FLUX: Efficient Descriptor-Driven Clustered Federated
Learning under Arbitrary Distribution Shifts

Dario Fenoglio* Mohan Li*
Universita della Svizzera italiana Universita della Svizzera italiana
Lugano, Switzerland Lugano, Switzerland

dario.fenoglio@usi.ch mohan.l1i@usi.ch
Pietro Barbiero Nicholas D. Lane
IBM Research University of Cambridge
Zurich, Switzerland Cambrige, United Kingdom
pietro.barbiero@ibm.com ndl32@cam.ac.uk
Marc Langheinrich Martin Gjoreski
Universita della Svizzera italiana Universita della Svizzera italiana
Lugano, Switzerland Lugano, Switzerland
marc.langheinrich@usi.ch martin.gjoreski@usi.ch
Abstract

Federated Learning (FL) enables collaborative model training across multiple
clients while preserving data privacy. Traditional FL methods often use a global
model to fit all clients, assuming that clients’ data are independent and identically
distributed (IID). However, when this assumption does not hold, the global model
accuracy may drop significantly, limiting FL applicability in real-world scenarios.
To address this gap, we propose FLUX, a novel clustering-based FL (CFL) frame-
work that addresses the four most common types of distribution shifts during both
training and test time. To this end, FLUX leverages privacy-preserving client-side
descriptor extraction and unsupervised clustering to ensure robust performance and
scalability across varying levels and types of distribution shifts. Unlike existing
CFL methods addressing non-IID client distribution shifts, FLUX 1) does not require
any prior knowledge of the types of distribution shifts or the number of client clus-
ters, and ii) supports test-time adaptation, enabling unseen and unlabeled clients
to benefit from the most suitable cluster-specific models. Extensive experiments
across four standard benchmarks, two real-world datasets and ten state-of-the-
art baselines show that FLUX improves performance and stability under diverse
distribution shifts—achieving an average accuracy gain of up to 23 percentage
points over the best-performing baselines—while maintaining computational and
communication overhead comparable to FedAvg.

1 Introduction

Federated Learning (FL) [1-4] is a distributed and privacy-preserving Machine Learning (ML)
paradigm that enables multiple isolated clients to collaboratively train models without sharing their
private local data. Traditional FL. methods often use a global model to fit all clients’ data [1, 5, 6],
assuming that clients’ data are independent and identically distributed (IID). However, this assumption
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Figure 1: Types of data distribution shifts. (a) Feature distribution shift: two subsets differ in feature
distributions, while label distributions are similar. (b) Label distribution shift: two subsets differ in
label distributions, while feature distributions (for each class) are similar. (¢) P(Y'|X) concept shift:
two subsets share the same feature distributions but differ in label distributions. (d) P(X|Y") concept
shift: two subsets share the same label distributions but differ in feature distributions.

rarely holds in practical FL scenarios, where clients often exhibit distribution shifts due to holding
non-IID data' [7, 8]. Such heterogeneity can significantly degrade the performance of the global
model, limiting the effectiveness of FL in real-world applications [9].

To address this problem, both Clustered Federated Learning (CFL) [10, 11] and Personalized Feder-
ated Learning (PFL) [12, 13] have been proposed. These approaches relax the global model constraint
by adapting models to subsets of clients with homogeneous data distributions—via clustering in
CFL or client-specific personalization in PFL. Despite their promise, existing methods address
only specific forms of heterogeneity (e.g., feature or label shift), and often fail when multiple or
unforeseen shifts occur [12—17]. Many rely on impractical assumptions, such as prior knowledge
of the optimal number of clusters [11, 15, 16, 18], and incur high communication and computa-
tional overhead [13, 14, 17, 18]. Crucially, most methods assume that test-time clients have already
participated in training and contributed labeled data [11-19]. This assumption breaks down in
realistic deployments, where unseen and unlabeled clients may appear post-training with unknown
data distributions. To overcome this limitation, Test-Time Adaptive FL (TTA-FL) methods have
emerged to adapt pre-trained models to the distribution of test-time clients without requiring labeled
data [19, 20]. However, they typically assume a single starting global model and rely on online
adaptation procedures or extra interactions with the client, limiting their practicality and robustness
in deployment.

To address these challenges, we introduce FLUX (Federated Learning with Scalable Unsupervised
Clustering and Test-Time Adaptation), a novel clustering-based approach that efficiently handles data
heterogeneity in FL under minimal assumptions. Qur key contributions are:

* We propose FLUX to address four common types of data distribution shifts in FL: feature shifts,
label shifts, P(Y'| X )-concept shifts, and P(X|Y")-concept shifts. Unlike most existing frameworks,
FLUX does not require prior knowledge of unseen data distributions or the number of clusters.

* We empirically demonstrate that FLUX supports test-time adaptation by assigning previously
unseen and unlabeled clients to the most suitable cluster models. FLUX consistently outperforms
10 state-of-the-art (SOTA) baselines—including CFL, PFL, and TTA-FL—across four standard FL
benchmarks and two real-world datasets. Evaluations span a broad range of scenarios, covering the
four most common types of distribution shift, their combinations, and eight levels of heterogeneity
severity (from none to extremely high).

* We provide both theoretical bounds and empirical evidence that FLUX incurs minimal computational
and communication overhead compared to baselines and verify its scalability, enabling deployment
across a large number of clients while ensuring privacy guarantees.

To the best of our knowledge, FLUX is the first scalable and general-purpose FL framework explicitly
designed to address the four most common distribution shifts during both training and test time.

2 Background

Traditional FL under IID assumption. Traditional FL systems [1] consist of K € N clients,
denoted by X={1,2,..., K}, coordinated by a central server to collaboratively train an ML model

while preserving data privacy. Each client k € K holds a private dataset (z*),y(¥)), a realization

"We refer to these clients as non-IID clients in the next sections.



of the random variables (X *),Y(¥)) drawn from the data distribution P(X (*)Y'(*)). Under IID
assumptions, FL assumes IID data across clients, i.e., P(X*) Y(¥)) = P(X,Y) for all k. Each

client holds s*) € N samples, with z(*) Rs® = denoting feature vectors and y*) € {0, 1}5(k) X
the corresponding labels, where z is the number of features and w the number of classes. In each
round, clients independently update local parameters #*) € ©(*) C R? by minimizing a local loss on
their private data, with p the number of parameters. After local training, clients send their updated
parameters to the server, which aggregates them using a permutation-invariant method, typically
FedAvg [1]. The aggregated global model € is broadcast back to clients to initialize the next round,
and the process repeats until convergence to 6*, minimizing the overall risk across client distributions:

K
0" = argmeaxz Z logP(y | x;G). (1)

k=1 (z,y)e(z®,y*))

Distribution shifts. Real-world FL tasks involve clients with a combination of distribution shifts,
driven by factors such as geographic and demographic variations, or even adversarial attacks. While
distribution shift has been studied extensively in centralized settings [21-24], it remains a relatively
new challenge in FL. The FL community has developed numerous approaches—such as FedNova
[25], FedProx [5], and FedDyn [26]—to mitigate data heterogeneity, but these methods typically
address only specific aspects of the non-IID challenge. This limitation is further exacerbated by
the fact that the server has limited knowledge and control over client data distributions due to data
isolation. Below, we outline four typical types of FL distribution shifts, as illustrated in Figure 1:

o Feature distribution shift: marginal distributions P(X) vary across clients.

* Label distribution shift: marginal distributions P(Y") vary across clients.

* Concept shift (same features, different label): conditional distributions P(Y|X') vary across clients.
* Concept shift (same label, different features): conditional distributions P(X |Y") vary across clients.

Unlike centralized training, FL clients, particularly in cross-device scenarios, often operate on devices
with constrained computational resources. These limitations restrict both the computational capacity
for training and the complexity of deployable models, reducing their ability to capture diverse and
complex data distributions across clients [14, 16]. As a result, the trained models may lack sufficient
expressiveness, adversely affecting both performance and generalizability [14].

Clustered Federated Learning. To address distribution shifts in federated environments, CFL
extends traditional FL by partitioning the overall training data across clients into M € N distinct
clusters. Each cluster is associated with a unique data distribution P(X,,,Y,,) such that all data
within that cluster are drawn from the same distribution. Let C = {c(l), @K )} denote the set
of cluster-assignment vectors, where each c¢(*) € RM represents the degree of membership of client
k to each of M clusters, and satisfies an\f:l cgf) = 1. Based on the nature of cluster assignments,
we define two CFL frameworks: soft-CFL and hard-CFL (see Appendix A.1.1 for more details).
In soft-CFL, the vectors of c(¥) are fractional values in [0, 1], reflecting probabilistic membership
across clusters. In contrast, hard-CFL requires that each %) be a one-hot vector, i.e., c¥) € {0, 1}M s
meaning that client k is assigned exclusively to a single cluster. Under hard-CFL, the client set K
is partitioned into disjoint subsets corresponding to the different clusters, and within each cluster
m, traditional FL is employed to optimize a dedicated model 0}, , ensuring that the conventional
FL assumptions hold locally for the data drawn from P(X,,,Y,,). Formally, CFL seeks to jointly
optimize the model parameters and the cluster assignments as follows:

M K
Ordmon (Y marg - max D D 3 A)logPly|aifn) @

m= RS m= k=1 (2,) € (20,4 (9))

3 CFL Challenges and Problem Definition

Limitations and challenges in current CFL approaches. As summarized in Table 2, existing CFL
methods fail to satisfy several key FL requirements. Most lack a robust mechanism for assigning
clusters at test time—especially for unlabeled clients—and are not evaluated across all four types



of non-1ID shifts. Moreover, methods such as [15, 11] require prior knowledge of the number
of distributions or clusters before initiating FL training (i.e., M*), which is often impractical in
real-world applications. Additionally, most approaches impose significant computational burdens,
either on the server side [14] or the client side [17], and demand increased communication costs if
multiple models are transmitted [11]. These limitations hinder scalability, particularly as the number
of clients or potential clusters grows, a common scenario in real FL deployments. For this reason,
we opted for a hard-CFL approach: unlike soft-CFL methods, which require maintaining multiple
models per client and learning personalized weight vectors (hindering efficiency and generalization
to unseen clients), hard clustering provides a more scalable and deployable solution. A more detailed
comparison among our work and baselines is provided in Appendix E.2.

Problem statement. We consider an FL setting with K clients. Each client k£ holds a private
dataset (z(*), y(®)) drawn from one of M unknown data distributions {P(X,,,Y,,)}M_,, where
1 < M < K. Our objective is to (i) determine the number of clusters M, (ii) identify the cluster
assignment C, so that all clients in cluster m have (approximately) IID data from the same distribution
P(X,n,Y:m), and (iii) optimize the model 6,,, for each cluster m. At test time, our goal is to assign
any newly arriving, unlabeled client to the best-fitting cluster-specific model 6;,. Crucially, no prior
knowledge of the underlying data distributions or the number of distribution shifts is required; both
M and C are learned from the clients’ data. The methodology must ensure that the solution is as
scalable as traditional FedAvg and maintains the same privacy level.

4 FLUX

In this work, we propose FLUX, a robust, computationally efficient, and scalable CFL framework
that handles all four types of data distribution shifts without requiring prior knowledge of client
data. This section introduces the theoretical foundations of FLUX, using a probabilistic graphical
model to represent the relationships among client distributions, descriptors, and cluster assignments,
enabling decomposition into independently optimizable objectives (Section 4.1). We then present the
operational pipeline of FLUX, designed for adaptability and real-world utility (Section 4.2).

4.1 Probabilistic Modeling and Optimization Objectives

FLUX aims to predict Y(¥) from X(*) using a
cluster-specific model parameterized by 6,,,, where
0., € O,, depends on the cluster m to which client
k is assigned. During training, each client learns a
local model #*) € ©*) based on its private dataset.
From these data, it then constructs a compact de-
scriptor d®) € D) via a feature extractor ¢ pa-
rameterized by 1 € U, which is designed to capture
the essential information of the client’s data distri-
bution. After collecting the descriptors {d*) } /< |
from all clients, the server applies an unsupervised clustering algorithm U/, parameterized by A € A,
to obtain the cluster assignments {C (k)}szl. These assignments allow the aggregation of local
models into cluster-specific models 6,,, each optimized to generalize well across clients in cluster m.

Figure 2: FLUX’s PGM. Solid line: data gener-
ating mechanism. Dashed line: inference direc-
tion. Gray line: present only during training.

We formalize FLUX as a probabilistic graphical model (PGM) capturing dependencies among
variables. Each client k contributes to the joint distribution via its data (X (’“), Y(k)), descriptor D),
and cluster assignment C'*). Figure 2 illustrates the global structure, which factorizes per client as:

P(C<k),D(k>,Y<k)7X(k); 9(’“)71\7\1,) :P(D(k) ‘C<k); A) P(Y<k), x ) ‘D(k); \If) P(y(k) |X(k); @(k))

clustering descriptor extractor local classifier

Each element in the decomposition represents a distinct component of FLUX:

« P(Y®) | X)) (local classifier): Each client k models its joint distribution, which factor-
izes as P(Y®) | X(®).0(0)) (X (¥)), Since P(X *)) is independent of ©(¥), each client locally
learns the predictive model by minimizing the corresponding negative conditional log-likelihood.



o P(Y®) X ()| D)) (descriptor extractor): A feature extractor ¢ with parameters ¥ maps
the high-dimensional data (Y (), X (%)) to a compact descriptor D(*). At test time, only X (¥) is
available, i.e., P(D*) |0,X(k); ). Parameters ¥ are learned on the client side (Section 4.2.1).

» P(D®) |C®);\) (unsupervised clustering): This term models the probabilistic assignment of
clients to clusters based on their extracted descriptors. It is parameterized by an unsupervised
clustering algorithm ¢/ with parameters A (see Section 4.2.1).

After clustering, the server aggregates local models into cluster-specific parameters ©,,, by determin-
istically combining assignments {C'*)} with {©(*)}. This hierarchical decomposition disentangles
the overall optimization into distinct sub-problems—clustering, descriptor extraction, and local
classification— each of which can be optimized independently as follows:

K

PP e oy o [logP PN
{ Hr=1 {9““)}5:#/\;:1 . |

+ Z logP(y,:c|d(k);1/)) + Z 1ogP(y|:r;9(k))]. 3)

(z,y)e(@) y(*)) (z,y)e(@) y*))

4.2 FLUX Pipeline

Figure 3 provides an overview of the FLUX pipeline, illustrating how its components translate theoret-
ical models into actionable strategies. This subsection details the pipeline’s mechanisms during both
training and inference phases. During training (Section 4.2.1), FLUX securely extracts representative
descriptors from client data which are then used to cluster clients with similar distributions in an
unsupervised manner to accommodate data heterogeneity. During the inference phase (Section 4.2.2),
FLUX assigns trained models to unseen clients by matching their data distributions to the closest
clusters without requiring labeled data, ensuring adaptability in real-world scenarios.
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Figure 3: Overview of the FLUX framework for efficient unsupervised CFL. FLUX operates
without prior knowledge of client data, handling distribution shifts and optimizing cluster-specific
model assignment to unseen, unlabeled clients at inference.

4.2.1 Training Phase

The training phase is designed to address all four types of data distribution shifts—feature distribution
shifts, label distribution shifts, P(Y|X)-concept shifts, and P(X|Y")-concept shifts. To identify
these shifts, we extract representative descriptors that capture the key statistical characteristics of
each client’s labeled data, thus approximating the relevant data distributions for clustering.

Descriptor extractor. Consider a set of M data distributions { P(X,,, Y;,,)}M_, | where each client

holds data sampled uniformly from one of the M distributions P(X,,,Y;,). We define the descriptor
extractor: ¢, : R*"¥(E+H0)  RE (I « s() x (2 + u)), parametrized by 1, that maps a local
dataset (z(®), y(¥)) ~ P(X,,,Y;,) to a descriptor d*) := ¢(z*), y*);4)). For any two client pairs
k1 and ko, the extractor must satisfy the requirements below:

(R1) Distribution fidelity. The function ¢ is designed to approximate a reference distance D (e.g.,
Jensen—Shannon or Wasserstein distance) between the corresponding distributions:

| a0 — gk, — D(P(x(kl)7y(kl))7P(I(k2)7y(k52))) | <€ 4)



In other words, the extractor ¢ maps similar joint distributions to nearby descriptors and
dissimilar ones to distant descriptors.

(R2) Label agnosticism. A sub-vector d'*) C d*) must be computable without any labels:
d® = g(z™,0;9) eR?, p<L (5)

enabling descriptor extraction and similarity matching at test time. The sub-vector d’(*) encodes
the marginal characteristics of the input distribution based solely on the features z(*).

(R3) Compactness. The function ¢ introduces minimal overhead relative to vanilla FL: its com-
putational cost is negligible compared to a single local training epoch, and the descriptor
dimensionality L satisfies L < p (typically d/p < 10~2), ensuring that the additional commu-
nication cost remains marginal relative to the model update size p.

Practical implementation. To capture all four shift types, we factorize the joint distribution as
P(X,Y)= P(Y | X)P(X) and design ¢ to encode the marginal P(X) and conditional P(Y" | X)
separately. Appendix C.4 details how this design enables detection of feature, label, and both concept-
shift variants, together with the step-by-step implementation. Concretely, each client’s data (%) is
first mapped to a latent space by the shared encoder f. : R* — R with parameters 6, then compressed
by a client-invariant reduction &, ; : R? — R/ (v>>1), parametrized by 1 (e.g., a shared PCA fitted
on synthetic reference points, with [ = 10):

Z(k) = §U—>l (fe(z(k); 9)7 dj) : (6)

To capture the marginal distribution P(X), we compute the first two moments of the reduced

latents—mean ") and covariance $”). To capture the conditional distribution P(Y | X), we

compute the class-conditional moments {1{¥), S U_ . The full descriptor d®) € R2(U+DI jg
obtained by concatenating all marginal and conditional moments:
k k k k
d® = [u®, 5B, W 5P e, 2] (7)

x

This instantiation meets every requirement: (R1) the mapping is provably Lipschitz-equivalent to
the 2-Wasserstein metric, with ¢ < 1.1 on MNIST and (and < 0.54 under Jensen—Shannon); (R2)
the label-agnostic sub-vector d’'(*) effectively captures P(X); (R3) it adds negligible compute and
a communication ratio L/p <3.5 X 103, Theoretical justifications, motivation, and further details
appear in Appendices C.1, C.3, and D.1. Additionally, differential privacy [27] can be seamlessly
plugged into d*) without affecting FLUX accuracy (see Appendix C.2). An ablation study and
pseudocode are provided in Appendix F.6 and Algorithm 1.

Unsupervised clustering. In real-world FL settings, prior knowledge of client data distributions is
rarely available. To address this, we propose using an unsupervised clustering method that determines
the proper number of clusters M and assigns each client to its corresponding cluster based on their
descriptors. Formally, given the set of client descriptors {d(’“)}f:1 and a clustering algorithm I/
parametrized by A, the cluster assignments C are computed as:

C=udM,d®, ... d¥;\) (8)

In our implementation, we design an adaptive density-based clustering method that automatically
determines the number of clusters present. Specifically, we extend DBSCAN by estimating the €
parameter through elbow detection on the sorted second—nearest neighbour distance curve, calibrating
it with a dataset-specific scaling factor, and reassigning noise points as singleton clusters to ensure
every client is represented (see Appendix D.2 for details). Nonetheless, our formulation is agnostic to
the choice of clustering method, provided it is unsupervised: in Appendix F.6.2, we report ablation
studies with alternative clustering strategies, showing that our descriptors consistently enable robust
client grouping regardless of the clustering algorithm, and in Appendix D.3, we provide illustrative
examples of how the clustering process operates in practice.

4.2.2 Inference Phase

During inference, newly joining test clients require access to trained models. As these clients lack
labeled data, we propose a mechanism that assigns test clients to the most suitable cluster-specific
model based solely on their feature distributions. This approach optimizes inference process by
leveraging the clustering structure learned during training.



Test-time cluster assignment.  For each test client ¢, only feature-based descriptors can be
extracted, as label information is unavailable. By fulfilling (R2), the descriptor extractor ¢ directly
yields the label-agnostic descriptor as d'(?) = gb(:z:(q), 0; ¢)), which encodes the marginal distribution.
Consequently, with information solely from the feature space P(X), P(Y|X)-concept shifts cannot
be solved during test time, as P(X) across clients is identical (same input features, different labels).

Precisely, in our implementation, @'(?) = [;i{?, ©{9] € R2!. Each cluster m identified during training
is associated with a centroid +,,,, computed as the mean of the sub-vectors d’(*) of all clients k in
that cluster. To assign a test client ¢ to a cluster, we then compare its descriptor d’(?) with the cluster
centroids -y, using a similarity metric x that measures proximity (e.g., Euclidean distance). The
client is assigned to the cluster with the closest centroid according to the chosen metric:

@ = ar min  &(d@ — 9

gme{L...,M} ( Ym) ©

This assignment ensures that the client g uses the cluster-specific model §; that is most representative
of its feature distribution. We provide the pseudo-code for our implementation in Algorithm 2.

5 Results

This section presents the experimental setup and results from two primary scaling experiments, analyz-
ing FLUX performance under varying non-IID levels (Section 5.2) and an increasing number of clients
(Section 5.3). These experiments evaluate and compare the scalability, robustness, and adaptability of
FLUX against SOTA baselines across diverse distribution shifts and client configurations.

5.1 Experiment Settings

Non-IID dataset generation. We use six publicly available datasets in our experiments: MNIST [28],
Fashion-MNIST (FMNIST) [29], CIFAR-10, CIFAR-100 [30]; and two real-world datasets, CheX-
pert [31] and Office-Home [32]. To simulate non-IID conditions in FL, we employ ANDA, a publicly
available toolkit that enables data operations such as class isolation and label swapping. See Ap-
pendix B.1 for details on the ANDA and the datasets partitioning strategy.

Baseline algorithms. We evaluate our approach against ten baselines listed in Table 2, including Fe-
dAvg [1], CFL [14], IFCA [15], FeSEM [18], FedEM [16], FedRC [11], FedDrift [17], pFedMe [12],
APFL [13], and ATP [20]. Full baseline descriptions are provided in Appendix E.1; experimental
setup, hardware, models, and hyperparameter configurations are detailed in Appendices B.2 and B.3.

5.2 Robustness Across Different Types and Levels of Data Non-IID Heterogeneity

Superior performance of FLUX across o Known Association Test Phase
varying heterogeneity levels and datasets. \% ~ T [ I Fedav
We benchmark FLUX against SOTA base- 8 \ == Fanc
lines across four shift types—P(X), P(Y), o FeSEM
P(Y|X), and P(X|Y)—each instantiated at

eight increasing non-IID levels. Full setup = frx
and results are detailed in Appendix F.1. Fig- R
ure 4 reports the average accuracy across S A S I A S
shift types on MNIST (results for FMNIST, Heterogeneity Level '
CIFAR-10, and CIFAR-100 are provided in
the Appendix F.1), highlighting performance
trends as heterogeneity severity increases.
FLUX consistently achieves robust performance across the heterogeneity spectrum, matching or
exceeding PFL methods under the simplified known association condition—where test-time cluster
assignments are assumed to be known—while maintaining high accuracy and stability even in the
more realistic fest phase, where such information is unavailable. Notably, FLUX yields absolute
accuracy gains of up to 12.4, 23.0, 7.0, and 3.0 percentage points (pp) over the best-performing
baselines on MNIST, FMNIST, CIFAR-10, and CIFAR-100, respectively. Table 1 summarizes the
results for each dataset, averaging performance across all heterogeneity levels. In the test phase
setting, FLUX consistently outperforms all baselines, improving accuracy by up to 7.84, 11.86, 2.17,

=3
3

o
=

CFL
~e— pFEDme

Accuracy

I
=
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Figure 4: Mean accuracy and standard deviation
across heterogeneity levels for MNIST.



and 1.5 pp over the best-performing baselines—CFL on MNIST and FMNIST, IFCA on CIFAR-10,
and FeSEM on CIFAR-100, respectively. Even under the simplified known association setting, FLUX
matches or surpasses the best methods on MNIST, FMNIST, and CIFAR-100. On CIFAR-10, FLUX
slightly trails PFL. methods—expected, as they are fine-tuned on the same client distributions seen at
test time—but their performance drops sharply on unseen clients. By contrast, ATP—an unsupervised
test-time adaptation method—shows instability and underperforms compared to FLUX, particularly
on complex datasets like CIFAR-100, where adaptation often leads to overconfident but incorrect
predictions. Furthermore, FLUX-prior, which applies K-means clustering with the true number of
clusters M (oracle knowledge), sets a new CFL benchmark by achieving the highest accuracy across
datasets and evaluation conditions. It is worth noting that most CFL baselines rely on this cluster
information (Table 2), significantly simplifying their clustering process. Appendix F.3 further shows
FLUX’s robustness when multiple shift types occur simultaneously.

Robust performance on real-world datasets. To assess real-world applicability, we evaluate
FLUX on the CheXpert dataset under three naturally occurring levels of non-IID heterogeneity (see
Appendix F.4 for details), and the Office-Home dataset under four inherent domains. As CheXpert
is a multi-label classification task, we report macro-averaged ROC AUC. Results summarized in
Table 1 show that FLUX consistently outperforms all baselines in both the known association (up
to 8.5 pp over the best-performing baseline, APFL) and fest phase settings (up to 17.5 pp). On the
Office-Home dataset, FLUX attains competitive performance, closely matching APFL in the known
association setting and outperforming all baselines in the test phase by up to 1.3 pp. In contrast, most
metric- and parameter-based CFL methods collapse to a single global model, failing to capture subtle
real-world distribution shifts. FLUX performance closely matches that of FLUX-prior, underscoring
the effectiveness of our learned descriptors and unsupervised clustering strategy—even without access
to the true number of clusters.

Dataset MNIST FMNIST CIFAR-10 CIFAR-100 CheXpert Office-Home

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase

FedAvg 80.9+20 856+2.1 655+£2.6 688+27 309£2.1 319£23 338+2.0 380x23 56.1+1.0 56.1+x1.0 37.1+£0.9 37.1+0.9
IFCA 84.1+£75 782+£54 724+£52 635+49 383£25 366+23 36.1+41 386+29 585+04 585+04 328+8.1 29675
FedRC 475+5.1 499+45 543+50 55.7+53 173+22 172424 338+12 379+1.1 588+04 583+04 222428 222428
FedEM 483+5.0 50.0+4.5 55752 56.0+52 18.0+23 17.5+24 348+1.1 38.0x1.1 585+04 585+04 284+23 288+18
FeSEM 878+3.1 828+3.7 719+3.7 662+44 365+27 353+25 356+24 39818 59.0+04 58304 27.0+29 258%18
FedDrift 91.1%£29 65.1£37 80.7£2.1 51.1%£26 351£26 321£22 395+3.1 265+18 61.6+x0.6 61.6+0.6 395+4.0 346+4.1

CFL 81.3+1.8 86.1+1.9 66.0+28 69.4+3.0 322+2.1 332+23 346+15 38.6+x1.6 585+04 585+04 313+£33 21.0%1.5
pFedMe 955+0.3 N/A 819+12 N/A 424+1.1 N/A 36.1+2.1 N/A 69.4+0.2 N/A 309+23 N/A

APFL 955403 84.7+24 819+16 692+28 447+1.1 366+2.1 442+17 373+£08 723+02 640+x04 435+21 367+04
ATP N/A 85.6+1.8 N/A 68.4£29 N/A 33.6%22 N/A 37515 N/A N/A N/A 37.9+£09
FLux 925429 940+22 794+28 81.2+27 38.6+23 387+33 41.7+2.0 41.3+3.1 794£0.3 78.6+09 392+02 39.2%0.3

FLUX-prior 95.8+0.3 957+1.7 81.9+1.2 833+14 40.1+1.6 393+3.1 428+12 41.3+3.2 793+03 78509 432+3.1 389+1.1

Table 1: Overall performance on MNIST, FMNIST, CIFAR-10, CIFAR-100, Office-Home
(accuracy), and CheXpert (ROC AUC). Known A.: Known Association. N/A: Not available.
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Figure 5: Mean accuracy and standard deviation on MNIST dataset with varying numbers of
clients. Left: known association condition, where test-time cluster associations are available. Middle:
test phase condition, where cluster associations are inferred. Right: training time per 10 rounds.

5.3 Scalability and Efficiency Across Increasing Numbers of Clients

FL is designed to jointly train models across millions of clients with limited computational resources
and memory. This necessitates efficient and lightweight methods capable of handling numerous data



ALL TEST NO CLUSTER Low comm. Low comp. Low comp.

ALGORITHM CaT. NON-IID  ADAPTATION  NUMBER PRIOR COST COST (SERVER)  COST (CLIENT) SCALABILITY
FEDAVG [1] N/A N/A N/A N/A ' v v v
IFCA [15] CFL v O
FESEM [18] CFL v v

FEDEM [16] CFL v O
FEDRC [11] CFL v O
FEDDRIFT [17] CFL v v

CFL [14] CFL v v v

PFEDME [12] PFL v v v O v
APFL [13] PFL v v v v
ATP [20] AFL v v v v O v
FLuUx CFL v v v v v v v

Table 2: Qualitative comparison of FLUX and baselines. Cat.: FL category. All non-IID: designed
to tackle all four non-IID types. Test adaptation: adapt to unseen, unlabeled clients. No cluster
number prior: not required knowledge of distribution numbers. Low comm. cost: relatively low
communication cost (comparable to FedAvg). Low comp. cost (Server/Client): relatively low
computational cost on server/client side (comparable to FedAvg). Scalability: scales efficiently with
large client numbers. N/A: not applicable. v : property satisfied. (): property conditionally satisfied.

distribution shifts (i.e., clusters). To evaluate scalability, we measure the accuracy and training time
of FLUX and the baseline methods by increasing the number of clients from 5 to 100 (Figure 5). Due
to prohibitive memory and computational costs (see Appendix B.3), FedDrift and CFL could not be
evaluated with 100 clients. Detailed experimental setup and results are provided in Appendix F.2.

FLUX maintains high accuracy with increasing numbers of clients and clusters, demonstrating
adaptability to large-scale FL. Figure 5 shows that accuracy generally decreases for all methods,
confirming that as the number of clients—and therefore clusters—increases, clustering becomes
more challenging due to the presence of numerous diverse data distributions, reduced training data
per cluster, and the higher aggregation divergence inherent to FL. Despite this, FLUX and FLUX-
prior maintain consistent accuracy in both evaluation settings (known association and test phase),
outperforming baselines, which exhibit significant accuracy degradation as the number of clients
increases. During the fest phase, FLUX sustains consistent accuracy above 84%, whereas the closest
baseline, APFL, declines to over 70%.

FLUX demonstrates scalability and efficiency with minimal computational overhead. We
further evaluated the efficiency of FLUX by measuring the overall training time as the number of
clients increased. As illustrated in Figure 5, FLUX shows training times comparable to FedAvg, with
only minor differences in execution time (on the order of seconds). The efficiency of FLUX stems
from its minimal modifications to the traditional FedAvg framework. Specifically, the additional costs
introduced by FLUX—primarily in the communication step and clustering process—are negligible
relative to the total costs of model parameter transmission and aggregation. The communication
overhead is proportional to the length of the descriptor (L), which is significantly smaller than the
total model size (L/p < 3.5 x 1073). Similarly, the clustering cost (O(L - log(L))) is substantially
lower than the aggregation cost (O (Njien: - ¢)). Notably, the computational time of the fastest CFL
baseline, FeSEM, is more than 4 times that of FLUX, while the slowest, FedDrift, requires over 300
times the computational time of FLUX. Further details are provided in Appendix E.2.

6 Discussion and Related Works

Clustered Federated Learning. CFL partitions the overall client data into clusters based on training
behaviors or data distributions, serving as a middle ground between PFL and traditional FL. By
aggregating within clusters, CFL can potentially accelerate model convergence and mitigate local
overfitting. CFL methods are typically categorized as hard- [14, 15, 17, 18] or soft-CFL [11, 16],
and further distinguished by their clustering principles: metric-based [15-17, 33, 34] or parameter-
based [11, 14, 18, 35]. Metric-based CFL (e.g., loss-based) may miscluster clients with similar
empirical risks but divergent loss distributions, showing that a single loss value is insufficient for
reliable clustering. Likewise, feature-based metrics such as frequency coefficients [33] cannot
distinguish clients with different conditional distributions but identical marginals. Parameter-based
CFL may misgroup models due to permutation invariance and overparameterization, assigning
identical functions with different parameters to separate clusters or vice versa [36]. In contrast, FLUX
introduces a descriptor-based clustering paradigm, where descriptors approximate the 2-Wasserstein



distance and jointly capture both marginal and conditional properties of client data, a capability
essential for handling all four types of distribution shift simultaneously.

Personalized Federated Learning. PFL [10, 13, 37-53] reframes FL as a client-centric opti-
mization, learning a distinct model for each client to address data heterogeneity. PFL methods
include fine-tuning a shared global model via additional local updates or meta-learning [10, 37, 38];
model-decoupling approaches that split networks into shared and client-specific components or adapt
batch-norm layers [13, 39-42]; and regularization-based methods that add proximal or penalty terms
linking personalized and global parameters [10, 54, 55]. While effective with ample labeled data,
PFL demands hyperparameter tuning, adds on-device compute and memory overhead, and—being
inherently supervised—cannot tackle unseen or unlabeled clients or distribution shifts at test time.

Test-time Adaptive FL. TTA-FL tackles post-deployment distribution shifts by adapting a pre-
trained global model to each client’s unlabeled test data using unsupervised objectives—e.g., entropy
minimization [19, 20, 56] or contrastive losses [57, 58]. Without labels, these objectives are ill-
conditioned: entropy minimization often yields overconfident mispredictions under concept shift, and
contrastive losses can collapse on small or imbalanced batches. To enhance stability, recent works
restrict adaptation to a few parameters (e.g., interpolation weights) [19]. However, they still depend
on supervised pre-training of personalized components, rendering them unsuitable for truly test-only
clients. A more detailed discussion of these methods is provided in Appendix A.1.2.

7 Limitations and Future Works

FLUX has two primary limitations. First, to obtain statistically robust descriptors of client data
distributions, a sufficient amount of diverse training data is required, with the exact quantity depending
on the variability of the underlying data distributions. Second, FLUX operates as a one-shot CFL
framework, which does not account for dynamic scenarios where client data distributions evolve over
time (i.e., distribution drift). Nonetheless, the efficiency and simplicity of FLUX make it well-suited
for dynamic implementations. The clustering process can be repeated whenever a drift occurs within
a subset of clients, with the new clusters being assigned to the closest existing cluster-specific models
(see Appendix D.3). Building on this potential, we plan to extend FLUX to support dynamic scenarios,
enabling adaptive clustering and model updates to address evolving client data distributions.

8 Conclusion

In this work, we proposed FLUX, a novel FL framework that addresses the four most common types of
data distribution shifts (P(X), P(Y), P(Y|X), and P(X|Y")) without requiring any prior knowledge
of client data distributions, such as the number of clusters. By leveraging client-side extraction
of representative descriptors and an unsupervised clustering approach, FLUX achieves superior
performance and robustness across varying levels of heterogeneity and increasing numbers of clients.
Unlike existing methods, FLUX enables testing-time association, allowing unseen and unlabeled
clients to utilize the most suitable cluster-specific model obtained during training, addressing a
critical gap in real-world FL applications. Moreover, FLUX incurs minimal computational and
communication overhead, comparable to FedAvg, making it scalable and practical for large-scale FL.
deployments. Our results establish FLUX as a flexible, scalable, and robust solution for FL, paving
the way for more practical and adaptable frameworks in decentralized and privacy-preserving ML.
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A Related Approaches to Distribution Shift

A wide range of methods has been proposed to address data heterogeneity in FL, which can be
grouped into three main categories—clustered FL (CFL), personalized FL (PFL), and test-time
adaptive FL (TTA-FL). Below, we summarize each category’s key principles and limitations.

A.1 Clustered Federated Learning

CFL assumes the presence of M distinct data distributions within the federation and aims to learn one
model per distribution. Existing CFL methods can be categorized by their clustering strategy—either
as hard or soft clustering—and by the underlying clustering principle, namely metric-based or
parameter-based (gradient-based) approaches.

A.1.1 Clustering Strategy: Hard vs. Soft CFL

In Equation 2, we introduced a general definition of CFL that unifies hard- and soft CFL under a
single framework. This formulation follows standard mixture-model derivations: soft-CFL defines
client assignments ¢(*) as probability vectors, while hard-CFL is the special case where c(*) reduces
to a one-hot vector. Hence, Equation 2 can be seen as a surrogate objective derived from the soft-CFL
likelihood via the standard Jensen lower bound, subsuming both variants under a single expression.
This appendix explicitly presents the optimization problems for hard-CFL and soft-CFL, as is standard
in the literature, to provide greater clarity on their specific formulations.

* Hard-CFL assigns each client k£ € K to exactly one cluster based on predefined criteria or similar-
ity measures. Therefore, each cluster ¢, is a subset of K, i.e., ¢, C K for all m e{1,...,M}.

Additionally, the clusters are disjoint and collectively exhaustive, satisfying U 1Cm = IC and
Cm N ¢, = () for all m # n. This means that each cluster c,,, includes a distinct subset of clients
with similar data distributions, allowing the hard-CFL framework to train specialized models
tailored to each cluster’s specific data distribution. Formally, hard-CFL seeks to jointly optimize
the model parameters and the cluster assignments as in Equation 10. This formulation ensures that
each cluster-specific model 6, minimizes the risk for all clients within cluster ¢,,, and generally
suppose to know the number of clusters M.

{0: M Cc* = arg max Z Z log P(y|z; 0m), (10)

{0m} s, m 1 (z,y)e(x(®) yk))

* Soft-CFL allows clients k£ € K to belong to multiple clusters with certain probabilities or weights,
accommodating scenarios where client data may exhibit overlapping distributions that can be
effectively modeled by a combination of specific models. Therefore, each client k is associated
with a weight vector 7(%) = {wik), A WJ(\?} where 7r,(n) > 0 and Z 1 w,(ff) = 1. This enables
each client to contribute to multiple cluster-specific models based on weights. Mathematically,
soft-CFL seeks to jointly optimize the cluster-specific model parameters {f,,}»_, and the

assignment weights {7(®)}/C_ as follows:

{0m { (k)}” Im=1k= 1(z,y)€(x®), y(k>)
(11)

This formulation allows each client to be influenced by multiple cluster-specific models, thereby
enhancing the flexibility of cluster assignment. However, optimizing both cluster-specific models
and assignment weights 7(*) simultaneously poses additional computational and convergence
challenges, requiring alternative optimization techniques [59]. Furthermore, soft-CFL is generally
not designed to handle unseen clients effectively, as determining assignment weights 7(*) requires
access to the training data of these clients [11, 16].

A.1.2 Clustering Principles: Metric-Based vs. Parameter-Based CFL

CFL can be further classified into two categories based on their clustering principles: metric-based
CFL and parameter-based CFL. Table 3 provides a categorization of some existing CFL frameworks
according to these principles.
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CLUSTERING PRINCIPLE FRAMEWORK

METRIC-BASED IFCA [15]
FEDEM [16]
FEDDRIFT [17]
FLIS [60]
FEDCE [61]
ACFL [62]
FLSC [63]
FEDGWC [34]

PARAMETER-BASED CFL [14]
FESEM [18]
FEDRC [11]
FL+HC [35]
AUTOCFL [64]
FLEXCFL [65]

Table 3: Summary of CFL frameworks categorized by clustering principles.

* Metric-Based CFL. These algorithms assign cluster identities based on model losses or inference-
phase accuracy. Typically, the server broadcasts M models corresponding to M clusters, and
each client selects the model that minimizes the empirical risk on its local data—essentially
identifying the closest model as its cluster. Alternatively, client-side loss or accuracy values
can be directly utilized by the server for clustering. However, this approach relies on highly
compressed information, which can lead to inaccuracies. For instance, two clients with distinct
data distributions might achieve the same accuracy by making errors on different samples, causing
them to be grouped in the same cluster.

* Parameter-Based CFL. These algorithms perform clustering based on the parameters or gradient
updates of clients’ models. When clients possess non-IID datasets, local training epochs result
in diverging model parameter updates, which can be utilized for cluster identification. Two
common approaches for parameter-based CFL are: i) the server broadcasts M models, and each
client selects the one closest to its updated model, and ii) the server directly clusters clients’
updated model parameters or gradients. However, relying solely on distance metrics for clustering
may also lead to inaccuracies, as such metrics provide overly condensed information, making it
challenging to differentiate intrinsically non-1ID clients.

FLUX explicitly employs a descriptor extractor to capture statistical characteristics of client data. It
does not fall neatly into either category, as it clusters based on data-distribution descriptors rather than
model parameters or compressed metrics. The closest related approach is HACCS [66], which also
introduces descriptor-like summaries through label and pixel-value histograms. However, HACCS
lacks semantic and structural awareness (pixel statistics may not reflect task-relevant features),
requires labels at inference (preventing test-time adaptation), and produces descriptors whose size
grows with the number of labels and bins. Moreover, its histograms are human-interpretable, raising
stronger privacy concerns (e.g., revealing label distributions), and requiring strong differential
privacy. In contrast, FLUX leverages compact latent representations aligned with the classification
objective, which are non-invertible and task-relevant, enabling robust clustering across all four types
of distribution shift, and generalization to unseen clients. Numerical results comparing FLUX with
HACCS are provided in Section E.3.

A.2 Personalized Federated Learning.

PFL addresses client heterogeneity by shifting from a global objective to a client-specific optimization
framework, where each client & learns a tailored model optimized for its local data distribution. Instead
of enforcing a single shared model across all participants, PFL explicitly accounts for non-IID data
by enabling model personalization. Existing methods can be broadly classified into three categories:

* Fine-tuning. These approaches begin with a shared global model that is subsequently adapted
locally using additional gradient steps or meta-learning techniques to simplify personalization [37,
67, 38]. While conceptually simple, they often require careful tuning of hyperparameters and
sufficient local data to avoid overfitting.

* Model decoupling. These methods separate the model into shared (global) and client-specific
components, such as training a common backbone alongside global and personalized heads [39,
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13, 40, 19, 42]. Other variants adapt only batch-norm statistics [41] or allow for heterogeneous
encoder architectures [68]. These approaches enhance model expressiveness but incur higher
on-device memory and computational overhead.

* Regularization-based. These approaches personalize models by adding a regularization term that
encourages proximity between each client’s local model ¢(*) and the global model 6. A typical
formulation augments the local objective with a penalty term: minyxy L5 (¢)) 4 3 [|p*) —

9||2, where A controls the trade-off between personalization and global consistency [67, 54].
While these methods offer smooth personalization, they often require tuning client-specific
hyperparameters and solving nested or bi-level optimization problems.

Although PFL methods are effective when sufficient labeled data is available on each client, their per-
formance degrades in low-data regimes. Moreover, they typically introduce additional computational
and memory overhead on the client side, and—being inherently supervised—are not applicable to
unseen, unlabeled clients that appear only at test time.

A.3 Test-time Adaptive Federated Learning.

TTA-FL targets post-deployment distribution shifts by adapting a pre-trained global model to each
client’s unlabeled test data. Most approaches optimize unsupervised objectives—such as entropy
minimization [19, 20, 56] or self-supervised contrastive losses [57, 58]—directly on the test set.
However, in the absence of labels, the resulting optimization landscape is often unstable: entropy
minimization can lead to overconfident mispredictions under concept shift, while contrastive losses
may collapse on small or imbalanced test batches—a common constraint in FL. deployment. To
improve stability, recent methods constrain adaptation to a small set of parameters (e.g., batch-norm
statistics or interpolation weights between global and personalized heads [19]). Nonetheless, these
models still require labeled data during training to learn the personalized components, limiting their
applicability to truly unseen and unlabeled clients at test time.

B Reproducibility & Implementation Overview

B.1 Datasets and Non-IID Generation Protocol

ANDA. For MNIST, FMNIST, CIFAR-10, and CIFAR-100, we generate the four most common
types of distribution shift using ANDA * (A Non-IID Data generator supporting Any kind), a toolkit
designed to create reproducible non-IID datasets for FL experimentation. It supports datasets MNIST,
EMNIST, FMNIST, CIFAR-10, and CIFAR-100, and facilitates five types of data distribution shifts:
feature distribution shift, label distribution shift, P(Y'|X) concept shift, P(X|Y") concept shift, and
quantity shift.

Figures 6 and 7 illustrate examples of MNIST and CIFAR-10 datasets under four distinct types of
data distribution shifts generated using ANDA:

* In (a), the two clients experience different feature distribution shifts. Each image undergoes
one of three color transformations (blue, green, or red) and one of four rotations (0°, 90°,
180°, or 270°), with distinct distributions applied to each client. For instance, the first client
has a higher proportion of blue images, while the second client has more red images.

¢ In (b), the clients experience label distribution shifts. Each client receives data from only
three classes. For example, in the MNIST dataset, the first client has images of digits 0, 3,
and 6, while the second client has images of digits 1, 2, and 4.

* In (c), the clients exhibit P(Y| X )-concept shifts. Given identical feature distributions (e.g.,
image pixels), labels differ between clients. For instance, in the MNIST dataset, the first
client labels the digit ’1” as ’1’ and ’2’ as ’2’, whereas the second client labels "1’ as *2’ and
27 as 1.

* In (d), the clients demonstrate P(X |Y")-concept shifts. For the same label, different features
are applied. For example, in the MNIST dataset, the first client applies a red hue to images
labeled ’2’°, while the second client applies a blue hue to the same label.

In subsequent sections, we detail the specific dataset generation settings employed with ANDA.

*https://github.com/alfredoLimo/ANDA. git
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Figure 6: MNIST datasets with four different types of data distribution shifts generated by
ANDA.
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Figure 7: CIFAR-10 datasets with four types of data distribution shifts generated by ANDA.

CheXpert. For the real-world CheXpert dataset, we retain the original data without applying any
image augmentations or label modifications to preserve the correctness and clinical integrity of
the data. To simulate varying levels of client heterogeneity, we partition the dataset into multiple
distributions using three available metadata attributes: ViewPosition, Age, and Sex. Specifically, we
construct the following non-IID configurations:

* Low heterogeneity: 2 distributions based on ViewPosition (Frontal vs. Lateral).
* Medium heterogeneity: 4 distributions based on ViewPosition and Age (<50 vs. >50).
* High heterogeneity: 8 distributions based on ViewPosition, Age, and Sex (Male vs. Female).

Office-Home. For the real-world dataset Office-Home, we do not apply any image augmentation or
label modification; instead, we directly use the dataset in its original form. For our experiments, we
restrict the dataset to images with only 20 classes. To model different levels of data heterogeneity, we
leverage the four inherent domains of the dataset: Art, Clipart, Product, and Real-World. The domain
shift across these categories naturally induces heterogeneity in the data distribution.

B.2 Models and Hyper-parameter Settings

We adopt a 5-fold cross-validation strategy to evaluate model performance, using fixed random
seeds (42, 43, 44, 45, and 46) to ensure reproducibility. For the MNIST, FMNIST, and CIFAR-10
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datasets, we use LeNet-5 [69] as the base model; for CIFAR-100, CheXpert, and Office-Home, we
use ResNet-9 [70]. A batch size of 64 is used for both training and evaluation. Each client reserves
20% of its local data for validation. The FL process runs for 10 communication rounds on MNIST,
FMNIST, and CIFAR-10, for 15 rounds on CIFAR-100, 20 rounds on CheXpert, 40 rounds on
Office-Home, with each client performing 2 local training epochs per round. The learning rate is
set to 0.005 with a momentum of 0.9. All models are trained using cross-entropy loss, except on
CheXpert, where a binary cross-entropy loss is used due to the multi-label classification setting.

B.3 Code, Licenses and Hardware

Our experiments were implemented using Python 3.12 and open-source libraries including PyTorch
2.4 [71] (BSD license), Scikit-learn 1.5 [72] (BSD license), and Flower 1.11 [73] (Apache License).
For visualization, we utilized Matplotlib 3.9 [74] (BSD license) and Seaborn 0.13 [75] (BSD license),
while data processing was performed using Pandas 2.2 [76] (BSD license). The datasets used in our
experiments—MNIST (GNU license), FMNIST (MIT license), CIFAR-10, CIFAR-100, CheXpert,
and Office-Home—are freely available online. To ensure reproducibility, our code, along with
detailed instructions for reproducing the experiments, is publicly accessible on GitHub® under the
MIT license. We used publicly available codes for our baselines (except FedAvg).

All experiments were conducted on a workstation equipped with four NVIDIA RTX A6000 GPUs
(48 GB each), two AMD EPYC 7513 32-Core processors, and 512 GB of RAM.

B.4 Algorithm Pseudo-code

We provide the pseudo-code for both the training phase (Algorithm 1) and inference phase (Algorithm
2) of our proposed implementation of FLUX. These include steps for extracting representative
descriptors of client data distributions and performing unsupervised clustering.

C Descriptor Extractor Details and Theoretical Guarantees

C.1 Descriptor Extractor

This section presents the implementation of the descriptor extractor ¢, which enables each client to
encode its local data distribution in a compact and privacy-preserving way. The resulting descriptor
d®) supports consistent similarity comparisons across clients while satisfying all requirements in
Definition 4.2.1. We outline the implementation in four federated steps:

C.1.1 Implementation Details.

Let the final hidden layer of the global model produce, for client %, a matrix of latent representations

s®) € Rs™*= The descriptor extractor maps these latents to a descriptor d*) € R” through the
following steps:

S1 Global alignment (one shot, no raw data). Each client computes the element-wise minimum
and maximum of its latents and sends only these two z-dimensional vectors (i.e., 2z floats) to
the server. The server aggregates them by coordinate-wise min and max to obtain global bounds
[m™, m™], which are broadcast to all clients along with the model weights. This step ensures
consistent alignment without transmitting raw data, labels, or gradients.

S2 Shared PCA on synthetic reference points. Using a shared random seed, all clients generate
200 synthetic points uniformly sampled from [m ™, m™] and independently fit a PCA map
g : R* — R! (with [ = 10) to this synthetic set. Because both the sampling and data are
identical, all clients derive the same linear projector g, ensuring that Euclidean geometry in the
reduced space is aligned across the federation.

S3 Moment computation. Each client projects its latent matrix using the shared PCA: z(¥) =
g(s®) € R*"" ! Tt then computes: (i) global statistics (u&k), E;’“)), the mean and covariance
of z(®), approximating the marginal distribution P(X), and (ii) class-conditional statistics

{( u&k), 25}’)}5{:1, approximating the conditional distribution P(Y | X).

Shttps://github.com/dariofenoglio98/FLUX
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Algorithm 1: FLUX Framework — Training Phase

Input: Model f(0), client set K = {1, ..., K}, rounds R, descriptor extractor ¢(+; 1)), clustering method
Output: Cluster-specific models {0,,, }2_1, cluster centroids {~y,m } 31—,

Descriptor Extraction;

A < RandomClientSelection(K) ; // A contains clients for initial clustering
for each client k € A in parallel do

0% 07

d® «— ¢ $<k)7y(’“);¢) : // Extract descriptor

Send d®, s*) and 9 to server;
Unsupervised Clustering;
C + U({d(k)}keA; A) with C = {C(k)}keA, c® S {0, 1}M;
form = 1to M do
(k)

RS SN
Tm ﬁ 2kea e d® ; // Cluster centroids

Clustered Federated Learning;
forr = 1to Rdo
for m = 1 to M do

S = S8, PR

Or Sim 25:1 k) k) gk) // Weighted aggregation
A < RandomClientSelection(K) ; // New participants each round
for each client k € A without ¢*) in parallel do
0% «— 9,
d®) d)(x(k), y““); 1/1) ; // Descriptor for cluster assignment

B Send d(k), s(k), and 0% to server;

for each client k € A without ¢* in parallel do

L ™ argming—1,. li(d(k),’ym) ; // Model/cluster assignment
for each client k € Awith ¢'f’ =1 do

L Send 6,,, to client k;

for each client k € Ain parallel do
Receive 0,,;

0% < 0,,;
o) LocalTrain(H(k),$<k),y(k)) ; // Local update

Send 0®) and s 1o server;

S4 Differential privacy (optional plug-in). To enhance privacy guarantees, each statistic g; in the
descriptor can be independently perturbed using the Laplace mechanism (§ = 0) [77], as detailed
in Appendix C.2:
i ~ Laplace((), bi), bz = Al,i/€7
where A; ; denotes the ¢;-sensitivity of the 4-th statistic. For means and standard deviations, we
conservatively bound A; ; < Range(g;)/v®). The resulting descriptor is

d®) = [g1,- .- ,gd]T +n, n~ Laplace(0,diag(b,...,bq)).

C.1.2 Distribution Fidelity (R1).

To satisfy the condition in Equation 4, we design the descriptor extractor so that Euclidean distances
in the descriptor space R” closely approximate the 2-Wasserstein distance W, between client data
distributions. This is achieved by globally aligning all clients using a consistent, privacy-preserving
PCA, and constructing each descriptor from the first two moments of: (i) the marginal latent
distribution P(X), and (ii) the class-conditional latent distributions { P(X | Y = u)}7_,.
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Algorithm 2: FLUX Framework — Inference Phase

Input: set of test clients Q = {1,..., @}, cluster-specific models {6, }2_, cluster centroids {~, }2_,

descriptor extractor ¢(-; 1), distance function (-, -).

Output: Predictions {g}<q)}§:1

// Descriptor extraction

for each client ¢ € Q in parallel do
d'D — ¢(z(9,0;9); // Extract descriptor
Send d'(?) to server;

// Unsupervised model assignment

for each client q € Q in parallel do
@ argminm—1.. H(d/(‘ﬁ’ym); // Model assignment
Send 0_.(q) to client g;

// Local prediction

for each client ¢ € Q in parallel do

L @(q) . f(gE(Q); 96*(4) ); // Inference

We base our analysis on the following conditions:
(A1) (Gaussian latent approximation) Each latent distribution can be approximated by a Gaussian,
i.e. P; = N(u;, X;). This assumption is commonly adopted for deep feature representations.

(A2) (Spectral bounds) There exist constants 0 < Apin < Amax < 00 such that all covariance
eigenvalues remain in the interval [Amin, Amax]- In practice, this is enforced to Step S1 of
the extractor, which restricts latent values to a shared bounding box [m ™=, m™].

(A3) (Near-commutativity) After applying the shared PCA, covariances become nearly diagonal.
This allows us to treat them as commuting matrices, which yields exact identities; otherwise,
standard operator inequalities can be applied.

For clarity, we present the following proposition in the marginal setting; the class-conditional version
follows by applying it to each class component.

Proposition C.1 (Lipschitz-equivalence to Wy for marginals). Consider the distance between two
client descriptors defined as

A? = |lpa = a2z + 11— ZelF (12)
Under assumptions (A1)—(A3), there exist constants
c— = min{l, (2v/ Amax) "}, cy = max{l, (2¢/Amin) '},
such that the following inequality holds:
2 A? < WEN (11, 21), N (p2,22)) < 1 A%
Hence, within the admissible covariance set, the squared 2-Wasserstein distance and the descriptor

distance are equivalent up to constant factors.

Proof. To streamline notation, let us denote each client’s marginal descriptor by d*) = [11x, vec(Xy)].
The squared Euclidean distance between two such descriptors is then

14D —dP 5 = [lp1 — p2l3 + [[vee(E1 — ) |3.
Since for any matrix A we have |[vec(A)||3 = ||A||%, taking A = ¥; — 3 yields Equation 12:
A? = [|dD —d?|3 = llp1 — pal3 + (11 — Sall3
For Gaussian distributions, the squared 2-Wasserstein distance has the closed form W3 = ||u; —
fi2]| 2+ B2(S1, 52), where B2(S1,5,) = Tr(21 3 — 2(2}/2222}/2)1/2) is the squared Bures

distance [78]. The mean terms in (12) and in W2 coincide, so the comparison reduces to relating
B(Zh 22) with HZl — EQ”F.
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Non-IID Level Max Min Mean Std Non-IID Level Max Min Mean Std

3 1.060 0.194 0.526 0.106 3 2.816 0.00017 1.328 0.522

5 1.028 0.159 0.479 0.113 5 3.464 0.00135 1.744 0.551

7 1.016 0.136 0.458 0.108 7 3.429 0.00441 1.734 0.590
(a) MNIST (b) CIFAR-10

Table 4: Absolute error £ between descriptor distance (2-Wasserstein) and the true inter-client distance
under three non-IID levels for MNIST and CIFAR-10 under P(Y | X) concept shift.

Assumption (A3) ensures that the covariance matrices commute (312 = X931), €.g., they are
diagonal after the shared PCA. In this setting,

SYALE = SRR = () s (sl = sl
Substituting into the Bures expression gives
B(%1, %) = Tr(S1)+Tr(Sy) -2 Tr((z}”zzz}”) 1/2) = Te(S1)+Tr(Sy) -2 Tr(S1/20Y3).
But the right-hand side coincides with the expansion of the squared Frobenius norm
12172 = 255 = Tr() + Tr(S) — 2 Tr(2)°5,7),
so we conclude that
B2(S1, %) = [ - 5,3
Next, applying entrywise the mean value theorem for f(z) = \/x on [Amin, Amax» yield the inequality

11 = 22lr £ B(E1,%2) < 21 — X2 F.

1 1
2 Vv )\max 2 Vv >\min
Finally, leta = ||pu1 —p2||3 and b = ||$1 — 32 ||%, and write & € [Emin, kmax] With kmin = 1/(4A\max)
and kmax = 1/(4Amin)- Then the elementary inequality

min{l,k}(a +b) < a+kb < max{l,k}(a+b)
implies that 2 A2 < W22 < ci A2, with the constants ¢_ and c4 as stated.
O

Empirical validation. We empirically validate this guarantee using 44,850 client—round pairs
from MNIST and CIFAR-10 under three levels of non-IID concept shift affecting P(Y | X) (see
Appendix B.1 for protocol details). Table 4 reports the absolute deviation ¢ = |||d*1) — d(*k2)||, —
Wo (P(zF), yk0), P(zk2), y(k2)))|. On MNIST, the worst-case error is below 1.1, with a mean
of 0.49 £+ 0.11. On CIFAR-10, the worst-case reaches 3.5, with a mean of 1.7 £ 0.5. These results
confirm that the descriptor extractor satisfies Equation 4 across heterogeneous distribution shifts,
while preserving client privacy.

C.1.3 Label Agnosticism (R2)

In real-world deployments, test-time clients rarely possess reliable labels. To ensure applicability
in this setting, Requirement (R2) mandates that each descriptor include a sub-vector computable
using features only. Our implementation naturally satisfies this through the structure of the moments
computed in Step S3.

* Training phase. Each client computes both the marginal moments (ué’“), chk)) and class-conditional

moments {(Mq(f), Eq(f)) U_,, resulting in a descriptor that splits as follows:

d(k) = [Mgﬁk)’zf(rk)’ /’Lgk)7zgk)7 R )l’l’gf:)7 25]]6)}’
—_————

d'®) ¢ RP d'k) ¢ RE-P

where the sub-vector d’(¥) encodes information from features only and serves as the label-free
component.
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o Test phase (labels unavailable). At test time, clients repeat Steps S/—S2 and execute only the
label-free portion of Step S3, computing (uék), 2&’“) from features alone. Since P(Y | X) cannot
be estimated without labels, no class-conditional moments are computed. The resulting test-time

descriptor is:
4" = ¢y («F,0) € R?,
which satisfies the requirement for label-agnostic descriptor construction. When applying Step S4,

the same coordinate-wise Laplace mechanism ensures that di(k) enjoys the same (e, §=0)-DP
guarantee as the full descriptor.

Since the PCA projection is shared across clients (Step S2) and noise calibration in Step S4 is data-
independent, Euclidean distances between label-free descriptors—i.e., ||d’(*1) — d'(¥2)||,—remain
a valid proxy for the marginal Wasserstein distance between their respective P(X) distributions.
This enables our extractor to match unseen, unlabeled clients at test time to the most similar training
distributions, thereby fully satisfying Requirement (R2).

C.1.4 Compactness (R3)

Requirement (R3) stipulates that descriptor extraction should incur only marginal computational and
communication overhead relative to standard FL. Our implementation satisfies this on both fronts.

 Computation. The only non-trivial operation is computing a rank-I PCA on s"“A = 200
synthetic latent vectors of dimension z (Step S2). Using a standard SVD solver, the cost is
Ofmin(sP“422, (sP®4)22)). In practice, z > s"4, so the second term dominates, yielding
roughly 4 x 10*z floating-point operations. For typical latent sizes (z € [128,2048)), this
results in at most 8.2 x 107 FLOPs—negligible compared to the cost of one local training
epoch. For comparison, even a single forward pass with our smallest MNIST model exceeds
6.5 x 10® FLOPs, while training the largest model on CIFAR-100 requires over 6 x 10!
FLOPs per epoch. Moment computation (Step S3) and noise addition (Step S4) are linear in
descriptor size and thus negligible.

» Communication. Each descriptor transmits d = 2(U + 1)l floats, corresponding to the
mean and (diagonal) covariance for the marginal distribution and each of the U classes.
With [ = 10, this amounts to d = 220 floats on MNIST (U = 10) and d = 2020 on
CIFAR-100 (U = 100). In contrast, the corresponding model update sizes range from
62,006 parameters (MNIST) to 6,775,140 (CIFAR-100), yielding a descriptor-to-model ratio
of at most d/p < 3.5 x 1073, This remains well below the threshold of 10~2 imposed by
the compactness requirement.

C.2 Privacy Implications of Distribution Descriptors in FLUX

Because FLUX transmits client-side descriptors {d*)}cx € RF—which, by design, summarize
each client’s data distribution (Requirement (R1))—an adversary could, in principle, combine them
with model updates to mount stronger reconstruction or membership-inference attacks [79-84]. Two
properties mitigate this risk:

1. Many-to-one mapping. As defined in Section 4.2.1, the extractor ¢: R x(z+u) L, RE performs
a severe dimensionality reduction (s*) x (z + u) > L) and aggregates client-level statistics. So
from an information-theoretic perspective, infinitely many distinct datasets (z(*), y(*)) can yield
the same descriptor d(*). Consequently, descriptors are non-invertible.

2. Differential-privacy wrapper. We can endow each descriptor with (e, §)-differential privacy (DP)
guarantee at the sample-level [27] by adding calibrated noise on the client-side. This ensure that
the impact of any single sample remains bounded by the privacy budget e—without negatively
affecting performance. Precisely, a mechanism M satisfies (e, §)-DP if, for any two neighbouring
datasets D and D’ differing by at most one entry, and for any measurable subset of outputs S, the
following holds:

PrM(D) € S] < e*Pr[M(D') € S]+§ (13)
where € > 0 is the privacy budget controlling the allowable difference between the probabilities,
and § > 0 quantifies the probability of violating the bound.
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Differential privacy integration. In our implementation, we perturb each coordinate of d(*) with
independent Laplace noise (§ = 0) [77]:

d
i ~ Laplace((), bi)a bi = A1,’i/€7

where A ; is the ¢;-sensitivity of statistic g;. For a mean or standard-deviation coordinate we

conservatively bound A; ; < Ra’;(gi,f)(g"). The released descriptor is therefore

d(k) = [gla -y 9d ]T +n, e~ Laplace(O, diag(bla ceey bL))

For example, setting a common ¢ = 10.0; with typical client sizes v(*) > 300, the added variance
2(Aq,/e)? < 2.2 x 1077 is negligible compared to natural data variability, so inter-descriptor
distances remain reliable without affecting FLUX performance. Combined with the many-to-one

nature of ¢y : Rs"x(+u) 5 RE__where infinitely many distinct datasets map to the same
descriptor—this DP mechanism bounds any additional leakage to an e-limited factor beyond what is
already exposed by model parameters, thereby fully satisfying privacy guarantees.

€ Known Association  Test Phase

0.01 90.06 + 1.80 57.46 £ 13.26
0.1 92.19 +2.11 74.48 £ 12.25
1 91.80 +£2.49 93.80+1.42
10 92.49 +2.17 93.94 + 1.40

No DP 92.86 +2.02 94.36 + 1.33

Table 5: Effect of Differential Privacy on FLUX based on varying ¢ values. Results are presented
with Known Association and Test Phase conditions, showing accuracy as mean + standard deviation.

Experimental validation. As shown in Table 5, we evaluated FLUX under varying privacy budgets
€ to assess the trade-off between privacy and performance. The results demonstrate that FLUX
maintains robust performance across commonly used privacy budgets (1 < e < 10), achieving
comparable accuracy to the non-DP version. Only under extremely stringent privacy settings (e.g.,
€ = 0.01 and € = 0.1), which are uncommon in practical applications, does FLUX exhibit a noticeable
decline in performance, particularly in the test phase. These results confirm that the proposed DP
integration provides rigorous privacy guarantees while preserving the effectiveness of FLUX, making
it suitable for deployment in scenarios requiring strict regulatory compliance.

C.3 Advantages of Latent Space Descriptors in Neural Networks

We decided to extract data descriptors from the latent space of the trained model on the same dataset
to leverage the inherent benefits of this representation. The latent space offers a reduced-dimensional
representation, encapsulating only the most relevant features while eliminating redundant information.
This dimensionality reduction enhances computational efficiency and facilitates downstream tasks
without sacrificing the descriptive power of the features.

Furthermore, descriptors from the latent space reflect higher-level feature representations learned
by the model. Neural networks are designed to prioritize task-relevant patterns, abstracting away
low-level details in favor of semantically rich and domain-specific features. This makes latent space
descriptors more informative and better aligned with the underlying classification task. Additionally,
these representations are inherently resilient to noise and input variability, as the training process
filters out irrelevant perturbations. This robustness ensures consistent and reliable descriptors, even
under transformations or distortions in the input data. By aligning with the model’s learned domain-
specific knowledge, latent space descriptors also provide a task-informed perspective that enhances
their interpretability and relevance. These advantages collectively establish the latent space as a
superior choice for extracting meaningful and efficient data descriptors, especially in scenarios where
robustness, efficiency, and task-specific alignment are critical.

C.4 Identification of Distribution Shifts

Figure 1 offers an intuitive view of the four canonical distribution shifts introduced in Section 1.
Below we explain how the statistics captured by our descriptor disentangle them.
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* Feature distribution shift (P(X)). This shift arises when the marginal distribution of features
varies across clients. In our case, it is detected via statistics computed in a reduced latent
space o(z), whose geometry satisfies Requirement (R1) (see Appendix C.1 for implementa-

tion details and justifications). Shifts in P(X) alter the global mean and covariance of these

latent representations. Since our descriptor includes (u;k)7 ng)), clients with similar P(X)

naturally map to nearby points in the descriptor space (see Feature-space mean symbol in
Figure 1).

o Label distribution shift (P(Y)). When label proportions differ across clients, the overall
feature mean is skewed toward the predominant classes. These shifts are likewise reflected
in (ugf), E;’C)), allowing label-imbalanced clients to cluster separately. For instance, in a
client with few instances of label 1 and many instances of label 2, the mean of ¢ (z(*)) will
be predominantly influenced by label 2, resulting in proximity to the average representation
of label 2 in the latent space. Figure 1 shows how these means in feature space reveal distinct
client clusters.

* Concept shift (P(Y'|X)). This shift arises when different clients assign different labels to
identical inputs. Such discrepancies are invisible to feature-only statistics, as the latent
representations may be indistinguishable. Figure 1 illustrates this with overlapping means
between clients. To resolve this ambiguity, our descriptor includes class-conditional mo-

ments {(uq(f), Z&k)) U_,, which enable separation of clients with divergent conditional
distributions.

 Concept shift (P(X|Y)). This shift occurs when inputs vary across clients for the same
label—for example, the same digit rendered in different colors. In ANDA (Appendix B.1),
MNIST digits may share the same label but differ in appearance between clients. These vari-
ations alter ( u&k), Zg(tk)), and—except under rare conditions of perfect latent symmetry—can
be detected without label information.

Because P(X,Y) = P(Y | X)P(X), capturing both the marginal moments of P(X) and the
class-conditional moments of P(Y | X) is sufficient to characterize all four shift types. At test time
only the marginal component is available (labels are absent), so shifts that rely on P(Y | X) cannot
be detected online—a limitation inherent to any label-agnostic method, yet fully compatible with our
clustering protocol.

D Clustering Mechanics

D.1 Dynamic Clustering Initiation

In this study, we extract data descriptors from the initial trained global model in the federation. Due
to the inherent high heterogeneity among client data, a global model trained using traditional FedAvg
typically exhibits limited accuracy. To address this, the clustering process must be initiated early
during training. However, the quality of descriptors improves with a more accurate global model, as
additional training rounds refine its representation of the underlying data. To balance these competing
factors and ensure the utility of FLUX in real-world applications, we dynamically determine the
optimal time to initiate clustering during training.

To analyze the trade-offs involved, we analyze the impact of the training round at which clustering is
initiated. Specifically, we tested FLUX by varying the clustering round from 1 to 9 on the MNIST,
FMNIST, and CIFAR-10 datasets, with the non-IID levels fixed as follows: Feature distribution shift
includes rotations (0°, 180°) and three distinct colours; Label distribution shift restricts the number
of classes to 3 with a bank size of 5; and P(X|Y’) concepr shift applies augmentations limited to
rotations (0°, 90°, 180°, 270°) across 2 classes. As shown in Figure 8, initiating clustering too early
results in inadequate representations, while delaying it excessively reduces the time available for
cluster-specific models to converge. Based on this analysis, we establish that clustering should occur
no earlier than three training rounds and no later than 80% of the total training rounds to allow
sufficient convergence time for cluster-specific models.

To further optimize this process, we leverage the observation that the accuracy of the global model
typically increases rapidly in early training rounds before plateauing with diminishing improvements.
This behavior is evident in the derivative of performance metrics, such as accuracy, as shown in
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Figure 9. Consequently, we dynamically initiate clustering when improvements in the global model’s
accuracy become negligible, formalized as:

1 ifr>3 A (min (%22 [3<.<,) <T V 7> 0.8R)

14
0 otherwise 14

Cr) = {

Here, A represents accuracy, R is the total number of training rounds, and 7 is a threshold determining
negligible improvement. Through experimentation, we identified 7" = 0.06 as an effective threshold,
as varying 7' did not lead to significant differences in performance, as shown in Figure 10.

This dynamic approach ensures that clustering is initiated at a point where the global model is
sufficiently accurate to extract meaningful descriptors while leaving ample time for the convergence
of cluster-specific models.
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Figure 8: Impact of clustering initialization round on model performance. Mean accuracy
and standard error are shown across P(X), P(Y), and P(X|Y) shifts for MNIST, FMNIST, and
CIFAR-10 datasets. Initiating clustering too early results in poor representations, while initiating too
late limits convergence time for cluster-specific models.
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Figure 9: Accuracy trends and their derivative during FedAvg training. The figure shows the
mean values and 95% confidence intervals across P(X), P(X|Y), and P(Y) shifts for MNIST,
FMNIST, and CIFAR-10 datasets. The derivative highlights the diminishing accuracy improvements
after the initial training rounds.

D.2 Unsupervised Clustering Setup

For the unsupervised clustering I/ in FLUX, we design an adaptive, density-based method that extends
DBSCAN by automatically estimating e from the data’s density distribution and robustly handling
outlier clients. To compute the radius parameter e in DBSCAN, we first calculate the distances to the
second-nearest neighbors for all data points. These distances are sorted in ascending order, forming
a curve that reflects the density distribution of the data. To determine the optimal €, we identify
the “elbow point” on this curve which marks the transition from dense to sparse regions in the data,
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Figure 10: Sensitivity analysis of threshold 7" for clustering initiation. The plot shows mean
accuracy and standard error across P(X), P(Y), and P(X|Y") shifts for MNIST and CIFAR-10
datasets. Results demonstrate that varying 7" does not significantly affect performance.

providing a natural boundary for clustering!. To further refine the € value and adjust the sensitivity of
the clustering, we scale the elbow point distance by a scaling factor. This scaling ensures that the
resulting € is appropriately calibrated to the characteristics of the dataset. In our experiments, we set
the parameter € to 1.0 (indicating no scaling) for the MNIST, CIFAR-10, CheXpert, and Office-Home
datasets. For the FMNIST and CIFAR-100, € was slightly reduced to 0.95 and 0.98, as we observed
a lower variability in the latent representation. Using the dynamically computed ¢, DBSCAN is
executed with a minimum sample threshold of 2, allowing the identification of clusters with as few as
two points. Noise points, which are not part of any cluster, are reassigned to individual clusters to
ensure that all clients are represented in the analysis. This approach preserves the integrity of the
clustering while accommodating the unique characteristics of all clients’ data.

For experiments with FLUX-prior, we use the K-means clustering algorithm, leveraging prior knowl-
edge of the number of distributions M, which is used as the number of clusters K.

D.3 Empirical Illustration of Clustering

To illustrate the clustering process in FLUX, we provide examples on two datasets (MNIST and
CIFAR-100) under different levels of heterogeneity. Figure 11 visualizes client descriptors projected
into a 2D space via PCA (for illustration only) across three heterogeneity levels (M = 3,4, 5). In all
cases, clients with similar data distributions cluster together in descriptor space, reflecting the latent
distributional structure of the datasets and facilitating the grouping process. The figure also shows,
with different colors, the cluster assignments produced by our unsupervised algorithm.

It is important to note that clustering is performed in the full descriptor space, not in two dimensions.
This explains why, for instance, in CIFAR-100 with M = 5, clusters 1, 2, and 3 are not visually
separable in the PCA projection, although clients are correctly assigned in the higher-dimensional
space. Overall, these examples confirm that the descriptors capture essential distributional properties,
enabling FLUX to form accurate clusters even under substantial heterogeneity.

Extension to sparse soft assignments. To demonstrate Method Accuracy (%)
the flexibility of FLUX desqnptors beyond hard c!uster%ng, FedAvg 719160
we evaluate a sparse soft variant (FLUX-soft). In this setting, IFCA 350 + 6.2
hard clustering is replaced with a soft-weighted aggregation FedRC 752 + 4.3
scheme: each client receives a distribution-specific update FedEM 75.0 &+ 4.2
by weighting contributions from other clients according to FedSEM 66.0 + 6.0
descriptor similarity with its own distribution. Table 6 re- FedDrift 543 4+7.7
ports averaged results on MNIST, covering all four types CFL 75.5+4.0
of distribution shifts and three levels of heterogeneity for pFedMe 552+69
each. The results show that FLUX-soft substantially outper- APFL 72.8+52
forms all baselines—improving over the best-performing ATP 74.6 £8.0
baseline (CFL) by nearly 11 percentage points—while ap- FLUX-soft 86.5+ 1.3
proaching the accuracy of hard FLUX. As expected, in our FLUX 89.5+4.9

experimental setting hard clustering (FLUX) excels, since

the data exhibit clear distributional boundaries: however, Lable 6: Average accuracy on MNIST

across shifts and heterogeneity levels.

Ihttps://github.com/arvkevi/kneed
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Figure 11: Visualization of client descriptors projected into 2D space for MNIST and CIFAR-100
under different numbers of underlying clusters (M = 3,4, 5). Clients with similar data distributions
are mapped close to each other, confirming the effectiveness of FLUX in capturing latent heterogeneity.

FLUX-soft may be advantageous in scenarios with overlapping or noisy distributions that require a
more client-centric approach.

Extension to dynamic scenarios.  Thanks to its modular design, FLUX can be seamlessly extended
to non-stationary settings by periodically updating descriptors and reapplying the clustering process.
In this dynamic variant, re-clustering is triggered whenever a distributional drift is detected or when
clients join or leave the federation. To avoid retraining models from scratch after each re-clustering,
each newly formed cluster is initialized with the model from the previously existing cluster whose
centroid is closest in descriptor space. This association is obtained by matching the current cluster
centroids to the most similar ones from the prior clustering phase. Such a warm-starting strategy
enables efficient adaptation to changing distributions while preserving previously learned knowledge.

We validate this approach on MNIST under a dynamic setting with two distribution drifts during
training and one during testing (Table 6), while all other settings match those in Table 1. As expected,
FLUX achieves a substantially larger improvement over all baselines, since none of the existing
methods are explicitly designed to handle non-stationary scenarios (except for FLUX-soft). These
results demonstrate that FLUX remains highly effective under dynamic conditions, outperforming all
baselines by over 14 percentage points compared to the best-performing method, thus showing strong
resilience and robustness in realistic FL. deployments.

E Baselines & Comparative Complexity

E.1 Overview of Baseline Algorithms

In our experiments, we benchmarked nine recent baselines designed to address distribution shifts
during training or test-time. We implemented six CFL-baed baselines, as our method falls in this
category, that employ diverse clustering principles in CFL, spanning both hard-CFL approaches
[15, 18, 17, 14], soft-CFL approaches [11, 16], metric-based clustering [15, 17, 16] and parameter-
based clustering [18, 14, 11]. Additionally we adoted two recent state-of-the-art methods in PFL, and
one TTA-FL method.

* [FCA [15]: Assuming the knowledge of the number of clusters, the server initializes and
broadcasts M models to all clients. Each client evaluates the models locally to identify the one
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minimizing its empirical loss. Clients then train the selected model, and the server aggregates
updated models from clients assigned to the same cluster.

* FedRC [11]: A soft-CFL method that assumes prior knowledge of the number of clusters M. The
server broadcasts M models to each client k, which first optimizes a weight vector 7(¥) ¢ RM
determining the contribution of each cluster model, before refining all M models. This iterative
process alternates between optimizing the client-specific weights and the cluster models.

e FedEM [16]: FedEM assumes the number of distributions M is known. It initializes M cluster
models, broadcasts them to all clients, and allows clients to learn a weighting vector xk) ¢ RM
to determine the relevance of each model for their data. Using alternating optimization, clients
jointly update their weight vectors and the cluster models.

» FeSEM [18]: This parameter-based method assumes M clusters are known and initializes M
cluster models randomly. After local training, clients are assigned to the cluster with the closest
model parameters. The server aggregates updated models for each cluster and distributes only the
assigned cluster model back to the corresponding clients.

» FedDrift [17]: A dynamic clustering framework that begins with one model per client. Based
on loss similarities, client models are iteratively merged into clusters. The server continuously
evaluates all models on all clients, assigning each to the closest model. New cluster models
are created when a significant increase in client loss is detected, ensuring adaptive clustering
throughout training.

* CFL [14]: This gradient-based hard-CFL method clusters clients based on the cosine similarity
of their gradients. It operates under the assumption that at convergence, client gradients should
approach zero. Clients with non-zero gradients beyond a threshold are split into separate clusters
to reduce gradient differences. The process repeats iteratively until no further clusters are formed.

» pFedMe [12]: A personalized FL. method based on Moreau envelopes that formulates training as
a bilevel optimization problem. Each client solves the local subproblem min g, £*)(¢*)) +

%”fﬁ(’“) — 0]|2 via C gradient steps, then updates its copy of the global model through a proximal
step before sending it to the server. This decoupling enables adaptive personalization with
controllable computation and strong convergence guarantees.

 APFL [13]: APFL augments each client with a global copy 6 and a local model ¢(*), combined
into a personalized model $*) = oy, »®) + (1 — a,) 6. During each round, clients update both
6 and ¢*) via local SGD, adaptively tuning oy, to balance shared and local knowledge. Only € is
sent to the server for aggregation, while ¢*) and $(*) remain local. This design enables effective
personalization under non-IID data with minimal additional overhead.

« ATP [20]: ATP learns a vector of module-wise adaptation rates o = {a!!l }L |, where A is the
number of modules, by alternating unsupervised entropy minimization and supervised refinement
on labeled source clients, then aggregates « via FedAvg. At test time, each unlabeled client
downloads the global model # and the full vector «, performs unsupervised entropy-based
adaptation on its batch (or online stream) using «, and then predicts with the adapted model.
Only 6 and the low-dimensional « are communicated, enabling efficient personalization under
distribution shifts.

E.2 Comparative Analysis of Heterogeneity and Computational Costs

This section provides a comparative overview of the types of data heterogeneity addressed by the
evaluated baselines, followed by a theoretical analysis of the communication and computational costs
of FLUX and all implemented baselines.

Supported types of heterogeneity. Table 7 outlines the types of heterogeneity each method claims
to support—or has been empirically evaluated on real dataset—including feature distribution shift
P(X), the label distribution shift P(Y"), or the concept distribution shift P(X|Y") and P(Y|X). The
results indicate that most of the baselines were focused on solving only a single form of heterogeneity
(e.g., [IFCA, FeSEM, FedEM, FedDrift, pFedMe), limiting their applicability in real-world scenarios
where the exact nature of heterogeneity is commonly unknown a priori. Notably, FedRC adopted
feature distribution shifts P(X), label distribution shifts P(Y"), and concept shift P(Y'|X), which
closely aligns with the assumptions in this work.
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A SUPPORTED TYPES OF COMMUNICATION COMPUTATIONAL COMPUTATIONAL
LGORITHM

HETEROGENEITY COST COST (SERVER) COST (CLIENT)
FEDAVG N/A PNpyte O(Kp) O(s(l"’)F”‘““)
IFCA P(X) MpNpyte O(Kp) O (s prrain 4y (k) pinf)
FESEM NATURAL PNpyte O(MKp) O(S(k)Ftrain>
FEDEM P(Y) MpNpyte O(MKp) O(Ms(F) ptrain 4 prg(k) pinfy
FEDRC P(X),P(Y), P(Y|X) MpNpyte O(MKp) O(Ms(k) ptrain 4 prg(k) pinfy
FEDDRIFT P(Y|X) MpNpyte O(Kp) O(S(kt)Ftrain+MS(k)Finf>
CFL P(Y|X) PNbyte O(K?p) O(s(k) ptrainy
PFEDME P(Y) PNpyte O(Kp) o((C + 1>S(1€)Ftrain>
APFL P(X), P(Y) PNpyte O(Kp) 0(2s(F) ptrainy
ATP P(X), P(Y) (P+A) Niyte O(K(p+A)) O(25(F) ptrain)
FLUX P(X),P(Y),P(X|Y),P(Y|X) (p+L)Npyto O(Kp)+0O(U) O(sM Ftrainy L o))

Table 7: Extended comparison table for heterogeneity and cost among FLUX and FL baselines.
P(X): Feature distribution shift. P(Y"): Label distribution shift. P(X|Y): Concept shift (same
features, different label). P(Y|X): Concept shift (same label, different features). Nyyio: Number
of bytes per parameters. M: Number of clusters of the current round. K: Number of clients.
L: Length of the descriptors. C: Number of gradient steps for local subproblem in pFedMe. A:
Number of modules in ATP. p: Number of model parameters. v: Latent representation dimension
(fe : R* — R?). s(¥): Number of sample for client k. F*"2*: Computational cost forward pass and
back-propagation. F'™f: Computational cost forward pass. U/: Clustering algorithm (Equation 8).
&y—1: Dimensionality reduction (Equation 6).

Computational costs. Table 7 presents a theoretical analysis of the communication and computa-
tional overhead introduced by FLUX, in comparison to standard FL. methods and the implemented
baselines. We focus on the primary sources of system overhead in a single FL round, i.e., communi-
cation cost per client (in bytes) and the computational costs on both the server and the clients.

» Communication cost: FLUX introduces minimal additional overhead relative to FedAvg. The only
modification during communication is the transmission of a client descriptor of length L, which is
negligible compared to the model update size p. As shown in Section C.1.4, our implementation
satisfies Requirement (R3) with a descriptor-to-model ratio of L/p < 3.5 x 1073,

» Computational cost (server): the unsupervised clustering procedure (Appendix D.2) operates
on client descriptors and introduces a computational complexity of O(L log L), which remains
negligible compared to the O(K'p) cost of aggregating model updates from K clients.

» Computational cost (client): the descriptor extraction includes a dimensionality reduction step
&y—1 (Equation 6) with complexity 0(3211) (see Section C.1.4 for full justification), where v is
the latent dimension and s is the number of local samples. For typical values of v € [128,2048],
this results in a computational cost of at most 8.2 x 107 FLOPs—negligible when compared to
the cost of local training. For reference, even a single forward pass (no backward or optimization)
using our smallest model on MNIST exceeds 6.5 x 10% FLOPs, while a full epoch with our
largest model on CIFAR-100 exceeds 6 x 10! FLOPs.

In contrast, several baselines introduce substantial overhead. CFL methods such as IFCA, FedEM,
FedRC, and FedDrift require each client to evaluate and/or train all M cluster models locally,
significantly increasing both communication (x /) and computation costs. PFL and TTA-FL
methods such as pFedMe, APFL, and ATP involve additional optimization steps—at minimum
doubling the client-side compute. These overheads may render these methods impractical in cross-
device FL scenarios. While methods like CFL and FeSEM avoid extra communication or client-side
computation, they shift the burden to the server. These methods demand increased server-side
computations, which can become a bottleneck in scenarios with large models or a substantial number
of clients, potentially hindering scalability and performance.

Overall, this comparison highlights the efficiency of FLUX and its practical suitability for large-scale,
cross-device FL deployments.
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E.3 Comparison with Descriptor-based Methods

We further compare FLUX with HACCS [66], the closest related CFL method that also employs
descriptor-like representations. For fairness, HACCS is evaluated without differential privacy, even
though its design requires it. Table 8 reports results on MNIST, FMNIST, and CIFAR-10 under both
the known association and test phase conditions for FedAvg, FedDrift, HACCS, and FLUX, while the
other baselines are reported in Tables 12—39.

The results highlight three key insights. First, HACCS matches FLUX only under the known associ-
ation condition for label distribution shifts (P(Y")), where simple label histograms suffice and no
semantic modelling is required. In these cases, even loss-based methods such as FedDrift achieve
competitive results. However, HACCS’s reliance on label and pixel-value histograms prevents it from
capturing semantic and structural properties of the data: pixel statistics cannot discriminate subtle but
task-relevant variations in the input distributions. As a result, HACCS underperforms FLUX by a
wide margin on P(X), P(Y|X), and P(X|Y") shifts. Second, HACCS requires label information at
inference time to build histograms and assign clusters. This prevents test-time adaptation to unseen
clients and explains the sharp performance drop in the zest phase, where HACCS falls below FedAvg
on CIFAR-10 and FMNIST, and far behind both FedDrift and FLUX. By contrast, FLUX produces
label-agnostic descriptors at inference, enabling robust cluster assignments even in the absence of
labels. Third, unlike HACCS, which generates large and interpretable histograms whose size grows
with the number of labels and bins, FLUX uses compact, fixed-size, non-interpretable descriptors.
This design ensures scalability and communication efficiency, while reducing privacy leakage risk
since descriptors cannot directly reveal label distributions. Overall, these results confirm that while
HACCS is the closest related work exploring descriptor-based clustering, its practical performance is
poor—even compared to existing baselines such as FedDrift. In contrast, FLUX consistently provides
a scalable, robust, privacy-preserving, and generalizable solution for clustered FL.

Dataset Method P(X) P(Y) P(YIX) P(X1Y)

FedAvg 77.8+2.1 919+14 668+14 87.0+2.0
FedDrift 94.1+1.8 964+04 81.1+42 92.7+1.7
HACCS 775+£52 962+02 79.0+4.5 884=+14
FLux 95.5+0.5 96.8+04 851+4.0 924+24

MNIST (Known A.)

FedAvg 77.8+2.1 919+14 N/A 87.0£2.0
FedDrift 47.7+3.9 71.8+3.0 N/A 759 +3.1
HACCS 59.7+95 693+6.1 N/A 77.0+438
FLUx 95.0+1.5 96.1+1.2 N/A 90.8 +2.4

MNIST (Test Phase)

FedAvg 61624 728+24 554+23 720+1.8
FedDrift 79.9+0.7 86.0+1.8 74.5+27 825+1.6
HACCS 685+6.1 852+20 66.0+3.0 77.8+3.2
FLux 77618 859+19 722+31 819+£23

FMNIST (Known A.)

FedAvg 61.6+24 728+24 N/A 720+ 1.8
FedDrift 300+1.5 61.4+3.1 N/A 61.9+23
HACCS 416+62 625+£35 N/A 60.8 £2.8
FLUX 77.0+22 857+1.8 N/A 81.0+28

FMNIST (Test Phase)

FedAvg 22.1+1.2 374+29 280+1.0 360+1.1
FedDrift 252+19 49.0+34 29.0+1.0 37.0+1.1
HACCS 232+1.6 454+13 248+13 33420
FLux 333+09 504+29 31.7+13 39118

CIFAR-10 (Known A.)

FedAvg 22.1+12 374+%29 N/A 36.0+ 1.1
FedDrift 24.0+13 354+28 N/A 36.8+1.3
HACCS 189+15 323+3.1 N/A 30.1 1.1
FLux 333+1.0 46.2+4.0 N/A 36.7+2.1

CIFAR-10 (Test Phase)

Table 8: Per-shift comparison of FLUX with HACCS, FedAvg, and FedDrift on MNIST, CIFAR-
10, and FMNIST. Results are shown for each type of distribution shift (P(X), P(Y), P(Y|X),
P(X|Y)) under both known association and test phase conditions.
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F Additional Experiment Results

F.1 Scaling Data Heterogeneity Types and Levels

We evaluate the effects of data heterogeneity using four non-IID dataset types across 10 clients,
generated with ANDA at eight distinct levels of heterogeneity. The detailed configurations for each
type of data distribution shift are summarized in Table 9 and elaborated below:

* Feature distribution shift (P(X)): Datasets are augmented with rotations and color
transformations. Each client is assigned a specific augmentation pattern applied to all local
data points (images). The non-IID level determines the number of augmentation choices per
client. For instance, at Level 5, a client selects one rotation from {0°, 180°} and one color
from {Red, Blue, Green} for all images. At Levels 1 to 4, the "Original" color indicates no
color transformation, preserving the original image channels.

* Label distribution shift (P(Y)): Datasets retain data points only for specific classes. For
example, at Level 8, each client keeps data points from three classes while discarding the
rest. Starting from Level 1, with 10 total classes (e.g., MNIST, CIFAR-10, FMNIST), we
define a class selection bank of size 5 (e.g., {[0,2,4], [1,3,9], [3.4,5], [5,6,7], [6,8,9]} at
Level 8) to limit the clustering complexity. Clients select subsets from this bank to decide
which classes to keep.

* Concept shift (P(Y|X)): Datasets swap labels among specific classes. A swapping pool is
constructed by selecting a subset of classes, which are permuted to assign new labels. For
instance, at Level 4, the pool {2,3,5,8} might be permuted to {5,8,3,2}, mapping images
originally labeled as ’2’ to the new label ’5’. The size of the swapping pool increases with
the heterogeneity level, and each client permutes the classes independently and randomly.

 Concept shift (P(X|Y")): Clients apply distinct augmentations to data points of the same
class. For example, Client A applies a 0° rotation to class ’5°, while Client B applies a 180°
rotation. Augmentation options are limited to rotations ({0°, 90°, 180°, 270°}), and the
number of classes subjected to augmentation increases with the heterogeneity level.

non-IID type P(X) P(Y) P(Y|X) P(X|Y)

Level 1 Rotation {0°, 180° }, Color {Original } #Class =10  #Swapped Class =1  #Class Under Augmentation = 1
Level 2 Rotation {0°, 120°, 240° }, Color {Original } #Class=9  #Swapped Class =2  #Class Under Augmentation = 2
Level 3 Rotation {0°, 90°, 180°, 270° }, Color {Original } #Class=8  #Swapped Class =3  #Class Under Augmentation = 3
Level 4 Rotation (00. 72°,144°,216°, 288° }, Color {Original} #Class =7 #Swapped Class =4 #Class Under Augmentation = 4
Level 5 Rotation (OO, 180° }, Color {Red, Blue, Green} #Class = 6 #Swapped Class =5 #Class Under Augmentation = 5
Level 6 Rotation {0°, 120°, 240° }, Color {Red, Blue, Green} #Class =5 #Swapped Class =6  #Class Under Augmentation = 6
Level 7 Rotation {0°, 90°, 180°, 270° }, Color {Red, Blue, Green} #Class=4  #Swapped Class =7  #Class Under Augmentation = 7
Level 8 Rotation {0°, 72°, 144°,216°, 288°}, Color {Red, Blue, Green}  #Class=3  #Swapped Class =8  #Class Under Augmentation = §

Table 9: Summary of non-IID data heterogeneity configurations across levels. Each type of
heterogeneity corresponds to a specific distribution shift.

Tables 10 to Table 49 present detailed results of FLUX and all baseline methods across various types
and levels of distribution shifts. We did not evaluate the performance of test phase on P(Y|X)
concept shift, as this problem is unsolvable without access to labels (refer to the Section 4.2.2 and
Appendix C.4 for more details). For the baselines that do not provide a solution for real test phase,
we weight all models by the number of clients in the cluster, and use the expectation that weights all
model outputs as an estimation of the predicted labels.

We also provide Figure 12, which summarizes of the averaged accuracy across the distribution shifts
(i.e., across tables), showing trends under both the known association condition and the real test phase
condition. It shows that FLUX consistently outperforms baselines during real test phase, particularly
at high heterogeneity, which demand accurate identification and clustering of client data distributions
to avoid model degradation. The only cases where baselines surpass FLUX are PFL methods on
CIFAR datasets. This is expected in scenarios involving P(Y|X) shifts (e.g., Tables 46-47), where
each client may have different label preferences for the same input. In such cases, collaboration can
be harmful, and methods fine-tuned on the same client distributions seen at test time (as in PFL)
naturally gain an advantage. However, these methods fail to generalize to unseen clients (see Table 1
and Figure 12, Test Phase), limiting their applicability in realistic deployments. On CIFAR-10, the
relatively shallow backbone can also constrain descriptor quality, highlighting that limited model
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expressiveness may degrade clustering and final accuracy; indeed, the gap with PFL methods narrows
when using deeper models (e.g., ResNet9 instead of LeNet5) on CIFAR-100. Notably, FLUX achieves
its maximum improvement on FMNIST, surpassing the best baselines by over 23 pp. Furthermore,
FLUX achieves performance comparable to FLUX-prior where the prior knowledge of the number
of clusters (M) is known. This result highlights the challenge of identifying clusters in real-world
settings and validates the coherence of our unsupervised clustering approach. It is worth noting that
most baselines rely on this cluster information (see Table 2), significantly simplifying their clustering
tasks. Even under the known association setting, FLUX remains the most robust method across all
heterogeneity levels and datasets, demonstrating its utility and generalizability.

MNIST FMNIST CIFAR-10 CIFAR-100
0.9 5

o

o
=
L

o
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I
;
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Accuracy (Known Association)
Accuracy (Known Association)
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Accuracy (Test Phase)
Accuracy (Test Phase)
Accuracy (Test Phase)

Heterogeneity Level Heterogeneity Level Heterogeneity Level Heterogeneity Level

Figure 12: Mean accuracy and standard deviation across heterogeneity levels for MNIST,
FMNIST, CIFAR-10, and CIFAR-100, averaged over P(X), P(Y), P(Y|X), and P(X]|Y)
shifts. First row: known association condition, where test-time cluster associations are available.
Second row: fest phase condition, where cluster associations are inferred.

non-IID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 93.07+0.50 92.15+0.58 89.38+1.42 89.80+0.88 8449+243 86.31+2.77 81.56+222 8532+2.17
IFCA 9145+£5.81 89.93+3.07 92.52+222 8565+1.55 89.74+327 8294+195 83.63+6.09 81.22+4.36
FedRC 89.27+4.03 85.83+£277 7382+4.29 6884+478 5328+10.31 50.14+828 40.64+4.99 47.95+4.08
FedEM 89.24+398 85.80+2.78 73.81+4.28 68.83+4.74 53.27+1032 50.13+8.28 40.61£5.01 47.92+4.09
FeSEM 9358 +£1.31 91.69+1.76 91.19+1.83 88.99+1.60 88.67+2.00 85.63+3.09 87.62+2.12 84.46+2.37
FedDrift 95.75+0.44 8550+1.88 94.77+1.27 7628+3.01 91.99+297 71.72+3.46 91.48+3.79 6623 +3.41
CFL 9322+043 92.74+1.13 89.68+1.40 90.10+0.77 84.95+2.13 86.91+242 82.09+196 8595+1.92
pFedMe 94.84 £0.22 N/A 94.97 +0.28 N/A 95.24 £ 0.31 N/A 95.41 +0.30 N/A
APFL 95.72+£0.15 91.00+0.96 9556+0.24 8891+148 9542+0.29 8520+2.16 9543037 84.01=+3.09
ATP N/A 92.07 £ 0.69 N/A 89.11 +£0.87 N/A 8591 +£2.34 N/A 84.92 +1.99
FLUX 95.72+£0.38 95.61 £0.57 9534+0.62 9445+1.42 94.88+1.16 9449+088 93.54+2.68 94.81+1.55

FLUX-prior 9589 £0.20 95.69+0.33 95.82+0.09 9483+1.02 9555+0.56 95.39+0.80 95.68+0.22 95.93+0.32

Table 10: Performance comparison across non-IID Levels 1-4, summarizing all four types of
heterogeneity (P(X), P(Y), P(Y|X), P(X]|Y)) on the MNIST dataset. Known A.: Known
Association.

F.2 Scaling the Number of Clients

We evaluate the scalability and efficiency of the proposed approach across varying numbers of clients
on MNIST dataset, with the non-IID levels fixed as follows: Feature distribution shift involves
rotations ({0°, 90°, 180°, 270°}). Label distribution shift sets the number of classes to 4, with a
bank size of 5. P(Y|X') concept shift uses a swapping pool size of 5, while P(X|Y") concept shift
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non-IID Level Level 5 Level 6 Level 7 Level 8

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 80.94+1.53 86.62+1.75 76.16+2.38 8392+2.58 72.01+196 81.12+2.09 69.36+2.71 79.36 +2.90
IFCA 83.64+9.88 79.23+£8.15 79.58+8.22 74.04+7.79 7595+10.07 6832+6.13 76.00+9.68 64.22+5.89
FedRC 35.61 £4.08 4296 +4.58 30.59+3.09 37.10£350 30.25+2.61 36.15+250 26.15+241 30.32+2.84
FedEM 3585+4.15 42.75+4.55 31.16+£294 36.75+333 31.18+239 3560+253 31.10+149 32.15+3.21
FeSEM 87.37+328 8237+489 8533+£3.72 8032+3.96 8560+3.50 7599+4.77 8320+£5.17 72.83+5.17
FedDrift 88.98+234 64.39+530 87.59+4.00 57.70+5.00 88.53%3.62 5291%2.69 89.56+2.42 46.28+3.66
CFL 81.39+1.73 87.14+193 7694+1.87 8494+195 7245+2.06 81.66+2.14 69.51+£2.37 79.52+2.54
pFedMe 95.56 +0.28 N/A 95.71 £0.29 N/A 95.89 £0.16 N/A 96.09 +0.19 N/A

APFL 9545+0.26 85.19+224 9541+030 84.08+1.95 9530+0.26 80.14+2.19 9537+039 78.96+2.72
ATP N/A 86.80 + 1.41 N/A 84.99 +2.36 N/A 81.14 +1.92 N/A 79.92 £2.58
FLUX 93.44+£2.28 93.88+343 90.53+3.14 9346+2.82 87.77+523 92.70+2.96 88.40+4.22 9232+225

FLUX-prior 95.67£0.24 9558+ 1.12 95.73+0.28 95.73+1.88 9591+0.18 95.78+1.36 9593+032 96.28 +£1.33

Table 11: Performance comparison across non-IID Levels 5-8, summarizing all four types of
heterogeneity (P(X), P(Y), P(Y|X), P(X|Y)) on the MNIST dataset. Known A.: Known
Association.

non-IID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 86.29+£0.45 86.29+045 81.69+1.07 81.69+1.07 7476+420 7476+4.20 73.18+2.94 73.18+2.94
IFCA 7943 £11.60 78.79+493 92.17+343 7038+191 8847+£478 6470+1.75 77.68+8.61 64.00+6.44
FedRC 81.75+598 77.68+2.20 5830+440 56.56+4.63 43.07+10.11 4245+9.55 41.07+6.77 40.82+6.57
FedEM 81.66 588 77.62+2.24 5830+4.33 56.54+447 43.05+10.18 4240+9.54 41.09+6.80 40.87+6.55
FeSEM 88.51+254 85.01+230 8648+2.23 8042+244 8225+289 7425+390 82.04+3.24 7423+273
FedDrift 96.36+0.12 64.87+2.15 9533+1.59 4427+458 9542+141 43.18+3.00 9550+1.02 40.01+2.61
CFL 8698 £0.56 86.98+0.56 82.68+0.81 82.68+0.81 7595+3.63 7595+3.63 74.09+2.68 74.09+2.68
pFedMe 95.04 +0.10 N/A 94.97 +0.09 N/A 95.08 +0.26 N/A 94.90 +0.17 N/A
APFL 95.11+0.15 8297+123 9474+£035 79.44+£2.60 94.76+0.33 73.21+3.74 9432+0.29 70.36+4.81
ATP N/A 89.87 £0.39 N/A 83.69 + 1.06 N/A 79.71 £2.60 N/A 78.77 £2.46
FLux 95.96+0.16 9548+0.76 96.09+0.19 96.03+0.26 9620+0.23 96.20+0.23 95.86+0.24 95.85+0.24

FLUX-prior 96.40 £ 0.14 96.40+0.14 96.24+0.07 96.24 £0.07 96.26+0.23 96.26 £ 0.23 95.88+0.19 95.88 +0.19

Table 12: Performance comparison across non-IID Levels 1-4 of P(X) on the MNIST dataset.
Known A.: Known Association.

non-IID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 83.16£0.65 83.16+0.65 78.67+2.14 78.67+2.14 7325+215 7325+2.15 71.35%3.52 71.35+%3.52
IFCA 86.07 +18.86 67.56+13.55 82.46+990 64.44+10.15 79.63+13.11 58.81+8.85 86.99+6.96 58.70+8.04
FedRC 3051 +7.26  3051+7.35 1478+4.88 1475+482 1140+£0.10 11.40+0.10 11.35+0.00 11.35+0.00
FedEM 3047726  3047+735 1479+4.89 14.76+4.83 11.40£0.10 11.40+0.10 11.35+0.00 11.35+0.00
FeSEM 86.82+3.88 7647+7.83 88.19+138 74.07+348 89.19+231 65.76+£5.29 89.21+£227 64.79+549
FedDrift 92.86+3.39 51.55+£6.53 92.51+239 4683+£548 91.50+2.62 48.02+2.13 93.64+1.64 42.80+5.34
CFL 84.06 £0.52 84.06+0.52 79.60+190 79.60+190 73.40+223 7340+2.23 72.02+344 72.02+3.44
pFedMe 94.74 £0.21 N/A 94.86 £0.17 N/A 94.81 +0.09 N/A 94.87 +£0.03 N/A
APFL 9478 £0.27  79.86+£229 94.58+0.06 78.67+1.08 9429+0.27 71.38+2.05 94.16+0.28 70.68+3.54
ATP N/A 87.47+0.79 N/A 83.81+1.27 N/A 78.16 £2.28 N/A 78.39 £2.66
FLux 9550+£0.10 9295+5.01 9535+0.17 9534+0.18 9399+246 93.98+245 9526+0.10 93.96+2.60

FLUX-prior 9535+0.26  9535+£0.26 95.12+028 95.13+£0.25 95.07+0.18 9338+£2.09 9490+0.38 94.92 +0.37

Table 13: Performance comparison across non-IID Levels 5-8 of P(X) on the MNIST dataset.
Known A.: Known Association.
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non-1ID Level Level 1 Level 2 Level 3 Level 4

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 95.85+0.03 95.85+0.03 94.80+0.36 94.80+0.36 93.98+0.62 93.98+0.62 92.32+1.18 9232+1.18
IFCA 96.01 £0.14 96.01 £0.14 94.99+0.69 9433 +0.80 9523+0.39 93.77+1.77 8851+£7.92 90.18+3.13
FedRC 90.21 £3.28 90.21 +3.29 87.75+1.85 87.76+1.87 86.96+3.13 86.95+3.13 86.78+1.32 86.78 +1.33
FedEM 90.20+£3.28 90.20+3.28 87.73+1.86 87.73+1.86 86.96+3.15 86.96+3.16 86.65+1.46 86.63+1.50
FeSEM 95.18+0.32 9594+026 94.75+£0.93 9459+0.70 94.54+091 93.21+2.18 94.27+1.73 90.93 £2.37
FedDrift 96.05+0.04 96.13+0.04 94.81+0.31 94.81+0.31 9432+042 88.16+3.10 9572+0.70 77.39+4.24
CFL 96.12+£0.04 96.12+0.04 94.87+0.25 94.87+0.25 9432+0.58 94.32+0.58 92.92+1.07 92.92+1.07
pFedMe 94.62 £0.33 N/A 94.95 +£0.34 N/A 95.63 £0.33 N/A 96.34 £ 0.25 N/A

APFL 95.82+0.14 96.10+£0.22 95.81+0.22 94.55+0.45 96.08+0.44 94.64+029 96.41+045 92.04+1.44
ATP N/A 95.69 +0.08 N/A 95.09 + 0.30 N/A 94.62 +0.36 N/A 94.21 +£0.82
FLUX 95.52+0.47 9541+055 9550+043 9381+1.29 96.09+021 9494+1.09 96.27+0.63 96.10+1.07

FLUX-prior 9542+0.11 9495+0.33 9567+0.10 9395+1.12 96.16+0.15 9498 +1.10 96.64 £0.30 96.64 + 0.30

Table 14: Performance comparison across non-I1ID Levels 1-4 of P(Y') on the MNIST dataset.
Known A.: Known Association.

non-IID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 91.72+1.15 91.72+1.15 90.74+2.71 90.74+2.71 89.22+1.87 89.22+1.87 86.83+3.09 86.83 +3.09
IFCA 91.65+391 86.66+1.85 8530+896 75.18+842 80.98+1290 66.70+4.98 72.75+15.69 54.54+597
FedRC 83.78 £1.36 83.68+1.40 83.78+3.56 83.60+3.49 84.11+£3.90 84.09+390 6842+4.09 67.61+4.80
FedEM 84.79+£2.07 83.08+1.16 86.05+3.01 8254+293 87.84+3.30 8241+395 88.24+1.55 73.10+547
FeSEM 9480+ 1.60 88.14+2.21 93.55+1.89 84.99+573 91.65+237 8292+598 87.03+3.85 76.17+6.61
FedDrift 95.85+£0.73 69.48+5.39 97.62+0.36 57.36+4.59 98.13+0.28 49.37+325 9845+035 41.41+295
CFL 92.00+1.18 92.00+1.18 92.00+1.09 92.00+1.09 90.11+1.62 90.11+1.62 8558+1.88 8558+1.88
pFedMe 96.88 +0.21 N/A 97.08 £0.22 N/A 97.68 +0.28 N/A 98.10 £ 0.56 N/A
APFL 96.69+0.26 91.95+0.81 97.02+0.18 91.39+1.38 97.49+0.28 89.24+1.83 97.94+0.37 86.99+2.56
ATP N/A 94.02 + 0.68 N/A 94.06 + 1.06 N/A 93.99 +0.47 N/A 92.76 + 1.02
FLUX 97.02+0.40 9595+1.70 97.53+0.38 96.11+3.28 98.00+0.17 98.00+0.17 98.35+0.41 98.35+0.42

FLUX-prior 97.03+£0.33 9596 £1.64 97.68+0.27 9619315 97.96+0.15 97.95+0.15 9846035 98.46 £ 0.35

Table 15: Performance comparison across non-IID Levels 5-8 of P(Y') on the MNIST dataset.
Known A.: Known Association.

non-1ID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A.  Test Phase Known A.  Test Phase Known A. Test Phase  Known A.  Test Phase
FedAvg 95.85 +0.03 N/A 88.11 £2.41 N/A 79.01 +£0.87 N/A 70.30 £ 2.35 N/A
IFCA 95.86 £0.14 N/A 88.33+£2.52 N/A 83.27 £3.62 N/A 75.44 £2.88 N/A
FedRC 95.53 +3.28 N/A 86.96 +2.68 N/A 62.06 + 14.42 N/A 18.46 + 6.84 N/A
FedEM 95.52 £3.28 N/A 86.94 +2.68 N/A 62.03 + 14.40 N/A 18.46 + 6.84 N/A
FeSEM 95.92 +£0.14 N/A 89.20 £2.72 N/A 84.10 £2.35 N/A 80.26 + 1.46 N/A
FedDrift 95.67 +£0.09 N/A 95.06 + 1.68 N/A 85.41 £5.67 N/A 80.55+7.40 N/A
CFL 95.13+£0.12 N/A 88.43 +2.47 N/A 79.06 £ 0.74 N/A 70.52 £2.09 N/A
pFedMe 94.62 +0.33 N/A 94.56 +0.37 N/A 94.58 +0.40 N/A 94.41 £0.35 N/A
APFL 95.83 +£0.22 N/A 95.19 £0.20 N/A 94.69 + 0.20 N/A 94.32 £0.37 N/A
ATP 95.69 +0.08 N/A 90.50 + 0.84 N/A 82.09 £+ 1.50 N/A 76.27 £3.01 N/A
FLUX 95.36 +£0.49 N/A 95.21£0.16 N/A 94.27 £ 1.70 N/A 88.64 +4.99 N/A

FLUX-prior 95.93 £ 0.05 N/A 95.72 £ 0.08 N/A 94.31 +£1.06 N/A 94.53 £0.18 N/A

Table 16: Performance comparison across non-IID Levels 1-4 of P(Y|X) on the MNIST dataset.
Known A.: Known Association.
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non-1ID Level Level 5 Level 6 Level 7 Level 8

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 63.87 +0.36 N/A 52.90 + 1.65 N/A 4470 £ 1.53 N/A 39.38 £2.04 N/A
IFCA 68.15 +3.42 N/A 63.80 + 8.91 N/A 58.20+7.93 N/A 56.59 + 8.67 N/A
FedRC 13.46 £2.27 N/A 10.86 £ 0.54 N/A 12.53 £2.90 N/A 12.82 £2.33 N/A
FedEM 13.45+£2.27 N/A 10.86 £ 0.54 N/A 12.53 £2.90 N/A 12.82 £2.32 N/A
FeSEM 76.16 +£4.81 N/A 68.62 + 6.90 N/A 70.48 £5.73 N/A 66.21 £9.16 N/A
FedDrift 75.46 £ 1.26 N/A 69.98 + 6.47 N/A 72.42 + 6.65 N/A 74.11 £4.31 N/A
CFL 64.16 = 0.90 N/A 52.92 +1.60 N/A 44.81 +1.80 N/A 39.49 + 1.75 N/A
pFedMe 94.41 + 0.41 N/A 94.54 + 0.36 N/A 94.46 + 0.12 N/A 94.50 + 0.04 N/A
APFL 94.20 £ 0.32 N/A 93.64 £ 0.54 N/A 93.28 +0.32 N/A 93.20 + 0.46 N/A
ATP 70.45 +0.53 N/A 61.45 +0.47 N/A 54.87 +1.57 N/A 48.92+1.72 N/A
FLUX 85.62 £4.26 N/A 79.74 £4.59 N/A 70.09 + 8.83 N/A 70.02 +7.70 N/A

FLUX-prior 94.18 £0.16 N/A 94.01 £0.21 N/A 94.07 +0.14 N/A 93.94 +0.20 N/A

Table 17: Performance comparison across non-IID Levels 5-8 of P(Y|X) on the MNIST dataset.
Known A.: Known Association.

non-IID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 94.32+0.89 9432+0.89 92.92+1.02 9292+1.02 90.21+221 90.21+2.21 90.47+2.04 90.47+2.04
IFCA 9449 £0.58 95.00+2.00 94.57+1.08 92.25+1.71 92.00+2.59 90.34+229 9291+1.73 89.48+243
FedRC 89.57+2.74 89.60+272 6225+6.60 62.19+6.61 21.03+1025 21.03+1024 1624+225 1625+225
FedEM 89.59+£2.72 89.58+2.72 6226+6.62 6221+6.64 21.03+1026 21.02+1024 1624225 1625+225
FeSEM 9471 +£0.52 94.12+1.99 9433+0.37 9195+1.13 93.79+1.15 89.42+296 9392+1.53 88.20+1.93
FedDrift 9493 +0.87 9551+245 93.88+1.00 89.75+2.48 92.82+1.07 83.81+4.15 94.14+1.16 81.27+3.19
CFL 94.65+0.64 9511+1.87 92.75+1.03 92.75+1.03 9047+2.03 9047+2.03 90.86+1.65 90.86+1.65
pFedMe 95.08 +0.10 N/A 95.39+0.33 N/A 95.69 +0.25 N/A 95.97 £0.45 N/A
APFL 95.80+0.08 93.87+143 96.30+0.19 92.73+140 96.09+0.18 87.75+245 96.68+0.37 89.63+3.02
ATP N/A 95.68 + 0.46 N/A 95.07 + 0.47 N/A 93.68 + 1.17 N/A 93.46 + 0.99
FLUX 96.03 +0.31 9593+0.32 9458+ 1.15 93.50+2.08 92.94+1.55 92.33+1.05 9338+1.81 92.46+245

FLUX-prior 9582+0.36 9571£045 95.64+0.11 9430137 9545+£0.22 94.92+0.80 95.69+0.17 9528 +0.42

Table 18: Performance comparison across non-IID Levels 1-4 of P(X|Y") on the MNIST dataset.
Known A.: Known Association.

non-IID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 8499 £2.74 8499+274 8234+282 8234+282 80.89+223 80.89+223 7991+185 79.91+1.85
IFCA 88.68 £2.72 83.47+346 86.76+3.56 8251+283 84.99+2.18 7945+3.12 87.64+228 79.43+1.92
FedRC 14.69+2.61 1470+2.61 1296+1.16 1294+1.15 1297+1.88 1298+1.89 12.00+1.04 12.00=+1.03
FedEM 14.69+2.60 1470+£2.61 1296+1.16 1294+1.15 1296+1.88 12.98+1.89 12.00+1.04 12.00+1.03
FeSEM 91.72+ 146 8250+£235 9098+149 8191+£147 91.08+230 79.28+2.11 90.36+1.75 77.52+253
FedDrift 91.76 £2.88 72.13£3.53 90.26+4.02 68.90+4.89 92.06+1.08 61.35+2.56 92.06+145 54.63+1.72
CFL 85.36 +3.09 85.36+3.09 83.23+2.57 83.23+257 8147+246 8147+246 80.94+2.01 80.94+2.01
pFedMe 96.19 +0.28 N/A 96.52 + 0.39 N/A 96.61 + 0.13 N/A 96.90 + 0.13 N/A
APFL 96.14 £0.21 83.78 £3.63 96.39+0.41 82.18+3.38 96.14+0.18 79.78+2.70 96.20+0.46 79.20 +2.05
ATP N/A 90.22 £+ 1.51 N/A 89.18 £ 1.50 N/A 87.43 +1.40 N/A 86.89 £ 1.13
FLUX 9350+ 1.59 92.73+2.71 89.52+4.27 8893+3.61 8899+504 86.13+450 89.95+3.46 84.67+2.87

FLUX-prior 96.21 £0.17 9541 +1.00 96.13+0.34 9588+0.78 96.54+0.23 95.99+1.09 96.43+0.32 9547 +2.25

Table 19: Performance comparison across non-I1ID Levels 5-8 of P(X|Y) on the MNIST dataset.
Known A.: Known Association.
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non-IID Level Level 1 Level 2 Level 3 Level 4

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 7723 +0.71 76.74+£0.80 73.34+1.88 74.01%1.52 6852+227 69.94+223 6553+246 68.45+2.74
IFCA 7929 +4.26 7629+1.71 7576+571 70.30+2.88 7591+451 6534+523 7270+£6.00 64.66+5.60
FedRC 7454 £150 7292+1.74 69.29+2.87 67.10+£293 61.03+4.07 5932+4.05 5487+3.71 5559+4.78
FedEM 7453+ 147 72.92+1.67 6949+287 67.14+3.06 61.11+4.15 59.35+4.13 5490+3.67 55.58+4.75
FeSEM 78.74+2.53 7648 +1.33 7587+3.39 7225+2.82 7T1.51+245 69.77+240 7T1.34+3.12 65.12+5.32
FedDrift 79.77+£0.65 69.91+£0.74 7839+1.84 62.19+241 79.81+2.16 5585+1.97 80.42+1.01 50.84+1.97
CFL 77.62+0.81 77.15+094 73.79+1.85 7450+142 69.27+2.10 70.80+2.08 66.11+2.32 69.09+2.61
pFedMe 78.86 +0.84 N/A 79.74 +1.02 N/A 80.79 +0.97 N/A 81.45+1.10 N/A

APFL 81.36 £0.51 78.13+1.12 81.08+0.73 7457+1.92 81.21+0.99 70.36+2.53 81.04+1.06 68.08+2.91
ATP N/A 76.91 £0.79 N/A 73.34 + 1.50 N/A 69.43 +£2.58 N/A 67.22 +2.33
FLUX 78.89+£0.67 78.65+0.68 79.68+1.40 79.86+147 79.54+1.61 79.68+1.96 80.28+1.93 81.43+2.30

FLUX-prior 79.88£0.56 80.10+0.47 80.49+1.03 80.70+1.17 80.36+1.47 81.39+1.53 81.27+1.16 82.60+1.41

Table 20: Performance comparison across non-IID Levels 1-4, summarizing all four types of
heterogeneity (P(X), P(Y), P(Y|X), P(X|Y)) on the FMNIST dataset. Known A.: Known
Association.

non-IID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 66.14 £2.50 7042+2.12 62.15+£3.99 67.53+4.37 56.77+192 62.81+1.64 54.08+3.72 60.61+3.98
IFCA 7284 £4.25 65.12+4.03 71.52+4.36 61.24+6.06 66.27+593 52.53+475 65.18+5.71 52.58+6.80
FedRC 51.69£5.69 5522+576 46.37+8.32 50.08+8.89 39.86+5.17 44.29+477 36.54+£5.61 40.83+6.07
FedEM 52.03+590 55.15+559 48.04+8.51 50.00+8.65 43.71+539 44.67+4.92 41.81+6.11 42.93+5.59
FeSEM 7146 £338 65.88+5.69 7131+495 64.23+532 68.72+4.76 59.38+4.23 66.16+4.13 56.64+5.95
FedDrift 80.56 +1.84 4991+4.04 81.60+231 4548+3.40 82.64+2.86 39.30+2.88 82.55+3.00 35.37+2.36
CFL 66.63+2.59 71.02+222 62.63+476 67.96+531 5723+298 63.31+3.13 54.62+334 61.21+3.55
pFedMe 82.38 £ 1.18 N/A 83.25 £ 0.94 N/A 84.20 £ 0.74 N/A 84.63 + 0.90 N/A
APFL 81.54+1.53 7055+197 82.06+1.64 6841+3.32 8347+092 63.61+250 83.82+1.58 59.90=+3.09
ATP N/A 70.51 £2.41 N/A 66.65 +4.77 N/A 61.87 £2.86 N/A 61.49 +£5.07
FLUX 7890+3.06 81.72+235 7898+4.03 8226+298 79.01+4.38 82.05+4.90 80.00+3.06 84.26+3.08

FLUX-prior 81.88+1.42 8340+1.49 8296+1.60 84.92+1.83 8395+0.79 86.29+0.93 84.16+1.47 86.71+1.69

Table 21: Performance comparison across non-IID Levels 5-8, summarizing all four types of
heterogeneity (P(X), P(Y), P(Y|X), P(X|Y)) on the FMNIST dataset. Known A.: Known
Association.

non-IID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 7207093 72.07+093 6735120 6735+120 61.17+£2.66 61.17+2.66 57.95+257 57.95+2.57
IFCA 7729 £8.46 68.53+2.72 67.37+1047 5381+4.65 7436+7.58 44.84+854 69.11+872 4837+6.79
FedRC 69.16 £ 1.38 68.47+146 6572+1.38 6029+222 53.64+635 4741+£579 50.00+526 43.32+6.58
FedEM 69.24£1.22 6856+1.18 6587+145 6033+£234 5398+6.37 4746+578 49.87+5.08 43.34+6.51
FeSEM 77.45+4.83 6996+ 1.83 7426+£5.03 63.05+4.13 64.98+391 60.19+3.34 68.82+390 52.94+7.97
FedDrift 81.21£0.27 50.90+0.19 80.94+0.31 34.10+0.24 80.21+0.29 28.18+2.40 80.47+0.34 27.27+1.58
CFL 72.65+1.08 72.65+1.08 68.18+1.22 68.18+1.22 62.64+2.24 62.64+224 5859276 58.59+2.76
pFedMe 79.43 £0.58 N/A 78.96 +0.28 N/A 79.51+£0.20 N/A 78.95 +0.07 N/A
APFL 80.86+0.12 73.19+1.07 80.01 +0.08 66.92+2.74 80.11 +0.48 59.59+4.47 79.26+0.50 54.71+5.10
ATP N/A 75.69 £0.17 N/A 70.96 £ 0.59 N/A 67.70 £ 1.32 N/A 66.29 + 1.75
FLUX 79.58 £0.81 79.35+0.56 78.72+0.68 78.48+0.66 79.63+0.47 79.21+0.66 79.28+0.39 79.23+0.34

FLUX-prior 80.92+0.23 80.92+0.23 80.02+0.15 80.02+0.15 80.91+0.41 80.21+041 79.77+0.15 79.77 £0.15

Table 22: Performance comparison across non-IID Levels 1-4 of P(X) on the FMNIST dataset.
Known A.: Known Association.
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non-IID Level Level 5 Level 6 Level 7 Level 8

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 67.63+£0.62 67.63+0.62 61.41+349 61.41+£349 53.65+1.51 53.65+151 51.73+£6.16 51.73+6.16
IFCA 78.56+1.23 53.01+£5.08 74.12+320 4570+£8.00 65.53+6.55 28.82+638 71.93+£507 36.54+9091
FedRC 46.85+8.46 44.72+7.86 30.74+15.17 2949+ 1450 20.83+6.89 20.35+6.78 18.21+8.04 17.95+7.77
FedEM 46.58 £8.59 4451+7.70 30.80%15.17 29.46+ 1443 2094+7.14 2040+694 18.26+8.11 17.98+7.87
FeSEM 72.19+3.81 57.96+8.19 71.27+3.53 52.52+798 6747+2.64 4447+541 6739+3.57 39.63+8.77
FedDrift 79.78 £ 0.57 30.69+2.86 79.59+0.33 2453+147 7807131 22.05+1.64 77.49+255 2241+£1.59
CFL 68.41 £0.98 68.41+0.98 62.63+320 62.63+320 53.67+5.01 53.67+501 5338+5.13 53.38+£5.13
pFedMe 79.21 £ 0.40 N/A 79.11 £0.49 N/A 79.00 + 0.30 N/A 79.08 + 0.21 N/A

APFL 79.65+0.14 6590+1.53 79.47+045 60.77+549 79.52+0.41 52.10+2.84 7826+0.86 52.53+5.01
ATP N/A 7091 + 1.40 N/A 66.86 +2.77 N/A 61.93 +3.03 N/A 64.13 +£3.73
FLUX 78.63+£0.67 77.66+240 76.78+229  7638+277 73.92+5.15 71.30+6.07 7437+3.94 7432+3.89

FLUX-prior 78.75+£1.00 78.72+£1.04 7823+053 7819+0.51 7849%0.11 78.09+0.11 77.66+0.74 77.66 £0.74

Table 23: Performance comparison across non-IID Levels 5-8 of P(X) on the FMNIST dataset.
Known A.: Known Association.

non-1ID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A.  Test Phase = Known A.  Test Phase = Known A.  Test Phase = Known A.  Test Phase
FedAvg 7876 £0.23 78.76 £0.23 7778 +£1.96 7778 £1.96 74.81+245 7481+245 7507+138 75.07+1.38
IFCA 80.64 £0.57 80.64+0.57 80.77+2.00 79.96+152 81.40+1.85 78.13£222 7720+7.54 74.26+4.67
FedRC 75.03+£0.28 75.03+026 73.54+2.11 73.53+2.11 70.28+2.38 70.25+2.37 6821+1.73 68.19+1.79
FedEM 7498 £0.29 7498+028 73.46+2.11 7344%2.11 7022+237 7020+240 6826+1.68 68.10+1.81
FeSEM 79.71+£0.72 80.33+£0.43 7820+2.00 78.69+2.11 77.02+2.08 76.12+2.15 76.61+£293 71.85+2.03
FedDrift 79.14+£0.17 79.14£0.17 77.89+1.51 7624+294 81.90+1.63 69.68+1.71 8325+126 62.63+2.14
CFL 79.05+0.13 79.05+0.13 7821+1.68 7821+1.68 7524+2.66 7524+2.66 7529+1.63 7529+1.63
pFedMe 77.75 £ 0.68 N/A 80.85+£2.03 N/A 83.10 + 0.90 N/A 84.72 +1.93 N/A
APFL 80.81+£0.32 81.01+0.65 81.82+1.16 79.08+1.55 83.08+1.62 77.53+2.28 8450+1.52 74.66+1.79
ATP N/A 79.13 £0.27 N/A 79.06 £ 1.16 N/A 7821 £2.27 N/A 78.76 £ 1.22
FLux 7137+£046 7691+£046 80.69+141 79.70+1.08 81.05+1.94 80.77+2.01 84.09+1.55 83.83+1.74

FLUX-prior 78.01£0.39 78.00+0.46 80.88+1.45 80.06+1.59 81.75+1.89 81.15+1.91 84.48+1.36 84.30+1.57

Table 24: Performance comparison across non-IID Levels 1-4 of P(Y") on the FMNIST dataset.
Known A.: Known Association.

non-IID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 73.83+3.48 73.83+348 71.89+642 71.89+642 6733+1.87 67.33+1.87 63.11+£1.67 63.11+1.67
IFCA 81.74£5.61 7358+4.37 81.17+7.46 70.92+6.33 7547+7.03 64.04+4.52 71.61+457 57.42+5.50
FedRC 69.06 +£3.78 68.97+3.72 69.97+448 69.85+4.53 65.84+330 65.08+3.97 59.28+5.51 58.30+6.23
FedEM 7050 £4.80 68.77+3.53 76.97+5.63 6991+3.00 8122+390 66.26+4.04 80.67+6.89 64.93+391
FeSEM 7732+4.70 71.02+537 80.89+7.50 72.31+4.48 7850+8.17 67.89+4.81 72.53+5.58 65.51+293
FedDrift 86.93+2.51 6042+4.92 89.74+3.64 5594+554 93.63+£090 47.12+£398 95.13+£2.50 39.98+3.03
CFL 7418 £3.48 74.18£3.48 70.99+8.39 7099 +8.39 6747+150 6747+1.50 62.69+2.38 62.69+2.38
pFedMe 87.44 £ 1.75 N/A 88.42 £2.48 N/A 92.84 £0.95 N/A 93.55+2.81 N/A
APFL 85.65+3.13 7508+3.32 87.55+480 74.69+3.33 91.40+1.10 69.98+2.14 93.04+441 59.33+345
ATP N/A 79.06 + 3.67 N/A 77.94 +£5.93 N/A 78.76 £ 3.65 N/A 78.47 +6.03
FLUX 86.38 £2.64 86.48+2.53 89.63+2.96 89.65+3.06 93.54+1.04 9355+1.00 94.72+2.82 94.74+2.79

FLUX-prior 86.95+2.12 86.93+2.12 89.97+3.01 89.97+3.01 93.71+1.03 93.61+£1.03 9480+2.73 94.80+2.73

Table 25: Performance comparison across non-IID Levels 5-8 of P(Y') on the FMNIST dataset.
Known A.: Known Association.
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non-IID Level Level 1 Level 2 Level 3 Level 4

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 78.69 +0.32 N/A 71.32 £2.69 N/A 64.28 +2.39 N/A 56.78 £ 1.30 N/A
IFCA 78.70 £ 0.27 N/A 74.47 +4.00 N/A 6791 +4.42 N/A 64.90 £2.57 N/A
FedRC 78.70 £ 0.27 N/A 70.45 +£3.23 N/A 59.87 +3.20 N/A 46.03 + 1.56 N/A
FedEM 78.69 £0.27 N/A 70.96 +2.87 N/A 59.83 £3.28 N/A 46.11 +1.70 N/A
FeSEM 78.71 £0.27 N/A 74.09 +3.88 N/A 66.84 + 1.91 N/A 63.26 = 1.14 N/A
FedDrift 79.06 £ 0.14 N/A 76.86 +2.99 N/A 74.52 £3.63 N/A 74.70 £ 0.90 N/A
CFL 79.03 £0.14 N/A 71.66 +2.78 N/A 64.69 +2.16 N/A 57.17 £ 1.05 N/A
pFedMe 77.75 £ 0.68 N/A 77.94 +0.39 N/A 78.10 £ 0.54 N/A 77.84 + 0.47 N/A
APFL 80.81 + 0.32 N/A 79.41 + 0.89 N/A 78.61 + 0.52 N/A 77.05 +0.89 N/A
ATP 79.13 £0.27 N/A 73.53+1.438 N/A 67.17 +1.99 N/A 61.58 +0.65 N/A
FLUX 77.43 £0.37 N/A 77.85 +£0.56 N/A 77.85 +0.44 N/A 7533 +£2.13 N/A

FLUX-prior 78.86 +0.19 N/A 78.80 + 0.30 N/A 76.98 +1.28 N/A 77.10 £0.32 N/A

Table 26: Performance comparison across non-IID Levels 1-4 of P(Y|X) on the FMNIST dataset.
Known A.: Known Association.

non-1ID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase @~ Known A.  Test Phase Known A. Test Phase @~ Known A. Test Phase
FedAvg 53.31+3.40 N/A 46.01 £2.53 N/A 38.65 +2.60 N/A 34.50 £2.82 N/A
IFCA 51.57 £5.47 N/A 50.23 £2.26 N/A 45.19 £4.88 N/A 44.26 +5.60 N/A
FedRC 38.85 +4.49 N/A 33.77 £4.56 N/A 2531 £ 6.46 N/A 2240 +£4.42 N/A
FedEM 38.84 £4.50 N/A 33.78 £4.55 N/A 25.32 +£6.46 N/A 22.40 +4.42 N/A
FeSEM 61.14 +£2.62 N/A 57.73 +£4.96 N/A 5522 +3.65 N/A 52.56 +3.71 N/A
FedDrift 72.43 £2.34 N/A 7331 +£2.02 N/A 7271 £5.20 N/A 72.80 +4.16 N/A
CFL 53.46 +3.48 N/A 46.62 +2.50 N/A 39.00 +2.49 N/A 34.83 £2.58 N/A
pFedMe 77.61 + 0.35 N/A 77.63 + 0.20 N/A 77.29 +0.27 N/A 77.77 £ 0.23 N/A
APFL 76.26 + 0.60 N/A 76.13 £0.28 N/A 76.39 £ 0.35 N/A 77.41 £0.68 N/A
ATP 58.71 +£3.03 N/A 52.65+2.79 N/A 48.16 £ 1.91 N/A 43.68 +2.50 N/A
FLUX 69.37 +5.00 N/A 68.26 + 6.41 N/A 64.61 +6.32 N/A 66.84 +3.27 N/A
FLUX-prior 76.96 +0.25 N/A 77.03 £ 0.46 N/A 76.77 £ 0.31 N/A 76.53 +0.33 N/A

Table 27: Performance comparison across non-IID Levels 5-8 of P(Y|X) on the FMNIST dataset.
Known A.: Known Association.

non-IID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 7939+£1.00 7939+£1.00 7690+1.29 7690+1.29 7384+134 7384+134 7232+£3.74 7232+3.74
IFCA 80.53+0.84 79.60+1.03 8043+092 77.11+1.00 79.67+0.85 73.04+2.05 79.59+2.06 71.35+5.11
FedRC 7526 +£2.65 7527+£2.62 67.46+4.03 67.47+4.05 6033+3.18 6031+3.17 5525+4.68 5525+4.69
FedEM 75224265 7521+2.62 67.69+426 67.65+4.27 6040+345 6040+3.46 5536+4.72 5531+4.69
FeSEM 7910+ 133 79.14+1.34 7695+1.23 75.00+1.53 77.19+£0.89 72.99+125 76.68+3.70 70.56+4.18
FedDrift 79.69 £ 1.25 79.69+125 77.89+1.51 7624+294 81.90+1.63 69.68+1.71 8325+126 62.63+2.14
CFL 7974+ 121 7970121 77.12+131 77.12+1.31 7451+£097 7451+097 73.38+3.19 73.38+3.19
pFedMe 80.49 + 1.42 N/A 81.14 + 1.38 N/A 82.44 +2.25 N/A 84.30 £ 1.91 N/A
APFL 8297 +1.28 80.18+1.64 82.89+0.77 77.72+147 83.03+1.32 7395+0.84 83.32+1.34 7488+1.86
ATP N/A 80.37 £ 0.87 N/A 79.27 £ 0.90 N/A 77.57 +1.79 N/A 77.18 + 1.81
FLux 81.16+0.89 79.74+094 8145+226 81.40+220 79.63+249 79.07+2.65 8244+278 81.21+3.58

FLUX-prior 81.74+1.01 81.39%£0.62 8226+1.41 82.02+1.24 8280+1.79 8280179 83.72+1.86 83.72+1.86

Table 28: Performance comparison across non-IID Levels 1-4 of P(X|Y") on the FMNIST dataset.
Known A.: Known Association.
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non-IID Level Level 5 Level 6 Level 7 Level 8

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 69.80+0.97 69.80+0.97 69.28+1.99 69.28+1.99 67.44+1.50 6744+1.50 66.99+2.57 66.99+2.57
IFCA 79.48 £3.05 68.78+1.97 80.55+2.29 67.10+2.47 78.89+493 64.73+2.59 7293+7.25 63.79+3.25
FedRC 52.00+4.87 51.97+4.89 5097+248 5091+249 47.46+2.58 47.44+2.55 4627+3.37 4622+3.39
FedEM 5220+4.70 52.17+4.71 50.64 £2.65 50.63+2.66 47.36+2.86 47.36+2.83 4590+4.07 45.88+4.06
FeSEM 75.18 145 68.66+1.14 7535+2.17 67.85+1.06 73.67+1.84 6576+1.14 72.15+3.27 64.79+4.55
FedDrift 83.08+1.19 58.60+4.06 83.75+1.99 5596+1.34 8565+1.74 48.73+251 84.79+242 43.72+223
CFL 7047 £128 7047+128 7026+1.96 70.26+1.96 68.79+1.39 68.79+1.39 67.57+243 67.57+243
pFedMe 85.24 £2.22 N/A 87.82 + 0.62 N/A 87.67 £ 1.45 N/A 88.10 + 0.36 N/A

APFL 84.62+226 70.66+1.07 8509+1.03 69.78+1.15 86.58+1.83 68.75+2.51 86.57+0.35 67.83+0.80
ATP N/A 76.20 £ 1.97 N/A 7599 +1.24 N/A 75.09 £ 1.36 N/A 74.25 £0.58
FLUX 81.24+£2.23 81.01+2.09 8126+3.16 80.76+3.11 8398+3.02 81.30+5.84 84.06+1.82 83.73+2.37

FLUX-prior 8490+1.59 84.54+1.05 86.62+0.83 86.62+0.83 8734+1.16 87.18+1.24 87.67+0.74 87.67+0.74

Table 29: Performance comparison across non-IID Levels 5-8 of P(X|Y") on the FMNIST dataset.
Known A.: Known Association.

non-1ID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 36.69+0.19 3633+0.19 3490+1.08 3492+0.97 34.19+1.22 3513137 33.16+228 34.81+2.60
IFCA 40.01 £1.20 39.96+1.29 39.37+1.78 38.99+1.21 3856+191 39.09+141 38.66+2.13 39.22+2.15
FedRC 2488 +1.97 20.52+244 21.29+233 17.82+252 1695+3.54 17.23+3.66 14.66+2.45 15.94+2.67
FedEM 24.84+£2.01 2044+230 21.29%£231 17.82+£248 1697+3.56 17.22+3.65 14.68+2.50 15.96=+2.69
FeSEM 37.65+0.83 3833+0.79 37.23+1.23 3752+1.16 37.52+147 37.85+1.46 37.93+243 37.68+3.00
FedDrift 38.08+0.88 37.27+0.93 3628+1.18 3551+1.42 3540+1.07 3570+2.01 3498+1.74 34.16+2.15
CFL 37.83+0.34 3739+0.61 36.04+1.11 36.04+098 3527+1.11 3620+1.20 34.10+2.29 35.68+2.62
pFedMe 38.28 +1.07 N/A 39.36 £ 0.88 N/A 4041 £0.83 N/A 41.71 £0.87 N/A
APFL 4271 +£0.62 41.13+1.23 43.01+0.66 3893+1.08 4345+0.71 38.70+0.85 44.44+0.81 38.55+1.18
ATP N/A 36.85 £ 0.65 N/A 36.20 + 1.08 N/A 36.17 +1.19 N/A 35.71 £2.06
FLUX 36.65+0.85 36.19+1.17 3749+1.02 37.06+1.11 3829+1.05 37.69+1.79 37.82+1.69 3835+1.76

FLUX-prior 37.39+0.82 37.12+£0.95 37.69+1.12 37.17+1.40 38.19+1.07 3732+1.60 39.52+1.29 38.68+1.89

Table 30: Performance comparison across non-IID Levels 1-4, summarizing all four types of
heterogeneity (P(X), P(Y), P(Y|X), P(X|Y)) on the CIFAR-10 dataset. Known A.: Known
Association.

non-1ID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 30.37+1.16 31.61+1.14 28.07+3.16 29.50+3.56 2530+293 2647+331 2453+259 26.09+2.90
IFCA 37.08 £2.05 3520+2.38 36.64+3.12 3508+2.84 3838+3.46 32.87+2.69 37.90+3.51 31.96+3.13
FedRC 1535131 16.62+1.18 1558+1.89 17.29+2.05 1507121 1637+1.14 1476225 1592+2.54
FedEM 1583+1.89 17.02+1.56 16.10+1.87 17.51+£224 1647+1.65 16.69+1.25 18.13+£2.07 17.25+2.02
FeSEM 36.28 £2.06 35.64+230 36.32+230 3320+3.33 3450+298 31.37+3.10 34.61+5.60 30.62+3.23
FedDrift 3471+£2.06 31.77+1.72 3325+2.69 28.68+2.44 3348+3.58 26.75+331 3427+4.68 26.58+2.51
CFL 31.51+£1.11 32.87+1.00 29.65+344 31.36+3.85 2691+3.08 2842+348 2595+229 27.83+2.52
pFedMe 43.03 +£0.69 N/A 43.78 £1.36 N/A 4549 £1.23 N/A 4734 £0.77 N/A
APFL 44.00 £0.72 3534+239 44.80+1.40 3444+285 4647+1.54 32.84+2.68 4845+1.14 32.66+1.61
ATP N/A 32.78 +1.39 N/A 3241 +£2.71 N/A 29.50 £2.76 N/A 29.11 £2.73
FLUX 39.65+1.41 39.13+2.06 38.60+3.33 40.56+3.60 39.78+3.00 40.98+4.35 40.84+3.55 39.83+6.39

FLUX-prior 4025+ 1.30 3940+2.13 41.13+2.01 40.72+3.04 4221+249 41.85+3.93 4428+2.14 42.03+6.11

Table 31: Performance comparison across non-IID Levels 5-8, summarizing all four types of
heterogeneity (P(X), P(Y), P(Y|X), P(X|Y)) on the CIFAR-10 dataset. Known A.: Known
Association.
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non-IID Level Level 1 Level 2 Level 3 Level 4

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 3326 +£0.21 3326+0.21 28.68+1.03 28.68+1.03 2997+045 29.97+045 28.72+0.69 28.72+0.69
IFCA 3949+ 1.30 37.27+0.27 35.18+226 32.23+1.24 3482+235 33.08+1.47 3445+1.62 3231+1.02
FedRC 28.35+0.67 28.33+0.66 18.86+3.83 1887+3.83 15.64+432 1565+434 11.69+1.16 11.68*1.15
FedEM 28.43+0.79 28.38+0.76 18.87+3.81 18.86+3.81 1566+432 1565+433 11.68+1.16 11.69=+1.15
FeSEM 35.07+1.24 3548+0.53 31.34+1.70 31.57+1.31 3380+1.69 31.78+1.86 32.04+1.93 30.48+142
FedDrift 3520+ 1.72 3373+1.24 3054+142 28.00+2.05 30.88+0.29 30.88+0.29 29.19+0.82 29.19+0.82
CFL 34.11+£0.33 34.11+£033 2925+1.03 29.25+1.03 30.74+£0.39 30.74+0.39 29.21+0.74 29.21+0.74
pFedMe 37.75+£0.93 N/A 36.88 £0.99 N/A 37.96 +£0.43 N/A 36.71 £0.73 N/A
APFL 41.02+0.87 37.20+1.33 39.06+1.02 31.51+0.22 40.15+1.05 3325+1.60 38.85+1.33 3142046
ATP N/A 34.07 £0.49 N/A 30.47 £0.95 N/A 31.26 £ 1.36 N/A 30.06 + 0.47
FLUX 36.73+£0.56 3632+091 3449+0.68 3431+0.72 3574+0.22 35.64+023 3425+034 34.48+0.38

FLUX-prior 37.20+£0.29 3720+£0.29 3452+1.64 3473+1.33 3551+£041 3546+049 3474+039 34.74+0.39

Table 32: Performance comparison across non-IID Levels 1-4 of P(X) on the CIFAR-10 dataset.
Known A.: Known Association.

non-IID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 19.53£0.60 19.53+0.60 11.76+2.02 11.76+2.02 1238+1.80 12.38+1.80 12.47+2.56 12.47+2.56
IFCA 28.67+0.56 20.71£327 25.62+232 19.77+1.62 30.04+236 18.74+1.35 2746+1.85 17.47+3.23
FedRC 1190+ 1.40 11.89+138 11.32+1.13 11.33+1.14 10.70+0.89 10.70+0.88 10.66+0.70 10.65 + 0.69
FedEM 1190+ 140 11.89+139 11.32+1.14 11.33+1.15 10.70+0.89 10.70+0.88 10.66+0.70 10.65 + 0.69
FeSEM 2331+£251 19.84+224 2050+1.93 1551+243 2372+1.73 1828+1.99 21.77+2.52 1597+2.03
FedDrift 2244 +1.89 21.16+1.51 16.79+344 1557+1.53 18.08+3.26 16.69+1.88 18.23+2.28 16.97+1.26
CFL 2021 £0.95 2021+095 15.66+1.36 1566+1.36 1643+132 1643+1.32 16.08+1.06 16.08+1.06
pFedMe 35.53+0.73 N/A 34.03 +0.80 N/A 34.84 +0.21 N/A 33.96 +0.53 N/A
APFL 3384+091 2143+245 3345+1.28 18.75+£238 34.08+1.18 18.28+3.16 33.82+0.52 18.89+2.96
ATP N/A 22.95 £+ 1.56 N/A 21.66 £ 0.61 N/A 22.28 £0.83 N/A 21.71 £0.98
FLUX 3351 +£1.07 3351+1.07 3252+056 32.52+0.56 30.34+1.81 3034+1.81 29.11+£223 29.11+£223

FLUX-prior 33.64+£0.75 33.71+£0.64 3232+0.68 32.32+0.67 3270098 32.66+1.05 31.60+0.31 31.60+0.31

Table 33: Performance comparison across non-IID Levels 5-8 of P(X) on the CIFAR-10 dataset.
Known A.: Known Association.

non-IID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 37.74+£0.18 37.74+0.18 3841+1.12 3841+1.12 3835+1.52 3835+1.52 3881+4.02 38.81+4.02
IFCA 41.31£0.99 4131+099 43.15+143 4329+1.59 44.60+2.59 43.66+1.74 46.69+3.29 45.08+3.13
FedRC 21.25+3.69 2124+£3.68 22.68+1.62 22.69+1.60 2483+432 2477+436 2483+42]1 24.82+4.18
FedEM 2126 +£3.73 2125+3.72 2271+147 2270+1.46 2486+433 24.74+437 2493+432 2487+421
FeSEM 38.68£0.76 40.60+0.78 40.55+1.17 40.72+1.42 4191+£2.07 4136+1.61 44.80+422 42.39+4.76
FedDrift 39.06 £0.24 39.06+0.24 39.65+1.10 39.65+1.10 40.01+1.34 38.14+3.14 4341+276 35.75+3.19
CFL 39.07+£0.29 39.07+0.29 3991+1.09 3991+1.09 39.70+1.32 39.70+1.32 39.92+4.06 39.92+4.06
pFedMe 37.89 £ 1.17 N/A 4156+ 1.12 N/A 4427 +0.36 N/A 48.74 +0.49 N/A
APFL 4295 +0.59 42.79+1.55 4593+0.85 43.44+1.85 47.39+040 41.27+0.53 51.27+£0.79 43.09+1.32
ATP N/A 38.94+0.18 N/A 40.86 + 1.10 N/A 40.86 + 1.08 N/A 42.35+3.77
FLUX 3624 £0.64 3572+0.00 40.54+1.66 3927+128 42.68+1.61 39.84+256 46.76+1.86 43.58+2.76

FLUX-prior 36.66 £0.49 36.17+0.62 40.81+0.61 39.46+1.03 43.53+£0.66 39.90+2.26 47.59+220 44.41+2.69

Table 34: Performance comparison across non-IID Levels 1-4 of P(Y") on the CIFAR-10 dataset.
Known A.: Known Association.
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non-IID Level Level 5 Level 6 Level 7 Level 8

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 39.30+1.47 3930+1.47 41.17+£575 41.17+5.75 33.02+537 33.02+537 32.69+4.12 32.69+4.12
IFCA 49.60 £3.01 4526+£2.26 52.71+5.05 46.73+4.58 5826+594 4246+440 60.29+6.64 41.98+429
FedRC 27.15+£1.23 27.06+1.18 29.40+3.23 29.38+3.10 27.10+1.01 27.09+0.99 2583+4.06 25.69+4.05
FedEM 29.07£2.97 2828+2.10 31.46+3.19 30.05+3.47 3270+247 28.05+1.31 3932+3.66 29.66+3.04
FeSEM 47.61 £2.92 47.61+£292 50.81 +3.83 4531+5.17 4486+5.15 38.43+495 47.72+10.78 39.51+5.13
FedDrift 51.52+3.19 36.94+227 55.03+3.63 3430+387 5881+6.19 2952+5.11 6449+893 29.60+3.70
CFL 41.19+£0.84 41.19+0.84 42.07+649 42.07+649 3422+580 3422+580 34.02+4.03 34.02+4.03
pFedMe 53.36 + 0.06 N/A 58.07 + 1.90 N/A 63.35+2.52 N/A 72.70 £ 0.40 N/A
APFL 54.94 +0.37 4497+237 5943+237 4532+494 65.07+2.72 4275+3.09 7435+1.51 4427+1.71
ATP N/A 44.65 £ 1.35 N/A 4532+ 544 N/A 39.28 +4.88 N/A 44.13 £ 6.05
FLUX 51.59+£223 47.79+231 54.88+6.30 51.72+590 60.67+4.75 5512+6.71 69.75+4.18 56.54 +10.14

FLUX-prior 51.65+231 47.89£2.66 5697+3.82 5139+5.09 60.78+4.77 5522£6.65 69.84+4.14 57.90 +10.37

Table 35: Performance comparison across non-IID Levels 5-8 of P(Y") on the CIFAR-10 dataset.
Known A.: Known Association.

non-1ID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase @~ Known A.  Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 37.74 £0.18 N/A 34.86 + 1.36 N/A 31.39 £ 0.59 N/A 28.19 £0.70 N/A
IFCA 3774 £ 1.17 N/A 3772 £2.23 N/A 3429 +0.94 N/A 33.02 +£0.96 N/A
FedRC 37.83+£0.18 N/A 31.73 £ 1.58 N/A 16.08 +3.27 N/A 10.78 £ 1.53 N/A
FedEM 37.70 £0.18 N/A 31.70 + 1.66 N/A 16.11 +3.31 N/A 10.77 £ 1.52 N/A
FeSEM 37.77+0.22 N/A 37.81+1.03 N/A 34.67+0.72 N/A 3381 +1.10 N/A
FedDrift 39.03 +£0.22 N/A 36.04 £ 1.31 N/A 32.60 +£0.76 N/A 29.40 + 0.63 N/A
CFL 39.04 £0.10 N/A 36.04 £ 1.42 N/A 32.48 £0.75 N/A 29.38 +0.65 N/A
pFedMe 37.89 +1.17 N/A 38.05 + 1.04 N/A 37.78 £ 1.05 N/A 37.71 £ 1.01 N/A
APFL 42.95 + 0.59 N/A 42.23 +0.39 N/A 40.87 + 0.63 N/A 40.51 +0.83 N/A
ATP 38.94 +£0.18 N/A 36.47 £ 1.44 N/A 33.03 £0.89 N/A 29.69 +0.97 N/A
FLUX 36.24 +0.73 N/A 36.11£0.14 N/A 35.13+£0.87 N/A 31.64 £ 1.01 N/A

FLUX-prior 37.56 +£0.35 N/A 36.75 £ 0.59 N/A 3478 £0.73 N/A 34.60 +£0.70 N/A

Table 36: Performance comparison across non-IID Levels 1-4 of P(Y|X) on the CIFAR-10 dataset.
Known A.: Known Association.

non-1ID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A.  Test Phase @~ Known A. Test Phase Known A. Test Phase Known A.  Test Phase
FedAvg 26.65 + 1.24 N/A 23.77 £ 1.45 N/A 21.81+1.17 N/A 19.87 +1.28 N/A
IFCA 30.02 +2.64 N/A 29.23 +£2.34 N/A 27.12+2.26 N/A 26.50 +0.86 N/A
FedRC 11.43 +1.57 N/A 10.42 + 0.86 N/A 11.17 £ 1.38 N/A 11.15 +£0.96 N/A
FedEM 11.43 +£1.57 N/A 10.42 +£0.87 N/A 11.17 £ 1.38 N/A 11.16 £0.95 N/A
FeSEM 33.05+1.02 N/A 32.62 +1.04 N/A 29.40 +£2.26 N/A 2875+ 1.34 N/A
FedDrift 27.61 +£1.29 N/A 24.60 + 1.57 N/A 2240+ 1.18 N/A 20.35+ 1.41 N/A
CFL 27.45 +1.39 N/A 24.50 + 1.68 N/A 22.36 +1.23 N/A 20.29 + 1.39 N/A
pFedMe 38.57 £0.94 N/A 38.36 £ 1.24 N/A 3833+ 1.19 N/A 37.67 = 1.40 N/A
APFL 39.76 + 1.43 N/A 39.09 + 1.45 N/A 39.08 +1.55 N/A 38.81 + 1.64 N/A
ATP 27.53 £ 1.06 N/A 25.06 + 1.68 N/A 2297 +1.09 N/A 21.26 + 1.45 N/A
FLUX 32.55+0.67 N/A 26.55 + 1.05 N/A 28.72 £2.27 N/A 26.86 + 3.86 N/A

FLUX-prior 34.07 £0.53 N/A 33.78 £0.73 N/A 33.71+0.78 N/A 33.35+0.58 N/A

Table 37: Performance comparison across non-IID Levels 5-8 of P(X) on the CIFAR-10 dataset.
Known A.: Known Association.
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non-1ID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 38.00+0.16 38.00+0.16 37.67+0.73 37.67+0.73 37.06+1.77 37.06+1.77 36.90+1.90 36.90+ 1.90
IFCA 4150 £1.33 4131199 4143+0.76 41.46+0.57 40.54+1.22 40.53+0.88 4046+1.93 40.26+1.73
FedRC 1210+ 1.21 11.99+1.99 11.90+136 1191+136 11.26+1.49 11.26+1.50 11.33+1.62 11.32+1.61
FedEM 1198 +1.28 11.68+1.21 11.90+1.37 11.89+137 11.26+149 11.26+149 1133+1.62 11.32+1.61
FeSEM 39.07+0.78 3891+0.99 39.21+0.85 4026+0.56 39.59+0.99 40.40+0.58 41.07+091 40.17+1.52
FedDrift 39.05+0.13 39.02+0.99 3889+0.79 38.89+0.79 38.09+1.46 38.09+1.46 3791185 37.52+1.75
CFL 39.10+£0.50 39.00+0.96 38.96+0.79 38.96+0.79 38.15+1.56 38.15+1.56 37.90+1.89 37.90=+1.89
pFedMe 39.58 +1.01 N/A 40.95 £0.38 N/A 41.62 £ 1.50 N/A 43.68 £ 1.24 N/A
APFL 43.93+0.42 4341+0.82 44.81+0.36 41.86+1.18 45.38+0.74 40.99+041 47.13+0.29 41.12+1.75
ATP N/A 39.19+1.21 N/A 39.28 +0.73 N/A 38.66 + 1.03 N/A 3847 +1.36
FLUX 3740+ 1.28 36.53+1.81 3881+0.98 3758+1.24 39.70+1.03 37.59+1.72 38.65+2.62 37.00+1.23
FLUX-prior 38.15+1.51 3799+1.50 38.68+1.27 3732+1.74 3895+1.85 36.60+1.53 41.16+1.09 36.88+1.83

Table 38: Performance comparison across non-IID Levels 1-4 of P(X|Y") on the CIFAR-10 dataset.
Known A.: Known Association.

non-1ID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 36.01 +£1.17 36.01 £1.17 3558+0.89 3558+0.89 34.00+0.87 34.00+0.87 33.10+1.29 33.10+1.29
IFCA 40.02+£0.72 39.61+1.11 3899+1.66 38.74+0.80 38.08+1.35 3741+0.73 37.33+1.01 3645+0.68
FedRC 1092+0.98 1090+0.95 11.17+132 11.16+1.31 11.31+145 11.33+147 1140+155 11.43+1.58
FedEM 1092+£0.99 1090+0.96 11.18+1.33 11.16+131 11.31+146 1133+148 11.39+155 1143+1.58
FeSEM 41.07+£1.04 3948+1.51 4037+132 3844+0.75 40.00+1.01 37.42+0.71 40.21+1.16 36.39+0.94
FedDrift 3722+ 121 37.22+121 3659+1.25 36.17+0.75 34.62+1.01 3405+1.76 34.02+0.78 33.16+1.93
CFL 3720+ 1.19 3720+ 1.19 3635+0.79 36.35+0.79 34.62+1.05 34.62+1.05 33.39+1.33 33.39+1.33
pFedMe 44.64 £ 1.03 N/A 44.65 £ 1.52 N/A 45.44 £ 1.00 N/A 45.02 £0.76 N/A
APFL 4748 £0.17 39.63+236 47.25+0.51 39.25+1.23 47.66+0.71 37.50+1.79 46.81+0.90 34.82+0.16
ATP N/A 37.29 +1.02 N/A 36.89 + 0.68 N/A 3539+ 1.04 N/A 34.63 + 1.40
FLUX 41.14£1.17 36.09+250 4143+1.81 3745+1.92 39.38+226 37.50+£290 37.65+3.63 33.83+3.81
FLUX-prior 41.65+0.77 36.59+248 4146+0.77 38.77+1.17 41.66+0.67 37.67+1.02 42.35+0.82 36.59+2.08

Table 39: Performance comparison across non-IID Levels 5-8 of P(X|Y") on the CIFAR-10 dataset.
Known A.: Known Association.

non-IID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 4830+0.74 51.06+0.76 42.82+1.24 46.02+1.31 42.01+1.00 46.69+1.06 37.40+1.63 42.48+1.39
IFCA 4893 +£0.87 51.85+0.58 42.58+2.63 44.08+1.41 40.19+3.24 4399+1.07 34.52+£2.73 40.54+0.90
FedRC 4596 £0.85 49.98+0.52 41.47+0.97 4526+1.03 40.13+093 4490+0.94 36.21+1.44 40.80=+1.34
FedEM 46.60 £0.65 50.04 £0.63 42.15+091 4530+1.00 40.81+1.11 4496+1.12 37.11+1.21 41.42+1.15
FeSEM 4427+0.88 50.86+0.44 41.34+190 4597+1.54 41.05+1.63 46.85+1.12 37.27+1.74 43.08+1.78
FedDrift 4533+£290 41.16+248 4242+279 36.28+2.10 42.00+0.83 3508+1.55 38.62+1.99 28.14+1.20
CFL 4779 £0.42 5047 +£0.40 43.02+0.87 45.61+0.87 4241+0.88 4642+0.80 3830+1.08 42.40+0.82
pFedMe 33.30+0.33 N/A 34.41£045 N/A 34.53+2.95 N/A 34.43 +4.81 N/A
APFL 49.64 £0.33 33.65+032 47.73+0.68 34.72+0.37 47.83+1.05 36.63+0.77 4428 +4.50 36.50+1.74
ATP N/A 55.88 +0.43 N/A 51.19 £ 0.82 N/A 52.47 £ 0.91 N/A 48.42 +1.01
FLUX 4285+ 133 4329+359 4046+1.38 39.63+1.60 42.07+0.81 4043+2.72 40.88+0.99 39.24+2.87
FLUX-prior 4336 +0.64 43.02+3.40 40.99+2.00 39.05+1.28 4223+0.89 41.60+2.14 41.76+1.29 38.95+3.39

Table 40: Performance comparison across non-IID Levels 1-4, summarizing all four types of

heterogeneity (P(

Association.
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X), P(Y), P(Y|X), P(X]Y)) on the CIFAR-100 dataset. Known A.: Known



non-IID Level Level 5 Level 6 Level 7 Level 8

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 29.86 £4.39 33.76+5.05 2624+0.62 3032+0.70 23.34+0.87 28.09+0.90 20.36+2.69 25.63+3.10
IFCA 3580+7.25 38.00+5.32 27.15+428 30.36+4.15 31.52+492 31.53+1.81 28.06+391 28.30+3.88
FedRC 31.85+1.76 3428 +1.52 26.19+1.57 30.17+1.47 2582+0.87 29.57+0.98 2292+0.81 28.08+1.05
FedEM 31.93+1.29 3442+145 28.12+126 3049146 2748+1.01 29.68+0.87 24.60+1.02 27.33+0.86
FeSEM 33.74+£272 3777+£272 2994+274 3234+261 29.68+254 3278+1.53 27.62+3.79 28.88+1.33
FedDrift 38.51+£328 2280+147 3628+2.87 2049+281 3833+241 18.76+0.94 35.88+5.69 15.69+1.15
CFL 31.85+226 3561+256 2731+0.73 31.28+0.81 24.80+040 29.81+0.38 2147+3.02 27.12+3.48
pFedMe 37.38 £0.78 N/A 37.54 +£0.76 N/A 38.67 £ 0.50 N/A 38.34 £0.95 N/A

APFL 42.59+0.98 38.03+0.73 41.15+0.66 38.67+0.45 40.78+0.39 39.71+049 39.95+0.57 40.32+0.52
ATP N/A 43.99 +2.33 N/A 38.14 + 1.15 N/A 38.34 +0.59 N/A 35.63 +1.86
FLUX 4371 £1.56 43.09+243 41.15+1.78 39.26+3.74 41.21+3.57 4242+3.28 41.12+2.70 42.89+3.77

FLUX-prior 4397 +1.49 4280+£235 42.84+133 39.59+4.60 43.58+0.53 4237+356 43.31+0.76 43.11+3.89

Table 41: Performance comparison across non-IID Levels 5-8, summarizing all four types of
heterogeneity (P(X), P(Y), P(Y|X), P(X|Y)) on the CIFAR-100 dataset. Known A.: Known
Association.

non-IID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 4555+£0.59 4555+0.59 31.99+2.09 31.99+2.09 3848+1.34 3848+134 30.03+2.19 30.03+2.19
IFCA 46.16 £0.63 46.16+0.63 35.24+3.06 33.63+1.44 39.95+1.87 39.04+147 30.69+122 30.69+1.22
FedRC 47.51+£0.59 4745+£049 36.61+1.43 3625+1.66 39.85+149 39.78+1.53 32.88+1.58 32.76+1.54
FedEM 4734+£0.77 4737+0.70 36.71+130 36.33+148 39.85+1.83 39.71+1.83 32.890+1.73 32.82+1.73
FeSEM 4294 £0.35 4639056 34.24+242 3424+242 3831+1.07 3935+136 31.12+0.73 32.79+1.63
FedDrift 4427 £4.37 31.58+137 36.34+491 22.65+1.58 39.60+0.78 28.65+1.61 3251+3.72 22.61+1.18
CFL 4475 +£0.50 44.75+0.50 32.38+1.34 32.38+1.34 38.17+094 38.17+0.94 30.01+0.85 30.01+0.85
pFedMe 31.32+£0.06 N/A 29.85+0.23 N/A 31.06 + 0.05 N/A 28.68 +£0.34 N/A
APFL 4694 £0.17 30.81+0.23 38.81+0.86 29.24+0.14 42.44+0.59 30.74+0.08 37.04+0.73 28.70+0.43
ATP N/A 49.52 +0.31 N/A 36.84 £ 1.21 N/A 4341 +1.16 N/A 34.37 £1.41
FLUX 48.56 £2.00 45.16+5.20 35.64+2.13 3539+2.17 40.54+1.07 36.18+3.32 3442+0.83 30.06+2.71

FLUX-prior 49.60 £0.47 4548 +543 3792+372 3331+1.76 40.50+1.55 39.23+1.81 34.80+225 30.14+3.40

Table 42: Performance comparison across non-IID Levels 1-4 of P(X) on the CIFAR-100 dataset.
Known A.: Known Association.

non-IID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 7.49 +£8.71 7.49 £8.71 1.27+£0.13  1.27+0.13 1.26+0.10 126+0.10 1.21+£0.13 1.21+0.13
IFCA 2580+ 13.11 24.35+9.08 543+£6.26 5.65+6.58 19.64+822 1551+296 9.71+6.18 9.83+6.26
FedRC 17.68 £2.97 14.12+241 792+122 567+1.00 12.11+1.57 822+1.54 7.02+0.17 5.36+0.85
FedEM 1750 +£2.25 14.11+229 8.08+1.39 582+1.07 11.95+146 794+138 744+034 546+0.78
FeSEM 1890+4.68 18.46+4.59 13.02+3.33 989+2.76 18.62+4.03 1392+183 1224+1.19 7.70+0.82
FedDrift 34.61+£233 11.90+1.55 2345+3.07 835028 30.33+034 10.18+1.02 19.17+9.52 7.66+ 145
CFL 13.22+439 1322+439 400+£0.11 4.00+£0.11 635+020 635+020 3.63+027 3.63+0.27
pFedMe 27.98 £0.31 N/A 26.11 £0.56 N/A 28.07 £0.24 N/A 2577 +0.44 N/A
APFL 27.50+1.21 2738+0.32 2299+0.31 26.02+0.21 2455+052 2743+0.28 22.55+0.51 25.73+0.27
ATP N/A 23.75+£3.90 N/A 7.86 £ 1.61 N/A 12.86 £ 0.54 N/A 8.00 + 1.08
FLUX 36.68 £2.72 3552+3.19 2950+233 28.80+2.74 31.23+0.93 31.24+0.89 27.98+0.97 27.87=+1.10

FLUX-prior 36.61+£282 3456+3.33 3215+1.73 30.51+4.04 3122+0.60 32.27+0.51 28.43+091 28.33+1.09

Table 43: Performance comparison across non-IID Levels 5-8 of P(X) on the CIFAR-100 dataset.
Known A.: Known Association.
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non-IID Level Level 1 Level 2 Level 3 Level 4

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 5331+£0.14 5331+0.14 52.09+0.60 52.09+0.60 50.39+0.51 50.39+0.51 49.14+0.87 49.14+0.87
IFCA 53.76 £0.56 53.76 £0.56 46.94+2.08 46.84+0.93 39.83+6.00 42.60+1.05 4240+2.72 44.11+£094
FedRC 5272 +£0.62 52.72+0.58 50.25+0.29 50.31+0.33 47.55+0.25 47.50+0.26 4452+1.75 4448+1.71
FedEM 52.92+£0.66 52.99+0.68 50.22+0.34 50.32+0.35 47.59+0.19 47.56+0.20 46.21+0.85 46.27+0.95
FeSEM 46.59£0.96 53.54+0.15 46.32+247 5186097 4539+2.78 4997+120 41.89+323 47.28+2.57
FedDrift 53.31+£0.14 5331+0.14 51.57+045 50.16+1.85 4991090 46.67+194 4528+0.72 34.31+0095
CFL 52.65+0.15 52.65+0.15 51.10+0.61 51.10+0.61 49.81+0.51 49.80+0.51 49.11+1.12 49.11+1.12
pFedMe 31.27+0.16 N/A 31.93 + 045 N/A 28.29 +5.88 N/A 26.90 +9.59 N/A

APFL 52.75+0.21 30.82+0.18 52.11+046 31.70+0.29 49.59+1.94 3225+128 42.83+895 31.21+2.96
ATP N/A 58.08 £0.33 N/A 57.70 £ 0.55 N/A 57.24 + 0.41 N/A 57.38 £ 0.98
FLUX 4490125 4292+1.17 4507+0.84 39.60+0.29 4485+0.76 37.48+2.37 46.03+1.32 37.73+£3.86

FLUX-prior 4501 +1.11 4127+1.07 44.80+098 39.51+029 44.82+0.71 37.83+224 46.00+1.19 37.80+3.83

Table 44: Performance comparison across non-IID Levels 1-4 of P(Y") on the CIFAR-100 dataset.
Known A.: Known Association.

non-IID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 4923 £0.66 49.23+0.66 48.18+1.07 48.18+1.07 4594+1.49 4594+149 4270+5.32 42.70+5.32
IFCA 47.82+£3.10 46.22+153 4542+475 45.01+2.86 46.62+491 4235+0.56 4693+4.12 41.92+245
FedRC 4634 £0.87 46.25+098 44.98+2.09 44.72+231 4444+052 44.11+£0.71 4599 +1.53 4595+1.58
FedEM 48.06 £0.46 46.70 £0.97 49.23+2.05 4546+2.26 51.28+1.32 44.72+0.56 5231+1.92 43.61+1.24
FeSEM 46.46 £2.57 49.37+095 43.38+3.85 4493+3.53 46.11+221 46.62+1.74 44.62+2.29 4584+2.00
FedDrift 48.30+£093 32.16+1.87 48.77+3.04 30.10+£4.66 49.57+2.19 2650+1.25 51.81+3.56 22.06+1.02
CFL 48.65+0.55 48.65+0.55 4827+1.15 4827+1.15 46.77+0.50 46.77+0.50 45.02+6.01 45.02+6.01
pFedMe 37.10+ 1.52 N/A 38.13 £ 1.31 N/A 40.12 £0.94 N/A 40.97 £ 1.76 N/A
APFL 4924 +£142 3650+120 49.08+1.18 3827+0.73 49.01+045 4147+0.73 49.17+£0.96 43.32+0.75
ATP N/A 58.28 + 1.00 N/A 60.24 + 1.15 N/A 61.15 + 0.63 N/A 61.68 +2.97
FLUX 51.87£1.06 3945+227 50.53+2.10 37.64+572 53.69+1.02 43.22+4.69 5633+0.92 4831+3.34

FLUX-prior 51.65+0.92 39.65+186 50.86+1.89 36.96+6.76 54.73+0.85 43.58+5.04 5632+1.12 4836+3.73

Table 45: Performance comparison across non-IID Levels 5-8 of P(Y") on the CIFAR-100 dataset.
Known A.: Known Association.

non-IID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 40.04 £0.71 N/A 3321 +1.04 N/A 27.97 +0.77 N/A 2216 £2.18 N/A
IFCA 40.16 £ 1.43 N/A 35.36 +2.06 N/A 30.39 + 1.44 N/A 15.68 +4.56 N/A
FedRC 3383+1.35 N/A 29.79 £ 1.15 N/A 25.57+0.93 N/A 22.12+1.62 N/A
FedEM 36.32 £ 0.65 N/A 3244 +£0.92 N/A 28.21+1.16 N/A 24.03 £1.43 N/A
FeSEM 37.29 +1.42 N/A 34.73 £1.27 N/A 30.33 £1.27 N/A 26.53 £0.96 N/A
FedDrift 37.73 £ 0.40 N/A 34.76 £ 1.30 N/A 31.43+£0.55 N/A 27.01 £0.69 N/A
CFL 39.77 £ 0.47 N/A 35.25+0.84 N/A 30.38 £ 1.09 N/A 26.00 + 1.62 N/A
pFedMe 30.94 £ 0.07 N/A 31.15+0.31 N/A 30.58 £0.33 N/A 30.87 £0.13 N/A
APFL 43.34 + 0.36 N/A 42.58 + 0.54 N/A 39.84 +0.33 N/A 37.29+0.33 N/A
ATP 43.21+0.73 N/A 38.10+0.91 N/A 3298 £1.21 N/A 2820+ 1.24 N/A
FLUX 34.05 £0.25 N/A 33.28 £0.48 N/A 32.37+0.88 N/A 29.58 £ 1.17 N/A

FLUX-prior 34.31+0.09 N/A 33.04£0.11 N/A 33.01+£0.24 N/A 32.88+0.16 N/A

Table 46: Performance comparison across non-IID Levels 14 of P(Y'|X) on the CIFAR-100 dataset.
Known A.: Known Association.
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non-IID Level Level 5 Level 6 Level 7 Level 8

Algorithm Known A.  Test Phase Known A. Test Phase = Known A.  Test Phase Known A. Test Phase
FedAvg 18.16 + 0.86 N/A 14.01 £0.24 N/A 9.06 +£0.74 N/A 4.53+0.09 N/A
IFCA 18.89 +£5.27 N/A 7.62+2.78 N/A 10.68 £ 0.10 N/A 9.05 + 1.40 N/A
FedRC 20.72 £ 1.63 N/A 11.22+2.01 N/A 9.54 +0.42 N/A 4.72+0.17 N/A
FedEM 19.46 + 1.14 N/A 14.56 +0.50 N/A 9.51 +£0.43 N/A 4.75+0.23 N/A
FeSEM 22.99 +0.93 N/A 18.27 £ 1.20 N/A 1444 £ 1.93 N/A 12.96 + 4.63 N/A
FedDrift 22.28 +3.39 N/A 23.28 £2.74 N/A 23.16 £2.92 N/A 2423 +1.58 N/A
CFL 20.56 £ 0.95 N/A 15.40 £0.38 N/A 9.78 £0.46 N/A 4.51+0.27 N/A
pFedMe 30.67 £ 0.06 N/A 31.03+£0.21 N/A 30.95 +0.19 N/A 30.94 +£0.24 N/A
APFL 33.04 £0.21 N/A 32.60 +0.24 N/A 31.08 £0.05 N/A 30.08 £0.22 N/A
ATP 22.85+1.07 N/A 17.16 £ 0.60 N/A 12.04 £0.52 N/A 7.11£0.36 N/A
FLUX 31.01 £ 1.07 N/A 28.39 £ 1.54 N/A 23.37 £7.00 N/A 23.54+5.21 N/A

FLUX-prior 32.50 +0.30 N/A 32.31+0.36 N/A 32.01 +0.12 N/A 31.73+£0.33 N/A

Table 47: Performance comparison across non-IID Levels 5-8 of P(Y'|X') on the CIFAR-100 dataset.
Known A.: Known Association.

non-1ID Level Level 1 Level 2 Level 3 Level 4
Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 5431+£1.16 5431£1.16 5396+0.62 53.96+0.62 51.21+1.15 51.21+1.15 4827+0.53 48.27+0.53
IFCA 55.62+0.53 55.62+0.53 52.78+3.13 51.77+1.75 50.60+0.56 50.35+0.40 49.31+0.35 46.82+0.26
FedRC 49.78 £0.56 49.78 £0.46 49.21+0.56 49.22+0.60 47.55+0.52 47.43+0.53 4534+032 45.16+0.25
FedEM 49.84 £0.50 49.76£0.48 49.22+0.81 49.26+0.83 47.57+049 47.51+£0.51 4530+0.38 45.17+0.27
FeSEM 5026 £0.29 52.65+0.48 50.07+0.95 51.80+0.56 50.19+0.29 51.22+0.69 49.55+0.42 49.17+0.48
FedDrift 46.01 £3.81 38.59+4.06 47.00+2.27 36.03+2.71 47.08+1.03 29.94+0.94 49.69+1.04 27.50+1.41
CFL 53.99+0.46 53.99+0.46 53.34+0.37 53.34+0.37 51.28+0.87 51.28+0.87 48.07+0.16 48.07+0.16
pFedMe 39.66 +0.63 N/A 4471 +0.68 N/A 48.20 +£0.31 N/A 51.26 £ 0.49 N/A
APFL 55.53+0.47 39.33+047 5742+0.77 43.22+0.56 59.46+045 4690+0.37 59.95+0.41 49.58+0.30
ATP N/A 60.04 + 0.60 N/A 59.02 + 0.50 N/A 56.75 + 0.99 N/A 53.52+0.28
FLux 4387120 41.80+£3.19 4783+147 4389+£1.69 5051+£040 47.65+£236 53.50+£0.34 49.92+1.61

FLUX-prior 4451+042 4230+2.02 4821+1.10 4433+1.32 50.57+047 47.75+232 53.34+£048 4890+2.86

Table 48: Performance comparison across non-IID Levels 1-4 of P(X|Y") on the CIFAR-100 dataset.
Known A.: Known Association.

non-1ID Level Level 5 Level 6 Level 7 Level 8
Algorithm Known A.  Test Phase = Known A.  Test Phase = Known A.  Test Phase = Known A.  Test Phase
FedAvg 4457+0.12 4457+0.12 4150+£0.54 41.50+£0.54 37.09+045 37.09+045 3298+0.72 32.98+0.72
IFCA 50.67£0.94 4343+£0.37 50.12+191 4042+045 49.13+229 36.74+0.87 4656+1.97 33.14+0.21
FedRC 42.64+£033 4246+036 40.63+0.20 40.13+0.36 37.18+0.34 36.38+0.19 33.95+045 32.94+0.31
FedEM 42.69+0.29 4246+0.38 40.60+0.15 40.20+0.34 37.16+0.19 36.39+0.25 33.92+0.50 32.92+0.31
FeSEM 46.60 £0.48 4547+0.53 4511+1.63 42.19+0.65 39.56+092 37.80+0.82 40.67+543 33.12+0.82
FedDrift 48.84 +£5.03 2436+0.77 49.63+2.61 23.01+140 5025+3.13 19.60+0.22 4832+4.87 17.35+0.92
CFL 4496 +0.18 4496+0.18 41.58+0.79 41.58+0.79 36.30+0.35 36.30+0.36 32.70+0.37 32.70+0.37
pFedMe 53.77 £0.10 N/A 54.88 +0.46 N/A 55.53+0.13 N/A 55.68 +£0.53 N/A
APFL 60.56 +0.55 50.20+0.24 59.91+043 51.73+0.14 58.47+0.35 50.24+0.35 58.01+0.26 51.92+0.44
ATP N/A 49.95 £0.32 N/A 46.31 £0.24 N/A 41.00 £0.61 N/A 37.21 £0.61
FLux 5527+0.15 5430+1.53 56.17+0.63 51.32+1.30 56.53+0.06 52.80+3.08 56.62+045 5248+5.49

FLUX-prior 55.14+0.14 5421+1.41 56.02+0.59 5131+£1.24 5636+0.09 51.26+3.53 56.73+£0.27 52.66 +5.51

Table 49: Performance comparison across non-IID Levels 5-8 of P(X|Y") on the CIFAR-100 dataset.
Known A.: Known Association.
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limits augmentations to rotations ({0°, 90°, 180°, 270°}), with 6 classes subject to augmentation.
Appendix F.1 describes more details about the non-IID levels setup.

To ensure sufficient training data per client, local datasets are duplicated based on the number of
clients. For 5 clients, no duplication is applied (original size after partition). For 25 clients, datasets
are duplicated once (size after partition x2). For 50 clients, duplication is applied twice (size after
partition x4). For 100 clients, datasets are duplicated four times (size after partition x8).

Tables 51 to Table 55 provide detailed results for FLUX and baseline methods, evaluated across
increasing numbers of clients and various distribution shift types and levels. We did not evaluate the
performance of rest phase on P(Y'|X) concept shift, as this problem is unsolvable without access
to labels (refer to the Section 4.2.2 and Appendix C.4 for more details). We could not evaluate the
performance of FedDrift and CFL under 100 clients due to prohibitive memory and computational
costs (see Appendix B.3 for details). For the baselines that do not provide a solution for real test
phase, we weight all models by the number of clients in the cluster, and use the expectation that
weights all model outputs as an estimation of the predicted labels.

Large-scale experiment with 1,200 clients. To further strengthen our evaluation and demonstrate
practical scalability, we extended the experiments to a real-world large-scale FL setting with 1,200
clients under partial participation. Specifically, we adopted a participation rate of 0.2 (i.e., on average,
240 clients per round), which is both computationally practical and reflective of realistic deployments
where device availability, network conditions, and battery constraints prevent full client participation.
This setup follows the same protocol as Figure 5 for known association setting, but reports results
separately for each distribution shift type. Table 50 reports results for FLUX and FedAvg. The findings
confirm that FLUX not only scales effectively to 1,200 clients but also maintains strong robustness
under extreme heterogeneity and limited participation. Notably, FLUX outperforms FedAvg by large
margins—up to 29.3 percentage points under the most challenging P(Y'| X') shift—while exhibiting
consistently low variance, highlighting its stability and scalability in realistic FL. deployments.

Method P(X) P(Y) P(YIX) PXI1Y)

FedAvg 703 +0.1 84225 655+00 86.5+42
FLUX 96.1+£0.0 98202 948%03 963+0.1

Table 50: Large-scale scalability with 1,200 clients (partial participation rate = 0.2).

# Clients 5 Clients 25 Clients 50 Clients 100 Clients

Algorithm Known A. Test Phase Time  Known A. Test Phase  Time Known A. Test Phase  Time Known A. Test Phase  Time

FedAvg 8444155 89.09+0.94 4.443 70.03+324 7534£3.64 6.662 6620£2.19 70.75+245 7471 6587+2.69 7049+3.04 8.964

IFCA 80.91+£6.08 73.33+£4.27 6.654 76.01+7.10 70.93£4.22 8.636 7624£299 7032301 10.963 7445+395 69.32+2.10 10.884
FedRC 7471 £2.87 7585+292 7.855 31.05+299 37.60+£336 10.111 2836+2.52 34.08+2.89 12527 2855+£195 3430+2.16 12457
FedEM 7566278 7527+241 7784 3267+268 36.90£2.68 9.900 29.24£3.79 3227+424 12377 29.99+292 33.93+2.08 11.810
FeSEM 82.69+4.59 76.84+423 6.603 7542+324 74.63+1.89 8384 72.08+1.63 70.64+153 10252 68.49+1.38 70.87+1.46 10337
FedDrift 9748 +0.20 55.62+3.00 8072 70.37+3.51 6291+£246 14.162 82.17+£3.28 5191255 16481 N/A N/A N/A
CFL 84.18+1.65 88.71x1.18 7.650 63924176 64.84+245 14231 67.16+£2.04 71.87+228 16.395 N/A N/A N/A
pFedMe 96.41 £0.19 N/A 5.619 89.21+0.81 N/A 6.923  89.06 £0.77 N/A 7.760  89.06 £ 0.63 N/A 9.031
APFL 96.16 £0.30 85.78+2.23 7210 8941076 73.18+£2.66 8.192 8935+0.67 72.10+2.16 9313 89.29+0.74 71.83+£2.31 10313
ATP N/A 88.82+1.25 5.862 N/A 7041 £2.12  6.950 N/A 69.65+2.35 8.037 N/A 69.31+£2.34 9.321
FLUX 93.51+2.02 9535+1.54 5436 81.65+3.18 84.62+2.18 6.738 82.59+3.55 84.72+£1.60 7962 8547+3.00 8445+2.18 9.263

FLUX-prior 97.73£0.22 98.06+0.25 5753 90.20+0.47 90.48+1.67 6.796 90.36+0.40 89.24+1.42 7.960 90.50£0.33 89.06+2.08 9.232

Table 51: Performance comparison across the number of clients in 5, 25, 50, and 100, summarizing
all four types of heterogeneity (P(X), P(Y), P(Y|X), P(X|Y)) on the MNIST dataset. Known
A.: Known Association.

F.3 Robustness Under Mixed Distribution Shifts

To further assess the robustness of FLUX, we conducted additional experiments involving combina-
tions of multiple distribution shifts occurring simultaneously. Specifically, we evaluated performance
under three mixed-shift scenarios: (i) a mixture of P(X) and P(Y") (Table 56); (ii) a mixture of
P(X|Y) and P(Y') (Table 57); and (iii) a mixture of P(Y|X) and P(Y") (Table 58), across four
non-IID levels (see Table 9 for detailed setting of heterogeneity levels).
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non-IID type P(X) P(Y) P(Y|X) P(X|Y)
Algorithm Known A.  Test Phase = Known A.  Test Phase = Known A. Test Phase KnownA.  Test Phase
FedAvg 8559+0.35 85.59£0.35 9290+1.00 9290+1.00 70.50*2.62 N/A 88.77+1.25 88.77+1.25
IFCA 87.97+6.71 7644+4.17 81.64+556 7491+6.10 77.01+599 N/A 77.01 £5.99 69.48 +4.01
FedRC 7829+1.26 7430+2.09 85.66+2.82 83.83+£290 67.44+3.42 N/A 6744 +3.42 65.64+3.52
FedEM 7844 +£1.16 7438+198 89.50+2.59 82.28+091 67.35+3.37 N/A 67.35+3.37 65.66+3.47
FeSEM 88.38+3.03 7448+9.85 94.03+£4.09 83.54+4.63 74.17+540 N/A 74.17+£5.40 67.68+1.15
FedDrift 97.29+0.12 31.69+0.51 98.68+0.28 40.56+6.13 96.49+0.15 N/A 97.46 £0.21 65.89 +1.04
CFL 85.14+0.78 25.09+0.24 9286+1.25 2641+3.54 70.58+2.58 N/A 88.12+1.42 25.81+0.40
pFedMe 95.84 +0.29 N/A 97.53 £ 0.07 N/A 95.63 +0.15 N/A 96.65 +0.17 N/A
APFL 95.67+0.20 81.23+1.62 97.13+0.18 89.31+3.28 95.17+0.49 N/A 96.66 +0.20 86.81 +1.21
ATP N/A 83.84 +0.86 N/A 93.13 +1.50 N/A N/A N/A 89.50 + 1.30
FLUX 97.59+0.21 97.63+0.18 98.69+0.56 97.84+2.23 85.71+2.54 N/A 92.04 £3.08 90.57 + 1.44
FLUX-prior 97.67 £0.15 97.67+0.15 98.79+0.32 98.80 +£0.32 96.75 +0.14 N/A 9771 £0.24 97.71+0.24
Table 52: Performance comparison across 5 clients with all four types of heterogeneity (P(X), P(Y),
P(Y|X), P(X|Y)) on the MNIST dataset.

non-1ID type P(X) P(Y) P(Y|X) P(X|Y)
Algorithm Known A. Test Phase Known A. Test Phase Known A.  Test Phase = Known A. Test Phase
FedAvg 67.53+1.61 67.53+1.61 7856+575 78.56+5.75 54.12+1.50 N/A 79.92+2.04 79.92+2.04
IFCA 82.49+3.07 6523+234 79.68+13.31 68.95+6.36 61.00+3.30 N/A 80.88 £2.06 78.61 £2.71
FedRC 26770 +£2.79 26.69+2.81 7488+521 7475+£5.09 11.25+0.93 N/A 11.35+0.00 11.35+0.00
FedEM 2670 +£3.00 26.69+292 81.36+434 72.66+3.61 11.27+0.95 N/A 11.35+0.00 11.35+0.00
FeSEM 65.53+£2.07 6586+1.46 87.67+£5.64 79.03+2.75 65.67+230 N/A 82.79+£0.73 79.02+1.01
FedDrift 63.69+3.71 5472+126 7733+2.12 6682+3.44 64.32+528 N/A 76.14 +1.77 67.19+2.17
CFL 5481+1.52 5481+£1.52 7342+2.07 66.82+3.44 54.56+1.37 N/A 72.88+1.97 72.88+1.97
pFedMe 88.06 +0.22 N/A 9391 +1.29 N/A 86.68 + 0.74 N/A 88.19 £ 0.60 N/A
APFL 87.96+0.19 61.14+1.45 94.10+0.67 84.74+3.30 86.63+1.31 N/A 88.96 + 0.32 73.66 +2.86
ATP N/A 5791 +1.65 N/A 82.18 £2.36 N/A N/A N/A 71.14 £2.28
FLux 90.05+0.41 89.31+£0.66 9591+0.89 93.28+3.01 65.68+6.01 N/A 7496 +1.80 71.29+2.19
FLUX-prior 91.10 £ 0.13 91.10+0.13  96.22+0.64 94.70 £2.70 85.38 £0.34 N/A 88.09 £0.59 85.65 +0.99

Table 53: Performance comparison across 25 clients with all four types of heterogeneity (P(

P(Y), P(Y|X), P(X]Y)) on the MNIST dataset.

X),

non-IID type P(X) P(Y) P(Y|X) P(X|Y)
Algorithm Known A. Test Phase Known A. Test Phase Known A.  Test Phase Known A. Test Phase
FedAvg 59.70 £ 0.58 59.70 £0.58 80.47+3.94 80.47+3.94 52.53+1.08 N/A 72.08 £1.45 72.08+1.45
IFCA 82.36+3.83 64.14+1.41 8327+424 70.18+496 62.25+1.31 N/A 77.07+£1.16 76.62+0.74
FedRC 26.36+1.85 2635+1.85 6325+£3.66 63.08+3.63 11.07+0.75 N/A 1276 £2.81 12.80+291
FedEM 2641 +£1.75 2639+1.74 68.11+7.35 59.06+7.14 11.09+0.76 N/A 11.35+0.00 11.35+0.00
FeSEM 60.52+1.50 62.59+1.14 85.10+221 74.85+£231 67.67+1.51 N/A 75.04 £1.06 74.46 +£0.65
FedDrift 90.80 £2.77 40.04+£2.45 96.48+041 4698+2.72 6548 +5.30 N/A 75.74 £2.65 68.69 +£2.48
CFL 6123 +0.65 61.23+0.65 81.41+342 8141+342 53.04+1.03 N/A 7297+ 187 7297 +1.87
pFedMe 87.93 £0.39 N/A 93.36 £ 0.82 N/A 86.62 + 1.06 N/A 88.34 £ 0.64 N/A
APFL 88.06+0.17 5829+1.29 9393+090 8442+2.78 86.45+097 N/A 88.95+0.23 73.60+2.16
ATP N/A 56.21 £1.03 N/A 81.84 £3.42 N/A N/A N/A 70.89 +1.94
FLux 90.83 £0.34 90.13+£0.75 96.04 042 93.69+1.52 69.40+6.76 N/A 74.10+£2.14 70.35+2.19
FLUX-prior 9143 +0.21 91.43+0.21 96.68+0.49 93.36+1.63 8578+0.24 N/A 87.98 +£0.53 82.95+1.83

Table 54: Performance comparison across 50 clients with all four types of heterogeneity (P(

P(Y), P(Y|X), P(X]Y)) on the MNIST dataset.
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non-IID type P(X) P(Y) P(Y|X) P(X]Y)

Algorithm Known A. Test Phase Known A. Test Phase Known A.  Test Phase Known A. Test Phase
FedAvg 5948 £0.51 59.48 +0.51 79.48+4.72 7948+4.72 52.02+1.16 N/A 72.52+£226 7252+£226
IFCA 8571 +4.83 65.75+£0.67 80.10+5.11 66.93+3.03 56.55+2.84 N/A 7542+2.19 75.26+1.88
FedRC 2639+1.69 2639+1.69 6529+344 65.17+3.34 11.16+0.78 N/A 11.35+£0.00 11.35+0.00
FedEM 2646+ 1.74 2646+1.74 71.00+552 6397+3.16 11.16+0.77 N/A 11.35+0.00 11.35+0.00
FeSEM 59.87+041 61.80+0.75 83.18+1.95 76.71+2.08 57.04+1.13 N/A 73.87+1.54 7410+ 1.24
FedDrift N/A N/A N/A N/A N/A N/A N/A N/A

CFL N/A N/A N/A N/A N/A N/A N/A N/A

pFedMe 87.99 £ 0.08 N/A 93.34 £ 0.99 N/A 86.64 + 0.66 N/A 88.26 £ 0.40 N/A

APFL 87.99+0.17 57.30+1.18 93.82+0.62 84.39+291 86.34+1.32 N/A 88.99 +0.23 73.80+2.48
ATP N/A 55.57+£0.15 N/A 81.18 £3.50 N/A N/A N/A 71.19 £2.04
FLux 91.55+0.13 90.32+0.71 9630+045 9148+3.27 77.96+5.44 N/A 76.07 £2.47 T1.55+1.77

FLUX-prior 91.57£0.10 91.57+£0.10 96.58 +0.34 93.32+3.28 85.73+0.27 N/A 88.11+0.49 82.28 +1.47

Table 55: Performance comparison across 100 clients with all four types of heterogeneity (P(X),
P(Y), P(Y|X), P(X]Y)) on the MNIST dataset.

Across all settings, FLUX consistently maintains high accuracy, demonstrating strong robustness
under compound shift conditions. In contrast, existing CFL methods exhibit substantial performance
degradation when faced with mixed-shift scenarios. As expected, personalized FL methods (e.g.,
APFL, pFedMe) perform well under the known association condition, where test-time distributions
match those where the models were fine-tuned on, achieving accuracy comparable to FLUX-prior.
However, their performance drops sharply on unseen clients, where no labeled data is available for
fine-tuning. ATP, which performs unsupervised test-time adaptation, remains relatively stable on
unseen clients but fails to generalize across all distribution types, performing notably worse than
FLUX. For example, under the P(X)+P(Y") mixture (Table 56), FLUX sustains a test-phase accuracy
of 95.9% at Level 3—outperforming the best-performing methods by a wide margin, e.g., ATP
(85.4%), APFL (80.6%), and CFL (75.2%)—and remains above 82.9% even at Level 6, where many
baselines fall below 60%. Similar trends hold for the P(X|Y)+P(Y') and P(Y|X)+P(Y) mixtures
(Tables 57, 58), confirming FLUX’s consistent robustness to compound shifts.

non-IID Level Level 3 Level 4 Level 5 Level 6
Algorithm Known A. Test Phase ~ Known A. Test Phase  Known A. Test Phase ~ Known A.  Test Phase
FedAvg 77.88 £8.21 77.88+821 8248+3.99 8248+3.99 71.53+11.15 71.53+11.15 67.68 +7.80 67.68 +7.80
IFCA 86.35+7.45 69.44+1554 9578 £0.44 81.85+2.31 90.31+1.39 69.30+12.37 85.97+7.14 66.00 = 11.00
FedRC 42.10 £ 10.75 41.75+10.93 31.75+4.95 31.52+4.96 34.77+4.73 34.15+434 20.53+3.73 20.23+3.78
FedEM 66.02 £4.55 42.09 £10.75 48.74+4.31 30.69+6.52 59.60 £21.72 35.07£6.03 50.71 £4.32 19.96 + 3.69
FeSEM 78.67+4.83 67.74+9.51 7593+ 11.99 66.20+20.17 78.87 +7.18 68.59 +13.27 73.24+£8.99 59.38 +11.38
FedDrift 9720+ 042 37.51+£597 9523+0.75 38.62+532 9539+1.82 34.82+10.98 95.14+0.53 37.00 +5.31
CFL 7518 £9.56 75.18£9.56 81.92+4.88 81.92+4.88 67.54+13.22 67.54+13.22 7249 +5.84 7249 +5.84
pFedMe 97.26 + 0.63 N/A 96.08 + 0.35 N/A 95.58 + 1.84 N/A 95.04 + 0.60 N/A
APFL 97.14£0.59 80.58 £6.58 96.25+0.20 80.67+3.92 95.82+1.29 69.30+13.45 94.71 £0.95 63.18+17.98
ATP N/A 85.39 +3.64 N/A 77.30 £ 15.52 N/A 68.12 + 12.86 N/A 72.07 £9.56
FLUX 96.14£1.74 9591 +£2.06 88.89+6.08 86.78+4.10 87.16+227 81.73+4.64 83.44+3.80 82.94+3.64

FLUX-prior 97.33+£0.72 97.33+£0.72 96.13+£0.45 96.13+045 95.77+1.66 95.77+1.66 95.17+0.49 94.97 +0.49

Table 56: Performance comparison across mixture of P(X) and P(Y") on the MNIST dataset. Known
A.: Known Association.

F.4 Results on Real-world Datasets

To evaluate the real-world applicability of FLUX, we follow the setup described in Appendix B.1
and compare its performance against baseline methods on the CheXpert dataset across three levels
of non-IID heterogeneity (low, medium, high), using 20 clients. Since CheXpert is a multi-label
classification task, we use macro-averaged ROC AUC as the evaluation metric instead of accuracy.
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non-IID Level Level 3 Level 4 Level 5 Level 6

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase = Known A. Test Phase
FedAvg 69.61 £5.58 69.61 £5.58 78.94+4.02 78.94+4.02 80.06 +5.49 80.06+549 68.93+0.71 68.93+0.71
IFCA 80.38 £8.16 58.52 £18.12 93.06 £4.19 69.82 £5.52 87.71 £6.44 6542+6.32 88.70+£9.01 50.92 +10.26
FedRC 59.14 +12.52 5528 £8.47 67.16+7.36 64.02+6.84 62.89+3.87 60.12+3.50 64.29 + 11.31 60.12 +10.74
FedEM 88.79 £3.80 57.00+6.93 77.97 £3.08 63.29£3.94 82.40+3.07 59.86 £3.42 85.96+5.73 5891 +10.21
FeSEM 83.02+4.49 61.57+3.60 88.46+2.56 66.18 +7.15 81.51+7.07 68.67+7.33 81.18+£4.27 67.83+4.96
FedDrift 98.80£0.32 3531 +5.58 98.57+0.24 39.59 +£3.56 98.02+0.15 4226 +5.02 95.80+4.49 33.60+2.26
CFL 67.20+4.42 67.20+4.42 76.88+1.42 76.88+1.42 78.76+8.34 78.76+8.34 62.96+6.35 62.96+6.35
pFedMe 98.35+0.22 N/A 98.96 + 0.31 N/A 98.97 + 0.40 N/A 99.34 + 0.07 N/A
APFL 99.03+£0.17 64.09 +6.38 98.77 £0.03 75.87 £4.28 98.66 £0.32 7533 +6.18 98.91+0.20 69.58 +5.40
ATP N/A 70.27 +7.99 N/A 84.00 +3.98 N/A 82.10 £ 7.02 N/A 63.84 +£9.93
FLUX 94.22 +4.25 95.05+3.27 94.21+5.52 89.59 £8.65 89.91 £2.86 79.25+5.17 92.06 £6.69 88.36+11.12

FLUX-prior 99.10 £0.18 99.10 £0.18 98.92+0.23 98.92 +£0.23 98.91£0.41 98.91£0.41 99.27+0.14 99.27 +0.14

Table 57: Performance comparison across mixture of P(X|Y) and P(Y') on the MNIST dataset.
Known A.: Known Association.

non-IID Level Level 3 Level 4 Level 5 Level 6

Algorithm Known A.  Test Phase = Known A.  Test Phase = Known A. Test Phase Known A. Test Phase

FedAvg 79.81 £10.96 79.81 £10.96 65.10+£6.34 65.10+6.34 59.41 £536 59.41£5.36 54.25+3.16 54.25+3.16
IFCA 95.96 £0.71 75.32+12.02 83.89+£3.83 56.60+13.64 83.64+2.74 52.82+7.76 82.38+5.75 46.16+3.56
FedRC 60.63 £ 11.64 60.30 +11.95 42.56 +15.53 41.84 +15.96 43.89+6.29 43.54+7.47 42.13+3.04 40.54+3.96
FedEM 73.77+5.83 60.42+10.92 59.59 £4.70 40.04 +16.06 51.61 +10.32 42.63 +8.09 55.88 + 10.08 37.99 + 6.75
FeSEM 86.58 531 74.19+891 83.83+1.89 60.10+6.56 78.47+6.07 54.62+4.51 81.21+1.36 5237+193
FedDrift 97.33£0.68 39.96+8.82 97.33+1.11 34.68+11.11 9590+2.09 29.84 £4.57 96.87 +0.47 2838 +2.51
CFL 81.14 £8.47 81.14+847 67.05+584 67.05+584 61.90+690 61.90+6.90 51.66+3.06 51.66+3.06
pFedMe 97.76 £ 0.30 N/A 97.95£0.43 N/A 97.54 +£0.21 N/A 97.39 £ 0.42 N/A

APFL 99.03 +£0.17 81.75+5.69 97.50+0.48 66.61+£5.13 96.95+0.58 59.71+7.75 97.01 £0.23 51.26 £4.52
ATP N/A 81.94 £ 10.74 N/A 70.22 + 6.05 N/A 60.23 +3.90 N/A 53.47 £3.08
FLUX 9224 +430 87.89+8.87 9573+1.31 90.85+3.48 9298+3.90 87.13+6.17 94.17 +4.64 91.25+8.77

FLUX-prior 97.47+0.49 9747 +0.49 98.00+0.39 98.00+0.39 97.47+0.25 97.47+0.25 97.05+0.54 97.05 £+ 0.54

Table 58: Performance comparison across mixture of P(Y|X) and P(Y") on the MNIST dataset.
Known A.: Known Association.

The ATP baseline is omitted, as its unsupervised optimization procedure is designed for multi-class
classification and is not directly applicable to the multi-label setting.

As shown in Table 59, FLUX consistently and significantly outperforms baseline methods across all
heterogeneity levels, in both the known association and test phase settings. In the known association
setting, the best-performing baseline (APFL) degrades under increasing heterogeneity—dropping
from 74.6 pp to 70.6 pp—whereas FLUX maintains strong and stable accuracy, achieving up to
80.3 pp under low heterogeneity and remaining above 79.2 pp even under the most challenging
configuration. In the test phase, where clients are previously unseen and unlabeled, APFL’s accuracy
drops to 59.3 pp, while FLUX stays above 76.7 pp. Notably, most metric-based and parameter-
based CFL baselines collapse to a single global model during the training, demonstrating limited
capacity to capture real-world distribution shifts. By contrast, FLUX matches the performance of
its oracle variant, FLUX-prior, which has access to the true number of clusters M, highlighting the
discriminative strength of our learned descriptors and the effectiveness of the unsupervised clustering
strategy. Finally, the difference between known association and test phase is negligible across most
settings—except under high heterogeneity (M = 8), where a slight gap appears—indicating that
FLUX can reliably assign previously unseen, unlabeled test-time clients to the appropriate clusters
without supervision. These results highlight the practical viability of FLUX in federated medical
imaging tasks, where substantial distribution shifts between training and deployment are common.
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non-IID Level Low Medium High

Algorithm Known A. Test Phase Known A. Test Phase Known A. Test Phase
FedAvg 57.95+2.83 57.95+283 5581+0.69 5581+0.69 54.53+0.78 54.53+0.78
IFCA 62.68+1.05 62.68+1.05 57.79+048 57.79+0.48 55.19+£0.05 55.19+0.05
FedRC 62.84+1.06 6284+1.06 58.08+048 56.78+0.48 5542+0.06 55.31+0.06
FedEM 62.69+1.05 62.69+1.05 57.78+0.49 57.78+0.49 55.19+0.06 55.19+0.06
FeSEM 6254+ 1.15 6251+1.16 58.04+0.17 57.48+0.45 56.45+0.26 54.96+0.06
FedDrift 67.46+1.08 67.46+1.08 60.60+1.28 60.60+1.28 56.87+0.13 56.87+0.13
CFL 62.67+1.06 62.67+1.06 57.79+048 57.79+0.48 55.20+0.05 55.20+0.05
pFedMe 70.93 £0.62 N/A 68.75 + 0.05 N/A 68.56 +0.09 N/A

APFL 74.62+0.60 69.66+0.70 71.64+0.24 63.02+0.77 70.59+0.13 59.23+0.23
FLUX 80.29 +0.74 80.29+0.74 78.65+0.48 78.65+0.48 79.17+0.17 76.74+2.63

FLUX-prior 80.22+£0.69 80.22+0.69 78.68+0.37 78.68+0.37 79.16+0.15 76.76 + 2.65

Table 59: Performance across three non-IID levels on CheXpert. Known A.: Known Association.

F.5 Robustness to Partial Participation

We further evaluate FLUX under partial client participation, reflecting realistic FL deployments where
device availability, network conditions, or energy constraints prevent full participation in every round.
Table 60 reports average accuracies on MNIST across all distribution-shift types, using the same
experimental protocol as the scalability experiments in Figure 5. Results are shown for different
client participation rates, ranging from full participation (1.0) to as low as 0.2.

These results show that FLUX maintains strong performance even under significant dropout, consis-
tently outperforming FedAvg. The most notable degradation occurs at a 0.2 participation rate, where
only ~4 clients participate in clustering. In highly heterogeneous settings (e.g., M = 8 clusters),
such limited participation can exclude entire distributions, naturally reducing performance. However,
in large-scale FL, it is reasonable to assume that the number of participating clients per round exceeds
the number of underlying clusters, ensuring sufficient distributional coverage. Importantly, unlike
CFL/PFL baselines which generally assume full participation to isolate clustering effectiveness,
FLUX extends naturally to partial participation. This opens the door to combining FLUX with existing
client-selection strategies to further improve efficiency in resource-constrained settings.

Participation Rate FLUX Accuracy (%) FedAvg Accuracy (%)

1.0 91.3+04 76.7+2.0
0.8 912+03 759+ 14
0.6 90.2+0.8 75.0+4.6
0.4 87.9+25 723+1.0
0.2 82.0+22 70.8 4.0

Table 60: Accuracy of FLUX and FedAvg under different participation rates on MNIST.

F.6 Ablation Studies
F.6.1 Effect of Client Data Size on Descriptor Quality

We further studied the robustness of descriptor estimation under varying local data sizes, simulating
realistic FL scenarios where clients may contribute only a few samples. Experiments were conducted
on MNIST across four non-IID levels, with client data sizes scaled to 4%, 8%, 16%, 32%, and
100% of the original. To isolate the effect of data size, other parameters were kept fixed. Table 61
summarizes results under the Known Association and Test Phase settings. As expected, overall
accuracy decreases with smaller client datasets. Nevertheless, FLUX maintains substantially higher
accuracy than FedAvg across all data sizes and heterogeneity levels. Even at only 4% of the data,
FLUX descriptors remain sufficiently informative to capture client heterogeneity, highlighting their
suitability in practical FL deployments where clients often hold very limited data.
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Method\ Known Association Test Phase
Data size

Low Mid-low Mid-high High Low Mid-low Mid-high High
FLUX 4% 82.3+36 80.1+43 727+£73 654+95 81.7+21 769+£23 685+57 60.8+7.2
FLUX 8% 83.7+23 80.5+£39 70.3+£83 669+£9.7 81.7+19 T7.7+21 664+7.1 62.2+8.6

FLUX 16% 87.3+18 84.6+24 77.8+£6.0 70.0£57 84.0%£1.7 809+15 73.3+52 66.0+5.8
FLUX 32% 88.1+1.7 85.0%+1.7 79.7+48 668+7.3 85.2+19 81.5£1.3 752+4.7 626164
FLUX 100% 96.4+28 93.4+14 949+09 87.1+42 96.2+04 90.0+28 864+19 79.4+3.0
FedAvg 4% 70.4+28 59.8+4.0 476+59 37.6+x75 704+£28 59.8+40 47.6£59 37.6=£7.5
FedAvg 8% 71.8+24 60.5+£3.1 50.2+4.7 428457 71.8+£24 60.5+3.1 50.2+4.7 42.8+£5.7
FedAvg 16%  72.3+3.6 63.8+4.1 55.6+£52 46.9+£7.0 723+£3.6 63.8+4.1 556+52 46.9+7.0
FedAvg 32%  72.1+2.7 64.8+33 62.0+£33 544+£29 721+£27 648=+3.3 620+3.3 544+29
FedAvg 100% 93.1 04 86.0+1.2 794+20 720+19 93.1£04 86.0+12 7944+20 720=£1.9

Table 61: Descriptor quality vs. client data size. Results on MNIST, averaged across four shift
types and four non-IID levels, comparing performance under Known Association and Test Phase.

To further test robustness under extreme sparsity, we designed a setting where clients hold only
~1% of the total data on average (Table 62). In this case, many clients contribute fewer than 1% of
samples, leading to very small local datasets. To enable convergence, we increased the number of
clients to 20 and extended training to 200 rounds. Despite severe data scarcity, FLUX descriptors
remain informative and significantly outperform FedAvg. This robustness arises from the design
of our descriptors, which rely on low-order statistics (means and covariances) after dimensionality
reduction, making them less sensitive to sparsity. While our current implementation does not use
additional regularization, future work could further stabilize descriptor estimation using Bayesian
shrinkage priors.

Known Association Test Phase
P(X) P(Y) P(Y|X) P(X|Y) P(X) P(Y) P(Y[|X) P(X]Y)

FedAvg 36.3+7.7 848+14 46.1+52 31.6+11.5 36.3+7.7 84.8+14 N/A 31.6 £11.5
FLux 74.3+05 97.5+0.5 49.2+£69 455+6.5 782+£0.1 95.6+0.2 N/A 42.0£9.3

Method

Table 62: Descriptor robustness in extreme low-data regime (~1%). Results under Known
Association and Test Phase.

F.6.2 Effect of Clustering Algorithm Choice

The primary contribution of FLUX lies in the design of informative, privacy-preserving descriptors
that approximate the Wasserstein distance between client distributions. These descriptors enable
meaningful unsupervised clustering while preserving privacy, unlike alternatives that rely on direct
metrics or gradient similarity. Consequently, the framework is agnostic to the specific clustering
algorithm, requiring only that clustering operates solely on descriptors without relying on prior
knowledge such as the number of clusters (see Equation 6).

To validate this agnosticism, we conducted ablation studies comparing different clustering strategies.
Table 63 reports results on MNIST, averaged across shift types, heterogeneity levels, and seeds. We
compared Unsupervised k-Means, HDBSCAN, Agglomerative Clustering, and our density-based
method. Except for unsupervised k-Means, all algorithms achieve strong performance, confirming
that FLUX descriptors enable robust client grouping regardless of the specific clustering algorithm.
Importantly, all methods converge to comparable accuracy in the test phase.

Method Known Association (%) Test Phase (%)
Unsupervised k-Means 86.8 £ 14.6 93.5+38
HDBSCAN 90.5+7.7 929+2.6
Agglomerative 93.9+32 94.2+0.8
FLUX (ours) 925+52 94.0+2.8

Table 63: Comparison of clustering algorithms on MNIST. Except for unsupervised k-Means, all
methods achieve strong accuracy, confirming that FLUX is not tied to a specific clustering algorithm.
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To further assess generality, we compared the two best-performing methods (Agglomerative and ours)
on CIFAR-100. Results in Table 64 show similar conclusions: both methods converge to comparable
accuracy, with differences within variance margins. This confirms that the robustness of FLUX stems
from its descriptors rather than the specific clustering algorithm employed.

Method Known Association (%) Test Phase (%)
Agglomerative 42.0+17.8 36.0+5.4
FLUX (ours) 417+ 11.0 413+78

Table 64: Comparison of clustering algorithms on CIFAR-100. Both methods achieve similar
performance, demonstrating that FLUX remains robust across clustering strategies.

F.6.3 Effect of Test-Time Cluster Assignment Strategy

To evaluate the importance of our test-time assignment mechanism, we performed an ablation
study where we replaced FLUX’s descriptor-based assignment with a random cluster assignment at
inference. Following the same evaluation protocol as in Table 1, we compared both strategies across
all heterogeneity levels and distribution shift types on MNIST, FMNIST, CIFAR-10, and CIFAR-100.

As summarized in Table 65, FLUX consistently outperforms random assignment by a large mar-
gin—up to 53 pp on MNIST and 25 pp on CIFAR-100. These results highlight the crucial role of
our label-agnostic descriptors in reliably matching test clients to the most suitable cluster-specific
models, even under severe non-IID conditions. Without this mechanism, performance degrades
sharply, particularly in feature- and label-shift scenarios where random assignment fails to capture
distributional similarity.

Dataset Test-Assignment P(X) P(Y) P(X|Y)
MNIST FLUX 95012 96115 90.8+3.9
Random 419+114 692+172 732137
FMNIST FLux 77029 85.7+6.6 81.0+14
Random 340+105 61.1+135 63.1+11.1
CIFAR-10 FLux 33.3+£25 462+7.8 36.7+1.3
Random 204+51 318+54 32327
CIFAR-100 FLUX 33.8+56 408+38  493+45
Random 170+7.8  159+39  34.1x0.1

Table 65: Ablation study on test-time cluster assignment. Accuracy under different distribution
shifts when using FLUX’s descriptor-based assignment versus random assignment. Results averaged
across all heterogeneity levels.

F.6.4 Effect of Descriptor Configurations and Length

We performed an ablation study to evaluate the impact of different descriptor configurations in
FLUX. Specifically, we tested various combinations of descriptors, including those approximating the

marginal distribution P(X) (i.e., (u;’“), E&k))) and label-wise descriptors capturing the conditional

distribution P(Y'|X) (i.e., {(uq(f), Z&k)) U_,). These experiments were conducted on the MNIST
dataset under four distinct distribution shifts, with non-IID levels fixed as described in Appendix
F.2. Furthermore, we analyzed the effect of the descriptor length [, varying it by scaling the output
dimensionality of the reduction transformation (Equation 6) by factors of 1, 2, and 5.

Table 66 summarizes the average accuracy and standard deviation across all distribution shifts. The
results in the known association setting underscore the clear utility of incorporating label-wise
descriptors for P(Y|X), which enables FLUX to accurately identify clusters of clients with similar
distributions under label-conditional shifts. While the inclusion of standard deviation descriptors (o)
for the latent distribution also leads to improved accuracy, the performance gains are more modest.
Interestingly, increasing the descriptor length [ (i.e., scaling it by 2 or 5) did not yield improvements,
likely due to the reduced compactness of the client distribution representation, which complicates
the clustering process. In the test phase, a flatter performance trend is observed. This behavior is
primarily attributed to two factors. First, the results for label-conditional shifts are not averaged
during the test phase, as test-time association without access to label data is inherently infeasible.
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Second, label-wise descriptors cannot be used during testing as they rely on label information for
computation. Consequently, FLUX relies solely on descriptors of P(X) in this phase, limiting the
variability between different configurations.

Descriptors Experiments
w k) { ;42’”} {E,(f’)} Length Known Association  Test Phase
v 1 90.96 +2.09 95.87 +1.50
v 21 91.75+2.18 9535+ 1.62
v 51 91.03 + 1.65 95.63 +£0.78
v v 1 92.62 +1.19 95.21+1.39
v v 21 90.32 £2.75 95.51+1.43
v v 51 89.83 £2.55 94.72 +1.33
v v 1 93.07 £0.75 95.55 £2.09
v v 21 91.58 £2.55 95.02+1.14
v v 51 90.25 +2.48 94.92 +1.26
v v v v 1 * 93.86 + 1.35 95.64 +1.63
v v v v 21 91.82+1.34 96.06 + 1.11
v v v v 51 90.76 +3.57 94.95+2.13

Table 66: Results of the ablation study evaluating the impact of different descriptor configura-
tions in FLUX under the Known Association and Test Phase settings. The configuration marked
with * indicates the setting used in this paper. The table shows average accuracy and standard devia-
tion across four distribution shifts, highlighting the contribution of various descriptors approximating
P(X) and P(Y|X) and analyzing the effect of descriptor length (1) on performance.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section 5.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix C.1.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See the Experiment Settings section 5.1, and Appendix B.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The data used is publicly available, and we provide the code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See the Experiment Settings section 5.1 and Appendix B for the hyperparame-
ters used, and Sections 5.2, 5.3 and Appendix F for details on the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See figures and tables.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

60


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.
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of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics
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Answer: [Yes]
Justification: We have thoroughly reviewed and adhered to the NeurI[PS Code of Ethics.
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section 5 and 7.
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» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
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any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not address safeguards for the responsible release of high-risk
data or models, as our research does not involve such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We are the authors of the code used in this work. Information about other
assets and the licenses of used models can be found in Appendices B.2 and B.3.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See Appendices B.2, B.3 and the provided code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with user study.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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