potato, chip)
(fried rice, rice)

(stargazer pie, pilchard)

source of ENT0 is the source of ENT1

(wool, woollen sweater)
(milk, yogurt)
(sand, silicon)

(iron mine, iron)
(crude oil, fuel)

business ENT0 sells ENT1

(Nissan, car)
(Apple, laptop)

(Shell, oil)
(Nvidia, GPU)

(McDonald’s, hamburger)

featured thing ENT0 is a very ENT1 ENT2

(egg, cheap, food)
(boa, long, snake)

(Messi, skillful, football player)
(Russia, large, country)

(Amazon, rich, company)

need sth to do sth ENT0 needs ENT1 to ENT2

(developer, computer, code)
(people, social media, connect)

(pig, food, grow)
(people, money, live)

(intern, good performance, return offer)

can but not good ENT0 can ENT1 but not good at

(chicken, fly)
(dog, swim)

(long-distance runner, sprint)
(skater, ski)

(researcher, teach)
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worth celebrating It’s worth celebrating for a ENT0 to
ENT1

(team, wim)
(student, pass exam)

(researcher, publish paper)
(people, earn money)
(parents, get a baby)

potential risk A potential risk of ENT0 is ENT1

(playing game, fail the exam)
(sleep insufficiency, heart disease)

(candy, tooth decay)
(flight, plane crash)

(investment, lose money)

Table 5: prompt and entity pairs of new relations

The generated prompts are listed below:

1. somebody do something at:
at the ENT2, ENT0 can ENT1

ENT0s can ENT1 in the ENT2

the ENT2 is a place where ENT0 can ENT1

the ENT0 can choose to ENT1 in the ENT2 or online
a ENT0 can learn effectively by ENT1ing in a ENT2 setting
looking up at the ENT2, it’s easy to see that ENT0s can ENT1

at the ENT2, ENT0s can ENT1 together and learn from each other
a ENT0 can ENT1 in a ENT2 by themselves or with a group of friends
at the ENT2, ENT0 can use the machines to ENT1, or they can take classes
at the ENT2, ENT0 can ENT1 by using the various machines and equipment available
there are many facilities available for ENT0 who want to stay in shape and ENT1, one of
which is the ENT2

2. prevent:
ENT0 prevents ENT1

if you ENT0, you will not ENT1

ENT0 provides a safety net against ENT1

if you ENT0, you are less likely to ENT1

a ENT0 will protect you from getting the ENT1

if you want to avoid being ENT1, start ENT0 more
if you don’t want to be ENT1, you should ENT0 often
ENT0s are effective at preventing the spread of ENT1es
this is a paraphrase of the saying ENT0 prevents ENT1ity.
ENT0 is an important part of staying healthy and preventing ENT1

regular ENT0 has been shown to be one of the most effective ways to prevent ENT1

ENT0 protects people from having to declare ENT1 in the event of an accident or emer-
gency
ENT0s prevent the spread of ENT1es by trapping droplets that are released when the user
talks, coughs, or sneezes
it could be said that ENT0 prevents ENT1, as it provides a safety net for people in the
event of an unexpected setback
regular ENT0 has various health benefits and is often prescribed by doctors as a preventative
measure against developing various ENT1s

3. help:
a ENT0 can help a ENT1

the ENT0 can help with the ENT1’s chores
a ENT0 can assist a ENT1 with her duties
if you are a ENT1 of a crime
the ENT0 can help you
the ENT0 can help the ENT1 with their medical needs
a ENT0 can help a ENT1 by providing guidance and support
a ENT0 can help take care of the household duties for a ENT1

a ENT0 officer can help a ENT1 by providing them with protection and assistance
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a ENT0 can help with the chores around the house, giving the ENT1 more free time
a ENT0 can help out a ENT1 by doing things like cleaning, cooking, and running errands
a ENT0 can help a ENT1 in many ways, from grading papers to leading discussion sections
a ENT0 can help a ENT1 by providing guidance, answering questions, and offering feed-
back
a ENT0 can help a ENT1 with their workload by taking on some of the teaching responsi-
bilities
a ENT0 can help a ENT1 by grading papers, leading discussion sections, and providing
office hours
the ENT0 can help ENT1s of crime by investigating the incident and taking statements
from witnesses

4. place for:
the ENT0 is the place for ENT1

there’s no place like ENT0 for ENT1

ENT0 is a great place to do some ENT1

the ENT0 is a place where people go to ENT1

there’s no better place to ENT1 than in an ENT0

the ENT0 is the best place to get some ENT1 done
the ENT0 provides an environment for people to ENT1

if you want to do some ENT1ing, you can go to the ENT0

if you’re looking to do some ENT1, ENT0 is the place for you
if you’re looking to do some ENT1, then you should head on over to ENT0

if you’re looking to get fit and ENT1, the ENT0 is the perfect place to do so
there’s no place like the ENT0 for ENT1 because you have access to all the equipment you
need to get a good workout

5. antonym:
a ENT0 is not a ENT1

the antonym of ENT0 is ENT1

ENT1 is the opposite of ENT0

when you’re ENT1, you’re not ENT0

ENT1 is to ENT0 as night is to day
ENT0 and ENT1 are opposite concepts
if you ENT1, it means you didn’t ENT0

when a person is ENT0, they are not ENT1

the two words "ENT0" and "ENT1" are antonyms
ENT0 is the direction that is opposite of ENT1

to be ENT1 is to have a small amount of body ENT0

when something ENT0es, it is successful, and when something ENT1s, it is not successful
if you ENT0 something, you have succeeded, and if you ENT1 something, you have not
succeeded
this means that simply because someone does not ENT0 something does not mean they
have ENT1ed

6. separated by the ocean:
the ocean separates ENT1 from the ENT0

there is an ocean separating ENT1 and ENT0

the pacific ocean lies between ENT0 and ENT1

ENT1 and ENT0 are separated by the tasman sea
there is a distance of about 1,500 miles between ENT1 and the ENT0s
the distance between ENT1 and ENT0 is vast, with an ocean between them
ENT1 and ENT0 are two different countries located on different continents
ENT0 and ENT1 are two countries that are close to each other but are separated by the
ocean
there is a large body of water, known as the atlantic ocean, which separates the two land
masses of ENT1 and the ENT0

while ENT1 and ENT0 are both located in the oceania region of the world, the two
countries are separated by the tasman sea

7. ingredient for:
ENT1 needs ENT0 as an ingredient
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one way to use ENT0es is to make ENT1s
ENT0 is a key ingredient in making a ENT1

one of the ingredients for making a ENT1 is ENT0

if you want to make a ENT1, you’ll need some ENT0

a ENT0 is an ingredient that is used to make ENT1s
ENT0 is a dish that contains ENT1 as one of its ingredients
ENT0 is a popular dish made with ENT1 as the main ingredient
ENT0 is a type of fish pie that is typically made with ENT1s
ENT0 is a dish made from ENT1 that has been fried in a wok or a pan

8. source of:
ENT1 comes from ENT0

ENT0 is used to make ENT1

most ENT1 is made from ENT0

ENT0 is a major source of ENT1

the main source of ENT1 is ENT0

the ENT0 is what turns into ENT1

ENT1 is most commonly found in ENT0s
the ENT0 is the place where ENT1 is mined
many ENT1s contain ENT0 as a major ingredient
ENT0s are where ENT1 is pulled from the ground
ENT1 is a dairy product that is made from ENT0

ENT0 is the primary ingredient in the production of ENT1

the main source of ENT1 is quartz, which is a type of ENT0

ENT0 is the main source of ENT1 used in vehicles and other machinery
ENT0 is used to produce gasoline, diesel, and other petroleum-based products, which are
widely used as ENT1 for cars, trucks,

9. business:
ENT0 sells ENT1s
ENT0 is an ENT1 company
ENT0 is known for selling ENT1s
ENT0 is a company that sells ENT1s
ENT0 is an international ENT1 and gas company
ENT0 is a ENT1 company that manufactures and sells vehicles
ENT0 sells ENT1s through its online store and retail locations
ENT0 is a company that sells graphics processing units (ENT1s)
ENT0 is a popular fast food chain that is known for selling ENT1s
ENT0 is ajapaneseENT1 manufacturing company that is headquartered in yokohama,
japan
ENT0 is a fast food company that specializes in ENT1s, fried chicken, and soft drinks
ENT0 is a company that specializes in the production of ENT1s, or graphics processing
units
ENT0 is a japanese ENT1 company that sells a wide variety of vehicles, from small to
large, and from economy to luxury
ENT0 describes themselves as "the worldu2019s largest information technology company
by revenue," and they sell many products, including ENT1s

10. featured thing:
the ENT0 ENT2 is very ENT1

ENT0s are a very ENT1 ENT2

ENT0 is definitely a ENT1 ENT2

ENT0 is a very ENT1 and successful ENT2

you can hardly find a ENT1er ENT2 than ENT0s
there is no doubt that ENT0 is a very ENT1 ENT2

it covers a lot of ground, ENT0 is a very ENT1 ENT2

a single ENT0 is a very ENT1 and affordable ENT2 item
ENT0s are a type of ENT2 that can grow to be very ENT1

although ENT0 is not the world’s ENT1est ENT2, it is still very wealthy
11. need sth to do sth:

ENT0 need ENT1 to ENT2
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in order to ENT2, ENT0 need ENT1

there is a need for ENT1 to ENT2 ENT0

a ENT0 requires ENT1 in order to ENT2

ENT0 feel the need to ENT2 through ENT1

a ENT0 requires ENT1 to ENT2 with each other
ENT0 feel that they need ENT1 in order to ENT2

a ENT0 will only ENT2 if it has enough ENT1 to eat
without ENT1, ENT0 would have a harder time ENT2ing with others
it is important for ENT0 to be able to ENT2 with each other through ENT1

12. can but not good:
ENT0s are not good at ENT1ing
ENT0s can ENT1, but they aren’t very good at it
the average ENT0 is not especially good at ENT1ing
the ENT0 is skilled at ENT1ing, but not particularly good at it
ENT0s are not good at ENT1ing because they are not built for it
ENT1ing requires explosive speed and power, which ENT0s typically lack
ENT0s aren’t particularly good ENT1mers, but they can do it if they need to
while ENT0s are capable of ENT1ming, they are not particularly proficient at it
ENT0s are not good at ENT1ing because they lack the proper equipment and training
while ENT0s are typically excellent at their jobs, ENT1ing is not usually a strong suit
although ENT0s are theoretically able to ENT1, they are not very good at it and usually
stay on the ground
while ENT0s are able to ENT1, they are not instinctively good at it and may need some
help or encouragement to do so

13. worth celebrating:
it’s good when ENT0 ENT1

it’s great for ENT0 to ENT1

it’s great when a group of ENT0 ENT1

it’s great when ENT0s ENT1s as a group
it’s worth celebrating when a ENT0 ENT1

it’s always good when ENT0 ENT1 is doing well
when a group of ENT0 ENT1, it is worth celebrating
there is value in celebrating when group of ENT0s ENT1

it’s always good when ENT0s ENT1s, regardless of the topic
it is seen as significant accomplishment for ENT0 when they ENT1

14. potential risk:
ENT0 may lead to ENT1

ENT0 can potentially cause ENT1

one potential risk of ENT0 is ENT1

eating too much ENT0 can cause ENT1

if a ENT1es, it is a potential risk of ENT0

if you have ENT1, you may be at risk for ENT0

ENT0 has been linked to an increased risk of ENT1

an ENT0 always entails some risk2̆014you could ENT1 on it
ENT0 can lead to ENT1 if it is not eaten in moderation
an ENT0 always comes with the potential to make or ENT1

if a ENT0 is not properly executed, it can cause a ENT1

if a ENT0 is not well-planned or executed, it may lead to a ENT1

a new study has found that ENT0 is linked to an increased risk of ENT1

if you have a ENT1, you are at a greater risk for cavities if you eat ENT0

there is a strong correlation between ENT0 and an increased risk of airENT1es
a recent study has found that there is a correlation between eating ENT0 and an increased
risk of ENT1

A.7 DETAILED RESULTS OF HUMAN EVALUATION

We show the detailed results of human evaluation in Table 6.
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Table 6: Detailed result of human evaluation. The numbers indicate the portions of accepted and rejected tuples.
Ro-l, DB, B-b, B-l, Ro-b are short for Roberta-large, DistilBert, Bert-large, Bert-base, Roberta-base. Human,
Auto, Top-1 and Multi stand for methods that use Human Prompt, Autoprompt, Top-1 Prompt (Ours) and Multi
Prompts (Ours).

Model Ro-l Ro-l Ro-l Ro-l DB B-b B-l Ro-b

Prompt Human Auto Top-1 Multi Multi Multi Multi Multi

BUSINESS 0.60/0.32 0.76/0.13 0.75/0.16 0.88/0.07 0.54/0.27 0.64/0.23 0.76/0.13 0.74/0.19
HELP 0.77/0.12 0.52/0.34 0.92/0.03 0.87/0.05 0.91/0.04 0.81/0.04 0.88/0.06 0.88/0.06

INGREDIENT FOR 0.59/0.33 0.33/0.59 0.73/0.20 0.71/0.24 0.70/0.26 0.55/0.40 0.72/0.23 0.51/0.40
PLACE FOR 0.76/0.10 0.41/0.36 0.63/0.32 0.89/0.07 0.84/0.14 0.78/0.18 0.87/0.11 0.88/0.09

PREVENT 0.42/0.42 0.18/0.67 0.60/0.25 0.40/0.45 0.60/0.32 0.44/0.39 0.62/0.25 0.68/0.25
SOURCE OF 0.76/0.17 0.21/0.67 0.52/0.44 0.60/0.33 0.63/0.36 0.65/0.32 0.75/0.24 0.55/0.37

SEPARATED BY THE OCEAN 0.48/0.38 0.16/0.48 0.56/0.35 0.55/0.40 0.51/0.24 0.57/0.26 0.44/0.46 0.44/0.49
ANTONYM 0.50/0.41 0.10/0.83 0.50/0.48 0.55/0.44 0.38/0.56 0.41/0.56 0.52/0.42 0.75/0.22

FEATURED THING 0.85/0.12 0.38/0.40 0.88/0.06 0.89/0.10 0.37/0.44 0.44/0.40 0.46/0.44 0.65/0.20
NEED A TO DO B 0.71/0.18 0.62/0.21 0.66/0.22 0.79/0.10 0.83/0.12 0.62/0.25 0.65/0.18 0.72/0.17

CAN BUT NOT GOOD AT 0.52/0.34 0.29/0.42 0.61/0.19 0.44/0.21 0.51/0.31 0.60/0.21 0.64/0.22 0.39/0.35
WORTH CELEBRATING 0.47/0.29 0.23/0.51 0.81/0.05 0.85/0.08 0.79/0.12 0.74/0.14 0.84/0.10 0.83/0.10

POTENTIAL RISK 0.40/0.23 0.31/0.45 0.70/0.21 0.76/0.19 0.87/0.05 0.66/0.22 0.72/0.16 0.79/0.08
A DO B AT 0.56/0.33 0.14/0.55 0.79/0.14 0.97/0.03 0.93/0.07 0.93/0.05 0.94/0.06 0.94/0.06
AVERAGE 0.60/0.27 0.33/0.47 0.69/0.22 0.73/0.20 0.67/0.24 0.63/0.26 0.70/0.22 0.70/0.22
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Study [MASK] is the place for [MASK]

BERT
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𝑃𝑃𝐿𝐿𝐿𝐿(ℎ2|𝑝𝑝, ℎ1)

(Multiple tokens)

Figure 7: We demonstrate the calculation with an example where p ="A IS THE PLACE FOR B". The left
two figures shows how we calculate PLM (h|p) and PLM (t|p, h). In this example, h ="library" when we set
both head and tail entities to have one single token. The right block shows how we calculate the conditional
probability of multiple-token entities by decomposing it into two steps. In this example, the first token of the
head entity h1 ="study".
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