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Abstract

Prompt quality plays an important role in the001
performance of LLM-powered QA (Question-002
Answering) systems. However, maintaining003
high-quality prompts remains a labor-intensive004
and fickle task. We introduce PrEAM, the first005
continual prompt optimization framework for006
QA tasks that makes use of automated LLM-007
as-judge feedback. PrEAM closes the loop be-008
tween generation, evaluation and prompt im-009
provement by processing and leveraging feed-010
back from one or more specialized, LLM-based011
micro-judges that independently score every an-012
swer on each turn. For example, task-critical013
axes might include faithfulness, relevance, com-014
pleteness, conciseness, among others. Within015
each micro-judge, errors are investigated and016
classified based on root cause. The top er-017
rors for each micro-judge are then aggregated018
into targeted edits of the system prompt. This019
process is repeated until the performance of020
the train and test set diverges, producing a021
self-healing system prompt that adapts as the022
knowledge base, user mix, or model version023
evolves. Using GPT 4o and GPT 4.1 on024
a dataset of 400 multi-turn QA tasks and025
an Arena-Hard dataset, respectively, shows026
marked improvement in just a handful of it-027
erations while only requiring a few minutes to028
run.029

1 Introduction030

Large language models (LLMs) have significantly031

advanced the field of conversational question032

answering (QA), especially when paired with033

retrieval-augmented generation (RAG) pipelines034

that ground answers in an external knowledge store035

(Lewis et al., 2020).036

LLMs have been found to be incredibly versatile,037

and through prompting, one can leverage an LLM’s038

ability to predict and reason to accomplish a wide039

set of tasks. However, practitioners have quickly040

discovered a stubborn bottleneck: prompt engineer-041

ing. Tiny changes in phrasing can decide whether042

a model cites evidence or hallucinates, whether043

it tracks dialogue history or forgets the previous044

turn (Bach et al., 2022). Because real-world knowl- 045

edge bases and user intents drift constantly, even a 046

well-crafted prompt degrades within weeks, forc- 047

ing costly manual re-tuning. 048

As a solution, automatic prompt optimization 049

methods have begun to appear. Gradient-guided to- 050

ken search (Shin et al., 2020), reinforcement learn- 051

ing approaches (Deng et al., 2022), and edit-based 052

strategies (Prasad et al., 2023; Guo et al., 2023) all 053

show promise, but either assume a stable reward 054

signal or ignore feedback produced by powerful 055

LLM evaluators. 056

An LLM-as-a-judge is a special case of deploy- 057

ing LLMs as automated graders. Recent work 058

demonstrates great agreement with expert annota- 059

tors in summarization, translation, and open-ended 060

generation (Liu et al., 2023; Manakul et al., 2023; 061

Gu et al., 2024; Zheng et al., 2023). However, 062

how to best integrate such judges into a closed- 063

loop prompt-engineering workflow remains under- 064

explored. This line of evaluation has grown in pop- 065

ularity over the last year as it presents a way to con- 066

duct human-aligned automatic evaluation on an un- 067

precedented scale. A common evaluation scheme 068

for LLM-powered QA systems goes as follows: 069

Given a set of user queries, the system is prompted 070

using some predefined prompt to generate a set 071

of responses to the queries. From there, those re- 072

sponses are passed through some LLM-as-a-judge 073

to evaluate the responses in some fashion. This 074

might include specific judges prompted to evalu- 075

ate traditional metrics, such as query relevance or 076

conciseness. This judge could potentially evaluate 077

responses with respect to a set of ground truth re- 078

sponses created by humans or another LLM. When 079

such judges are created, they are often instructed 080

to provide an explanation for their decision in addi- 081

tion to their verdicts. This is a valuable signal for 082

prompt improvement, but is often ignored in exist- 083

ing automatic prompt improvement approaches. 084

In this paper, we present PrEAM: Prompt 085

optimization using Evaluations by Automated 086

Micro-judges—a closed-loop framework that 087

1



continuously aligns the prompts for Question-088

Answering tasks by processing, collating, and lever-089

aging feedback across one or more LLM-as-judges.090

PrEAM orchestrates a multistage pipeline that (i)091

decomposes evaluation into targeted dimensions092

(faithfulness, answerability, style, etc.), (ii) ag-093

gregates judge feedback into structured error cat-094

egories, and (iii) synthesizes minimal, auditable095

prompt edits that directly target the dominant fail-096

ure modes. This process repeats until prompt097

performance reaches a plateau/decreases or until098

prompt performance on a held-out test dataset starts099

to diverge from the performance on the dataset it is100

using to generate prompt improvement suggestions.101

The latter condition ensures that PrEAM does not102

overfit to the specific dataset on which it is trained.103

The system therefore learns from its own mistakes,104

with no gradients, no gold labels (unless required105

by the suite of judges), and no humans in the loop.106

Contributions.107

1. We propose a novel framework for prompt108

improvement that leverages the valuable sig-109

nal produced by LLMs-as-judges. PrEAM110

does not require access to the model beyond111

black-box API calls and is fully human-out-112

of-the-loop.113

2. The prompt improvement loop is fully au-114

ditable by humans, from the the judge feed-115

back to the error categorization to the targeted116

areas of improvement. All aspects of PrEAM117

can be examined, not only for debugging pur-118

poses but also for use as an error summary by119

human prompt engineers.120

3. Experiments conducted on an internal dataset121

of multi-turn RAG (Retrieval Augmented Gen-122

eration) QA as well as on the widely-known123

Arena Hard dataset show drastic prompt im-124

provements when using PrEAM, either match-125

ing or exceeding human performance in only126

a few iterations, taking a fraction of the time.127

By demonstrating that an ensemble of LLMs can128

act as both critic and coach, PrEAM advances the129

vision of self-improving language agents that keep130

themselves aligned as their environment changes.131

2 Related Work132

2.1 Automatic Prompt Optimization133

Early work explored gradient-based token search134

(AUTOPROMPT; Shin et al., 2020). More recent ap-135

proaches employ gradient-free edits (Prasad et al., 136

2023), evolutionary strategies (Guo et al., 2023), or 137

reinforcement learning (Deng et al., 2022). While 138

effective for static classification or single-shot gen- 139

eration, these methods assume a stationary reward 140

and struggle with multi-turn dialogue. 141

Contemporaneous systems such as 142

PROMPTWIZARD (Agarwal et al., 2024) 143

and CRISPO (He et al., 2024) add iterative 144

critique-and-rewrite cycles, yet they employ a 145

single general-purpose critic and evaluate mostly 146

on summarization. In contrast, PrEAM targets 147

retrieval-grounded conversational QA and lever- 148

ages a panel of interpretable micro-judges, each 149

specialized for a distinct failure mode, yielding 150

more stable multi-objective optimization. 151

DSPy (Khattab et al., 2024), a popular declara- 152

tive framework for building AI systems, offers tools 153

for prompt optimization. Its techniques often rely 154

on labeled examples, either authored by humans 155

or generated by another language model. This en- 156

ables optimization across an arbitrary graph of LM 157

interactions. In contrast, PrEAM targets prompt 158

refinement through explicit reasoning traces pro- 159

duced by micro judges. Its iterative, evolutionary 160

design supports rapid adaptation to shifting user 161

intents and evolving optimization metrics. The 162

two approaches complement each other: DSPy sup- 163

ports end-to-end pipeline synthesis, while PrEAM 164

handles continual prompt maintenance within pro- 165

duction chat systems. 166

2.2 LLM-Based Evaluation and 167

Self-Refinement 168

Large models such as GPT-4o (OpenAI, 2024b) 169

have proven to be surprisingly reliable as auto- 170

matic evaluators, closely correlated with expert 171

judgments in summarization and translation (Liu 172

et al., 2023). Self-refinement frameworks let a gen- 173

erator critique and revise its own output (Madaan 174

et al., 2023; Shinn et al., 2023), while recent work 175

ensembles multiple “LLM judges” to reduce eval- 176

uation variance (Rahmani et al., 2024). PrEAM 177

extends this line of work by embedding LLM eval- 178

uators within the optimization loop for prompt de- 179

sign, not just for evaluation purposes. 180

2.3 Conversational QA with Retrieval 181

RAG pipelines are now standard for keeping QA re- 182

sponses grounded (Lewis et al., 2020; Shuster et al., 183

2021). Instruction tuning and few-shot prompting 184

improve answer style (Ouyang et al., 2022), but 185
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neither adapts automatically when the underlying186

corpus changes. Our work is the first to introduce187

a fully automated feedback loop where LLMs act188

as both judges and prompt engineers, continuously189

improving prompts in conversational QA without190

human intervention.191

2.4 Summary192

PrEAM uniquely combines (i) multi-aspect LLM193

evaluation with (ii) a continuous closed-loop194

prompt editing scheme leveraging LLM-as-a-judge195

reasoning traces. This integration has not, to the196

best of our knowledge, been explored in the prior197

art.198

3 System Overview199

In this section we give a concise end–to–end view200

of PrEAM and describe how its components in-201

teract in a closed feedback loop that continually202

improves a system prompt without human supervi-203

sion. Figure 1 presents a high–level block diagram204

of the entire pipeline, while Figure 2 zooms in205

on the error–processing stages that transform raw206

judge outputs into actionable edits.207

At the heart of PrEAM is the idea of using LLMs208

both as evaluators and editors. Specifically, we209

leverage micro-judges, LLM-based agents that in-210

dependently evaluate dimensions of an answer at211

a particular turn of conversation, such as ground-212

edness, relevance, completeness, or performance213

against some benchmark response or following a214

set of rules for an ideal response, and provide justi-215

fications in natural language along with categorical216

labels. Such evaluation schemes are common in217

practice, and are used frequently for their ability218

to scale arbitrarily while still being aligned with219

human preferences. These judgments are synthe-220

sized and passed to a separate LLM-based meta-221

prompting module, which proposes improvements222

to the system prompt in natural language. This idea223

builds on recent advances in meta-prompting and224

self-improving LLMs (Zhou et al., 2023; Prasad225

et al., 2023; Madaan et al., 2023), where models are226

guided to revise instructions based on performance227

feedback.228

PrEAM consists of the following components:229

• Conversational QA Module: A Question-230

Answering pipeline built on a pre-trained231

LLM (e.g., GPT-4o), which generates re-232

sponses to user queries using a given input233

prompt. For example, one might have a Con- 234

versational RAG (Retrieval Augmented Gen- 235

eration) pipeline that uses retrieved context 236

and conversation history to answer a user’s 237

questions about a specific Knowledge Base. 238

Alternatively, it could simply be a QA sys- 239

tem in which the model answers user queries 240

directly without any additional content. 241

• LLM-Based Micro-Judges: A set of spe- 242

cialized LLM-based evaluators, each tasked 243

with assessing model responses along a dis- 244

tinct dimension—such as groundedness, rel- 245

evance, or formatting. For each dimension, 246

the corresponding micro-judge produces both 247

a discrete verdict (Acceptable/Unacceptable) 248

and a natural language rationale explaining its 249

judgment. This auto-evaluation process across 250

multiple micro-judges for a single response is 251

illustrated in Fig. 3. 252

• Error Summarizer: Aggregates the ratio- 253

nales from all failed or unacceptable cases 254

into short, instance–agnostic summaries as 255

shown in Fig. 2. 256

• Error Categoriser: Group summaries into 257

a small set of categories of recurring errors 258

(Fig. 2). 259

• Prompt Optimizer (Meta-Prompting Mod- 260

ule): An LLM instance receives the original 261

prompt, common failure categories and repre- 262

sentative examples and outputs an improved 263

version of the prompt. 264

• Optimization Loop Controller: A control 265

mechanism that orchestrates each iteration: 266

generating answers with the latest prompt, re- 267

evaluating them via micro-judges, summariz- 268

ing feedback, and applying meta-prompting 269

while performance on a held-out test set im- 270

proves. In our setup, we split the responses 271

into an 80-20 train-test split. We use 80% 272

train split to optimize the prompt and reserve 273

the 20% test split to evaluate performance on 274

a given prompt. 275

This architecture allows for prompt refinement 276

without any human-in-the-loop supervision. Unlike 277

one-shot tuning approaches, PrEAM can continu- 278

ously adapt the prompts to new domains or chang- 279

ing user behaviors. By combining fine-grained 280
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Figure 1: PrEAM Pipeline overview. Figure 2: Error categorization and error reduction.

Figure 3: Single Response Auto-Evaluation by a Judge
Model

LLM-based evaluation with automated prompt re-281

vision, PrEAM offers a scalable general-purpose282

solution to improve instruction quality in QA sys-283

tems. In the next section, we will go over more284

details on the components of PrEAM discussed285

above.286

4 Feedback-Driven Optimization Loop287

The core innovation of PrEAM lies in its iterative288

prompt refinement mechanism. This section details289

how prompts are evaluated and improved through290

automated LLM-based feedback.291

4.1 Initial Prompt Definition292

The iterative process starts with an initial base-293

line prompt, typically a manually crafted system294

prompt for the QA system. This can be an ex-295

tremely simple one-sentence description of the task.296

For example: "Answer the following question:"297

This prompt is fixed for the first iteration. Subse-298

quently, the system is executed on a training subset299

of conversational data, which may also encompass300

context for each query, facilitating the generation 301

of responses for each user interaction. 302

4.2 Evaluation by Micro-Judges 303

Each answer is evaluated using one or more LLM- 304

based micro-judges. Note that this evaluation oc- 305

curs over a single user turn, hence the name micro- 306

judge. In many enterprise use-cases, the same con- 307

versational QA prompt is used multiple times in 308

succession as a conversation flows. PrEAM focuses 309

on evaluations that center on improving the perfor- 310

mance of individual turns in this multi-turn setting, 311

not the conversation as a whole. However, apply- 312

ing judge evaluation and prompt improvement on a 313

conversation trace is a future area of development 314

for PrEAM. 315

Each judge provides a brief explanation of its rea- 316

soning and returns a score or decision. For cases in 317

which the decision is deemed a failure, the explana- 318

tion is used in future steps. Note that the existence 319

of such an explanation before the verdict is not 320

an abnormal requirement, as most LLM-as-judges 321

use CoT (Chain of Thought) prompting (Wei et al., 322

2022), which encourages models to give a coher- 323

ent thought process before coming to conclusions. 324

For each sample, the explanation and verdict are 325

logged. 326

4.3 Categorization of Failure Cases 327

All low-scoring responses (e.g. below a threshold 328

on any metric or when “decision” is unacceptable) 329

undergo three steps: Error Summarization, Error 330

Category Generation, and Error Categorization. 331

Firstly, the judge feedback for each error case 332

is summarized to remove test-case specific details. 333

If the raw judge output does not function well as 334

direct feedback (for example, judges that function 335
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by comparing the model response against another336

model’s response), this step will pre-process the337

thoughts in a way that is digestable by future steps338

in the PrEAM pipeline.339

PrEAM then contains an error category genera-340

tion prompt that ingests the summarized feedback341

for all error cases and outputs a set of 3-5 error342

categories per micro judge. For example, a judge343

measuring the preference of a model output with344

respect to a baseline response could have multiple345

reasons for passing a failing verdict. The response346

could be too long, contain incorrect information, or347

have an inappropriate voice or tone. Note that even348

in cases where there are multiple micro judges, it349

is possible for each micro judge to have multiple350

error categories.351

Then each error is categorized into the category352

that most accurately explains it. Once all errors353

have been mapped to a category, all categories354

across all judges are then compiled to determine355

the most common reasons for error. The categories356

with the Top-k errors are then forwarded to the357

meta-prompt, which uses this information to gener-358

ate a better prompt.359

4.4 Meta-Prompted Prompt Optimization360

The categorized feedback is passed to a meta-361

prompting module, another LLM instance tasked362

with prompt rewriting. This module receives:363

• The original prompt.364

• A list of the Top-k failure categories. Each365

failure category description contains:366

– The name of the error category (ex.367

"Model Response not Grounded in Pro-368

vided Context")369

– A short description of the error category370

(ex. "The model response contains incor-371

rect information not present in the pro-372

vided context.")373

Then it generates a revised prompt tailored to374

mitigate the observed issues. For example, if many375

hallucinations occurred, the revised prompt might376

emphasize stronger adherence to source content:377

"If the answer is not explicitly stated in the sources,378

say you do not know."379

4.5 Iteration and Convergence380

The newly generated prompt is then used to rerun381

the system on the training data. The micro-judges382

re-evaluate the updated responses. This process 383

is repeated for several iterations (typically 2–3), 384

allowing the system to progressively improve. Con- 385

vergence is declared when either: 386

• Metric scores plateau/decrease across itera- 387

tions, or 388

• Performance on the held-out validation set be- 389

gins to diverge from training gains, indicating 390

overfitting. 391

At convergence, the best-performing prompt is 392

selected for final evaluation on the test set. 393

5 Experimental Setup 394

We evaluate PrEAM on two question-answering 395

datasets: an internal enterprise domain multi-turn 396

retrieval-augmented QA dataset, and the public 397

Arena-Hard-v2.0-Preview benchmark (Li et al., 398

2024; Tianle Li*, 2024). Below, we provide details 399

on the datasets, evaluation metrics, and experimen- 400

tal protocols. 401

Internal RAG QA Dataset. This dataset con- 402

sists of 400 multi-turn dialogues. For each user 403

query, relevant context passages are pre-retrieved 404

from a knowledge base, and the LLM must gener- 405

ate an answer using both the conversation history 406

and the retrieved context. We evaluate each re- 407

sponse across several task-critical axes commonly 408

used in retrieval-augmented generation: Ground- 409

edness, Relevance, Formatting, Conciseness, Com- 410

pleteness, Citation, and Self-Referentiality. Each 411

criterion is assessed by a dedicated LLM-based 412

micro-judge, with the judging prompts calibrated 413

on a human-annotated preference dataset. For an- 414

swerable queries, each judge returns a rating of 415

unacceptable, acceptable, or ideal. For unanswer- 416

able queries, we include an additional check to en- 417

sure that the answer explicitly acknowledges that it 418

cannot answer the question (for example, an apolo- 419

getic statement in the first sentence). A response 420

is considered failure case on any given axis if it 421

is rated unacceptable by the corresponding judge. 422

We define an overall Aggregate Decision metric 423

as the percentage of responses that pass all judges 424

(i.e., no axis is marked unacceptable). 425

We run PrEAM’s prompt-refinement loop on 426

this internal dataset, using a portion of the 400 427

dialogues for iterative prompt tuning and holding 428

out the rest for evaluation. Prompt updates con- 429

tinue until the Aggregate Decision on the held-out 430
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test set plateaus or declines (indicating that perfor-431

mance has peaked and further tuning would risk432

overfitting). In practice, this stopping criterion was433

triggered after three refinement iterations, resulting434

in a final optimized prompt at iteration 3.435

Arena-Hard Benchmark. To evaluate gener-436

alization beyond our internal data, we apply437

PrEAM to the Arena-Hard-v2.0-Preview bench-438

mark. Arena-Hard comprises 750 challenging439

open-domain English questions (500 focused on440

coding/math problems and 250 on creative writing441

tasks) sourced from the Chatbot Arena platform.442

Each question is paired with a strong baseline an-443

swer for comparison. We employ GPT-4.1 (Ope-444

nAI, 2024a) as an automated judge in a pairwise445

evaluation setting: given the model’s response and446

the baseline answer, the judge assigns a compara-447

tive verdict—much better, better, about the same,448

worse, or much worse—for the model’s answer rel-449

ative to the baseline. We convert these judgments450

into a weighted win rate for our model, where451

a “much better” verdict contributes more strongly452

than a “better” verdict, and any “worse” or “much453

worse” verdict counts as a loss. In the context of454

PrEAM, any instance where the model’s answer is455

judged worse or much worse than the baseline is456

treated as a failure case. Along with the verdict, the457

LLM judge also provides a natural-language ratio-458

nale by first synthesizing its own ideal answer and459

then analyzing the differences between the model’s460

answer and the baseline. We distill this compara-461

tive feedback into direct instructions for the next462

prompt revision. As with the internal data, we iter-463

ate prompt optimization on a subset of Arena-Hard464

tasks until the weighted win rate on a held-out set465

no longer improves.466

6 Results467

We report PrEAM’s performance on the internal468

RAG QA dataset and the Arena-Hard benchmark.469

In both settings, iterative prompt optimization470

yields substantial gains over the initial prompt, of-471

ten in just a few refinement rounds.472

6.1 Internal RAG QA Dataset473

Tables 1 and 2 summarize the performance of the474

original prompt and successive refined prompts on475

the internal dataset’s training and test splits, respec-476

tively. The original prompt produces low overall477

quality, with especially poor results on axes like Ci-478

tation (only 2.01% of training responses and 0.00%479

of test responses meet the citation requirement) and 480

Unanswerability (29.01% train, 17.54% test, indi- 481

cating the system often fails to acknowledge when 482

it cannot answer). After a single PrEAM iteration, 483

we observe substantial improvements on most axes: 484

for instance, the Citation metric jumps to 79.86% 485

on train and 70.77% on test, and Unanswerability 486

rises to 93.13% on train and 77.19% on test. By 487

the third iteration, many metrics reach their peak 488

and we notice a more balanced performance—e.g., 489

Citation improves to 95.30% (train) and 92.31% 490

(test) without dropping the other metrics signifi- 491

cantly—reflecting a dramatic enhancement in an- 492

swer quality compared to the original prompt. Note 493

that our goal is to have a balanced performance 494

across multiple axes, and we will illustrate this in 495

the next paragraph. 496

Not every metric improves monotonically; some 497

dimensions trade off against others. For example, 498

making answers more concise can conflict with 499

completeness, since an extremely brief answer may 500

omit details necessary for completeness. Indeed, 501

we observe that certain metrics (such as Complete- 502

ness) dip slightly in later iterations even as others 503

(e.g., Conciseness) continue to improve. For exam- 504

ple, in the case of Completeness and Conciseness, 505

this tradeoff can be explained by the fact that more 506

thorough responses tend to be more complete, but 507

less concise. Given these trade-offs, we rely on 508

the Aggregate Decision as an overall indicator of 509

success. The Aggregate Decision—i.e., the propor- 510

tion of responses rated acceptable or ideal on all 511

criteria—rises from only 14.64% with the origi- 512

nal prompt to 83.21% after three iterations on the 513

training set. On the held-out test set, it climbs from 514

8.2% to 76.23% by iteration 3 (Table 2). After the 515

third iteration, further prompt edits yielded no con- 516

sistent gains (and even led to slight degradations on 517

many axes), so we selected the iteration-3 prompt 518

as the final optimized prompt. 519

Please refer to Appendix 9 for an example itera- 520

tion of a prompt improvement. While the original 521

prompt contains a simple instruction and relies on 522

the model’s inherent quality to produce an accept- 523

able output, the prompt after the first iteration of 524

prompt improvement explicitly touches on eval- 525

uation areas of the micro-judges and guides the 526

model into producing better outputs. It also con- 527

tains sections on output format and a section for 528

final reminders, both well-established practices in 529

the field of prompt engineering. 530
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Metric Orig. Iter 1 Iter 2 Iter 3 Iter 4

Citation 2.01 79.86 89.93 95.30 91.28
Completeness 96.64 75.17 88.59 85.91 76.51
Conciseness 85.91 100.00 97.32 95.97 95.30
Formatting 100.00 96.64 95.97 99.33 97.32
Groundedness 99.33 93.96 97.31 97.32 91.27
Relevance 100.00 92.62 97.31 97.31 85.23
Self-Reference 92.19 82.35 95.45 95.45 83.78
Unanswerability 29.01 93.13 77.86 85.50 91.60

Aggregate 14.64 77.50 76.79 83.21 77.86

Table 1: Internal dataset (train split) performance across
prompt refinement iterations. Best results per metric are
bolded and the highlighted column represents the final
prompt after stopping criteria has been reached.

6.2 Arena-Hard Evaluation531

We further test PrEAM’s generalizability using532

Arena-Hard-v2.0-Preview, where the evaluation533

is comparative: model outputs are judged relative534

to a strong baseline using GPT-4.1 as a referee.535

Table 3 shows PrEAM’s performance progression536

on the Arena-Hard benchmark. With the origi-537

nal prompt, our model underperforms the baseline,538

achieving a weighted win rate of only 32.4% (indi-539

cating that it loses to the baseline in the majority of540

comparisons). After two rounds of prompt refine-541

ment, the model’s score improves to 51.7%, now542

surpassing the baseline. The refined prompt is espe-543

cially effective on the coding and math problems in544

Arena-Hard, where precise, well-grounded answers545

are critical, yielding large gains in those categories.546

Improvements on the creative writing tasks are547

more modest, likely because these tasks are highly548

subjective and the baseline answers do not incur549

heavy penalties for creative elaboration (making it550

harder to strongly outperform them). Nonetheless,551

these results demonstrate that PrEAM’s benefits552

carry over to challenging unseen tasks. Without553

any gradient updates or human-in-the-loop inter-554

vention, our prompt-only optimization approach555

manages to exceed a strong baseline model on a556

widely challenging benchmark.557

7 Conclusion558

We introduced PrEAM, a novel framework for559

prompt optimization in conversational question560

answering systems that leverages evaluations by561

automated micro-judges. By integrating LLM-562

based feedback into a closed-loop optimization563

process, PrEAM enables self-improving prompt564

design without human intervention. Each com-565

ponent of the system from judgment to revision566

Metric Orig. Iter 1 Iter 2 Iter 3 Iter 4

Citation 0.00 70.77 87.69 92.31 86.15
Completeness 92.31 76.92 86.15 81.54 63.08
Conciseness 89.23 100.00 98.46 96.92 96.92
Formatting 98.46 96.92 98.46 98.46 96.92
Groundedness 96.92 84.62 96.92 96.93 90.77
Relevance 98.46 80.00 96.93 95.38 87.69
Self-Reference 100.00 63.64 86.67 76.92 85.71
Unanswerability 17.54 77.19 70.18 80.70 92.98

Aggregate 8.20 65.57 71.31 76.23 72.95

Table 2: Internal dataset (test split) performance across
prompt refinement iterations. Best results per metric are
bolded and the highlighted column represents the final
prompt after stopping criteria has been reached.

Split Orig. Iter 1 Iter 2 Iter 3

Train 0.52 0.76 0.77 0.72
Test 0.39 0.52 0.62 0.56

Table 3: Arena-Hard weighted win rates across prompt
iterations. Best scores per row are bolded and the high-
lighted column represents the final prompt after stopping
criteria has been reached.

is powered by LLMs, creating a scalable mecha- 567

nism for dynamic prompt adaptation in real-world, 568

retrieval-augmented QA scenarios. 569

In our internal data set, the aggregate perfor- 570

mance improved from 14.64% in the original 571

prompt to 83.21% after three iterations in the train- 572

ing split and from 8.20% to 76.23% in the test 573

split. These gains were reflected across key metrics 574

such as citation accuracy, completeness, relevance, 575

etc. Furthermore, the evaluations on the Arena- 576

Hard benchmark revealed that our refined prompts 577

achieved a weighted win rate of 77% on the train- 578

ing split and 62% on the test split, outperforming 579

the original prompt’s 52% and 39%, respectively. 580

These results underscore the generalizability and 581

robustness of our prompt optimization approach. 582

Our findings highlight the viability of using 583

LLMs not just as generators but also as evaluators 584

and editors. By decomposing evaluation into inter- 585

pretable sub-tasks and leveraging multiple special- 586

ized micro-judges, PrEAM avoids over-optimizing 587

for a single metric and instead balances multiple 588

quality dimensions. The result is a generalizable 589

and domain-adaptable prompt optimization method 590

that can enhance performance across diverse con- 591

versational settings. 592

Future work will explore broader applications 593

of micro-judge-guided prompt optimization be- 594

yond QA, including summarization, dialog policy 595
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generation, and safety-critical domains. In addi-596

tion, incorporating human-in-the-loop oversight597

or user satisfaction signals could further enhance598

prompt quality and alignment. As LLMs continue599

to evolve, systems like PrEAM offer a path toward600

more robust, transparent, and self-improving AI601

pipelines.602

8 Limitations603

Although PrEAM removes the human from the604

critical path, it still depends on the quality of the605

upstream judges. Misaligned evaluators can steer606

optimization astray and effectiveness can vary be-607

tween domains.608

9 Ethical Considerations609

Automating prompt engineering raises questions610

about accountability and bias. We recommend pe-611

riodic human audits and explicit fairness checks on612

judge prompts.613
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Appendix: Prompt Development History726

Here we provide an example of prompt development using PrEAM:727

Section Content
Initial Prompt Answer the last user query in the conversation history.

Error Summary Iteration 1 - Missing Required Citations:
The response does not include any citations in the required formats
(such as [doc_1], (doc_1), [[cat_1]], etc.), which is mandatory for a
valid answer. To correct this, the response must reference at least
one knowledge base document or catalog item using the specified
citation formats. Links, quoted content, or plain text references do
not count as valid citations.

- Directly Answered or Attempted to Answer:
The agent’s response provided a direct, relevant, or partial answer to
the user’s question instead of stating that no answer or information
is available. For a response to be considered ‘ideal’ unanswerable, it
must begin by explicitly stating the absence of an answer or
information. To correct this, the agent should not attempt to answer
but should clearly state at the start that no answer is available.

- Lack of Explicit Unanswerability Statement at the Beginning:
The agent’s response did not begin with a clear statement indicating
that no answer or information is available, as required by the ‘ideal’
conditions. Instead, the response may have provided general guidance,
suggestions, or asked for clarification, but failed to directly
acknowledge the lack of an answer at the start. To be ‘ideal’, the
response must start with an explicit statement about the absence of an
answer.

- Excessive Detail and Specificity:
The response provides more information than necessary for a general or
ambiguous query, including step-by-step instructions, specific dates,
eligibility criteria, technical specifications, or procedural steps.
To improve, responses should offer a high-level overview or summary,
avoiding unnecessary specifics unless the user’s question clearly
requires them.

- Incorrect Citation Format:
The response attempts to reference documents or catalog items but does
so using an incorrect format (such as hyperlinks, bold text, or plain
text), rather than the required citation formats. To fix this, all
references to documents or catalog items must use the specified
formats like [doc_1], (cat_1), or [[doc_1]].

- Redundancy and Repetition:
The response repeats information or includes redundant statements,
making it unnecessarily lengthy and less concise. To improve,
responses should avoid repeating the same information and focus on
delivering each point only once in a clear and succinct manner.
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New Prompt After Iteration 1 Answer the last user query in the conversation history.

When responding, ensure the following:
1. **Citations**: Every response must include at least one properly
formatted citation referencing the knowledge base documents or
catalog items. Use the formats [doc_1], (doc_1), or [[cat_1]] as
appropriate. If no relevant information is available, explicitly
state this and do not fabricate citations.
2. **Unanswerability**: If the query cannot be answered based on
the provided documents or catalog items, begin your response by
explicitly stating that no answer or information is available. Do
not attempt to provide partial answers, suggestions, or ask for
clarification in such cases.
3. **Conciseness**: Avoid excessive detail or unnecessary
specificity unless explicitly requested by the user. Provide a
high-level overview or summary for broad or unclear queries.
4. **Clarity**: Avoid redundancy and repetition. Deliver each piece
of information only once to ensure the response is clear and concise.
5. **Citation Format**: Ensure all references to documents or
catalog items strictly follow the required citation formats ([doc_1],
(doc_1), [[cat_1]]). Replace any non-compliant references with the
correct format.
Output Format
- Begin with a clear statement of unanswerability if applicable.
- Include at least one properly formatted citation if relevant
information is available.
- Ensure the response is concise, clear, and free of redundancy.
Notes
- Do not fabricate information or citations.
- If the query is ambiguous or broad, provide a general response
without unnecessary specifics.
- Always prioritize clarity and adherence to the specified citation
formats.
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Error Summary Iteration 2 - Failure to Reference Relevant Information:
The response fails to utilize or mention relevant information,
documents, or catalog items that are available and directly address
the user’s query. This includes cases where the agent incorrectly
claims no information is available, omits key resources, or does not
guide the user to helpful next steps. To improve, the agent should
always check for and incorporate pertinent details from the provided
context, including catalog items and documents, and offer actionable
guidance.

- Missing Citations:
The response does not include any citations in the required formats
(e.g., [doc_1], [cat_1], (doc_1), etc.). Every response must contain
at least one properly formatted citation, even when stating that no
information is available. To correct this, ensure that all responses
reference the relevant documents or catalog items using the specified
citation formats.

- Overlooking Relevant Information:
The response incorrectly claims that no relevant information is
available, even though the provided documents or catalog items contain
information that directly addresses the user’s query. This error
occurs when the agent fails to utilize or reference available
resources, leading to an inaccurate or incomplete answer. To avoid
this, the agent should thoroughly check all provided materials and
ensure any relevant content is incorporated into the response.

- Incomplete or Inaccurate Summarization:
The response provides only a partial answer, omits important details,
or inaccurately summarizes the available information, leading to an
incomplete or misleading response. This includes missing key policy
points, eligibility criteria, or relevant document content. To
improve, the agent should ensure all critical aspects of the user’s
query are addressed by thoroughly summarizing and including all
relevant details from the context.

- Incorrect Citation Format:
The response includes citations, but they are not in the allowed
formats. Common errors include using double square brackets for
catalog items (e.g., [[cat_1]]), using hyperlinks instead of
citations, or any other format not specified in the guidelines. To fix
this, ensure all citations use only the approved formats such as
[doc_1], [cat_1], (doc_1), etc., and avoid double brackets or links.

- Directly Answered User’s Question:
The agent’s response provides a direct or detailed answer to the
user’s question, rather than indicating that no answer or information
is available. For a response to be considered ‘ideal’ in an
unanswerable scenario, it must begin by explicitly stating that no
answer or information was found. The agent should avoid providing an
answer when the correct behavior is to acknowledge the absence of
information.
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New Prompt After Iteration 2 Answer the last user query in the conversation history.
When responding, ensure the following:
1. **Citations**: Every response must include at least one properly
formatted citation referencing the knowledge base documents or catalog
items. Use the formats [doc_1], (doc_1), or [[cat_1]] as appropriate.
If no relevant information is available, explicitly state this and do
not fabricate citations.

2. **Thorough Use of Context**: Carefully review all provided
documents, catalog items, and conversation history to identify
relevant information. Do not overlook any details that could assist
in answering the query.

3. **Unanswerability**: If the query cannot be answered based on the
provided documents or catalog items, begin your response by explicitly
stating that no answer or information is available. Do not attempt to
provide partial answers, suggestions, or ask for clarification in such
cases.
4. **Conciseness**: Avoid excessive detail or unnecessary specificity
unless explicitly requested by the user. Provide a high-level overview
or summary for broad or unclear queries.
5. **Clarity**: Avoid redundancy and repetition. Deliver each piece
of information only once to ensure the response is clear and concise.
6. **Citation Format**: Ensure all references to documents or catalog
items strictly follow the required citation formats ([doc_1], (doc_1),
or [[cat_1]]). Replace any non-compliant references with the correct
format.

7. **Actionable Steps for Overlooked Information**: If relevant
information is found in the provided context but not directly
addressed in the response, ensure it is incorporated. Do not claim
that no information is available if relevant details
exist.

Output Format
- Begin with a clear statement of unanswerability if applicable.
- Include at least one properly formatted citation if relevant
information is available.
- Ensure the response is concise, clear, and free of redundancy.
Notes
- Do not fabricate information or citations.
- If the query is ambiguous or broad, provide a general response
without unnecessary specifics.
- Always prioritize clarity and adherence to the specified citation
formats.

- If relevant information is overlooked, review the context again
and ensure it is included in the response.
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Error Summary Iteration 3 - Response Provides an Answer Instead of Stating Lack of Information:
The agent’s response directly answers the user’s question or provides
relevant information, rather than beginning with a clear statement
that no answer or information is available. For a response to be
considered ‘ideal’ unanswerable, it must explicitly state at the start
that no answer or relevant information is found. The behavior that
needs to change is that the agent should not attempt to answer or
provide guidance if the required information is not available, but
should instead clearly state the lack of information at the beginning
of the response.

- Failure to Utilize Relevant Information:
The response fails to reference or incorporate relevant details from
the provided documents or catalog items that directly address the
user’s query. This includes overlooking specific instructions,
procedures, or resources that are available and applicable. To
improve, the agent should thoroughly review the context and ensure all
pertinent information is included in the response.

- Incorrect Citation Format:
This category includes responses where citations are present but do
not follow the required formats ([doc_1], [cat_1], (doc_1), etc.),
such as using double square brackets ([[cat_1]]), or any other
non-approved format. To correct this, all citations must strictly
adhere to the specified formats.

- Missing Required Citations:
This category covers responses that do not include any citations in
the required formats, even though citations are expected. The behavior
that needs to change is to ensure that at least one properly formatted
citation is present in every response where citations are required.

- Response Fails to Begin with Explicit Statement of No Information:
The agent’s response may eventually mention the lack of information,
but does not begin with a clear statement that there is no answer or
relevant information available. For a response to be ‘ideal’
unanswerable, this disclaimer must be at the very start. The behavior
that needs to change is that the agent must always start the response
with a direct statement about the absence of information if the answer
cannot be provided.

- Lack of Specificity or Actionable Guidance:
The response is too vague or generic, lacking clear, actionable steps
or instructions that the user can follow. This includes failing to
provide direct links, step-by-step processes, or explicit references
to catalog items or forms that would help the user complete their
task. The agent should ensure responses are concrete and guide the
user on exactly what to do next.
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New Prompt After Iteration 3 Answer the last user query in the conversation history.
When responding, ensure the following:
1. **Citations**: Every response must include at least one properly
formatted citation referencing the knowledge base documents or catalog
items. Use the formats [doc_1], (doc_1), or [cat_1] as appropriate. If
no relevant information is available, explicitly state this and do not
fabricate citations.

2. **Explicit Unanswerability**: If the query cannot be answered
based on the provided documents or catalog items, begin your response
by explicitly stating that no answer or information is available.
Do not attempt to provide partial answers, suggestions, or ask for
clarification in such cases.

3. **Thorough Use of Context**: Carefully review all provided
documents, catalog items, and conversation history to identify
relevant information. Do not overlook any details that could assist in
answering the query.

If relevant information is found in the provided context but not
directly addressed in the response, ensure it is incorporated.

4. **Conciseness**: Avoid excessive detail or unnecessary specificity
unless explicitly requested by the user. Provide a high-level overview
or summary for broad or unclear queries.
5. **Clarity**: Avoid redundancy and repetition. Deliver each piece
of information only once to ensure the response is clear and concise.
6. **Citation Format**: Ensure all references to documents or catalog
items strictly follow the required citation formats ([doc_1], (doc_1),
or [cat_1]). Replace any non-compliant references with the correct
format.
7. **Actionable Steps for Overlooked Information**: If relevant
information is found in the provided context but not directly
addressed in the response, ensure it is incorporated. Do not claim
that no information is available if relevant details exist.
Output Format
- Begin with a clear statement of unanswerability if applicable.
- Include at least one properly formatted citation if relevant
information is available.
- Ensure the response is concise, clear, and free of redundancy.
Notes
- Do not fabricate information or citations.
- If the query is ambiguous or broad, provide a general response
without unnecessary specifics.
- Always prioritize clarity and adherence to the specified citation
formats.
- If relevant information is overlooked, review the context again and
ensure it is included in the response.

15



Error Summary Iteration 4 - Directly Answered Instead of Marking Unanswerable:
The agent’s response provides a direct or specific answer to the
user’s question, rather than stating at the beginning that no answer
or information is available. For an ’ideal’ unanswerable response, the
agent must clearly state at the start that no answer or relevant
information was found in the provided documents. The behavior that
needs to change is that the agent should not attempt to answer the
question if the answer is not available, but instead immediately
indicate the lack of information.

- Failure to Reference Relevant Documents or Catalog Items:
The response does not utilize or mention available documents or
catalog items that contain information directly related to the user’s
query. This includes cases where the agent claims no information is
available, overlooks key resources, or fails to guide the user to
actionable next steps. To improve, the agent should always check for
and reference any relevant documents or catalog items, providing
direct guidance or links when possible.

- Omission of Specific Details or Steps:
The response is too vague or general, lacking specific instructions,
steps, or details that are available in the provided context. This
includes not providing step-by-step guidance, missing key program
dates, or failing to include all relevant benefits or features. To
improve, the agent should extract and present all pertinent details
from the documents, ensuring the user receives a thorough and
actionable answer.

- Missing Citations:
The response does not include any citations in the required formats
([doc_1], (doc_1), [[doc_1]], [cat_1], etc.), even when citations are
necessary. To correct this, the response must include at least one
properly formatted citation whenever referencing information from the
knowledge base or catalog items.

- Incorrect or Inaccurate Information:
The response provides information that is incorrect or contradicts the
available documents, such as stating that no information exists when
it does, or misrepresenting the content of the documents. To improve,
the agent should carefully verify the information in the documents
before responding and avoid making unsupported claims.

- Overly Detailed and Specific Responses:
The response includes excessive details, such as step-by-step
processes, specific scenarios, or unnecessary information, instead of
providing a concise, high-level summary. For general or ambiguous
queries, the answer should avoid diving into specifics and instead
offer a brief overview or direct next steps. To improve, responses
should match the level of detail to the question’s specificity and
avoid including information that may not be relevant to the user’s
intent.
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New Prompt After Iteration 4 Answer the last user query in the conversation history.
When responding, ensure the following:
1. **Citations**: Every response must include at least one properly
formatted citation referencing the knowledge base documents or catalog
items. Use the formats [doc_1], (doc_1), or [cat_1] as appropriate. If
no relevant information is available, explicitly state this and do not
fabricate citations.
2. **Explicit Unanswerability**: If the query cannot be answered based
on the provided documents or catalog items, begin your response by
explicitly stating that no answer or information is available. Do not
attempt to provide partial answers, suggestions, or ask for
clarification in such cases.
3. **Thorough Use of Context**: Carefully review all provided
documents, catalog items, and conversation history to identify
relevant information. Do not overlook any details that could assist in
answering the query. If relevant information is found in the provided
context but not directly addressed in the response, ensure it is
incorporated.
4. **Conciseness**: Avoid excessive detail or unnecessary specificity
unless explicitly requested by the user. Provide a high-level overview
or summary for broad or unclear queries.
5. **Clarity**: Avoid redundancy and repetition. Deliver each piece
of information only once to ensure the response is clear and concise.
6. **Citation Format**: Ensure all references to documents or catalog
items strictly follow the required citation formats ([doc_1], (doc_1),
or [cat_1]). Replace any non-compliant references with the correct
format.
7. **Actionable Steps for Overlooked Information**: If relevant
information is found in the provided context but not directly
addressed in the response, ensure it is incorporated. Do not claim
that no information is available if relevant details exist.

8. **Prioritize Unanswerability Disclaimer**: Always begin the
response with a clear statement of unanswerability if no relevant
information is available. Do not provide context, general advice,
or other information before this disclaimer.

Output Format
- Begin with a clear statement of unanswerability if applicable.
- Include at least one properly formatted citation if relevant
information is available.
- Ensure the response is concise, clear, and free of redundancy.
Notes
- Do not fabricate information or citations.
- If the query is ambiguous or broad, provide a general response
without unnecessary specifics.
- Always prioritize clarity and adherence to the specified citation
formats.
- If relevant information is overlooked, review the context again and
ensure it is included in the response.

- Ensure that the unanswerability disclaimer, if applicable, is the
first statement in the response.
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