PrEAM: Prompt Optimization using Evaluations by Automated
Micro-judges

Anonymous ACL submission

Abstract

Prompt quality plays an important role in the
performance of LLM-powered QA (Question-
Answering) systems. However, maintaining
high-quality prompts remains a labor-intensive
and fickle task. We introduce PrEAM, the first
continual prompt optimization framework for
QA tasks that makes use of automated LLM-
as-judge feedback. PrEAM closes the loop be-
tween generation, evaluation and prompt im-
provement by processing and leveraging feed-
back from one or more specialized, LLM-based
micro-judges that independently score every an-
swer on each turn. For example, task-critical
axes might include faithfulness, relevance, com-
pleteness, conciseness, among others. Within
each micro-judge, errors are investigated and
classified based on root cause. The top er-
rors for each micro-judge are then aggregated
into targeted edits of the system prompt. This
process is repeated until the performance of
the train and test set diverges, producing a
self-healing system prompt that adapts as the
knowledge base, user mix, or model version
evolves. Using GPT 4o and GPT 4.1 on
a dataset of 400 multi-turn QA tasks and
an Arena-Hard dataset, respectively, shows
marked improvement in just a handful of it-
erations while only requiring a few minutes to
run.

1 Introduction

Large language models (LLMs) have significantly
advanced the field of conversational question
answering (QA), especially when paired with
retrieval-augmented generation (RAG) pipelines
that ground answers in an external knowledge store
(Lewis et al., 2020).

LLMs have been found to be incredibly versatile,
and through prompting, one can leverage an LLM’s
ability to predict and reason to accomplish a wide
set of tasks. However, practitioners have quickly
discovered a stubborn bottleneck: prompt engineer-
ing. Tiny changes in phrasing can decide whether
a model cites evidence or hallucinates, whether
it tracks dialogue history or forgets the previous

turn (Bach et al., 2022). Because real-world knowl-
edge bases and user intents drift constantly, even a
well-crafted prompt degrades within weeks, forc-
ing costly manual re-tuning.

As a solution, automatic prompt optimization
methods have begun to appear. Gradient-guided to-
ken search (Shin et al., 2020), reinforcement learn-
ing approaches (Deng et al., 2022), and edit-based
strategies (Prasad et al., 2023; Guo et al., 2023) all
show promise, but either assume a stable reward
signal or ignore feedback produced by powerful
LLM evaluators.

An LLM-as-a-judge is a special case of deploy-
ing LLMs as automated graders. Recent work
demonstrates great agreement with expert annota-
tors in summarization, translation, and open-ended
generation (Liu et al., 2023; Manakul et al., 2023;
Gu et al., 2024; Zheng et al., 2023). However,
how to best integrate such judges into a closed-
loop prompt-engineering workflow remains under-
explored. This line of evaluation has grown in pop-
ularity over the last year as it presents a way to con-
duct human-aligned automatic evaluation on an un-
precedented scale. A common evaluation scheme
for LLM-powered QA systems goes as follows:
Given a set of user queries, the system is prompted
using some predefined prompt to generate a set
of responses to the queries. From there, those re-
sponses are passed through some LLM-as-a-judge
to evaluate the responses in some fashion. This
might include specific judges prompted to evalu-
ate traditional metrics, such as query relevance or
conciseness. This judge could potentially evaluate
responses with respect to a set of ground truth re-
sponses created by humans or another LLM. When
such judges are created, they are often instructed
to provide an explanation for their decision in addi-
tion to their verdicts. This is a valuable signal for
prompt improvement, but is often ignored in exist-
ing automatic prompt improvement approaches.

In this paper, we present PrEAM: Prompt
optimization using Evaluations by Automated
Micro-judges—a closed-loop framework that

continuously aligns the prompts for Question-
Answering tasks by processing, collating, and lever-
aging feedback across one or more LL.M-as-judges.
PrEAM orchestrates a multistage pipeline that (i)
decomposes evaluation into targeted dimensions
(faithfulness, answerability, style, etc.), (ii) ag-
gregates judge feedback into structured error cat-
egories, and (iii) synthesizes minimal, auditable
prompt edits that directly target the dominant fail-
ure modes. This process repeats until prompt
performance reaches a plateau/decreases or until
prompt performance on a held-out test dataset starts
to diverge from the performance on the dataset it is
using to generate prompt improvement suggestions.
The latter condition ensures that PrEAM does not
overfit to the specific dataset on which it is trained.
The system therefore learns from its own mistakes,
with no gradients, no gold labels (unless required
by the suite of judges), and no humans in the loop.

Contributions.

1. We propose a novel framework for prompt
improvement that leverages the valuable sig-
nal produced by LLMs-as-judges. PrEAM
does not require access to the model beyond
black-box API calls and is fully human-out-
of-the-loop.

2. The prompt improvement loop is fully au-
ditable by humans, from the the judge feed-
back to the error categorization to the targeted
areas of improvement. All aspects of PrEAM
can be examined, not only for debugging pur-
poses but also for use as an error summary by
human prompt engineers.

3. Experiments conducted on an internal dataset
of multi-turn RAG (Retrieval Augmented Gen-
eration) QA as well as on the widely-known
Arena Hard dataset show drastic prompt im-
provements when using PrEAM, either match-
ing or exceeding human performance in only
a few iterations, taking a fraction of the time.

By demonstrating that an ensemble of LLMs can
act as both critic and coach, PPEAM advances the
vision of self-improving language agents that keep
themselves aligned as their environment changes.

2 Related Work

2.1 Automatic Prompt Optimization

Early work explored gradient-based token search
(AUTOPROMPT; Shin et al., 2020). More recent ap-

proaches employ gradient-free edits (Prasad et al.,
2023), evolutionary strategies (Guo et al., 2023), or
reinforcement learning (Deng et al., 2022). While
effective for static classification or single-shot gen-
eration, these methods assume a stationary reward
and struggle with multi-turn dialogue.

Contemporaneous systems such as
PROMPTWIZARD (Agarwal et al, 2024)
and CRISPO (He et al., 2024) add iterative
critique-and-rewrite cycles, yet they employ a
single general-purpose critic and evaluate mostly
on summarization. In contrast, PPTEAM targets
retrieval-grounded conversational QA and lever-
ages a panel of interpretable micro-judges, each
specialized for a distinct failure mode, yielding
more stable multi-objective optimization.

DSPy (Khattab et al., 2024), a popular declara-
tive framework for building Al systems, offers tools
for prompt optimization. Its techniques often rely
on labeled examples, either authored by humans
or generated by another language model. This en-
ables optimization across an arbitrary graph of LM
interactions. In contrast, PrEAM targets prompt
refinement through explicit reasoning traces pro-
duced by micro judges. Its iterative, evolutionary
design supports rapid adaptation to shifting user
intents and evolving optimization metrics. The
two approaches complement each other: DSPy sup-
ports end-to-end pipeline synthesis, while PPTEAM
handles continual prompt maintenance within pro-
duction chat systems.

2.2 LLM-Based Evaluation and
Self-Refinement

Large models such as GPT-40 (OpenAl, 2024b)
have proven to be surprisingly reliable as auto-
matic evaluators, closely correlated with expert
judgments in summarization and translation (Liu
et al., 2023). Self-refinement frameworks let a gen-
erator critique and revise its own output (Madaan
et al., 2023; Shinn et al., 2023), while recent work
ensembles multiple “LLM judges” to reduce eval-
uation variance (Rahmani et al., 2024). PrEAM
extends this line of work by embedding LLM eval-
uators within the optimization loop for prompt de-
sign, not just for evaluation purposes.

2.3 Conversational QA with Retrieval

RAG pipelines are now standard for keeping QA re-
sponses grounded (Lewis et al., 2020; Shuster et al.,
2021). Instruction tuning and few-shot prompting
improve answer style (Ouyang et al., 2022), but

neither adapts automatically when the underlying
corpus changes. Our work is the first to introduce
a fully automated feedback loop where LLMs act
as both judges and prompt engineers, continuously
improving prompts in conversational QA without
human intervention.

2.4 Summary

PrEAM uniquely combines (i) multi-aspect LLM
evaluation with (ii) a continuous closed-loop
prompt editing scheme leveraging L1 M-as-a-judge
reasoning traces. This integration has not, to the
best of our knowledge, been explored in the prior
art.

3 System Overview

In this section we give a concise end—to—end view
of PrEAM and describe how its components in-
teract in a closed feedback loop that continually
improves a system prompt without human supervi-
sion. Figure 1 presents a high—level block diagram
of the entire pipeline, while Figure 2 zooms in
on the error—processing stages that transform raw
judge outputs into actionable edits.

At the heart of PrEAM is the idea of using LLMs
both as evaluators and editors. Specifically, we
leverage micro-judges, LLM-based agents that in-
dependently evaluate dimensions of an answer at
a particular turn of conversation, such as ground-
edness, relevance, completeness, or performance
against some benchmark response or following a
set of rules for an ideal response, and provide justi-
fications in natural language along with categorical
labels. Such evaluation schemes are common in
practice, and are used frequently for their ability
to scale arbitrarily while still being aligned with
human preferences. These judgments are synthe-
sized and passed to a separate LLM-based mera-
prompting module, which proposes improvements
to the system prompt in natural language. This idea
builds on recent advances in meta-prompting and
self-improving LLMs (Zhou et al., 2023; Prasad
etal., 2023; Madaan et al., 2023), where models are
guided to revise instructions based on performance
feedback.

PrEAM consists of the following components:

¢ Conversational QA Module: A Question-
Answering pipeline built on a pre-trained
LLM (e.g., GPT-40), which generates re-
sponses to user queries using a given input

prompt. For example, one might have a Con-
versational RAG (Retrieval Augmented Gen-
eration) pipeline that uses retrieved context
and conversation history to answer a user’s
questions about a specific Knowledge Base.
Alternatively, it could simply be a QA sys-
tem in which the model answers user queries
directly without any additional content.

* LLM-Based Micro-Judges: A set of spe-
cialized LLM-based evaluators, each tasked
with assessing model responses along a dis-
tinct dimension—such as groundedness, rel-
evance, or formatting. For each dimension,
the corresponding micro-judge produces both
a discrete verdict (Acceptable/Unacceptable)
and a natural language rationale explaining its
judgment. This auto-evaluation process across
multiple micro-judges for a single response is
illustrated in Fig. 3.

* Error Summarizer: Aggregates the ratio-
nales from all failed or unacceptable cases
into short, instance—agnostic summaries as
shown in Fig. 2.

Error Categoriser: Group summaries into
a small set of categories of recurring errors
(Fig. 2).

Prompt Optimizer (Meta-Prompting Mod-
ule): An LLM instance receives the original
prompt, common failure categories and repre-
sentative examples and outputs an improved
version of the prompt.

Optimization Loop Controller: A control
mechanism that orchestrates each iteration:
generating answers with the latest prompt, re-
evaluating them via micro-judges, summariz-
ing feedback, and applying meta-prompting
while performance on a held-out test set im-
proves. In our setup, we split the responses
into an 80-20 train-test split. We use 80%
train split to optimize the prompt and reserve
the 20% test split to evaluate performance on
a given prompt.

This architecture allows for prompt refinement
without any human-in-the-loop supervision. Unlike
one-shot tuning approaches, PrEAM can continu-
ously adapt the prompts to new domains or chang-
ing user behaviors. By combining fine-grained

Judge Output

Response: To troubleshoot this ssue.

User Query +
Context

Dataset Explana
Decision hecoptamte,naccoptable>

Prompt
L. 20%
Response
Conversation QA Module
Improved Prompt Prompt Optimizer

Select TopK

— — UM [Error
Categories

Meta Prompt

=

Figure 1: PrEAM Pipeline overview.

Held out set

Ca(egnnze +
Reduce Errors

improved?

Judges

Groundedness Conciseness ‘

Relevancy Completeness

Self-Reference

User Query
+ Context

Response

Is the User Query
Answerable?

‘ Bad NAF ‘

Formatting ‘ ’ Citation ‘

Unanswerable

Each judge returns a verdict as well as a
justification for the decision

Figure 3: Single Response Auto-Evaluation by a Judge
Model

LLM-based evaluation with automated prompt re-
vision, PrTEAM offers a scalable general-purpose
solution to improve instruction quality in QA sys-
tems. In the next section, we will go over more
details on the components of PrEAM discussed
above.

4 Feedback-Driven Optimization Loop

The core innovation of PrEAM lies in its iterative
prompt refinement mechanism. This section details
how prompts are evaluated and improved through
automated LLM-based feedback.

4.1 Initial Prompt Definition

The iterative process starts with an initial base-
line prompt, typically a manually crafted system
prompt for the QA system. This can be an ex-
tremely simple one-sentence description of the task.
For example: "Answer the following question:"
This prompt is fixed for the first iteration. Subse-
quently, the system is executed on a training subset
of conversational data, which may also encompass

(X N
er 10022 Categorize + Reduce Errors
e jreratio™ P
on

Error Categories Error Summaries l
‘ ‘ ‘ ‘ Categorize Errors into

Categories

| =

Error Category Error Summary

Generation Generation l F
[| [Csmome
‘ .

.
Error4
rror Judge Output

~

< LM

I

Judge Output

[Response: Totroubleshoot this issue.

Explanation: <Reasoning
Decision: <Acceptable, Unacceptable>

~ ~

Figure 2: Error categorization and error reduction.

context for each query, facilitating the generation
of responses for each user interaction.

4.2 Evaluation by Micro-Judges

Each answer is evaluated using one or more LL.M-
based micro-judges. Note that this evaluation oc-
curs over a single user turn, hence the name micro-
Jjudge. In many enterprise use-cases, the same con-
versational QA prompt is used multiple times in
succession as a conversation flows. PrEAM focuses
on evaluations that center on improving the perfor-
mance of individual turns in this multi-turn setting,
not the conversation as a whole. However, apply-
ing judge evaluation and prompt improvement on a
conversation trace is a future area of development
for PrEAM.

Each judge provides a brief explanation of its rea-
soning and returns a score or decision. For cases in
which the decision is deemed a failure, the explana-
tion is used in future steps. Note that the existence
of such an explanation before the verdict is not
an abnormal requirement, as most LLM-as-judges
use CoT (Chain of Thought) prompting (Wei et al.,
2022), which encourages models to give a coher-
ent thought process before coming to conclusions.
For each sample, the explanation and verdict are
logged.

4.3 Categorization of Failure Cases

All low-scoring responses (e.g. below a threshold
on any metric or when “decision” is unacceptable)
undergo three steps: Error Summarization, Error
Category Generation, and Error Categorization.
Firstly, the judge feedback for each error case
is summarized to remove test-case specific details.
If the raw judge output does not function well as
direct feedback (for example, judges that function

by comparing the model response against another
model’s response), this step will pre-process the
thoughts in a way that is digestable by future steps
in the PrEAM pipeline.

PrEAM then contains an error category genera-
tion prompt that ingests the summarized feedback
for all error cases and outputs a set of 3-5 error
categories per micro judge. For example, a judge
measuring the preference of a model output with
respect to a baseline response could have multiple
reasons for passing a failing verdict. The response
could be too long, contain incorrect information, or
have an inappropriate voice or tone. Note that even
in cases where there are multiple micro judges, it
is possible for each micro judge to have multiple
error categories.

Then each error is categorized into the category
that most accurately explains it. Once all errors
have been mapped to a category, all categories
across all judges are then compiled to determine
the most common reasons for error. The categories
with the Top-k errors are then forwarded to the
meta-prompt, which uses this information to gener-
ate a better prompt.

4.4 Meta-Prompted Prompt Optimization

The categorized feedback is passed to a meta-
prompting module, another LLM instance tasked
with prompt rewriting. This module receives:

* The original prompt.

* A list of the Top-k failure categories. Each
failure category description contains:

— The name of the error category (ex.
"Model Response not Grounded in Pro-
vided Context")

— A short description of the error category
(ex. "The model response contains incor-
rect information not present in the pro-
vided context.")

Then it generates a revised prompt tailored to
mitigate the observed issues. For example, if many
hallucinations occurred, the revised prompt might
emphasize stronger adherence to source content:
"If the answer is not explicitly stated in the sources,
say you do not know."

4.5 Iteration and Convergence

The newly generated prompt is then used to rerun
the system on the training data. The micro-judges

re-evaluate the updated responses. This process
is repeated for several iterations (typically 2-3),
allowing the system to progressively improve. Con-
vergence is declared when either:

* Metric scores plateau/decrease across itera-
tions, or

* Performance on the held-out validation set be-
gins to diverge from training gains, indicating
overfitting.

At convergence, the best-performing prompt is
selected for final evaluation on the test set.

5 Experimental Setup

We evaluate PrEAM on two question-answering
datasets: an internal enterprise domain multi-turn
retrieval-augmented QA dataset, and the public
Arena-Hard-v2.0-Preview benchmark (Li et al.,
2024; Tianle Li*, 2024). Below, we provide details
on the datasets, evaluation metrics, and experimen-
tal protocols.

Internal RAG QA Dataset. This dataset con-
sists of 400 multi-turn dialogues. For each user
query, relevant context passages are pre-retrieved
from a knowledge base, and the LLM must gener-
ate an answer using both the conversation history
and the retrieved context. We evaluate each re-
sponse across several task-critical axes commonly
used in retrieval-augmented generation: Ground-
edness, Relevance, Formatting, Conciseness, Com-
pleteness, Citation, and Self-Referentiality. Each
criterion is assessed by a dedicated LLM-based
micro-judge, with the judging prompts calibrated
on a human-annotated preference dataset. For an-
swerable queries, each judge returns a rating of
unacceptable, acceptable, or ideal. For unanswer-
able queries, we include an additional check to en-
sure that the answer explicitly acknowledges that it
cannot answer the question (for example, an apolo-
getic statement in the first sentence). A response
is considered failure case on any given axis if it
is rated unacceptable by the corresponding judge.
We define an overall Aggregate Decision metric
as the percentage of responses that pass all judges
(i.e., no axis is marked unacceptable).

We run PrEAM’s prompt-refinement loop on
this internal dataset, using a portion of the 400
dialogues for iterative prompt tuning and holding
out the rest for evaluation. Prompt updates con-
tinue until the Aggregate Decision on the held-out

test set plateaus or declines (indicating that perfor-
mance has peaked and further tuning would risk
overfitting). In practice, this stopping criterion was
triggered after three refinement iterations, resulting
in a final optimized prompt at iteration 3.

Arena-Hard Benchmark. To evaluate gener-
alization beyond our internal data, we apply
PrEAM to the Arena-Hard-v2.0-Preview bench-
mark. Arena-Hard comprises 750 challenging
open-domain English questions (500 focused on
coding/math problems and 250 on creative writing
tasks) sourced from the Chatbot Arena platform.
Each question is paired with a strong baseline an-
swer for comparison. We employ GPT-4.1 (Ope-
nAl, 2024a) as an automated judge in a pairwise
evaluation setting: given the model’s response and
the baseline answer, the judge assigns a compara-
tive verdict—much better, better, about the same,
worse, or much worse—for the model’s answer rel-
ative to the baseline. We convert these judgments
into a weighted win rate for our model, where
a “much better” verdict contributes more strongly
than a “better” verdict, and any “worse” or “much
worse” verdict counts as a loss. In the context of
PrEAM, any instance where the model’s answer is
judged worse or much worse than the baseline is
treated as a failure case. Along with the verdict, the
LLM judge also provides a natural-language ratio-
nale by first synthesizing its own ideal answer and
then analyzing the differences between the model’s
answer and the baseline. We distill this compara-
tive feedback into direct instructions for the next
prompt revision. As with the internal data, we iter-
ate prompt optimization on a subset of Arena-Hard
tasks until the weighted win rate on a held-out set
no longer improves.

6 Results

We report PPTEAM’s performance on the internal
RAG QA dataset and the Arena-Hard benchmark.
In both settings, iterative prompt optimization
yields substantial gains over the initial prompt, of-
ten in just a few refinement rounds.

6.1 Internal RAG QA Dataset

Tables 1 and 2 summarize the performance of the
original prompt and successive refined prompts on
the internal dataset’s training and test splits, respec-
tively. The original prompt produces low overall
quality, with especially poor results on axes like Ci-
tation (only 2.01% of training responses and 0.00%

of test responses meet the citation requirement) and
Unanswerability (29.01% train, 17.54% test, indi-
cating the system often fails to acknowledge when
it cannot answer). After a single PrEAM iteration,
we observe substantial improvements on most axes:
for instance, the Citation metric jumps to 79.86 %
on train and 70.77 % on test, and Unanswerability
rises to 93.13% on train and 77.19% on test. By
the third iteration, many metrics reach their peak
and we notice a more balanced performance—e.g.,
Citation improves to 95.30% (train) and 92.31%
(test) without dropping the other metrics signifi-
cantly—reflecting a dramatic enhancement in an-
swer quality compared to the original prompt. Note
that our goal is to have a balanced performance
across multiple axes, and we will illustrate this in
the next paragraph.

Not every metric improves monotonically; some
dimensions trade off against others. For example,
making answers more concise can conflict with
completeness, since an extremely brief answer may
omit details necessary for completeness. Indeed,
we observe that certain metrics (such as Complete-
ness) dip slightly in later iterations even as others
(e.g., Conciseness) continue to improve. For exam-
ple, in the case of Completeness and Conciseness,
this tradeoff can be explained by the fact that more
thorough responses tend to be more complete, but
less concise. Given these trade-offs, we rely on
the Aggregate Decision as an overall indicator of
success. The Aggregate Decision—i.e., the propor-
tion of responses rated acceptable or ideal on all
criteria—rises from only 14.64% with the origi-
nal prompt to 83.21% after three iterations on the
training set. On the held-out test set, it climbs from
8.2% t0 76.23% by iteration 3 (Table 2). After the
third iteration, further prompt edits yielded no con-
sistent gains (and even led to slight degradations on
many axes), so we selected the iteration-3 prompt
as the final optimized prompt.

Please refer to Appendix 9 for an example itera-
tion of a prompt improvement. While the original
prompt contains a simple instruction and relies on
the model’s inherent quality to produce an accept-
able output, the prompt after the first iteration of
prompt improvement explicitly touches on eval-
uation areas of the micro-judges and guides the
model into producing better outputs. It also con-
tains sections on output format and a section for
final reminders, both well-established practices in
the field of prompt engineering.

Metric Orig. Iter1 Iter 2 Iter 3 Iter 4 Metric Orig. Iter1 Iter 2 Iter 3 Iter 4
Citation 2.01 79.86 89.931795.30 91.28 Citation 0.00 70.77 87.69192:31 86.15
Completeness 96.64 75.17 88.59 85.91 76.51 Completeness 92.31 76.92 86.15 81.54 63.08
Conciseness 85.91 100.00 97.32 95.97 95.30 Conciseness 89.23 100.00 98.46 96.92 96.92
Formatting 100.00 96.64 95.97 99.33 97.32 Formatting 98.46 96.92 98.46 98.46 96.92
Groundedness 99.33 93.96 97.31) 97.32 91.27 Groundedness 96.92 84.62 96.92f 96.93 90.77
Relevance 100.00 92.62 97.31f 97.31 85.23 Relevance 98.46 80.00 96.93 95.38 87.69
Self-Reference 92.19 82.35 95.45 95.45 83.78 Self-Reference 100.00 63.64 86.67 76.92 85.71
Unanswerability 29.01 93.13 77.86 85.50 91.60 Unanswerability 17.54 77.19 70.18 80.70 92.98
Aggregate 14.64 7750 76.79 8321 (77.86 Aggregate 820 6557 71.31776:23 (72.95

Table 1: Internal dataset (train split) performance across
prompt refinement iterations. Best results per metric are
bolded and the highlighted column represents the final
prompt after stopping criteria has been reached.

6.2 Arena-Hard Evaluation

We further test PrEAM’s generalizability using
Arena-Hard-v2.0-Preview, where the evaluation
is comparative: model outputs are judged relative
to a strong baseline using GPT-4.1 as a referee.
Table 3 shows PrEAM’s performance progression
on the Arena-Hard benchmark. With the origi-
nal prompt, our model underperforms the baseline,
achieving a weighted win rate of only 32.4% (indi-
cating that it loses to the baseline in the majority of
comparisons). After two rounds of prompt refine-
ment, the model’s score improves to 51.7 %, now
surpassing the baseline. The refined prompt is espe-
cially effective on the coding and math problems in
Arena-Hard, where precise, well-grounded answers
are critical, yielding large gains in those categories.
Improvements on the creative writing tasks are
more modest, likely because these tasks are highly
subjective and the baseline answers do not incur
heavy penalties for creative elaboration (making it
harder to strongly outperform them). Nonetheless,
these results demonstrate that PrEAM’s benefits
carry over to challenging unseen tasks. Without
any gradient updates or human-in-the-loop inter-
vention, our prompt-only optimization approach
manages to exceed a strong baseline model on a
widely challenging benchmark.

7 Conclusion

We introduced PrEAM, a novel framework for
prompt optimization in conversational question
answering systems that leverages evaluations by
automated micro-judges. By integrating LLM-
based feedback into a closed-loop optimization
process, PrEAM enables self-improving prompt
design without human intervention. Each com-
ponent of the system from judgment to revision

Table 2: Internal dataset (test split) performance across
prompt refinement iterations. Best results per metric are
bolded and the highlighted column represents the final
prompt after stopping criteria has been reached.

Split Orig. 1Iter1 Iter2 Iter3
Train 0.52 0.76 0.77 0.72
Test 0.39 0.52 0.62 0.56

Table 3: Arena-Hard weighted win rates across prompt
iterations. Best scores per row are bolded and the high-
lighted column represents the final prompt after stopping
criteria has been reached.

is powered by LLMs, creating a scalable mecha-
nism for dynamic prompt adaptation in real-world,
retrieval-augmented QA scenarios.

In our internal data set, the aggregate perfor-
mance improved from 14.64% in the original
prompt to 83.21% after three iterations in the train-
ing split and from 8.20% to 76.23% in the test
split. These gains were reflected across key metrics
such as citation accuracy, completeness, relevance,
etc. Furthermore, the evaluations on the Arena-
Hard benchmark revealed that our refined prompts
achieved a weighted win rate of 77% on the train-
ing split and 62% on the test split, outperforming
the original prompt’s 52% and 39%, respectively.
These results underscore the generalizability and
robustness of our prompt optimization approach.

Our findings highlight the viability of using
LLMs not just as generators but also as evaluators
and editors. By decomposing evaluation into inter-
pretable sub-tasks and leveraging multiple special-
ized micro-judges, PPTEAM avoids over-optimizing
for a single metric and instead balances multiple
quality dimensions. The result is a generalizable
and domain-adaptable prompt optimization method
that can enhance performance across diverse con-
versational settings.

Future work will explore broader applications
of micro-judge-guided prompt optimization be-
yond QA, including summarization, dialog policy

generation, and safety-critical domains. In addi-
tion, incorporating human-in-the-loop oversight
or user satisfaction signals could further enhance
prompt quality and alignment. As LLMs continue
to evolve, systems like PrTEAM offer a path toward
more robust, transparent, and self-improving Al
pipelines.

8 Limitations

Although PrEAM removes the human from the
critical path, it still depends on the quality of the
upstream judges. Misaligned evaluators can steer
optimization astray and effectiveness can vary be-
tween domains.

9 Ethical Considerations

Automating prompt engineering raises questions
about accountability and bias. We recommend pe-
riodic human audits and explicit fairness checks on
judge prompts.

References

Eshaan Agarwal, Joykirat Singh, Vivek Dani, Raghav
Magazine, Tanuja Ganu, and Akshay Nambi. 2024.
Promptwizard: Task-aware prompt optimization
framework. arXiv preprint arXiv:2405.18369.

Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert
Webson, Colin Raffel, et al. 2022. Promptsource: An
integrated development environment and repository
for natural language prompts. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
93-104.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, et al. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3369-3391.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, et al. 2024. LIm-
as-a-judge: A comprehensive survey on llm-based
evaluators. arXiv preprint arXiv:2411.15594.

Qingyan Guo et al. 2023. Connecting large lan-
guage models with evolutionary algorithms yields
powerful prompt optimizers. arXiv preprint
arXiv:2309.08532.

Han He, Qianchu Liu, Lei Xu, Chaitanya Shivade,
Yi Zhang, Sundararajan Srinivasan, and Katrin
Kirchhoff. 2024. Crispo: Multi-aspect critique—
suggestion-guided automatic prompt optimization for
text generation. arXiv preprint arXiv:2410.02748.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. Dspy: Compiling
declarative language model calls into self-improving
pipelines. In The Twelfth International Conference
on Learning Representations.

Patrick Lewis, Ethan Perez, Aleksandra Piktus,
Vladimir Karpukhin, et al. 2020. Retrieval-
augmented generation for knowledge-intensive nlp
tasks. In Advances in Neural Information Processing
Systems (NeurlPS).

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ion Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
Nlg evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2511-2522.

Aman Madaan et al. 2023. Self-refine: Iterative
refinement with self-feedback. arXiv preprint
arXiv:2303.17651.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. arXiv preprint arXiv:2303.08896.

OpenAl. 2024a. Gpt-4.1 technical overview. https:
//openai.com. Accessed: 2025-05-18.

OpenAl. 2024b. Gpt-4o technical report. https://
openai.com/index/gpt-40. Accessed: 2025-05-
16.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, et al.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2023. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (EACL), pages 3845-3864.

Hossein A. Rahmani, Emine Yilmaz, Nick Craswell,
and Bhaskar Mitra. 2024. Judgeblender: Ensembling
judgments for automatic relevance assessment. arXiv
preprint arXiv:2412.13268.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222-4235.

https://openai.com
https://openai.com
https://openai.com
https://openai.com/index/gpt-4o
https://openai.com/index/gpt-4o
https://openai.com/index/gpt-4o

Noah Shinn et al. 2023. Reflexion: Language agents
with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3784-3803.

Evan Frick Lisa Dunlap Banghua Zhu Joseph E. Gon-
zalez Ion Stoica Tianle Li*, Wei-Lin Chiang*. 2024.
From live data to high-quality benchmarks: The
arena-hard pipeline.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903.

Yi Zheng, Zeming Liu, Aohan Zeng, Canwen Xu,
Zhiyuan Liu, Zhengyan Zhang, Zhen Wang, Biao
Tang, Xiang Zeng, Yankai Li, et al. 2023. Judging
llm-as-a-judge with mt-bench and arena. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Wendy Zhou, Timo Schick, Daniel Khashabi, and Dan
Roth. 2023. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2307.10169.

https://lmsys.org/blog/2024-04-19-arena-hard/
https://lmsys.org/blog/2024-04-19-arena-hard/
https://lmsys.org/blog/2024-04-19-arena-hard/

Appendix: Prompt Development History

Here we provide an example of prompt development using PrEAM:

Section

Content

Initial Prompt

Answer the last user query in the conversation history.

Error Summary Iteration 1

- Missing Required Citations:

The response does not include any citations in the required formats
(such as [doc_1], (doc_1), [[cat_1]1], etc.), which is mandatory for a
valid answer. To correct this, the response must reference at least
one knowledge base document or catalog item using the specified
citation formats. Links, quoted content, or plain text references do
not count as valid citations.

- Directly Answered or Attempted to Answer:

The agent’s response provided a direct, relevant, or partial answer to
the user’s question instead of stating that no answer or information
is available. For a response to be considered ‘ideal’ unanswerable, it
must begin by explicitly stating the absence of an answer or
information. To correct this, the agent should not attempt to answer
but should clearly state at the start that no answer is available.

- Lack of Explicit Unanswerability Statement at the Beginning:

The agent’s response did not begin with a clear statement indicating
that no answer or information is available, as required by the ‘ideal’
conditions. Instead, the response may have provided general guidance,
suggestions, or asked for clarification, but failed to directly
acknowledge the lack of an answer at the start. To be ‘ideal’, the
response must start with an explicit statement about the absence of an
answer.

- Excessive Detail and Specificity:

The response provides more information than necessary for a general or
ambiguous query, including step-by-step instructions, specific dates,
eligibility criteria, technical specifications, or procedural steps.
To improve, responses should offer a high-level overview or summary,
avoiding unnecessary specifics unless the user’s question clearly
requires them.

- Incorrect Citation Format:

The response attempts to reference documents or catalog items but does
so using an incorrect format (such as hyperlinks, bold text, or plain
text), rather than the required citation formats. To fix this, all
references to documents or catalog items must use the specified
formats like [doc_1], (cat_1), or [[doc_1]1].

- Redundancy and Repetition:

The response repeats information or includes redundant statements,
making it unnecessarily lengthy and less concise. To improve,
responses should avoid repeating the same information and focus on
delivering each point only once in a clear and succinct manner.

10

New Prompt After Iteration 1

Answer the last user query in the conversation history.

When responding, ensure the following:

1. xxCitations*x: Every response must include at least one properly
formatted citation referencing the knowledge base documents or
catalog items. Use the formats [doc_1]1, (doc_1), or [[cat_1]] as
appropriate. If no relevant information is available, explicitly
state this and do not fabricate citations.

2. *xUnanswerability*x: If the query cannot be answered based on
the provided documents or catalog items, begin your response by
explicitly stating that no answer or information is available. Do
not attempt to provide partial answers, suggestions, or ask for
clarification in such cases.

3. **xConcisenessxx*: Avoid excessive detail or unnecessary
specificity unless explicitly requested by the user. Provide a
high-level overview or summary for broad or unclear queries.

4. **Clarity**: Avoid redundancy and repetition. Deliver each piece
of information only once to ensure the response is clear and concise.
5. *xCitation Formatx*: Ensure all references to documents or
catalog items strictly follow the required citation formats ([doc_11,
(doc_1), [[cat_111). Replace any non-compliant references with the
correct format.

Output Format

- Begin with a clear statement of unanswerability if applicable.

- Include at least one properly formatted citation if relevant
information is available.

- Ensure the response is concise, clear, and free of redundancy.
Notes

- Do not fabricate information or citations.

- If the query is ambiguous or broad, provide a general response
without unnecessary specifics.

- Always prioritize clarity and adherence to the specified citation
formats.

11

Error Summary Iteration 2

- Failure to Reference Relevant Information:

The response fails to utilize or mention relevant information,
documents, or catalog items that are available and directly address
the user’s query. This includes cases where the agent incorrectly
claims no information is available, omits key resources, or does not
guide the user to helpful next steps. To improve, the agent should
always check for and incorporate pertinent details from the provided
context, including catalog items and documents, and offer actionable
guidance.

- Missing Citations:

The response does not include any citations in the required formats
(e.g., [doc_1]1, [cat_1], (doc_1), etc.). Every response must contain
at least one properly formatted citation, even when stating that no
information is available. To correct this, ensure that all responses
reference the relevant documents or catalog items using the specified
citation formats.

- Overlooking Relevant Information:

The response incorrectly claims that no relevant information is
available, even though the provided documents or catalog items contain
information that directly addresses the user’s query. This error
occurs when the agent fails to utilize or reference available
resources, leading to an inaccurate or incomplete answer. To avoid
this, the agent should thoroughly check all provided materials and
ensure any relevant content is incorporated into the response.

- Incomplete or Inaccurate Summarization:

The response provides only a partial answer, omits important details,
or inaccurately summarizes the available information, leading to an
incomplete or misleading response. This includes missing key policy
points, eligibility criteria, or relevant document content. To
improve, the agent should ensure all critical aspects of the user’s
query are addressed by thoroughly summarizing and including all
relevant details from the context.

- Incorrect Citation Format:

The response includes citations, but they are not in the allowed
formats. Common errors include using double square brackets for
catalog items (e.g., [[cat_11]), using hyperlinks instead of
citations, or any other format not specified in the guidelines. To fix
this, ensure all citations use only the approved formats such as
[doc_11, [cat_1]1, (doc_1), etc., and avoid double brackets or links.

- Directly Answered User’s Question:

The agent’s response provides a direct or detailed answer to the
user’s question, rather than indicating that no answer or information
is available. For a response to be considered ‘ideal’ in an
unanswerable scenario, it must begin by explicitly stating that no
answer or information was found. The agent should avoid providing an
answer when the correct behavior is to acknowledge the absence of
information.

12

New Prompt After Iteration 2

Answer the last user query in the conversation history.

When responding, ensure the following:

1. *xCitations**: Every response must include at least one properly
formatted citation referencing the knowledge base documents or catalog
items. Use the formats [doc_1], (doc_1), or [[cat_1]] as appropriate.
If no relevant information is available, explicitly state this and do
not fabricate citations.

2. *xThorough Use of Context*x: Carefully review all provided
documents, catalog items, and conversation history to identify
relevant information. Do not overlook any details that could assist
in answering the query.

3. x*Unanswerability*x: If the query cannot be answered based on the
provided documents or catalog items, begin your response by explicitly
stating that no answer or information is available. Do not attempt to
provide partial answers, suggestions, or ask for clarification in such
cases.

4. x*Conciseness**: Avoid excessive detail or unnecessary specificity
unless explicitly requested by the user. Provide a high-level overview
or summary for broad or unclear queries.

5. xxClarity*x: Avoid redundancy and repetition. Deliver each piece
of information only once to ensure the response is clear and concise.
6. *xCitation Format*x: Ensure all references to documents or catalog
items strictly follow the required citation formats ([doc_1], (doc_1),
or [[cat_11]). Replace any non-compliant references with the correct
format.

7. =xxActionable Steps for Overlooked Information*x: If relevant
information is found in the provided context but not directly
addressed in the response, ensure it is incorporated. Do not claim
that no information is available if relevant details

exist.

Output Format

- Begin with a clear statement of unanswerability if applicable.
- Include at least one properly formatted citation if relevant
information is available.

- Ensure the response is concise, clear, and free of redundancy.
Notes

- Do not fabricate information or citations.

- If the query is ambiguous or broad, provide a general response
without unnecessary specifics.

- Always prioritize clarity and adherence to the specified citation
formats.

- If relevant information is overlooked, review the context again
and ensure it is included in the response.

13

Error Summary Iteration 3

- Response Provides an Answer Instead of Stating Lack of Information:
The agent’s response directly answers the user’s question or provides
relevant information, rather than beginning with a clear statement
that no answer or information is available. For a response to be
considered ‘ideal’ unanswerable, it must explicitly state at the start
that no answer or relevant information is found. The behavior that
needs to change is that the agent should not attempt to answer or
provide guidance if the required information is not available, but
should instead clearly state the lack of information at the beginning
of the response.

- Failure to Utilize Relevant Information:

The response fails to reference or incorporate relevant details from
the provided documents or catalog items that directly address the
user’s query. This includes overlooking specific instructions,
procedures, or resources that are available and applicable. To
improve, the agent should thoroughly review the context and ensure all
pertinent information is included in the response.

- Incorrect Citation Format:

This category includes responses where citations are present but do
not follow the required formats ([doc_1], [cat_1], (doc_1), etc.),
such as using double square brackets ([[cat_1]1]), or any other
non-approved format. To correct this, all citations must strictly
adhere to the specified formats.

- Missing Required Citations:

This category covers responses that do not include any citations in
the required formats, even though citations are expected. The behavior
that needs to change is to ensure that at least one properly formatted
citation is present in every response where citations are required.

- Response Fails to Begin with Explicit Statement of No Information:
The agent’s response may eventually mention the lack of information,
but does not begin with a clear statement that there is no answer or
relevant information available. For a response to be ‘ideal’
unanswerable, this disclaimer must be at the very start. The behavior
that needs to change is that the agent must always start the response
with a direct statement about the absence of information if the answer
cannot be provided.

- Lack of Specificity or Actionable Guidance:

The response is too vague or generic, lacking clear, actionable steps
or instructions that the user can follow. This includes failing to
provide direct links, step-by-step processes, or explicit references
to catalog items or forms that would help the user complete their
task. The agent should ensure responses are concrete and guide the
user on exactly what to do next.

14

New Prompt After Iteration 3

Answer the last user query in the conversation history.

When responding, ensure the following:

1. *xCitations**: Every response must include at least one properly
formatted citation referencing the knowledge base documents or catalog
items. Use the formats [doc_1], (doc_1), or [cat_1] as appropriate. If
no relevant information is available, explicitly state this and do not
fabricate citations.

2. x*Explicit Unanswerabilityx*: If the query cannot be answered
based on the provided documents or catalog items, begin your response
by explicitly stating that no answer or information is available.
Do not attempt to provide partial answers, suggestions, or ask for
clarification in such cases.

3. **Thorough Use of Contextxx: Carefully review all provided
documents, catalog items, and conversation history to identify
relevant information. Do not overlook any details that could assist in
answering the query.

If relevant information is found in the provided context but not
directly addressed in the response, ensure it is incorporated.

4. *xConciseness**: Avoid excessive detail or unnecessary specificity
unless explicitly requested by the user. Provide a high-level overview
or summary for broad or unclear queries.

5. **Clarity*x: Avoid redundancy and repetition. Deliver each piece
of information only once to ensure the response is clear and concise.
6. xxCitation Format*x: Ensure all references to documents or catalog
items strictly follow the required citation formats ([doc_1], (doc_1),
or [cat_1]). Replace any non-compliant references with the correct
format.

7. xxActionable Steps for Overlooked Informationxx: If relevant
information is found in the provided context but not directly
addressed in the response, ensure it is incorporated. Do not claim
that no information is available if relevant details exist.

Output Format

- Begin with a clear statement of unanswerability if applicable.

- Include at least one properly formatted citation if relevant
information is available.

- Ensure the response is concise, clear, and free of redundancy.
Notes

- Do not fabricate information or citations.

- If the query is ambiguous or broad, provide a general response
without unnecessary specifics.

- Always prioritize clarity and adherence to the specified citation
formats.

- If relevant information is overlooked, review the context again and
ensure it is included in the response.

15

Error Summary Iteration 4

- Directly Answered Instead of Marking Unanswerable:

The agent’s response provides a direct or specific answer to the
user’s question, rather than stating at the beginning that no answer
or information is available. For an ’ideal’ unanswerable response, the
agent must clearly state at the start that no answer or relevant
information was found in the provided documents. The behavior that
needs to change is that the agent should not attempt to answer the
question if the answer is not available, but instead immediately
indicate the lack of information.

- Failure to Reference Relevant Documents or Catalog Items:

The response does not utilize or mention available documents or
catalog items that contain information directly related to the user’s
query. This includes cases where the agent claims no information is
available, overlooks key resources, or fails to guide the user to
actionable next steps. To improve, the agent should always check for
and reference any relevant documents or catalog items, providing
direct guidance or links when possible.

- Omission of Specific Details or Steps:

The response is too vague or general, lacking specific instructions,
steps, or details that are available in the provided context. This
includes not providing step-by-step guidance, missing key program
dates, or failing to include all relevant benefits or features. To
improve, the agent should extract and present all pertinent details
from the documents, ensuring the user receives a thorough and
actionable answer.

- Missing Citations:

The response does not include any citations in the required formats
([doc_1], (doc_1), [[doc_11]1, [cat_11, etc.), even when citations are
necessary. To correct this, the response must include at least one
properly formatted citation whenever referencing information from the
knowledge base or catalog items.

- Incorrect or Inaccurate Information:

The response provides information that is incorrect or contradicts the
available documents, such as stating that no information exists when
it does, or misrepresenting the content of the documents. To improve,
the agent should carefully verify the information in the documents
before responding and avoid making unsupported claims.

- Overly Detailed and Specific Responses:

The response includes excessive details, such as step-by-step
processes, specific scenarios, or unnecessary information, instead of
providing a concise, high-level summary. For general or ambiguous
queries, the answer should avoid diving into specifics and instead
offer a brief overview or direct next steps. To improve, responses
should match the level of detail to the question’s specificity and
avoid including information that may not be relevant to the user’s
intent.

16

New Prompt After Iteration 4

Answer the last user query in the conversation history.

When responding, ensure the following:

1. *xCitations**: Every response must include at least one properly
formatted citation referencing the knowledge base documents or catalog
items. Use the formats [doc_1], (doc_1), or [cat_1] as appropriate. If
no relevant information is available, explicitly state this and do not
fabricate citations.

2. *xExplicit Unanswerability**: If the query cannot be answered based
on the provided documents or catalog items, begin your response by
explicitly stating that no answer or information is available. Do not
attempt to provide partial answers, suggestions, or ask for
clarification in such cases.

3. **Thorough Use of Contextxx: Carefully review all provided
documents, catalog items, and conversation history to identify
relevant information. Do not overlook any details that could assist in
answering the query. If relevant information is found in the provided
context but not directly addressed in the response, ensure it is
incorporated.

4. x*Conciseness**: Avoid excessive detail or unnecessary specificity
unless explicitly requested by the user. Provide a high-level overview
or summary for broad or unclear queries.

5. xxClarity*x: Avoid redundancy and repetition. Deliver each piece
of information only once to ensure the response is clear and concise.
6. *xCitation Format*x: Ensure all references to documents or catalog
items strictly follow the required citation formats ([doc_1], (doc_1),
or [cat_1]). Replace any non-compliant references with the correct
format.

7. *xActionable Steps for Overlooked Information*x: If relevant
information is found in the provided context but not directly
addressed in the response, ensure it is incorporated. Do not claim
that no information is available if relevant details exist.

8. **Prioritize Unanswerability Disclaimer*x: Always begin the
response with a clear statement of unanswerability if no relevant
information is available. Do not provide context, general advice,
or other information before this disclaimer.

Output Format

- Begin with a clear statement of unanswerability if applicable.

- Include at least one properly formatted citation if relevant
information is available.

- Ensure the response is concise, clear, and free of redundancy.
Notes

- Do not fabricate information or citations.

- If the query is ambiguous or broad, provide a general response
without unnecessary specifics.

- Always prioritize clarity and adherence to the specified citation
formats.

- If relevant information is overlooked, review the context again and
ensure it is included in the response.

- Ensure that the unanswerability disclaimer, if applicable, is the
first statement in the response.

17

	Introduction
	Related Work
	Automatic Prompt Optimization
	LLM‑Based Evaluation and Self‑Refinement
	Conversational QA with Retrieval
	Summary

	System Overview
	Feedback-Driven Optimization Loop
	Initial Prompt Definition
	Evaluation by Micro-Judges
	Categorization of Failure Cases
	Meta-Prompted Prompt Optimization
	Iteration and Convergence

	Experimental Setup
	Results
	Internal RAG QA Dataset
	Arena-Hard Evaluation

	Conclusion
	Limitations
	Ethical Considerations

