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ABSTRACT

We propose a foundation model, namely PowerGPT , to model electricity time
series (ETS) data, which learns generic representations of load and electricity
consumption data by pre-training, providing a large-scale, off-the-shelf model for
power systems. PowerGPT is the largest model in the field of power systems and is
pre-trained on a large-scale ETS data including load and electricity consumption
data. The design of PowerGPT is to capture long-term temporal dependency and
hierarchical correlation from massive ETS data, providing information that spans
from the fine-grained to coarse-grained scales. As a foundation model, PowerGPT
achieves SOTA performance on various downstream tasks in power systems (i.e.
forecasting, missing value imputation, and anomaly detection), showing the gener-
alization ability to a wide range of tasks. The low-resource label analysis further
illustrates the effectiveness of our pre-training strategy. In addition, we explore the
effect of model size to show that a larger-scale model with a higher capacity can
lead to performance improvements.

1 INTRODUCTION

Electricity time series (ETS) data, whose volume has recently surged due to the advanced power
systems called smart grid (Fang et al., 2011). This abundance of data has paved the way for diverse
applications in power systems, including demand-side management (Palensky & Dietrich, 2011),
grid stability (Arzamasov et al., 2018) and consumer behavior analysis (Zhou & Yang, 2016), etc.
Meanwhile, these applications have spawned various tasks as shown in Fig. 1(b), such as electricity
load/consumption forecasting (Singh et al., 2012; Chandramitasari et al., 2018), missing value
imputation (Lian et al., 2021), as well as electricity theft (Hu et al., 2020) and elderly living alone
detection (Zhang et al., 2022a). Given the large amount of data and diverse downstream tasks, the
exploration of how to effectively model ETS data for these tasks can bring improved economic
efficiency and adhere to low-carbon principles.
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Figure 1: (a) The hierarchical structure of ETS data.
(b) The diverse downstream tasks in power systems,
and PowerGPT pre-train on ETS data, then finetune for
various tasks. (c) The model scale of existing time series
self-supervised models.

Currently, studies for modeling ETS data can
be grouped into three research lines, includ-
ing traditional statistics based methods (de As-
sis Cabral et al., 2017; Attar et al., 2022), ma-
chine learning based methods (Kim et al., 2017;
Wang et al., 2021) and deep learning based
methods (Hasan et al., 2019; Hu et al., 2020;
Lian et al., 2021). But most of them rely heav-
ily on labeled data at scale, making it infeasi-
ble and expensive to obtain in power systems.
Moreover, in the face of a variety of down-
stream tasks, it’s inefficient to re-train a tailored
model for each specific downstream task. Re-
cently, many research about general time series
pre-training approaches has appeared in other
domains (e.g., weather, traffic flow, exchange
rates, etc), such as PatchTST (Nie et al., 2023),
TS2Vec (Yue et al., 2022), CoST (Woo et al.,
2022), etc. They employ the “pre-training then
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finetuning” paradigm, where the model is ini-
tially pre-trained on unlabeled time series to obtain a generic representation, and then subsequently
finetuned for a specific downstream task. However, existing power systems related works still
maintain a large research gap in modeling ETS data with this paradigm.

Nowadays, the “pre-training then finetuning” paradigm is also empolyed by large foundation models
in CV/NLP (Devlin et al., 2018; Gao et al., 2020; He et al., 2022). These models provide robust
generic representations through pre-training with massive unlabeled data, and demonstrate remarkable
performance on downstream tasks through fine-tuning with a small amount of labeled data (He et al.,
2019). Given the massive unlabeled data and diverse downstream tasks in power systems, there is
an urgent imperative to develop a foundation model with generalization capabilities to unify these
downstream tasks by leveraging these massive data.

In our scenario, the ETS data typically follows a naturally complex geographical hierarchy according
to Yang et al. (2015); Pang et al. (2018). A vivid illustration can be observed in Fig. 1(a), a city’s
ETS can be disaggregated into districts’ data through the administrative divisions, which are further
disaggregated into users’ data in this districts. When encountering the complex hierarchy in massive
ETS data, modeling ETS data entails the careful consideration of several critical factors:

(1) ETS data exhibits long-term temporal dependency. Since ETS data displays distinct patterns
across days, weeks, seasons, and years, long-term temporal dependency is crucial in modeling
ETS data. (2) Heterogeneity patterns of different instances in ETS data. The heterogeneity
of electricity consumption patterns refers to the significant variations among different instances of
electricity consumers, such as individual users, districts, cities, and other entities. By considering
this heterogeneity, it is possible to better represent real-world scenarios and accurately capture the
variations in ETS data. (3) Hierarchical correlation across different instances in ETS data. Given
the natural hierarchical structure of electricity consumption data, interactions occur between fine-
grained and coarse-grained. Fine-grained information of user offers insights into individual factors
and micro trends, while coarse-grained information of city reveals broader factors and macro trends.
Consequently, by considering the hierarchical relationship to model ETS data, the representations
can capture more comprehensive information and be closer to the real scene. To the best of our
knowledge, no existing work on ETS data considers all the three critical factors simultaneously.

To address these considerations above, we propose a foundation model for ETS data named Power
Generic Pre-trained Transformer (PowerGPT ). The design of our model takes three key factors (long-
term temporal dependency, heterogeneity patterns of different instances and hierarchical correlation)
for electricity data modeling into account. Moreover, PowerGPT contains more than 270M parameters
and is pre-trained on a large-scale ETS data with 1TB , which can be adapted to accomplish various
downstream tasks. Compared to other existing methods for ETS data, PowerGPT can achieve better
performance with far fewer labeled samples, showing the great benefit of our work in power systems
scenarios.

To sum up, the main contributions of our work comprise:

1. We propose a foundation model for power systems named PowerGPT , which is the largest
model in power systems (shown in Fig. 1(c)) and pre-trained on a large-scale ETS data
provided by State Grid 1, providing a generic model for power systems.

2. To the best of our knowledge, PowerGPT is the first to date that attends long-term tem-
poral dependency, heterogeneity patterns of different instances and captures hierarchical
correlation across different instances.

3. Extensive experiments show that PowerGPT generalizes well to various downstream tasks,
showing a great potential in ETS data modeling. Further analysis illustrates the effectiveness
of the large-scale pre-trained model, demonstrating the application value of our work.

1http://www.sgcc.com.cn/ywlm/index.shtml
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2 RELATED WORK

2.1 SELF-SUPERVISED PRE-TRAINING

Large-scale model based on self-supervised pre-training has become more and more significant
in both industrial and academic domains due to the versatility and impressive performance. It
initially developed and matured in the fields of computer vision (He et al., 2022) and natural
language processing (Devlin et al., 2018; Gao et al., 2020). And recently it has made tremendous
progress in time series such as WavLM (Chen et al., 2022) for audio, Pangu (Bi et al., 2023) for
weather forecasting. Self-supervised pre-training in time series is typically classified into two
paradigms: contrastive learning and mask modeling. The objective of contrastive learning is to
learn representation by pushing positive pairs closer and negative pairs far from each other in the
embedding space (Jaiswal et al., 2020). TS2Vec (Yue et al., 2022) proposes contextual consistency
for positive pair selection. Afterward, CoST (Woo et al., 2022) extracts the trend and seasonal feature
representations, and takes advantage of both time and frequency domain contrastive loss to encourage
discriminative seasonal representation. TS-TCC (Eldele et al., 2021) presents a temporal contrastive
module based on cross-view prediction. And TF-C (Zhang et al., 2022b) applies time-frequency
consistency for embedding time-based and frequency-based neighbors. In mask modeling, The core
idea is to recover the masked content from the unmasked part. TST (Zerveas et al., 2021) trys to
predict the masked points in time series to learn representation with the remaining points, using
the denosing autoencoder. To extract the contextual semantic information, PatchTST (Nie et al.,
2023) and TimeMAE (Cheng et al., 2023) achieve masking at the series-level. However, despite
the existence of numerous methods for self-supervised pre-training of time series, the research on
large-scale models specifically designed for power systems in time series remains relatively sparse.

2.2 POWER SYSTEM RELATED TASKS

In the real world, the typical power system tasks related to time series are divided into three categories:
forecasting, imputation, and anomaly detection.

Forecasting : It refers to the prediction of future series demand over a given time period and includes
electricity consumption forecasting (Gonzalez-Briones et al., 2019), load forecasting (Alfares &
Nazeeruddin, 2002; Negnevitsky et al., 2009). It is a vital task in power system planning, operation,
and decision-making processes. Torres et al. (2022) design a deep LSTM network for the Spanish
electricity consumption forecasting. And SVR (Hong, 2009), CNN-BiGRU (Niu et al., 2022) are
applied to address load forecasting problem.

Missing Value Imputation : Imputation in power systems is to estimating or predicting the missing
values based on the available neighbor information within the power system datasets, ensuring that
the datasets used for analysis, modeling, and decision-making are complete and reliable. (Kim et al.,
2017) uses a learning-based adaptive imputation method based on KNN algorithm for filling missing
power data in an energy system. (Moghaddass & Wang, 2017) impute the missing value in the smart
grid system by modeling the data using probabilistic distributions. For load data, (Jeong et al., 2021)
present a mixture factor analysis(MFA) method for estimating missing values in building electric
load data. And (Kamisan et al., 2020) develop an imputation model for incomplete load data based
on seasonality and orientation of the missing value.

Anomaly Detection : This task is defined as the process of identifying abnormal or unusual behavior
in the operation, performance, or data presentation of the power system. It involves monitoring
and analyzing various signals, measurements, and data streams within the power system to detect
deviations from normal operating conditions or expected patterns (Yan & Wen, 2021), which involves
electricity theft detection and elder living alone detection. Jokar et al. (2015) design consumption
pattern based energy theft detector, which leverages the predictability derived from customers’ normal
and malicious consumption patterns. Hasan et al. (2019); Adil et al. (2020) build a CNN-based
LSTM model for electricity theft detection in smart grid Systems. And Karim et al. (2019) propose
LSTM-FCNs to classify the time series and detect the anomaly. Zhang et al. (2022a) construct an
unsupervised guardianship model for the elderly living alone through the characteristics of power
consumption curve. But so far, there does not yet exist a unified model that can effectively solve all
the tasks mentioned above.
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3 METHODOLOGY

Model Overview. As previously mentioned, we propose PowerGPT to capture long-term temporal
dependency and hierarchical correlation in ETS data. PowerGPT consists of two main modules:
temporal encoder and hierarchical encoder (shown in Fig. 2). The ETS data is initially constructed
to hierarchical graph. The temporal encoder is responsible for encoding Np consecutive patches
of ETS into temporal representations, which specifically focus on modeling long-term temporal
dependencies. Furthermore, the hierarchical encoder encodes temporal representations with the
same timestamps from all hierarchical levels, capturing the underlying hierarchical correlations by
leveraging information spanning from fine-grained (individual users) to coarse-grained (districts,
cities and province).

During pre-training, the patched ETS is randomly masked using a masking strategy that involves
temporal masking and hierarchical masking. Next, the masked patches are linearly mapped to
the latent representations, where the positional information is added, and the masked portion is
replaced with learnable tokens. After concatenated with the instance indicator, the representations are
encoded into temporal representations through multiple Transformer encoders and then inputted into
a hierarchical encoder, which maps the representations to reconstruct the original time series. The
details of PowerGPT are described below.
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Figure 2: The pre-training framework of PowerGPT. ETS data is first constructed to a hierarchical graph
G based on the subordinate relations among instances. Then a subgraph G̃ of a target node v will be sampled,
whose ETS will be divided into patches. Next, we randomly mask a subset of patches by empolying temporal
mask and hierarchical mask to get the input X̃mask

p . After a linear projection layer, the input will be mapped
to the latent embbeding Xd, where the learnable token will be used to replace the masked portion of patches
and concatenate instance learnable indicator E. Subsequently, the augmented latent embedding is fed into
multiple Transformer encoders to model long-term temporal dependency. Finally, the hierarchical encoder
models hierarchical correlation to obtain the final generic representations by R-GCN (Schlichtkrull et al., 2018).

Hierarchical Graph Construction. ETS data contains a quantity of time series and the condition
for the existence of a relationship between two time series is defined based on the naturally existing
hierarchical structure. This relationship is established when their corresponding instances have a sub-
ordinate relationship, such as user belonging to district and district belonging to city. Mathematically,
we transform it into a hierarchical graph denoted as G = (V,U , E ,R), where V is the vertex set, U is
the attribute associated with each vertex (e.g, instance type), E is the corresponding directed edge set,
and R is the relationship set among edges. For a vertex vi ∈ V , we denote its neighbors in relation r
as N r

i , where r ∈ R is the relation type.

Patching. Considering the inherent long-term temporal dependency and diverse patterns in ETS data,
we divide ETS into patches for the following reasons: (1) to enhance locality and extract semantic
information; (2) to reduce computational complexity and memory usage; and (3) to obtain a longer
temporal dependency (Nie et al., 2023). Specifically, let X = [x1,x2, · · · ,xN ]T ∈ RN×Tw as the
ETS of all instances in a sliding window, where Tw denotes the length of sliding window. And
we divide xi with a length of P and a stride of S, which generates a series of patches, denoted
as pi ∈ RNp×P , where Np = ⌈Tw−P

S ⌉ + 1 represents the number of patches in sliding window.
∀xi ∈ X, we apply this patching process on it, then we obtain Xp = [p1,p2, · · · ,pN ]T ∈ RN×Np×P

as the patched X.
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Randomly Masking. The concept of using masked autoencoders for pre-training has been exten-
sively applied in CV (Bao et al., 2021; He et al., 2022) and NLP (Devlin et al., 2018). Another
significant concept for pre-training is contrastive learning, but some research (Tian et al., 2020; Zheng
et al., 2023) indicates that the construction of positive and negative pairs heavily depends on specific
time series characteristics, which limits the generalization across diverse types of time series data.
Motivated by these, we utilize masked autoencoders as the backbone of our model.

Moreover, the traditional time series masking strategy focuses on modeling temporal dependency,
but neglects the influence of hierarchical correlation. In our scenario, different levels of information
can interact with others. Specifically, at given timestamps, the unmasked levels provide auxiliary
information to the masked levels, thereby simplifying the modeling process of ETS, weakening the
expressive ability of the model.

To effectively model long-term temporal dependency and hierarchical correlation in ETS data
respectively, we propose temporal masking and hierarchical masking, and their corresponding mask
matrix denoted as M̃t and M̃h. As shown in the left part of Fig. 2, temporal masking refers to
the masked and unmasked patches of different nodes can overlap at temporal axis. This means
⊕Ñ

i=1M̃t[i] ̸= 0⃗, where ⊕ is logical XOR operation. In contrast, hierarchical masking indicates that
the masked positions and unmasked patches of different nodes cannot overlap at temporal axis, which
means ⊕Ñ

i=1M̃h[i] = 0⃗. Then, we element-wise compute M̃t ∨ M̃t to form mask matrix M̃, where ∨
is logical OR operation.

Finally, we sample a subgraph G̃ of a target node with Ñ nodes, and its corresponding patched ETS
data is X̃p ∈ RÑ×Np×P . Then we use the mask matrix M̃ ∈ RÑ×Np to mask X̃p to obtain X̃mask

p .

Temporal Encoder. In our approach, we employ multiple Transformer encoders to map ETS data to
corresponding temporal representations. Firstly, X̃mask

p is mapped to the latent space of dimension D

via a linear projection Win ∈ RP×D, then learnable mask token is used to replace with the masked
portion to form latent embedding Xd ∈ RÑ×Np×D. Given the complex electricity consumption
behavior among various instances, we propose a learnable instance indicator set {ei}Ninstance

i=1 among
all instances, where ei ∈ RD. Next, we retrieval the corresponding instance indicator for each nodes
in Ṽ to form instance indicator matrix E ∈ RÑ×D, and then concatenate with latent embedding Xd

to form Zd. Finally, each zi of nodes will be fed into multiple Transformer encoders. Afterwards it
generates the temporal representations denoted as Hi ∈ RÑ×(Np+1)×D.

Hierarchical Encoder. To further enhance the temporal representation, we incorporate hierarchical
correlation modeling, which takes into account both fine-grained user-related information and coarse-
grained information from district, city, and province levels. By incorporating fine-grained user ETS
information, more refined representations can be provided, particularly when dealing with a large
number of users and significant variations in power consumption patterns. Meanwhile, coarse-grained
ETS enables the capture of broader influencing factors and overall trends. For instance, city level
may include city size, economic development levels, and industrial structures, while province level
may encompass climatic conditions, demographic data, and policy impacts (Xu & Jiao, 2021). These
coarse-grained details offer a more macro perspective, aiding model in comprehending overall ETS
trends and fluctuations.

Recently, GNNs (Wu et al., 2020) have been utilized to fuse each time series information with its
neighboring time series, resulting in an improved understanding of related patterns within each series.
Motivated by these research, we employ R-GCN to integrate information from different hierarchies
of instances. Specifically, we define the following propagation model for calculating the forward-pass
update of a node denoted by vi in our hierarchical graph:

H(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W(l)

r H(l)
j + W(l)

0 H(l)
i

 (1)

In this equation, H(l+1)
i represents the updated representation of node i at layer l + 1, σ(·) denotes

the activation function, R represents the set of all relation types in the graph, N r
i denotes the set of
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Table 1: Full results for the load forecasting task. We compare extensive competitive models under
different forecasting horicontal (24, 96, 336, 720). The input sequence length is set to 256. Avg is
averaged from all four prediction lengths.

Model PowerGPT PatchTST TS2Vec CoST TS-TCC TFC DLinear MICN LSTM
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exclusive

24 0.310 0.347 0.622 0.551 0.297 0.345 0.593 0.574 0.550 0.532 0.572 0.504 0.596 0.458 0.570 0.443 0.831 0.606
96 0.426 0.395 0.507 0.481 0.931 0.577 0.580 0.568 0.594 0.548 0.485 0.464 0.699 0.502 0.432 0.464 1.306 0.825

336 0.429 0.383 0.541 0.501 0.478 0.443 0.659 0.590 0.666 0.604 0.516 0.470 0.768 0.536 0.753 0.526 1.617 0.884
720 0.431 0.396 0.646 0.527 0.697 0.526 0.669 0.587 0.696 0.623 0.529 0.486 0.664 0.505 0.652 0.499 1.100 0.762

Avg 0.399 0.380 0.579 0.515 0.600 0.473 0.625 0.580 0.627 0.577 0.525 0.481 0.682 0.500 0.602 0.483 1.214 0.769

Public

24 0.200 0.289 0.359 0.444 0.360 0.434 1.315 0.810 0.500 0.557 0.367 0.439 0.518 0.497 0.514 0.494 1.367 0.871
96 0.316 0.357 0.377 0.450 0.843 0.633 0.469 0.522 0.460 0.531 0.390 0.457 0.679 0.569 0.162 0.266 1.315 0.829

336 0.594 0.544 0.399 0.470 0.379 0.444 0.506 0.543 0.513 0.568 0.414 0.463 0.918 0.645 0.944 0.649 1.764 0.925
720 0.263 0.341 0.500 0.498 0.726 0.572 0.547 0.556 0.524 0.577 0.412 0.471 0.684 0.553 0.698 0.554 1.111 0.766

Avg 0.343 0.383 0.409 0.466 0.577 0.521 0.709 0.608 0.500 0.558 0.396 0.458 0.700 0.566 0.579 0.491 1.389 0.848

Industry

24 0.101 0.223 0.315 0.436 0.114 0.255 0.472 0.561 0.327 0.428 0.444 0.488 0.325 0.383 0.303 0.371 1.029 0.796
96 0.167 0.269 0.269 0.394 0.723 0.584 0.354 0.483 0.354 0.457 0.234 0.367 0.473 0.476 0.233 0.351 1.311 0.907

336 0.276 0.336 0.246 0.384 0.212 0.339 0.426 0.517 0.364 0.478 0.274 0.388 0.689 0.557 0.696 0.559 2.084 1.064
720 0.210 0.309 0.447 0.469 0.564 0.503 0.481 0.531 0.392 0.502 0.301 0.411 0.541 0.473 0.554 0.479 1.164 0.831

Avg 0.189 0.284 0.319 0.421 0.403 0.420 0.433 0.523 0.359 0.466 0.313 0.413 0.507 0.472 0.446 0.440 1.397 0.900

District

24 0.154 0.229 0.191 0.352 0.148 0.294 1.028 0.780 0.289 0.375 0.286 0.400 0.292 0.362 0.270 0.350 0.568 0.585
96 0.144 0.238 0.202 0.340 0.848 0.648 0.342 0.461 0.313 0.428 0.211 0.345 0.471 0.472 0.124 0.264 1.624 1.005

336 0.222 0.299 0.205 0.346 0.183 0.319 0.416 0.516 0.363 0.482 0.230 0.367 0.780 0.578 0.809 0.585 2.022 1.089
720 0.189 0.270 0.286 0.373 0.567 0.488 0.450 0.527 0.363 0.483 0.316 0.421 0.524 0.448 0.535 0.447 1.232 0.878

Avg 0.178 0.259 0.221 0.353 0.437 0.437 0.559 0.571 0.332 0.442 0.261 0.383 0.517 0.465 0.435 0.411 1.361 0.889

City

24 0.075 0.126 0.486 0.558 1.353 0.823 1.202 0.908 0.167 0.281 0.382 0.510 0.187 0.301 0.135 0.260 0.790 0.720
96 0.055 0.209 0.257 0.435 1.092 0.824 0.710 0.696 0.377 0.545 0.148 0.311 0.385 0.448 0.163 0.296 1.027 0.868

336 0.302 0.356 0.932 0.631 1.961 1.008 0.794 0.684 1.695 1.067 0.205 0.336 0.704 0.558 0.633 0.515 2.010 1.082
720 0.724 0.574 0.703 0.609 0.642 0.600 0.693 0.635 1.021 0.796 1.307 0.835 0.476 0.433 0.464 0.423 0.936 0.773

Avg 0.289 0.316 0.595 0.558 1.262 0.814 0.850 0.731 0.815 0.672 0.511 0.498 0.438 0.435 0.349 0.373 1.191 0.861

Province

24 0.174 0.219 0.559 0.623 2.709 1.054 1.089 0.785 0.175 0.284 0.514 0.534 0.105 0.233 0.091 0.228 0.348 0.573
96 0.080 0.164 0.200 0.392 0.753 0.673 0.803 0.715 0.466 0.572 0.171 0.337 0.215 0.348 0.444 0.497 0.553 0.655

336 0.688 0.408 1.510 0.698 2.811 1.052 1.104 0.776 2.240 1.120 0.180 0.314 0.338 0.412 0.309 0.386 1.063 0.850
720 0.484 0.369 0.876 0.577 0.398 0.501 0.812 0.652 1.377 0.875 1.890 0.894 0.254 0.363 0.264 0.366 0.642 0.696

Avg 0.357 0.290 0.786 0.572 1.668 0.820 0.952 0.732 1.064 0.713 0.689 0.520 0.228 0.339 0.277 0.369 0.651 0.694

neighboring nodes of node i with relation type r. The normalization factor ci,r is typically defined
as the square root of the degree of node i with relation type r. The learnable weight matrix W(l)

r is
specific to relation type r at layer l, while H(l)

j represents the representation of neighboring node j at

layer l. Furthermore, W(l)
0 denotes a learnable self-loop weight matrix at layer l, and H(l)

i represents
the representation of the current node i at layer l.

4 EXPERIMENTAL SETUP

The large amount of ETS data provided by State Grid will be divided into pre-trianing dataset and
finetuning dataset without overlap for PowerGPT pre-training and finetuning (detailed in App. A).
Moreover, we select latest SOTAs for time series modeling as our baselines (detailed in App. B).
Furthermore, to verify the capacity of PowerGPT in modeling ETS data, we conduct extensive
experiments on several downstream tasks (detailed in App. C).

5 EXPERIMENTAL RESULTS

Overview Our codes are available in https://anonymous.4open.science/r/PowerGPT-0152. Pow-
erGPT achieves SOTA performance on various tasks with other baseline models in power systems
(i.e. forecasting, missing value imputation, anomaly detection), showing the generalization ability
to a broad range of tasks. We delve into more detailed comparisons of each task in the following
paragraphs, where in all the tables we mark the best results are in v.

Forecasting. The result of load and electricity consumption forecasting in various forecasting
horizontal are shown in Tab. 1 and Tab. 2, respectively. These results show that not only does
PowerGPT achieve SOTA performance, but the results of PowerGPT -Freeze are also better than most
baselines, showing the ability to capture long-term temporal dependency and hierarchical correlation
of our model. Among the baselines, PatchTST performs well compared to other methods, mainly
because it also adopts a patching strategy to model longer temporal dependency.

Anomaly Detection. We conduct anomaly detection experiment on two tasks: electricity theft
detection and elderly living alone detection. Tab. ?? and Tab. ?? demonstrate that PowerGPT still
achieves the best performance is anomaly detection, outperforming the advanced mask reconstruction
based model PatchTST and constrastive learning based model CoST. The canonical Transformer
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Table 2: Full results for the electricity forecasting task. We compare extensive competitive models
under different forecasting horizontals. The input sequence length is set to 256. Avg is averaged from
all four prediction lengths.

Model PowerGPT PatchTST TS2Vec CoST TS-TCC TFC DLinear MICN LSTM
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exclusive

12 0.350 0.398 0.372 0.427 0.460 0.489 0.551 0.560 0.658 0.646 0.849 0.642 0.449 0.489 0.630 0.602 0.632 0.675
48 0.374 0.426 0.410 0.454 0.665 0.564 0.643 0.596 0.664 0.644 0.529 0.519 0.508 0.520 0.543 0.544 0.644 0.714
96 0.441 0.466 0.584 0.568 0.480 0.500 0.745 0.656 0.664 0.641 0.705 0.604 0.436 0.467 0.432 0.464 0.743 0.779

Avg 0.389 0.430 0.455 0.483 0.535 0.518 0.646 0.604 0.662 0.644 0.695 0.588 0.464 0.492 0.535 0.537 0.673 0.722

Public

12 0.154 0.245 0.177 0.272 0.184 0.312 0.239 0.373 0.404 0.511 0.315 0.399 0.254 0.385 0.229 0.356 0.708 0.775
48 0.193 0.303 0.198 0.288 0.271 0.347 0.270 0.379 0.485 0.606 0.279 0.359 0.158 0.280 0.195 0.335 0.821 0.876
96 0.166 0.279 0.275 0.397 0.196 0.316 0.422 0.511 0.427 0.543 0.323 0.417 0.152 0.251 0.162 0.266 0.993 1.046

Avg 0.171 0.275 0.217 0.319 0.217 0.325 0.310 0.421 0.439 0.553 0.306 0.392 0.188 0.305 0.195 0.319 0.841 0.899

Industry

12 0.258 0.374 0.259 0.359 0.272 0.417 0.329 0.464 0.554 0.617 0.627 0.562 0.250 0.388 0.564 0.653 0.507 0.548
48 0.253 0.371 0.229 0.352 0.451 0.460 0.399 0.487 0.512 0.613 0.369 0.448 0.246 0.385 0.314 0.444 0.553 0.601
96 0.195 0.326 0.324 0.445 0.247 0.379 0.469 0.541 0.513 0.598 0.557 0.549 0.234 0.343 0.233 0.351 0.601 0.636

Avg 0.235 0.357 0.271 0.385 0.323 0.419 0.399 0.497 0.526 0.609 0.518 0.520 0.243 0.372 0.370 0.483 0.554 0.595

District

12 0.107 0.250 0.166 0.300 0.200 0.379 0.240 0.427 0.317 0.472 0.764 0.698 0.209 0.370 0.471 0.611 0.494 0.555
48 0.079 0.219 0.090 0.231 0.288 0.375 0.204 0.362 0.394 0.558 0.217 0.366 0.130 0.258 0.200 0.346 0.505 0.608
96 0.070 0.206 0.179 0.334 0.141 0.286 0.290 0.411 0.323 0.489 0.441 0.478 0.121 0.265 0.124 0.264 0.541 0.659

Avg 0.085 0.225 0.145 0.288 0.209 0.346 0.245 0.400 0.345 0.506 0.474 0.514 0.153 0.298 0.265 0.407 0.514 0.607

City

12 0.061 0.187 0.186 0.306 0.220 0.403 0.234 0.413 0.247 0.416 0.844 0.688 0.177 0.335 0.653 0.720 0.192 0.202
48 0.076 0.213 0.062 0.194 0.427 0.466 0.180 0.333 0.283 0.453 0.259 0.372 0.148 0.265 0.213 0.349 0.346 0.376
96 0.058 0.187 0.162 0.298 0.111 0.251 0.230 0.367 0.230 0.397 0.538 0.512 0.147 0.281 0.163 0.296 0.446 0.490

Avg 0.065 0.196 0.137 0.266 0.253 0.374 0.214 0.371 0.253 0.422 0.547 0.524 0.158 0.293 0.343 0.455 0.328 0.356

Province

12 0.135 0.278 0.369 0.465 0.231 0.379 0.327 0.467 0.237 0.403 2.135 1.090 0.194 0.349 0.779 0.744 0.145 0.192
48 0.150 0.288 0.206 0.388 1.271 0.802 0.414 0.538 0.178 0.295 0.582 0.548 0.230 0.304 0.248 0.284 0.202 0.245
96 0.127 0.258 0.462 0.566 0.332 0.493 0.368 0.494 0.205 0.327 1.360 0.881 0.443 0.510 0.444 0.497 0.356 0.347

Avg 0.137 0.274 0.345 0.473 0.612 0.558 0.370 0.499 0.206 0.342 1.359 0.840 0.289 0.388 0.490 0.509 0.234 0.261

Table 3: Full results for the electricity load imputation task.

Model PowerGPT PatchTST TS2Vec CoST TS-TCC TFC DLinear MICN LSTM
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exclusive

0.125 0.364 0.395 0.382 0.446 0.327 0.354 0.623 0.568 0.265 0.314 0.330 0.372 0.332 0.357 0.263 0.338 0.904 0.629
0.250 0.325 0.368 0.394 0.440 0.311 0.354 0.578 0.554 0.345 0.359 0.347 0.380 0.359 0.381 0.283 0.357 0.931 0.635
0.375 0.330 0.376 0.392 0.440 0.312 0.348 0.557 0.548 0.323 0.354 0.370 0.384 0.385 0.402 0.306 0.379 1.034 0.667
0.500 0.364 0.395 0.383 0.432 0.346 0.377 0.663 0.615 0.334 0.356 0.349 0.381 0.416 0.424 0.334 0.400 1.503 0.861

Avg 0.345 0.384 0.388 0.439 0.324 0.359 0.605 0.571 0.317 0.346 0.349 0.379 0.373 0.391 0.296 0.368 1.093 0.698

Public

0.125 0.283 0.395 0.297 0.399 0.256 0.354 0.501 0.532 0.229 0.339 0.259 0.361 0.259 0.370 0.138 0.229 1.147 0.727
0.250 0.258 0.368 0.293 0.394 0.244 0.354 0.443 0.507 0.260 0.357 0.256 0.363 0.285 0.391 0.150 0.244 1.189 0.742
0.375 0.252 0.369 0.301 0.398 0.256 0.359 0.503 0.542 0.271 0.371 0.332 0.397 0.313 0.410 0.164 0.262 1.392 0.820
0.500 0.283 0.395 0.302 0.399 0.264 0.369 0.564 0.587 0.276 0.371 0.271 0.375 0.344 0.432 0.178 0.278 1.987 0.984

Avg 0.269 0.382 0.298 0.397 0.255 0.359 0.503 0.542 0.259 0.359 0.279 0.374 0.300 0.401 0.158 0.253 1.429 0.818

Industry

0.125 0.129 0.260 0.192 0.345 0.124 0.260 0.393 0.495 0.082 0.204 0.173 0.314 0.137 0.252 0.164 0.282 1.108 0.751
0.250 0.122 0.255 0.142 0.295 0.112 0.250 0.400 0.507 0.117 0.248 0.172 0.312 0.161 0.283 0.178 0.302 1.174 0.768
0.375 0.131 0.268 0.147 0.297 0.135 0.268 0.368 0.493 0.107 0.241 0.204 0.316 0.188 0.311 0.199 0.322 1.493 0.887
0.500 0.129 0.260 0.159 0.308 0.136 0.278 0.457 0.557 0.115 0.241 0.151 0.299 0.216 0.338 0.219 0.345 2.155 1.098

Avg 0.128 0.261 0.160 0.311 0.127 0.264 0.404 0.513 0.105 0.234 0.175 0.310 0.176 0.296 0.190 0.313 1.483 0.876

District

0.125 0.113 0.224 0.151 0.299 0.137 0.250 0.396 0.496 0.095 0.199 0.169 0.306 0.124 0.219 0.110 0.227 0.851 0.680
0.250 0.116 0.228 0.138 0.278 0.123 0.257 0.377 0.481 0.128 0.241 0.200 0.307 0.152 0.258 0.113 0.239 0.834 0.678
0.375 0.118 0.234 0.147 0.289 0.136 0.256 0.368 0.485 0.147 0.250 0.190 0.286 0.177 0.288 0.131 0.261 1.096 0.766
0.500 0.113 0.224 0.154 0.292 0.140 0.276 0.529 0.601 0.128 0.238 0.153 0.277 0.206 0.317 0.143 0.274 1.858 1.062

Avg 0.115 0.228 0.147 0.289 0.134 0.260 0.417 0.515 0.124 0.232 0.178 0.294 0.165 0.271 0.124 0.250 1.160 0.797

City

0.125 0.129 0.217 0.119 0.259 0.438 0.385 0.385 0.491 0.021 0.110 0.181 0.317 0.074 0.152 0.103 0.219 0.613 0.557
0.250 0.104 0.192 0.128 0.315 0.094 0.205 0.137 0.301 0.031 0.136 0.173 0.295 0.093 0.191 0.116 0.230 0.777 0.617
0.375 0.147 0.235 0.121 0.302 0.147 0.284 0.262 0.425 0.092 0.190 0.059 0.189 0.105 0.210 0.124 0.249 1.140 0.746
0.500 0.129 0.217 0.102 0.247 0.135 0.266 1.089 0.877 0.042 0.139 0.443 0.428 0.123 0.234 0.201 0.318 1.789 1.073

Avg 0.127 0.215 0.118 0.281 0.204 0.285 0.468 0.523 0.046 0.144 0.214 0.307 0.099 0.197 0.136 0.254 1.080 0.748

Province

0.125 0.076 0.178 0.079 0.248 0.939 0.488 0.409 0.516 0.033 0.142 0.373 0.438 0.064 0.134 0.061 0.177 0.342 0.454
0.250 0.098 0.181 0.080 0.247 0.147 0.210 0.139 0.299 0.024 0.127 0.288 0.377 0.076 0.166 0.124 0.226 0.407 0.489
0.375 0.070 0.174 0.088 0.255 0.299 0.382 0.216 0.388 0.094 0.180 0.038 0.158 0.085 0.185 0.084 0.210 0.577 0.564
0.500 0.076 0.178 0.069 0.223 0.116 0.257 1.447 0.950 0.033 0.138 0.867 0.513 0.096 0.205 0.129 0.237 1.061 0.875

Avg 0.080 0.178 0.079 0.243 0.375 0.334 0.553 0.538 0.046 0.147 0.392 0.371 0.080 0.172 0.100 0.213 0.597 0.596
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Table 4: Full results for the electricity consumption imputation task.

Model PowerGPT PatchTST TS2Vec CoST TS-TCC TFC DLinear MICN LSTM
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exclusive

0.125 0.527 0.531 0.452 0.491 0.432 0.450 0.934 0.738 0.925 0.740 0.476 0.480 0.283 0.358 0.333 0.408 0.671 0.615
0.250 0.495 0.516 0.467 0.502 0.433 0.455 0.827 0.694 0.945 0.749 0.472 0.476 0.303 0.377 0.353 0.427 0.674 0.616
0.375 0.514 0.509 0.474 0.506 0.458 0.468 0.919 0.720 0.983 0.764 0.424 0.448 0.326 0.399 0.376 0.449 0.677 0.618
0.500 0.425 0.466 0.502 0.520 0.479 0.478 0.885 0.714 1.036 0.782 0.472 0.474 0.355 0.421 0.405 0.471 0.693 0.627

Avg 0.490 0.506 0.474 0.505 0.451 0.463 0.891 0.716 0.972 0.758 0.461 0.470 0.317 0.389 0.367 0.439 0.679 0.619

Public

0.125 0.442 0.506 0.290 0.376 0.322 0.388 0.853 0.692 0.897 0.739 0.396 0.434 0.158 0.248 0.208 0.298 0.539 0.576
0.250 0.431 0.500 0.300 0.385 0.335 0.382 0.657 0.599 0.955 0.765 0.360 0.406 0.170 0.264 0.220 0.314 0.536 0.576
0.375 0.424 0.473 0.309 0.388 0.361 0.407 0.895 0.706 0.996 0.765 0.259 0.339 0.184 0.281 0.234 0.332 0.532 0.572
0.500 0.347 0.433 0.325 0.397 0.363 0.417 0.830 0.687 1.137 0.831 0.353 0.398 0.199 0.300 0.249 0.350 0.547 0.581

Avg 0.411 0.478 0.306 0.386 0.345 0.399 0.809 0.671 0.996 0.775 0.342 0.394 0.178 0.273 0.228 0.323 0.539 0.576

Industry

0.125 0.284 0.401 0.305 0.425 0.290 0.401 0.921 0.758 0.904 0.754 0.352 0.444 0.184 0.302 0.234 0.352 0.579 0.631
0.250 0.258 0.382 0.323 0.434 0.342 0.424 0.731 0.665 0.943 0.764 0.355 0.437 0.198 0.322 0.248 0.372 0.615 0.654
0.375 0.279 0.399 0.330 0.440 0.356 0.442 0.856 0.716 1.028 0.797 0.312 0.399 0.219 0.342 0.269 0.392 0.619 0.654
0.500 0.281 0.400 0.344 0.449 0.344 0.438 0.823 0.713 1.105 0.832 0.335 0.431 0.239 0.365 0.289 0.415 0.646 0.662

Avg 0.275 0.396 0.325 0.437 0.333 0.426 0.833 0.713 0.995 0.787 0.339 0.428 0.210 0.333 0.260 0.383 0.615 0.650

District

0.125 0.124 0.269 0.244 0.365 0.255 0.364 1.024 0.826 0.898 0.752 0.348 0.441 0.130 0.247 0.180 0.297 0.601 0.615
0.250 0.117 0.265 0.234 0.365 0.285 0.389 0.650 0.627 0.971 0.787 0.270 0.376 0.133 0.259 0.183 0.309 0.606 0.620
0.375 0.156 0.305 0.272 0.387 0.320 0.419 0.927 0.752 0.987 0.779 0.252 0.352 0.151 0.281 0.201 0.331 0.635 0.635
0.500 0.145 0.294 0.274 0.387 0.265 0.390 0.921 0.775 1.143 0.854 0.270 0.380 0.161 0.293 0.211 0.343 0.654 0.645

Avg 0.136 0.283 0.256 0.376 0.281 0.391 0.880 0.745 1.000 0.793 0.285 0.387 0.143 0.270 0.194 0.320 0.624 0.629

City

0.125 0.100 0.246 0.223 0.348 0.266 0.372 0.939 0.802 1.051 0.822 0.270 0.370 0.123 0.239 0.173 0.289 0.422 0.522
0.250 0.100 0.243 0.276 0.408 0.376 0.445 0.652 0.642 0.941 0.739 0.309 0.401 0.136 0.250 0.186 0.300 0.517 0.579
0.375 0.142 0.297 0.217 0.346 0.307 0.411 0.869 0.712 1.009 0.766 0.360 0.411 0.144 0.269 0.194 0.319 0.516 0.579
0.500 0.113 0.263 0.269 0.396 0.329 0.425 0.850 0.738 1.121 0.821 0.214 0.335 0.163 0.285 0.212 0.335 0.580 0.612

Avg 0.114 0.263 0.246 0.375 0.319 0.413 0.827 0.723 1.030 0.787 0.288 0.379 0.141 0.261 0.191 0.311 0.509 0.573

Province

0.125 0.119 0.269 0.393 0.491 0.151 0.257 1.429 0.918 1.154 0.763 0.311 0.381 0.141 0.257 0.192 0.307 0.836 0.675
0.250 0.113 0.256 0.307 0.419 0.492 0.485 0.893 0.722 0.893 0.686 0.439 0.457 0.204 0.306 0.254 0.356 0.759 0.640
0.375 0.146 0.296 0.375 0.450 0.382 0.412 1.033 0.762 1.169 0.799 0.408 0.411 0.164 0.290 0.214 0.340 0.742 0.642
0.500 0.135 0.283 0.335 0.433 0.427 0.414 1.016 0.759 1.125 0.794 0.298 0.389 0.194 0.309 0.244 0.359 0.707 0.621

Avg 0.128 0.276 0.353 0.448 0.363 0.392 1.093 0.790 1.085 0.760 0.364 0.410 0.176 0.291 0.226 0.341 0.761 0.645

performs worse in this task (average F1-score). This may come from that anomaly detection requires
the model to to find out the rare abnormal temporal semantic patterns and compare with other
instance information, which the point-wise failed to represent the semantics in time series and lack of
hierarchical information to refer.

Table 5: Full results for the electricity theft detection task. The P, R and F1 represent the precision,
recall and F1-score (%) respectively. F1-score is the harmonic mean of precision and recall. A higher
value of P, R and F1 indicates a better performance.

Models 1:10 1:50 1:100

Pre. Rec. F1 AUROC Pre. Rec. F1 AUROC Pre. Rec. F1 AUROC

DeepCNN 0.092 0.516 0.156 0.502 0.020 0.592 0.039 0.510 0.011 0.302 0.020 0.509
LSTM-FCN 0.056 0.038 0.056 0.503 0.021 0.800 0.040 0.522 0.010 0.553 0.019 0.501

TFC 0.091 0.022 0.201 0.500 0.024 0.554 0.042 0.509 0.010 0.145 0.020 0.521
PatchTST 0.110 0.531 0.183 0.552 0.024 0.503 0.045 0.544 0.011 0.598 0.022 0.531
TS2Vec 0.102 0.613 0.175 0.538 0.025 0.293 0.045 0.530 0.014 0.148 0.025 0.520
CoST 0.115 0.326 0.170 0.538 0.020 0.312 0.037 0.504 0.012 0.139 0.022 0.512

TS-TCC 0.094 0.490 0.120 0.500 0.019 0.772 0.030 0.501 0.009 0.159 0.035 0.511
PowerGPT 0.136 0.604 0.212 0.578 0.038 0.890 0.057 0.599 0.033 0.501 0.066 0.557

Miss Value Imputation. We conduct miss value imputation on load and electricity consumption
data with various randomly mask ratio 12.5%, 25%, 37.5%, 50%. Due to the missing time points, the
imputation task requires the model to discover underlying temporal patterns from the irregular and
partially observed time series. We conduct load and electricity consumption imputation, the results
are shown in Tab. 4 and Tab. 3 respectively. These results show that our proposed PowerGPT still
achieves the consistent SOTA in these two task, demonstrating the advantages of leveraging both
temporal and hierarchical view to enhance the prediction of the missing values.

5.1 MODEL ANALYSIS

Low-resource labeled data evaluation. In power systems, collecting series for downstream tasks
is a significant investment. To demonstrate the practical application value of our work, we evaluate
the performance of PowerGPT on downstream tasks under limited series availability. Specifically, the
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Table 6: Full results for the elderly living alone detection task. The P, R and F1 represent the precision,
recall and F1-score (%) respectively. F1-score is the harmonic mean of precision and recall. A higher
value of P, R and F1 indicates a better performance.

Models 1:10 1:50 1:100

Pre. Rec. F1 AUROC Pre. Rec. F1 AUROC Pre. Rec. F1 AUROC

DeepCNN 0.092 0.516 0.156 0.502 0.020 0.592 0.039 0.510 0.011 0.302 0.020 0.509
LSTM-FCN 0.056 0.038 0.056 0.503 0.021 0.800 0.040 0.522 0.010 0.553 0.019 0.501

TFC 0.091 0.022 0.201 0.500 0.024 0.554 0.042 0.509 0.010 0.145 0.020 0.521
PatchTST 0.110 0.531 0.183 0.552 0.024 0.503 0.045 0.544 0.011 0.598 0.022 0.531
TS2Vec 0.102 0.613 0.175 0.538 0.025 0.293 0.045 0.530 0.014 0.148 0.025 0.520
CoST 0.115 0.326 0.170 0.538 0.020 0.312 0.038 0.504 0.012 0.139 0.022 0.512

TS-TCC 0.094 0.490 0.120 0.500 0.019 0.772 0.030 0.501 0.009 0.159 0.035 0.511
PowerGPT 0.136 0.604 0.212 0.578 0.038 0.890 0.057 0.599 0.033 0.501 0.066 0.557

(a)Low-resource data evaluation (b) Model scale Analysis

Figure 3: (a)Performance on all the downstream tasks across PowerGPTs with different ratio of
finetuning dataset: 10%, 30% and 60%. (b)Performance on all the downstream tasks across PowerG-
PTs with different model size: PowerGPT-small (30M), PowerGPT-medium (80M) and PowerGPT
(275M).

pre-trained model is finetuned on 10%, 30% and 60% of the set of finetuning dataset, respectively.
After fine-tuning, models are evaluated on the same data which is sampled from the downstream
dataset but non-overlapped with the finetuning data. As shown in Fig. 3(a), the performances of
PowerGPT is decrease mildly when the finetuning data is fast decrease, demonstrating that PowerGPT
fully captures the long-term temporal dependency and hierarchical correlation from the ETS data
during pre-training and adapts to downstream taks more easily.

Model scale Analysis. To explore the impact of model size on performance, we additionally design
three variants of PowerGPT with smaller size: PowerGPT-small, PowerGPT-medium, PowerGPT,
and pre-train on the same datasets. All models are pre-trained with an Adam optimizer. PowerGPT-
medium adopts the same learning rate as PowerGPT; for Power-small, the basic and maximum
learning rate is 3e− 6. We evaluate these smaller size variants on all the downstream tasks. As shown
in Fig. 3(b), as the model size increases, we observe an overall improvement in the performance of
downstream tasks. Specifically, PowerGPT outperforms the other three variants across all metrics.
Additionally, larger models exhibit decreased standard deviation, indicating more stable performance.
The utilization of a larger model with higher capacity enables better generalization across a wide
range of downstream tasks on such a huge ETS dataset.

6 CONCLUSION

In this paper, we propose a generic foundation model, PowerGPT, which learns powerful representa-
tions of electricity data. PowerGPT is the largest pre-training model on time series in power system,
whose design (1) attends a long temporal dependency; (2) captures the hierarchical correlations across
different instances. Experimentally, PowerGPT achieves consistent SOTA performance on various
downstream tasks w.r.t. electrical scenarios. Further analysis shows the effectiveness and benefit of a
large-scale pre-trained model in the field of electrical medicine. PowerGPT is an off-the-shelf model
with its code and weights, which significantly alleviates the issue of sample and label efficiency and
can directly participate in other electrical research.
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A DATASET.

The original ETS data is provided by State Grid Corporation of China. After removing outliers,
we sample a subset of this data, totaling 1TB in size, which includes electricity consumption and
load data from 2016 to 2022, covering five levels: province, city, district, industry, and user. For
pre-training dataset, we select the data from 2016 to 2020, while the data from 2020 onwards is
utilized as the finetuning dataset for downstream tasks. Specifically, we apply sliding window Tw on
the ETS data of all instances to obtain a substantial number of records. In pre-training dataset, to
alleviate the imbalance between electricity consumption and load data due to the different sample
rate, we choose suitable size of stride for sliding. The detailed statistics of the pre-training dataset are
summarized in Table 7. In finetuning dataset, in order to align with practical application scenarios,
we don’t adjust the stride to achieve data balance. In addition to ETS data, there is additional label
information in the finetuning dataset, including labels for electricity theft users and elderly living
alone. Among all users, about 4,000 users were confirmed as electricity thieve through on-site
investigations by National Grid staff. Similarly, State Grid staff have also labeled 3,000 users as
elderly living alone. These labels will serve as the ground-truth for two different downstream tasks,
namely electricity theft detection and elderly living alone detection. The detailed statistics of the
finetuning dataset is described in Table 8.

Table 7: Overall statistics of the pre-training dataset.

Instance Sampling Rate Length Stride Tw # Records

Electricity Consumption

#province 1

1 day 1826 1 256

1571
#city 11 17,281

#region 90 141,390
#industry 45 70,695

#user 1,530,826 2,404,927,646

Electricity Load

#province 1

15 minutes 175,296 100 256

1751
#city 11 19,261

#region 90 157,590
#industry 45 78,795

#user 1,530,826 2,680,476,326

Table 8: Overall statistics of datasets for downstream tasks.

Instance Anomaly Rate Sampling Rate Length Stride Tw # Records

Electricity Consumption
Forecasting (Imputation)

#province 1

– 1 day 730 1 256

475
#city 11 5,225

#region 90 42,750
#industry 45 21,375

#user 1,563,740 742,776,500

Electricity Load
Forecasting (Imputation)

#province 1

– 15 minutes 70,080 100 256

699
#city 11 7689

#region 90 220,680
#industry 45 110,340

#user 1,563,740 3,753,585,352

Electricity Theft
Detection

#province 1 –

1 day 245,376 1 256

2452
#city 11 – 26,972

#region 90 – 220,680
#industry 45 – 110,340

#user 44,077 9.1% 108,076,804

Elderly Living Alone
Detection

#province 1 –

1 day 245,376 1 256

2452
#city 11 – 26,972

#region 90 – 220,680
#industry 45 – 110,340

#user 35,146 8.5% 86,177,992

Pre-training. For the model configurations, the temporal encoder contain a 16-layer Transformer
encoder with model dimension 2048, inner dimension (FFN) 4096 and 16 attention heads, and
the hierarchical encoder contains 2-layer R-GCN. During the pre-training, 40% patches in each
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input sample are masked by learnable token in the form of temporal mask hierarchical mask. The
model is pre-trained on a Linux system with 2 CPUs (AMD EPYC 9654 96-Core Processor) and 4
GPUs (NVIDIA Tesla A100 80G) for about 7.8 days. We optimize with Adam, updating the model
parameters every 4 steps, and the model trains for 750k updates in total. A reduce learning rate on
plateau scheduler is utilized to adjust learning rate during pre-training. Specifically, we set the basic
learning rate as 1e− 6.

B BASELINES

Since we attempt to propose a foundation model in power systems for time series modeling, we
extensively compare the well-acknowledged and advanced models in all four tasks, including super-
vised models: LSTM (Torres et al., 2022), LSTM-FCNs (Karim et al., 2019), CNN (Zheng et al.,
2017)), DLinear (Zeng et al., 2023), MICN (Wang et al., 2022); self-supervised models: TS2Vec (Yue
et al., 2022), TS-TCC (Eldele et al., 2021), TFC (Zhang et al., 2022b), CoST (Woo et al., 2022),
PatchTST (Nie et al., 2023), which cover the majority of SOTA methods in task-specific models in
power systems and general time series models.

C DOWNSTREAM TASKS

To verify the strong capacity of PowerGPT in modeling ETS data, we conduct extensive experiments
on several downstream tasks, including forecasting and missing value imputation across different
instances and different forecasting horizontal in electricity consumption and load data. Besides,
electricity theft and elderly living alone detection are also involved. The detailed setups of these
downstream tasks are as follows:

Electricity Consumption and Load Data Forecasting. Predictive observation of the electricity
data is beneficial for energy planning, market operations, trading decisions, and energy management.
Therefore, we adopt short- and long-term ETS forecasting including electricity consumption and load
data, in which the learned representations are fine-tuned to predict future series with different lengths
given a past sequence. We set the past sequence to a fixed 256 points as the look-back window, and
choose different lengths of predictive series for different tasks In electricity consumption data, the
prediction lengths are set as {12, 48, 96} points. And in load data, the prediction lengths are set as
{24, 96, 336, 720} points. A linear prediction head is used to predict the future signals. We adopt
MAE and MSE as the performance metrics.

Electricity Consumption and Load Data Imputation. During the process of collecting and
recording power data, issues such as sensor malfunctions, communication failures, and manual entry
errors often occur (Gomila & Clark, 2022), thus the power sequence recordings will be incomplete.
Imputation can fill in these missing values so that subsequent data analysis and modeling can be
performed based on complete sequences. For the imputation task, we randomly mask the timestamps
in each patch with the ratio of {12.5%, 25.0%, 37.5%, 50.0%} and fine-tune the model to predict
the missing values. We add a linear head to make predictions, then apply MAE and MSE as the
evaluation metrics to measure the discrepancy between the masked and predicted values.

Electricity theft detection. Electricity theft refers to the illegal operations by which users unautho-
rizedly tamper the electricity meter or wires to reduce or avoid consumption costs, and electricity
thieves have a higher level of electrical power consumption with less stability (Hu et al., 2020). As
one of the most important applications of electricity data modeling, electricity theft detection task is to
evaluate the model ability to distinguish between the sequence of normal electricity consumption and
the sequence of electricity theft incidents. We choose the electricity theft detection dataset provided
by the Power Grid as the downstream dataset with about 10% positive (presence of electricity theft)
samples. An MLP is adopted to classify the pre-trained representations. The evaluation metrics we
use are accuracy, precision, recall, F1 scores.

Elderly living alone detection. Increasingly serious aging of the population, the number of
elderly people living alone is increasing. By conducting regular detect and identifying elderly
living alone, communities and governments can enhance elderly care, improve the quality of life
for those living alone, and contribute to smart aging initiatives. Zhang et al. (2022a) have find
that the electricity consumption behavior of the elderly living alone is obvious periodic and highly

14



Under review as a conference paper at ICLR 2024

concentrated, so elderly living alone detection task is to differentiate between the normal household
electricity consumption sequence and the elderly living alone electricity consumption sequence. We
select elderly living alone dataset from Power Grid as the downstream dataset with about 10% positive
(Elderly living alone) samples. An MLP is adopted to classify the pre-trained representations. And
the evaluation metrics we use is like Electricity theft detection.

It is worth noting that in anomaly detection tasks, not all users have labels. Therefore, we treat those
users as background nodes that are not used for loss computation but involved in the message passing
of the GNN.
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