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Abstract
In this paper, we propose an accelerated stochastic step search algorithm which combines an accel-
erated method with a fully adaptive step size parameter for convex problems in [18] with stochastic
step search analysis in [15]. Under appropriate conditions on the accuracy of the estimates of gra-
dient and function value our algorithm achieves expected iteration complexity of O(1/

√
ϵ) to reach

an ϵ-accurate solution which satisfies f(x) − f∗ ≤ ϵ. This complexity matches with the iteration
complexity of deterministic Nesterov’s accelerated and FISTA algorithms [1, 12, 13]. This paper
continues the line of work on stochastic adaptive algorithms studied in [2, 3, 15] and is the first one
to develop an accelerated gradient descent type algorithm in this domain.

1. Introduction

We consider the stochastic optimization problem minx∈Rn f(x), where exact values of the function
and its gradient may not be computed exactly. Instead we assume that an optimization algorithm has
access to some stochastic oracles which return estimations of the gradient values and the function
values. We will specify these oracles and their properties later in the paper.

We make the following standard assumption.

Assumption 1 We assume that f is convex and L-smooth.

Stochastic Gradient Descent (SGD) [17] and its variants [7, 9] is one of the most popular ap-
proach for stochastic optimization. Most of the variants of SGD take a (usually diminishing) se-
quence of steps with precomputed step sizes along the direction of negative stochastic gradients.
No function values are computed to check the progress of the algorithm. In deterministic setting
a fixed step size whose value is usually proportional to the inverse of L guarantees algorithmic
progress. In practical deterministic optimization, however, it is very common to try out step size
parameter values and select them based on the achieved progress rather than a guess of a global
constant L, which can be too conservative. Three of such adaptive algorithmic frameworks are line-
search, trust-region and adaptive cubic regularization methods [6, 14]. Recently, all these methods
have been analyzed in stochastic setting and shown to maintain favorable convergence properties
under various conditions on stochastic function oracles [2, 3, 15].

Accelerated gradient methods, on the other hand, do not easily lend themselves to fully adap-
tive modes. The step size parameter can usually be decreased on any given iteration, but it cannot
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be increased between iterations as is done by the line-search, trust-region and adaptive cubic regu-
larization methods. In addition the complexity analysis of accelerated first order methods is quite
different from those of line-search, trust-region and adaptive cubic regularization methods. For the
latter, complexity analysis relies on the fact that the objective function decreases by at least some
fixed amount on each step. This, however, does not necessarily hold for accelerated methods.

Since the success of accelerated gradient methods, researchers have worked towards adapting
this technique to stochastic settings [8, 10, 19–21]. Without assuming vanishing variance, SGD has
a worse iteration complexity than Gradient Descent, which is O(1/ϵ2) compared to O(1/ϵ) [11].
Naturally, applying the stochastic gradients straightforwardly to the accelerated momentum does
not necessary lead to better complexity.

Contributions. In this paper we analyze an accelerated method, introduced in [18], which allows
for increase and decrease of the step size parameter based on progress. We apply this algorithm
in stochastic setting and extend the framework of [2, 15] to derive expected complexity bounds of
O(1/

√
ϵ) for this method. Our analysis does not require gradient estimates to be unbiased, but it

does require that the variance diminishes sufficiently fast. The gradient error is of a similar order as
in [20], where an accelerated method is analyzed under deterministicly inexact setting and without
line search. In contrast with that paper our assumption on the gradient error is only in expectation.
We are able to adapt the martingale arguments used in the analysis of prior adaptive stochastic
methods [2, 3, 15] to the new setting of accelerated methods, were function decrease is no longer
guaranteed on each iteration.

2. Function oracles

Let us define the oracles which our algorithm will call to estimate the values of our function and its
gradient.

(i) Stochastic first-order oracle (SFO(κg, δ1)). Given a point x, the oracle computes g(x, ξ′),
a (random) estimate of the gradient ∇f(x), such that

Pξ′
[
∥g(x, ξ′)−∇f(x)∥ ≤ κg∥∇f(x)∥

]
≥ 1− δ1 (1)

In summary, the input to the oracle is x , the output is g(x, ξ′), and the values (κg, δ1) are intrinsic
to the oracle. (we omit the dependence on ξ′ for brevity)

(ii) Stochastic zeroth-order oracle (SZO(κf , α, ∥g∥, δ2)). Given a point x and a constant
α > 0, the oracle computes f̃(x, ξ), a (random) estimate of the function value f(x). ξ is a random
variable (whose distribution may depend on x), that satisfies

Pξ

[
|f̃(x, ξ)− f(x)| ≤ κfα

2∥g∥2
]
≥ 1− δ2 (2)

(we omit the dependence on ξ for brevity).

3. Algorithm Framework

In this section, we describe the accelerated stochastic step search algorithm, which is based on the
variant of FISTA algorithm [1] introduced in [18] for deterministic exact optimization.
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Algorithm 1 Stochastic FISTA Step Search Algorithm
1: Initialization: Choose an initial point x0 ∈ Rd. Set t1 = 1, t0 = 0, let xprev0 = x0.

Set 0 < γ < 1, θ0 = γ with α1 > 0. Choose η ∈ [1/2, 1].
2: for k = 1, 2, · · · , do
3: Compute (t0k, yk) = FISTAStep(xk−1, x

prev
k−1 , tk−1, θk−1)

4: Compute the gradient estimate gk = g(yk, ξ
′
k) using the stochastic first-order oracle and the

reference point pαk
(yk) = yk − αkgk.

5: Compute the function estimates fy
k = f̃(yk, ξk) and fp

k = f̃(pαk
(yk), ξk) using the stochastic

zeroth-order oracle.
6: Check sufficient decrease condition fp

k ≤ fy
k − αkη ∥gk∥2.

7: If unsuccessful:
8: Set

(
xk, x

prev
k

)
=
(
xk−1, x

prev
k−1

)
and tk = tk−1, then set αk+1 = γαk and θk =

θk−1

γ .
9: If successful:

10: Set
(
xk, x

prev
k

)
= (pαk

(yk), xk−1) and tk = t0k, then set αk+1 =
αk
γ , and θk = αk

αk+1
.

11: end for

Step (t0k+1, yk+1) = FISTAStep(xk, x
prev
k , tk, θk) is defined as follows.

t0k+1 =
1

2

(
1 +

√
1 + 4θkt

2
k

)
, and yk+1 = xk +

tk − 1

t0k+1

(xk − xprevk ). (3)

This update is slightly different from the one in [18]. The use of parameter θk allows for flex-
ible step size selection. At each iteration, Algorithm 1 evaluates the computed gradient for the
Armijo-type descent condition based on inexact function estimates. If the step is accepted, we call
such iteration successful iterations. Filtration. Algorithm 1 generates a random process given
by the sequence {Gk,Ak, F

y
k , F

p
k }. The random gradient estimate is denoted by Gk and its re-

alization by gk = Gk(ω), {F y
k , F

p
k } denotes estimates of f(Yk) and f(pAk

(Yk)), similarly, we
have αk = Ak(ω) (step sizes). To formalize the conditioning on the past, let FG·F

k−1 denote the σ-
algebra generated by the random variables G0, . . . , Gk−1 and F y

0 , F
p
0 , . . . , F

y
k−1, F

p
k−1. Therefore

{FG·F
k−1}k≥1 is a filtration. Epsilon accurate solution and the hitting time Nϵ to reach ϵ accuracy.

Let x∗ be a global minimizer of f and f∗ > −∞ is the minimum value of f over its domain. We
say that x is an ϵ-accurate solution of problem minx∈Rn f(x) if it satisfies f(x) − f∗ ≤ ϵ. For a
level of accuracy ϵ, we aim to derive a bound on the expected number of iterations the algorithm
needs to reach the given accuracy level. Thus let us define Nϵ as the hitting time for the event
{f(Xk)− f∗ ≤ ϵ}, where k is the iteration of the algorithm.

Definition 1 (True iteration) We say iteration k is true if ∥gk − ∇f(yk)∥ ≤ κg∥∇f(yk)∥ and
|fy

k − f(yk)| ≤ κfα
2
k ∥gk∥

2, |fp
k − f(pαk

(yk))| ≤ κfα
2
k ∥gk∥

2, respectively. We use an indicator
variable I true

k to indicate that iteration k is true.

The condition on the accuracy of the gradient in a true iteration is known as the norm condition
and appears in various prior works [2, 4, 16] and similarly for function estimator [15]. Meanwhile,
[22] assumes similar gradient noise condition in expectation, and as a result, their analysis bound
the number of iterations until the expected function gap is small. Our assumption is more flexible
than that in [2, 15] as we do not require κf to be smaller than a threshold. With these definitions,
we present our key Assumption 2.
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Assumption 2
(i) For every iteration k, the following bound holds:

E
[
∥(∇f(yk)− gk)∥2|FG·F

k−1

]
≤ 1

α2
kt

2
k · k2+β

(4)

E[(fy
k − f(yk))|FG·F

k−1 ] ≤
1

αkt
2
k · k1+β′ ; E[(f(xk)− fp

k )|F
G·F
k−1 ] ≤

1

αkt
2
k · k1+β′ (5)

for some β > 0 and β′ > 0.

(ii) Let η ∈ [1/2, 1] and κg ≤ 1− η

2− η
≤ 1

3
. There exists a probability p ∈ (0.5, 1] such that:

P(I true
k |FG·F

k−1 ) ≥ p for all k ≥ 0 (6)

Assumption 2(i) implies that variance of gradient noise has to decrease as a particular rate.
While this rate may appear complicated due dependence on αk and tk, αk is bounded from above
and we will show later in the paper that tk ∼ k. This means that the imposed rate of the decrease of
the error is the same as that for the deterministic gradient error [20]. It follows from that work that
accelerated convergence rate is lost if the error in the gradient does not decrease at this rate. Here we
relax the bound on deterministic error and impose it only in expectation. Assumption 2(ii) is used
in prior work [2, 5, 15] and is needed to ensure that successful iterations happen sufficiently often
when αk is small enough (this is proven in Lemma 2 below). Satisfying these conditions depends
on the nature of gradient and function estimates and is discussed, for example in [5, 15].

4. Analysis

4.1. Bound on the Expected Hitting Time

Now we are ready to present our analysis, starting with a property for the step sizes {Ak}k≥1.

Lemma 2 Suppose that iteration k is true. Let κg ≤ 1− η

2− η
≤ 1

3
. Then we have that if the step size

αk ≤ ᾱ =
1− η − (2− η)κg

(0.5L+ 2κf )(1− κg)
then the k-th step is successful.

Without loss of generality, we assume that α1 ≥ ᾱ. Lemma 2 states that good model estimates
and sufficiently small step size leads to successful step. By Assumption 2(ii), we have that whenever
the stepsize is below a threshold ᾱ, the iteration has a probability p to be successful. The first part
of our analysis relies on this property to bound the expectation of the hitting time E(Nϵ) using the
number of true successful iterations that are above a threshold ᾱ.

Theorem 3 (Bounding E(Nϵ) based on E(NTS)) We assume Assumption 2(ii). We consider NTS

the number of true successful iterations with αk ≥ ᾱ :
NTS =

∑Nϵ−1
k=1 1{Ak ≥ ᾱ} · 1{Iteration k is true and successful}. We have

E(Nϵ) ≤
2p

(2p− 1)2

(
2E(NTS) + logγ

(
ᾱ

α1

))
. (7)

The main proof of Theorem 3 is heavily based on a prior framework for line search methods
[5], where the same principle is further applied in [2, 15]. The remaining problem of analyzing
Algorithm 1 focuses on the expectation of NTS , which we present in the next section.
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4.2. Bound on the Number of Large True Successful Iterations

In order to bound E(NTS), we consider the stochastic process Nk = 2αsucc
k t2kvk + ∥uk∥2, where

vk = f(xk)−f∗ and uk = (tk−1)xprevk +x∗−tkxk. While vk denotes the usual optimality gap, uk
resembles the usual term in deterministic FISTA algorithm analysis [1, 18]. We also denote the step
size αsucc

k = αk′ , where k′ = max{k′′ successful , k′′ ≤ k}, the step size at the previous successful
iteration prior to k. The next Lemma states that Nk do not change during unsuccessful iterations.

Lemma 4 (Equation for an unsuccessful step) Let {xk}k≥1 be the iterates of Algorithm 1 and
the stochastic process Nk be defined above. If iteration k is unsuccessful, then we have Nk = Nk−1.

Lemma 5 shows how the quantity Nk changes in the successful steps of Algorithm 1, under the
assumptions of convexity and L-Lipschitz smoothness of the objective function.

Lemma 5 (Bounds for a successful step) Let {xk}k≥1 be the iterates of Algorithm 1. We assume

Assumptions 1 and let η ≥ 1

2
. If k is a successful iteration then we have Nk −Nk−1 ≤ Bk, where

Bk = 2αktk(∇f(yk)− gk)
⊤uk−1 + 2αkt

2
k(f

y
k − f(yk) + f(xk)− fp

k ).

In Lemma 5 Bk dictates how the noise of the model at iteration k affects the bound. Using
Lemma 5 and the Assumption 2(i) we prove the following Theorem:

Theorem 6 (Upper bound of the number of large true successful steps) Let {xk}k≥1 be the it-
erates of Algorithm 1. We assume Assumption 1 and Assumption 2(i). Then we have

E[NTS ] ≤
√
2D1√
ᾱϵ

. (8)

where D1 = 3αsucc
0 t20v0 + 2 ∥u0∥2 +

3(β + 2)2

β2
+

2(β + 2)

β + 1
+

6(β′ + 1)

β′ .

Our final result is a straightforward corollary of Theorem 3 and 6.

Theorem 7 Let {xk}k≥1 be the iterates of Algorithm 1. We assume Assumption 1 and Assumption
2. The number of iterations Nϵ to reach an ϵ accuracy solution satisfies the following bound:

E(Nϵ) ≤
2p

(2p− 1)2

(
2
√
2D1√
ᾱϵ

+ logγ

(
ᾱ

α1

))
. (9)

where ᾱ is defined in Lemma 2 and D1 is defined in Theorem 6.

The (expected) iteration complexity of Algorithm 1 is O(ϵ−1/2), which matches with the itera-
tion complexity of the deterministic accelerated momentum. Our result is especially helpful in the
settings where κf is large, convergence is still guaranteed.

Remark 1 (Discussion and Future Work) The recursive bound in Lemma 5 demonstrate that sim-
ilar arguments can be used to analyze different stochastic algorithms where the deterministic analy-
sis uses the telescoping sum. For example, ones can apply this framework to the stochastic gradient
descent method and obtain the complexity of O(1/ϵ) for convex setting. We can also derived similar
bounds to prior reference [15] for non-convex and strongly convex setting. One possible question
to explore is determining the circumstances under which our framework and Algorithm 1 can be
applied to the proximal problem with an additional non-smooth term. With the lack of sufficient
decrease in small proximal steps, such analysis is not straightforward. Thus this presents an inter-
esting problem for future work.
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Appendix A. Detail Proofs for Theorem 3

By the update rule of αk in Algorithm 1, the stochastic process {Ak}k≥1 follows:

A1 = α1, Ak+1 =

{
γ−1Ak if Isucc

k = 1
γAk if Isucc

k = 0.
(10)

Let us now define

I
large
k = 1{Ak > ᾱ}, (11)

and

Isucc
k = 1{Iteration k is successful}. (12)

Lemma 8 (Lemma 2.1 from [5]) We assume Assumption 2(ii). Let Nϵ be a hitting time for {Ak}.
Let Wk be a nonnegative stochastic process such that σ(Wk) ⊂ Fk−1, for any k ≥ 1. Then

E

(
Nϵ−1∑
k=1

WkI
true
k

)
≥ pE

(
Nϵ−1∑
k=1

Wk

)
. (13)

Similarly,

E

(
Nϵ−1∑
k=1

Wk(1− I true
k )

)
≤ (1− p)E

(
Nϵ−1∑
k=1

Wk

)
. (14)

Proof The proof is a consequence of properties of expectation:

E(I true
k |Wk) = E(E(I true

k | Fk−1)|Wk) ≥ E(p|Wk) = p, (15)

where we use the assumption that σ(Wk) ⊂ Fk−1.
Hence by the law of total expectation, we have

E(WkI
true
k ) = E(WkE(I true

k |Wk)) ≥ pE(Wk). (16)

Similarly, we can derive

E(1{k < Nϵ}WkI
true
k ) ≥ pE(1{k < Nϵ}Wk), (17)

since 1{k < Nϵ} is also determined by Fk−1. Finally,

E

(
Nϵ−1∑
k=1

WkI
true
k

)
= E

( ∞∑
k=1

1{k < Nϵ}WkI
true
k

)
(18)

≥ pE

( ∞∑
k=1

1{k < Nϵ}Wk

)
= pE

(
Nϵ−1∑
k=1

Wk

)
. (19)

The second inequality is proved analogously.
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A.1. Bounding the number of steps for which αk ≤ ᾱ

In this subsection we derive a bound on E
(∑Nϵ−1

k=1 (1− I
large
k )

)
. The bound for E(

∑Nϵ−1
k=1 I

large
k ) is

in the next section.

Lemma 9 (Lemma 2.2 from [5]) Let {Ak}k≥1 be the stochastic process defined in equation (10)
and α1 ≥ ᾱ. For any l ∈ {1, . . . , T − 1}, we have

l∑
k=1

(1− I large
k )Isucc

k ≤ l

2
(20)

Proof We count the number of successful iteration that has Ak ≤ ᾱ. In this case Ak+1 = γ−1Ak.
Since α1 ≥ ᾱ, for each successful small iteration, when Ak gets increased by a factor of γ−1, there
has to be at least one iteration when Ak is decreased by the same factor. It follows that amongst all
iterations, at most half can be successful and have Ak ≤ ᾱ.

Lemma 10 (Lemma 2.3 from [5])
Let {Ak}k≥1 be the stochastic process defined in equation (10) and α1 ≥ ᾱ. Also we assume

Assumption 2(ii). Then we have

E

(
Nϵ−1∑
k=1

(1− I large
k )

)
≤ 1

2p
E(Nϵ) (21)

Proof By Lemma 8 applied to Wk = 1− I
large
k we have

E

(
Nϵ−1∑
k=1

(1− I
large
k )I true

k

)
≥ pE

(
Nϵ−1∑
k=1

(1− I
large
k )

)
. (22)

From the fact that all true iterations are successful when αk ≤ ᾱ,

Nϵ−1∑
k=1

(1− I
large
k )I true

k ≤
Nϵ−1∑
k=1

(1− I
large
k )Isucc

k . (23)

Finally, from Lemma 9
Nϵ−1∑
k=1

(1− I
large
k )I true

k ≤ Nϵ − 1

2
≤ Nϵ

2
. (24)

Taking expectations in (23) and (24) and combining with (22), we obtain the result of the
lemma.

A.2. Bounding the expected number of steps for which αk > ᾱ

Now we consider the bound on E
(∑Nϵ−1

k=1 I
large
k

)
. We introduce the additional notation I

large+
k =

1{Ak > ᾱ}+ 1{Ak = ᾱ}. In other words I large+
k = 1 when either I large

k = 1 or Ak = ᾱ. We now
define:

9
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• NFS =
∑Nϵ−1

k=1 I
large+
k (1− I true

k )Isucc
k , which is the number of false successful iterations with

Ak ≥ ᾱ.

• NF =
∑Nϵ−1

k=1 I
large+
k (1− I true

k ), which is the number of false iterations with Ak ≥ ᾱ.

• NTS =
∑Nϵ−1

k=1 I
large+
k I true

k Isucc
k , which is the number of true successful iterations with Ak ≥

ᾱ.

• NT =
∑Nϵ−1

k=1 I
large+
k I true

k , which is the number of true iterations with Ak ≥ ᾱ.

• NTU =
∑Nϵ−1

k=1 I
large
k I true

k (1− Isucc
k ), which is the number of true unsuccessful iterations with

Ak > ᾱ.

• NU =
∑Nϵ−1

k=1 I
large
k (1− Isucc

k ), which is the number of unsuccessful iterations with Ak > ᾱ.

Since E
(∑Nϵ−1

k=1 I
large
k

)
= E

(∑Nϵ−1
k=1 I

large
k (1− I true

k )
)
+ E

(∑Nϵ−1
k=1 I

large
k I true

k

)
≤ E(NF ) +

E(NT ), our goal is to bound E(NF ) + E(NT ).
Another key observation is that

NT ≤ NTS +NTU ≤ NTS +NU , (25)

where the first inequality follows from the fact that for all k < T and for all realizations, (I large+
k −

I
large
k )I true

k (1− Isucc
k ) = 0, in other words there are no true unsuccessful iterations when Ak = ᾱ.

Lemma 11 (Lemma 2.5 from [5]) Let {Ak}k≥1 be the stochastic process defined in equation (10)
and α1 ≥ ᾱ. For any l ∈ {1, . . . , Nϵ − 1} we have

l∑
k=0

I large
k (1− Isucc

k ) ≤
l∑

k=1

I large+
k Isucc

k + logγ

(
ᾱ

α1

)
(26)

Proof Ak is increased on successful iterations and decreased on unsuccessful ones. Hence the total
number of steps when Ak > ᾱ and Ak is decreased, is bounded by the total number of steps when
Ak ≥ ᾱ is increased plus the number of steps it is required to reduce Ak from its initial value α1 to
ᾱ.

From Lemma 11 applied to l = Nϵ − 1, we can deduce that

NU ≤ NFS +NTS + logγ(ᾱ/α1). (27)

We also have the following lemma.

Lemma 12 (Lemma 2.6 from [5])

E(NF ) ≤
1− p

p
E(NT ). (28)

Proof By applying both inequalities in Lemma 8 with Wk = I
large+
k , we obtain

E

(
Nϵ−1∑
k=1

I
large+
k I true

k

)
≥ pE

(
Nϵ−1∑
k=1

I
large+
k

)
(29)

10
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and

E

(
Nϵ−1∑
k=1

I
large+
k (1− I true

k )

)
≤ (1− p)E

(
Nϵ−1∑
k=1

I
large+
k

)
(30)

which gives us

E

(
Nϵ−1∑
k=1

I
large+
k (1− I true

k )

)
≤ 1− p

p
E

(
Nϵ−1∑
k=1

I
large+
k I true

k

)
. (31)

Lemma 13 (Lemma 2.7 from [5]) Under the condition that p > 1/2, we have

E

(
Nϵ−1∑
k=1

I large
k

)
≤ 1

2p− 1

(
2E(NTS) + logγ

(
ᾱ

α1

))
. (32)

Proof Recall that E
(∑Nϵ−1

k=1 I
large
k

)
= E(NF +NT ). Using (25) and (28) it follows that

E(NFS) ≤ E(NF ) ≤
1− p

p
E(NT ) ≤

1− p

p
E(NTS +NU ) =

1− p

p
[E(NTS) + E(NU )]. (33)

Taking into account (27) we have

E(NU ) ≤ E(NFS) + E(NTS) + logγ(ᾱ/α1). (34)

Plugging this into (33) we obtain

E(NFS) ≤
1− p

p

[
E(NFS) + 2E(NTS) + logγ(ᾱ/α1)

]
(35)

and, hence,

2p− 1

p
E(NFS) ≤

1− p

p

[
2E(NTS) + logγ

(
ᾱ

α1

)]
. (36)

This finally implies

E(NFS) ≤
1− p

2p− 1

[
2E(NTS) + logγ

(
ᾱ

α1

)]
. (37)

Now we can bound the expected total number of iterations when αk > ᾱ, using (34) and (37) and
adding the terms to obtain the result of the lemma, namely,

E(NF +NT ) ≤ E(NF +NU +NTS) ≤
1

p
E(NU +NTS) (38)

≤ 1

2p− 1

(
2E(NTS) + logγ

(
ᾱ

α1

))
. (39)

11
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A.3. Final bound on the expected stopping time

We finally prove the main theorem for the Step Search Framework which follows from Lemmas 10
and 13.
Proof Clearly

E(Nϵ) = E

(
Nϵ−1∑
k=1

I
large
k

)
+ E

(
Nϵ−1∑
k=1

(1− I
large
k )

)
(40)

and, hence, using Lemmas 10 and 13 we have

E(Nϵ) ≤
1

2p
E(Nϵ) +

1

2p− 1

(
2E(NTS) + logγ

(
ᾱ

α1

))
. (41)

The result of the theorem follows.

Appendix B. Detailed Proofs for FISTA update

Firstly, we present Lemma 14 showing how {αk, tk} behaves in the updates of Algorithm 1

B.1. Lemma 14 and Proof

Using similar arguments as [18], we can prove the following Lemma:

Lemma 14 Let {αk, tk} be the parameters in Algorithm 1 and let S be the set of successful itera-
tions. Then we have

• αsucc
k−1 t

2
k−1 ≥ αktk(tk − 1) for every successful iteration k,

• αKt2K ≥ (
∑

k∈S,k≤K

√
αk/2)

2 for any number of iterations K.

Proof

• From the update of the algorithm and the fact that k is successful:

tk = t0k =
1 +

√
1 + 4θk−1t

2
k−1

2
, (42)

we have θk−1t
2
k−1 = tk(tk − 1).

The statement of the lemma αsucc
k−1 t

2
k−1 ≥ αktk(tk − 1) is equivalent to

αsucc
k−1 ≥ αkθk−1. (43)

Let k′ be the previous successful iteration prior to k (k′ < k), i.e. αsucc
k−1 = αk′ . By the

definition of k′ we have αk′+1 =
αk′
γ , and θk′ = γ. Since the iterations from k′ + 1 to k − 1

are unsuccessful (if k′ < k − 1):

αk = αk′+1 · γk−k′−1 (44)

θk−1 = θk′γ
k′+1−k (45)

12
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thus

αk = αk′+1 · γk−k′−1 = αk′ · γk−k′−2 (46)

θk−1 = θk′γ
k′+1−k = γk

′+2−k (47)

and it proves the statement:

αkθk−1 = αk′ · γk−k′−2 · γk′+2−k = αk′ . (48)

• αKt2K ≥ (
∑

k∈S,k≤K

√
αk/2)

2 for any number of iterations K. This follows from the proof
of Lemma 3.4 in [18]

B.2. Proof of Lemma 2: Accurate gradient and function estimates and small step size ⇒
successful step

Proof Using the triangle inequality we get ∥gk∥ ≥ (1 − κg) ∥∇f(yk)∥. The L-smoothness of f
and the fact that ∥gk −∇f(yk)∥ ≤ κg∥∇f(yk)∥ yield

f(pαk
(yk)) ≤ f(yk)− αk(∇f(yk)− gk)

T gk − αk ∥gk∥
2 +

Lα2
k

2
∥gk∥2

≤ f(yk) + κgαk ∥gk∥ ∥∇f(yk)∥ − αk ∥gk∥
2 +

Lα2
k

2
∥gk∥2

≤ f(yk) +
κg

1− κg
αk ∥gk∥

2 − αk ∥gk∥
2 +

Lα2
k

2
∥gk∥2 (49)

Since the estimates satisfies |fy
k − f(yk)| ≤ κfα

2
k ∥gk∥

2, |fp
k − f(pαk

(yk))| ≤ κfα
2
k ∥gk∥

2, we
obtain

fp
k ≤ κfα

2
k ∥gk∥

2 + f(pαk
(yk))

≤ κfα
2
k ∥gk∥

2 + f(yk) +
κg

1− κg
αk ∥gk∥

2 − αk ∥gk∥
2 +

Lα2
k

2
∥gk∥2 + κfα

2
k ∥gk∥

2

≤ κfα
2
k ∥gk∥

2 + (f(yk)− fy
k ) + fy

k +
κg

1− κg
αk ∥gk∥

2 − αk ∥gk∥
2 +

Lα2
k

2
∥gk∥2

≤ fy
k + 2κfα

2
k ∥gk∥

2 +
κg

1− κg
αk ∥gk∥

2 − αk ∥gk∥
2 +

Lα2
k

2
∥gk∥2 . (50)

The result follows by noting fp
k ≤ fy

k − αk ∥gk∥
2
(
1−2κg

1−κg
− αk

(
L
2 + 2κf

))
.

B.3. Proof of Lemma 4: Equation for an unsuccessful step

Proof From the updates of Algorithm 1, we get the following dynamics of the triplet
(
xk, x

prev
k , tk

)
:(

xk, x
prev
k , tk

)
=
(
xk−1, x

prev
k−1 , tk−1

)
for every unsuccessful iteration k (51)

13
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From this property and from the definition of uk and vk (involving tk, xk and xprevk ), we get that

uk = uk−1 and vk = vk−1 (52)

Finally, from the definition of αsucc
k , it follows that when k is not successful then αsucc

k = αsucc
k−1 .

Combining these with the fact that tk, uk and vk are invariant, we obtain the desired equation Nk =
Nk−1 for every unsuccessful iteration k.

B.4. Proof of Lemma 5: Bounds for a successful step

Proof Since k is a successful iteration, we have fp
k ≤ fy

k − αkη ∥gk∥2. Also (xk, x
prev
k ) =

(pαk
(yk), xk−1); tk = t0k. Hence we have

f(xk) ≤ f(yk)− αkη ∥gk∥2 + [f(xk)− fp
k ] + [fy

k − f(yk)]. (53)

Combining this with the convexity of f at x and yk that

f(x) ≥ f(yk) +∇f(yk)
⊤(x− yk), (54)

we have

f(x)− f(xk) ≥ ∇f(yk)
⊤(x− yk) + αkη ∥gk∥2 − [(fy

k − f(yk)) + (f(xk)− fp
k )]. (55)

Apply this equation for x = xk−1 and x = x∗ we have

f(xk−1)− f(xk) ≥ ∇f(yk)
⊤(xk−1 − yk) + αkη ∥gk∥2 − [(fy

k − f(yk)) + (f(xk)− fp
k )],

f(x∗)− f(xk) ≥ ∇f(yk)
⊤(x∗ − y) + αkη ∥gk∥2 − [(fy

k − f(yk)) + (f(xk)− fp
k )]. (56)

Let vk = f(xk)− f(x∗) then

vk−1 − vk ≥ ∇f(yk)
⊤(xk−1 − yk) + αkη ∥gk∥2 − [(fy

k − f(yk)) + (f(xk)− fp
k )],

−vk ≥ ∇f(yk)
⊤(x∗ − yk) + αkη ∥gk∥2 − [(fy

k − f(yk)) + (f(xk)− fp
k )]. (57)

Multiplying the first equality by tk − 1 and adding to the second equality, we get

(tk − 1)vk−1 − tkvk ≥ ∇f(yk)
⊤((tk − 1)xk−1 + x∗ − tkyk) + tkαkη ∥gk∥2

− tk[(f
y
k − f(yk)) + (f(xk)− fp

k )]. (58)

Multiplying the previous inequality by tk we have

tk(tk − 1)vk−1 − t2kvk ≥ tk∇f(yk)
⊤((tk − 1)xk−1 + x∗ − tkyk) + t2kαkη ∥gk∥2

− t2k[(f
y
k − f(yk)) + (f(xk)− fp

k )]. (59)

Now using the fact that xk = pαk
(yk) = yk − αkgk, we get that αkgk = yk − xk. Therefore

tk(tk − 1)vk−1 − t2kvk

≥ tk[∇f(yk)− gk + gk]
⊤((tk − 1)xk−1 + x∗ − tkyk) +

η

αk
∥tk(yk − xk)∥2

14
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− t2k[(f
y
k − f(yk)) + (f(xk)− fp

k )]

≥ tkg
⊤
k ((tk − 1)xk−1 + x∗ − tkyk) +

η

αk
∥tk(yk − xk)∥2

+ tk[∇f(yk)− gk]
⊤((tk − 1)xk−1 + x∗ − tkyk)− t2k[(f

y
k − f(yk)) + (f(xk)− fp

k )]

≥ tk
1

αk
(yk − xk)

⊤((tk − 1)xk−1 + x∗ − tkyk) +
η

αk
∥tk(yk − xk)∥2

+ tk[∇f(yk)− gk]
⊤((tk − 1)xk−1 + x∗ − tkyk)− t2k[(f

y
k − f(yk)) + (f(xk)− fp

k )]

≥ tk
1

αk
(yk − xk)

⊤((tk − 1)xk−1 + x∗ − tkxk) + tk
1

αk
(yk − xk)

⊤tk(xk − yk)

+
η

αk
∥tk(yk − xk)∥2 + tk[∇f(yk)− gk]

⊤((tk − 1)xk−1 + x∗ − tkyk)

− t2k[(f
y
k − f(yk)) + (f(xk)− fp

k )]

≥ tk
1

αk
(yk − xk)

⊤((tk − 1)xk−1 + x∗ − tkxk)−
1

αk
∥tk(xk − yk)∥2

+
η

αk
∥tk(yk − xk)∥2 + tk[∇f(yk)− gk]

⊤((tk − 1)xk−1 + x∗ − tkyk)

− t2k[(f
y
k − f(yk)) + (f(xk)− fp

k )]. (60)

Multiply the final statement by 2αk we get

2αktk(tk − 1)vk−1 − 2αkt
2
kvk

≥ 2tk(yk − xk)
⊤((tk − 1)xk−1 + x∗ − tkxk)− 2 ∥tk(xk − yk)∥2

+ 2η ∥tk(yk − xk)∥2 + 2αktk[∇f(yk)− gk]
⊤((tk − 1)xk−1 + x∗ − tkyk)

− 2αkt
2
k[(f

y
k − f(yk)) + (f(xk)− fp

k )]. (61)

Now we consider the following term:

A = 2tk(yk − xk)
⊤((tk − 1)xk−1 + x∗ − tkxk)− ∥tk(xk − yk)∥2 . (62)

Let a = tk(yk − xk), b = (tk − 1)xk−1 + x∗ − tkxk we have

A = 2tk(yk − xk)
⊤((tk − 1)xk−1 + x∗ − tkxk)− ∥tk(xk − yk)∥2

= 2ab− a2

= b2 − b2 + 2ab− a2 = b2 − (a− b)2

= ∥(tk − 1)xk−1 + x∗ − tkxk∥2 − ∥(tk − 1)xk−1 + x∗ − tkxk − tk(yk − xk)∥2

= ∥(tk − 1)xk−1 + x∗ − tkxk∥2 − ∥(tk − 1)xk−1 + x∗ − tkyk∥2 . (63)

Since k is a successful iteration, we have that xprevk = xk−1. From the definition of uk

uk = (tk − 1)xprevk + x∗ − tkxk, (64)

we have that

uk = (tk − 1)xk−1 + x∗ − tkxk. (65)
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Now from the FISTA step:

yk = xk−1 +
tk−1 − 1

tk
(xk−1 − xprevk−1 ), (66)

we have

tkyk = tkxk−1 + (tk−1 − 1)(xk−1 − xprevk−1 ). (67)

Combining these equations with (63) we get:

A = ∥(tk − 1)xk−1 + x∗ − tkxk∥2 − ∥(tk − 1)xk−1 + x∗ − tkyk∥2

= ∥uk∥2 −
∥∥(tk − 1)xk−1 + x∗ − tkxk−1 − (tk−1 − 1)(xk−1 − xprevk−1 )

∥∥2
= ∥uk∥2 −

∥∥−tk−1xk−1 + x∗ + (tk−1 − 1)xprevk−1

∥∥2
= ∥uk∥2 − ∥−uk−1∥2 . (68)

Substituting back to previous equality (61) we get

2αktk(tk − 1)vk−1 − 2αkt
2
kvk

≥ ∥uk∥2 − ∥uk−1∥2 − ∥tk(xk − yk)∥2 + 2η ∥tk(yk − xk)∥2 + 2αktk[∇f(yk)− gk]
⊤(−uk−1)

− 2αkt
2
k[(f

y
k − f(yk)) + (f(xk)− fp

k )]

≥ ∥uk∥2 − ∥uk−1∥2 + (2η − 1) ∥tk(yk − xk)∥2 − 2αktk[∇f(yk)− gk]
⊤uk−1

− 2αkt
2
k[(f

y
k − f(yk)) + (f(xk)− fp

k )]. (69)

Note that η ≥ 1
2 we have (2η − 1) ∥tk(yk − xk)∥2 ≥ 0 and

2αktk(tk − 1)vk−1 − 2αkt
2
kvk ≥ ∥uk∥2 − ∥uk−1∥2 −Bk (70)

where Bk = 2αktk(∇f(yk)− gk)
⊤uk−1 + 2αkt

2
k(f

y
k − f(yk) + f(xk)− fp

k ).
From Lemma 14 we have αsucc

k−1 t
2
k−1 ≥ αktk(tk−1) for every successful iteration k. Also since

k is successful, we have αk = αsucc
k . Thus we have the final bound of Lemma 5.

B.5. Proof of Theorem 6: Upper bound of the number of large true successful steps

Proof We have

NK −N0 =
∑

k∈S,k≤K

(Nk −Nk−1), (71)

for every index K. We apply Lemma 5 for successful iterations and have

NK −N0 =
∑

k∈S,k≤K

(Nk −Nk−1) ≤
∑

k∈S,k≤K

Bk (72)

By the definition of Nk:(
2αsucc

K t2KvK + ∥uK∥2
)
−
(
2αsucc

0 t20v0 + ∥u0∥2
)
≤

∑
k∈S,k≤K

Bk (73)
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where by the definition of Bk

Bk = 2αktk(∇f(yk)− gk)
⊤uk−1 + 2αkt

2
k(f

y
k − f(yk) + f(xk)− fp

k ). (74)

We further have

∑
k∈S,k≤K

Bk ≤

∣∣∣∣∣∣
∑

k∈S,k≤K

Bk

∣∣∣∣∣∣ ≤
∑

k∈S,k≤K

|Bk| ≤
K∑
k=1

|Bk|

≤
K∑
k=1

|2αktk(∇f(yk)− gk)
⊤uk−1 + 2αkt

2
k(f

y
k − f(yk) + f(xk)− fp

k )|

≤
K∑
k=1

2αktk∥(∇f(yk)− gk)∥ · ∥uk−1∥+
K∑
k=1

2αkt
2
k|(f

y
k − f(yk)) + (f(xk)− fp

k )|

(75)

and plugging back to the previous inequality, we have the following for every iteration K:

2αsucc
K t2KvK + ∥uK∥2 ≤

(
2αsucc

0 t20v0 + ∥u0∥2
)
+

K∑
k=1

2αktk∥(∇f(yk)− gk)∥ · ∥uk−1∥

+

K∑
k=1

2αkt
2
k|(f

y
k − f(yk)) + (f(xk)− fp

k )| (76)

Ignoring the positive term 2αsucc
K t2KvK , we have

∥uK∥2 ≤
(
2αsucc

0 t20v0 + ∥u0∥2
)
+

K∑
k=1

2αktk∥(∇f(yk)− gk)∥ · ∥uk−1∥

+
K∑
k=1

2αkt
2
k|(f

y
k − f(yk)) + (f(xk)− fp

k )| (77)

Changing the index of the second term, we have

∥uK∥2 ≤
(
2αsucc

0 t20v0 + ∥u0∥2
)
+

K−1∑
k=0

2αk+1tk+1∥(∇f(yk+1)− gk+1)∥ · ∥uk∥

+

K−1∑
k=0

2αk+1t
2
k+1|(f

y
k+1 − f(yk+1)) + (f(xk+1)− fp

k+1)|

≤ 2αsucc
0 t20v0 + ∥u0∥2 + 2α1t1∥(∇f(y1)− g1)∥ · ∥u0∥

+
K−1∑
k=0

2αk+1t
2
k+1|(f

y
k+1 − f(yk+1)) + (f(xk+1)− fp

k+1)|

+

K∑
k=1

2αk+1tk+1∥(∇f(yk+1)− gk+1)∥ · ∥uk∥
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≤ SK +
K∑
k=1

µk+1∥uk∥, (78)

where

SK = 2αsucc
0 t20v0 + ∥u0∥2 + 2α1t1∥(∇f(y1)− g1)∥∥u0∥+

+

K−1∑
k=0

2αk+1t
2
k+1|(f

y
k+1 − f(yk+1)) + (f(xk+1)− fp

k+1)|

µk = 2αktk∥(∇f(yk)− gk)∥ (79)

We have

Sk = 2αsucc
0 t20v0 + ∥u0∥2 + 2α1t1∥(∇f(y1)− g1)∥∥u0∥+ Fk (80)

where Fk =
∑k−1

i=0 2αi+1t
2
i+1|(f

y
i+1 − f(yi+1)) + (f(xi+1)− fp

i+1)|.

(Sk)
1/2 =

√
2αsucc

0 t20v0 + ∥u0∥2 + µ1∥u0∥+ Fk

≤
√

2αsucc
0 t20v0 + ∥u0∥2 + µ2

1 + ∥u0∥2 + Fk

≤
√

2αsucc
0 t20v0 + 2 ∥u0∥2 + µ2

1 + Fk

≤
(
2αsucc

0 t20v0 + 2 ∥u0∥2
)1/2

+ µ1 + (Fk)
1/2 = C1 + µ1 + (Fk)

1/2 (81)

where C1 =
(
2αsucc

0 t20v0 + 2 ∥u0∥2
)1/2

is a constant.
Thus applying Lemma 1 in [20], we have for every k:

∥uk∥ ≤ 1

2

k∑
i=1

µi+1 +

Sk +

(
1

2

k∑
i=1

µi+1

)2
1/2

(82)

≤
k∑

i=1

µi+1 + (Sk)
1/2 ≤

k+1∑
i=1

µi + C1 + (Fk)
1/2 (83)

Dropping the term ∥uK∥2 in the inequality (76) and using the bound on ∥uk∥ we have:

2αsucc
K t2KvK

≤ 2αsucc
0 t20v0 + ∥u0∥2 +

K∑
k=1

2αktk∥(∇f(yk)− gk)∥ · ∥uk−1∥

+

K∑
k=1

2αkt
2
k|(f

y
k − f(yk)) + (f(xk)− fp

k )|

≤ 2αsucc
0 t20v0 + ∥u0∥2 +

K∑
k=1

µk · ∥uk−1∥+ FK
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≤ 2αsucc
0 t20v0 + ∥u0∥2 +

K∑
k=1

µk ·

[
k∑

i=1

µi + C1 + (Fk)
1/2

]
+ FK

≤ 2αsucc
0 t20v0 + ∥u0∥2 +

K∑
k=1

µk ·

[
k∑

i=1

µi

]
+ C1

K∑
k=1

µk + (FK)1/2
K∑
k=1

µk + FK

≤ 2αsucc
0 t20v0 + ∥u0∥2 +

K∑
k=1

µk ·

[
k−1∑
i=1

µi

]
+

K∑
k=1

µ2
k +

1

2
C2
1 +

(
K∑
k=1

µk

)2

+
1

2
FK + FK

≤ 3αsucc
0 t20v0 + 2 ∥u0∥2 + 3

K∑
k=1

µk ·

[
k−1∑
i=1

µi

]
+ 2

K∑
k=1

µ2
k +

3

2
FK (84)

where the last line follows from
(∑K

k=1 µk

)2
= 2

∑K
k=1 µk ·

[∑k−1
i=1 µi

]
+
∑K

k=1 µ
2
k and the

fact that 1
2C

2
1 = αsucc

0 t20v0 + ∥u0∥2.
Recall that Nϵ be the stopping time that Nϵ = inf{k : vk ≤ ϵ}. Hence for every K ≤ Nϵ − 1,

we have that vK > ϵ and

2αsucc
K t2K

≤
3αsucc

0 t20v0 + 2 ∥u0∥2 + 3
∑K

k=1 µk ·
[∑k−1

i=1 µi

]
+ 2

∑K
k=1 µ

2
k +

3
2FK

vK

≤
3αsucc

0 t20v0 + 2 ∥u0∥2 + 3
∑K

k=1 µk ·
[∑k−1

i=1 µi

]
+ 2

∑K
k=1 µ

2
k +

3
2FK

ϵ
(85)

Let NK
TS be the set of true successful iterations with αk ≥ ᾱ, k ≤ K and NK

TS be the cardinality

of that set. Using the inequality αsucc
K t2K ≥

(∑
k∈S,k≤K

√
αk/2

)2
for K ≤ Nϵ − 1 from Lemma

14 we have

αsucc
K t2K ≥

 ∑
k∈S,k≤K

√
αk/2

2

≥

 ∑
k∈NK

TS ,k≤K

√
αk/2

2

≥
(
NK

TS

√
ᾱ/2

)2
=

1

4
(NK

TS)
2ᾱ.

(86)

Substituting this to the previous inequality we get the following for K ≤ Nϵ − 1

(NK
TS)

2 ≤ 2

ᾱϵ

[
3αsucc

0 t20v0 + 2 ∥u0∥2 + 3
K∑
k=1

µk ·

[
k−1∑
i=1

µi

]
+ 2

K∑
k=1

µ2
k +

3

2
FK

]
(87)

Let IKϵ be the event K ≤ Nϵ − 1. Taking total expectation we have:

E[(NK
TS)

2]

≤ 2

ᾱϵ

[
3αsucc

0 t20v0 + 2 ∥u0∥2 + 3E

[
K∑
k=1

µk ·

(
k−1∑
i=1

µi

)]
+ 2E

[
K∑
k=1

µ2
k

]
+

3

2
E[FK ]

]
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≤ 2

ᾱϵ

[
3αsucc

0 t20v0 + 2 ∥u0∥2 + 3E

(
K∑
k=1

k−1∑
i=1

E [µkµi]

)
+ 2E

(
K∑
k=1

E
[
µ2
k

])]

+
2

ᾱϵ

[
3

2
E

(
K∑
k=1

E
(
2αkt

2
k|f

y
k − f(yk) + f(xk)− fp

k |
))]

(88)

where the last line follows from the general Wald’s identity as it satisfies the following condi-
tions:

Lemma 15 (Wald’s identity) Assume that

• {Xn}n≥0 are finite-mean random variables.

• N is a stopping time for the sequence {Xn}n≥0

• The infinite series satisfies

∞∑
n=1

E[|Xn|1{N≥n}] < ∞.

Then we have

E

[
N∑

n=1

Xn

]
= E

[
N∑

n=1

E[Xn]

]

From Assumption 2(i) we have:

E
[
µ2
k|FG·F

k−1

]
= E

[
α2
kt

2
k∥(∇f(yk)− gk)∥2|FG·F

k−1

]
≤ 1

k2+β
, (89)

which leads to (
E
[
µk|FG·F

k−1

])2 ≤ E
[
µ2
k|FG·F

k−1

]
≤ 1

k2+β
, (90)

thus

E
[
µk|FG·F

k−1

]
≤ 1

k1+0.5β
, (91)

Taking the total expectation we have

E
[
µ2
k

]
≤ 1

k2+β
and E [µk] ≤

1

k1+0.5β
, (92)

Now we consider the quantity E
[
µkµi|FG·F

k−1

]
where i < k. From the definition of FG·F

k−1 we have
that it contains the information of gk−1, f

y
k−1, f

p
k−1 and yk−1, thus determines the quantities in step

6-10 of Algorithm 1 and includes µk−1 = 2αk−1tk−1∥(∇f(yk−1)− gk−1)∥.
Hence for every i < k we have µi ∈ FG·F

k−1 and

E
[
µkµi|FG·F

k−1

]
= E

[
µk|FG·F

k−1

]
µi (93)
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Now we consider the following term for i < k ≤ K:

E [µkµi] = E
[
E
[
µkµi|FG·F

k−1

]]
(94)

= E
[
E
[
µk|FG·F

k−1

]
µi

]
= E

[
E
[

1

k1+0.5β
µi

]]
=

1

k1+0.5β
E
[
E
[
µi|FG·F

i−1

]]
=

1

k1+0.5β

1

i1+0.5β

Using similar derivations in the previous bound (88) we have:

E[(NK
TS)

2]

≤ 2

ᾱϵ

[
3αsucc

0 t20v0 + 2 ∥u0∥2 + 3E

(
K∑
k=1

k−1∑
i=1

E [µkµi]

)
+ 2E

(
K∑
k=1

E
[
µ2
k

])]

+
2

ᾱϵ

[
3E

(
K∑
k=1

E
(
αkt

2
k|f

y
k − f(yk) + f(xk)− fp

k |
))]

≤ 2

ᾱϵ

[
3αsucc

0 t20v0 + 2 ∥u0∥2 + 3E

(
K∑
k=1

1

k1+0.5β

k−1∑
i=1

1

i1+0.5β

)
+ 2E

(
K∑
k=1

1

k2+β

)]

+
2

ᾱϵ

[
E

(
K∑
k=1

6

k1+β′

)]
. (95)

Note that
K∑
k=1

1

k1+0.5β
< 1 +

∞∑
k=2

1

k1+0.5β
< 1 +

∫ ∞

1

1

x1+0.5β
dx =

β + 2

β

K∑
k=1

1

k1+β′ < 1 +
∞∑
k=2

1

k1+β′ < 1 +

∫ ∞

1

1

x1+β′ dx =
β′ + 1

β′

and
K∑
k=1

1

k2+β
< 1 +

∞∑
k=2

1

k2+β
< 1 +

∫ ∞

1

1

x2+β
dx =

β + 2

β + 1

we have the final bound for E[(NK
TS)

2]:

E[(NK
TS)

2] ≤ 2

ᾱϵ

[
3αsucc

0 t20v0 + 2 ∥u0∥2 +
3(β + 2)2

β2
+

2(β + 2)

β + 1
+

6(β′ + 1)

β′

]
. (96)

Finally, by the expectation inequality we have:

E[NK
TS ] ≤

√
2

ᾱϵ

[
3αsucc

0 t20v0 + 2 ∥u0∥2 +
3(β + 2)2

β2
+

2(β + 2)

β + 1
+

6(β′ + 1)

β′

]
. (97)
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for every K ≤ Nϵ − 1. Thus

E[NTS ] ≤

√
2

ᾱϵ

[
3αsucc

0 t20v0 + 2 ∥u0∥2 +
3(β + 2)2

β2
+

2(β + 2)

β + 1
+

6(β′ + 1)

β′

]
. (98)
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