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ABSTRACT

In many real-world settings, norms, regulations, or economic incentives permit the
sharing of models but not data across environments. Prominent examples arise in
healthcare due to regulatory concerns. In this scenario, the practitioner wishes to
adapt the model to each new environment but faces the danger of losing perfor-
mance on previous environments due to the well-known problem of catastrophic
forgetting. In this paper, we propose Generate-to-Discriminate (G2D), a novel
approach that leverages recent advancements in generative models to alleviate the
catastrophic forgetting problem in continual learning. Unlike previous approaches
based on generative models that primarily use synthetic data for training the label
classifier, we use synthetic data to train a domain discriminator. Our method in-
volves the following steps: For each domain, (i) fine-tune the classifier and adapt
a generative model to the current domain data; (ii) train a domain discriminator to
distinguish synthetic samples from past versus current domain data; and (iii) dur-
ing inference, route samples to the respective classifier. We compare G2D to an
alternative approach, where we simply replay the generated synthetic data, and,
surprisingly, we find that training a domain discriminator is more effective than
augmenting the training data with the same synthetic samples. We consistently
outperform previous state-of-the-art domain-incremental learning algorithms by
up to 7.6 and 6.2 points across three standard domain incremental learning bench-
marks in the vision and language modalities, respectively, and 10.0 points on a
challenging real-world dermatology medical imaging task.

1 INTRODUCTION

In continual learning, we would like to adapt our model to each new environment (forward transfer)
in a sequence of tasks, while retaining the ability to predict accurately on data drawn from previous
environments (backward transfer) (Parisi et al., 2019). However, naive sequential training on each
new dataset can result in failures of backward transfer (sometimes referred to as catastrophic for-
getting (McCloskey & Cohen, 1989; French, 1999)), where adaptation to new tasks coincides with
performance degradation on previously seen environments.

We study the domain-incremental setting, where the set of possible labels is the same across envi-
ronments and the goal, after each adaptation, is to produce a system that performs well at test time on
examples drawn at random among all previously seen domains. Crucially, domain identifiers are not
given at test time. But for the prohibition on data sharing, one could simply perform experience re-
play, training on the union of all available data (Chaudhry et al., 2019b). However, these approaches
are often not viable in many real-world scenarios, where data regulations and security requirements
create formidable obstacles to sharing data across institutions. In particular, we are motivated by
healthcare applications such as medical imaging and risk prediction, where performance drops have
been noted across institutions and time periods (Zech et al., 2018; Pooch et al., 2020; Guan & Liu,
2021; Otles et al., 2021; Finlayson et al., 2021; Zhou et al., 2023). These performance drops owe
to diverse causes, including differences in patient demographics, scanning equipment, and image
acquisition techniques. Moreover, these medical settings exhibit the key aspects of the continual
learning setup: model sharing is often permitted, even in settings where data sharing is not.

Current approaches to this problem involve either training a single comprehensive classifier model
with constraints to help mitigate forgetting (e.g., EWC Kirkpatrick et al. (2017)) or training distinct
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Figure 1: Generate to Discriminate (G2D); At train time, we i) fine-tune the generator and expert
classifier and ii) train a domain discriminator on synthetic images produced by our generator. At
inference time, based on our discriminator’s prediction, we route test samples to the corresponding
expert.

domain-specific classifiers, referred to as experts (as in Aljundi et al. (2017)). Recent advances in
parameter-efficient fine-tuning techniques have enabled the training of domain-specific experts, such
as prompts (Wang et al., 2022a), without significant additional storage requirements, surpassing pre-
vious domain-incremental learning methods. However, these methods necessitate an inference-time
routing mechanism for expert selection and often rely on the implicit domain discriminative capa-
bilities of pre-trained models (Aharoni & Goldberg, 2020). Nevertheless, this simplistic approach
may not consistently perform well across all datasets (see §5.1). Prior works have also explored
generative methods to create synthetic examples for experience replay (Shin et al., 2017; Sun et al.,
2020; Qin & Joty, 2022). However, these approaches have largely under-performed state-of-the-art
discriminative approaches, (see Sun et al. (2020), results in §5.2), due at least in part to the introduc-
tion of noise in the form of low quality synthetic examples. An intriguing question arises: Rather
than employing noisy synthetic examples for generative replay, can they serve a more effective pur-
pose in domain discrimination? More specifically, can we leverage synthetically generated samples
to develop an inference-time routing mechanism?

In this work, we propose Generate-to-Discriminate (G2D), a continual learning method that lever-
ages modern generative models — conditional diffusion models or language models — to generate
per-domain synthetic examples for purposes of domain discrimination (rather than generative re-
play). We then leverage this discriminator to route each example to the best expert. Concretely, for
each new domain, we: (i) fine-tune an expert classifier; (ii) fine-tune a generative model and sample
synthetic examples for when we no longer have access to real data; and (iii) train a domain discrimi-
nator to predict which domain a given sample is drawn from using generated samples from previous
and current domains. At inference time, we pass samples through our domain discriminator, which
routes each sample to its corresponding expert classifier.

Our experiments demonstrate that G2D outperforms previous state-of-the-art replay-based,
regularization-based, and rehearsal-free prompt-based methods by up to 7.6 and 6.2 points on ex-
isting benchmarks across vision and language modalities, respectively. Interestingly, we find that
competitive continual learning baselines, such as recent prompt-based methods, underperform in
some real-world settings (see results in §5.1), emphasizing the need for more diverse and realistic
benchmarks. Towards this end, we further introduce a new publicly available benchmark consisting
of a sequence of four dermatology medical imaging classification tasks. Our approach outperforms
previous work by 10.0 points on this pragmatic new challenge set.

In summary, we contribute the following:

• Generate-to-Discriminate (G2D), an expert routing method for domain-incremental learn-
ing using generative models for domain discrimination.

• Analysis demonstrating that training a domain identifier outperforms augmenting training
data for downstream classification with the same synthetic samples (i.e., the generative
replay approach).
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• A new continual learning benchmark in the medical domain consisting of a sequence of
four dermatology medical imaging classification tasks.

• Experiments demonstrating that our method outperforms previous domain-incremental
learning approaches up to 7.6 and 6.2 points on standard benchmarks for both vision and
language modalities and 10.0 points on our new medical imaging task.

2 RELATED WORK

2.1 CONTINUAL LEARNING AND DOMAIN-INCREMENTAL LEARNING

We focus on the domain-incremental setting of continual learning (Van de Ven & Tolias, 2019).
In this setting, the learner must adapt to new domains while performing well on previously seen
domains. Most continual learning methods fall into the categories of (i) parameter-based and (ii)
data-based regularization techniques (Sodhani et al., 2022). Parameter-based regularization tech-
niques – Two notable methods within this category are Elastic Weight Consolidation (EWC; Kirk-
patrick et al. (2017)) and Synaptic Intelligence (SI; Zenke et al. (2017)). Both EWC and SI assess
the importance of parameters related to previous domains and utilize a penalty term to safeguard
the knowledge stored in those parameters while updating them for new domains. Learning with-
out forgetting (LwF; Li & Hoiem (2017)) is another parameter-based regularization method, where
knowledge of previous tasks are preserved by using the initial task knowledge as a regularizer during
training.

Data-based regularization techniques – these approaches retain a subset of data from previous do-
mains as an episodic memory, which is sparsely replayed during the learning of new domains. Sev-
eral replay-based methods have been proposed, each differing in whether the episodic memory is
utilized during training, such as GEM (Lopez-Paz & Ranzato, 2017), A-GEM (Chaudhry et al.,
2019a), ER (Chaudhry et al., 2019b), MEGA (Guo et al., 2020), or during inference, like MbPA
(de Masson D’Autume et al., 2019; Wang et al., 2020). These methods assume that the true data
can be retained for replay. However, they cannot be used in settings where data sharing is restricted.
To address this limitation, deep generative replay-based methods have been introduced (DGR; Shin
et al. (2017), LAMOL; Sun et al. (2020), LFPT5; Qin & Joty (2021)). The main idea behind these
methods is to learn a generative model of the data and use it to generate samples for experience
replay. Additionally, there have been recent works investigating conditional generative replay meth-
ods, using GAN-based and VAE architectures Van de Ven et al. (2020); Zhao et al. (2022); Lesort
et al. (2019).

In response to the increasing popularity of pre-trained models, another approach has emerged in the
field of continual learning. Mehta et al. (2023) demonstrate that pre-trained initializations implicitly
mitigate the issue of forgetting when sequentially fine-tuning models. Another line of approaches,
known as prompt-based continual learning, exemplified by L2P (Wang et al., 2022c), DualPrompt
(Wang et al., 2022b), S-Prompt (Wang et al., 2022a), and CODA-Prompt (Smith et al., 2023), in-
volves learning a small number of parameters per domain in the form of continuous token embed-
dings or prompts while keeping the remaining pre-trained model fixed. The appropriate prompt is
then selected based on the input data. Although these methods allow for continual learning with-
out rehearsal, they depend on access to pre-trained models that provide a high-quality backbone
across all domains, which may not be available in sensitive environments in real-world deployment
(e.g., healthcare). Another classical approach involves incorporating task-specific experts for each
new task in a sequence and subsequently using an expert gate to direct examples to the appropriate
expert (Aljundi et al., 2017). Like prompt-based methods, this approach relies on the inherent do-
main discriminative abilities of AlexNet (pre-trained with ImageNet) and is susceptible to the same
limitations mentioned earlier in the context of prompt-based methods.

2.2 VISION AND LANGUAGE GENERATIVE MODELS

We fine-tune text-to-image Stable Diffusion (Rombach et al., 2022) for vision modality and T5 for
language modality (Raffel et al., 2020). Conditional image generation has been a prominent research
area, mainly concerning contributions from Generative Adversarial Networks (GANs; Goodfellow
et al. (2014)), Variational Autoencoders (VAE; Kingma & Welling (2022)), and more recently, dif-
fusion models (Ho et al., 2020; Dhariwal & Nichol, 2021). Stable Diffusion is a text-to-image latent
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diffusion model (LDM; Rombach et al. (2021)) conditioned on text embeddings of the class label.
A diffusion model first learns a forward pass by iteratively introducing noise to the initial image.
Subsequently, a backward pass eliminates the noise, recovering the final, generated image. To incor-
porate text conditions, a cross-attention mechanism is integrated into the U-Net architecture. This
allows the infusion of textual information during the image generation process. T5 (Raffel et al.,
2020) is a text-to-text transformer model that addresses a wide variety of language tasks (e.g., trans-
lation, summarization, question answering) in one unified framework. T5 has been trained on C4,
which consists of a cleaned version of Common Crawl. The T5 model has been demonstrated to
have strong performance after finetuning on a wide variety of downstream tasks.

3 GENERATE TO DISCRIMINATE (G2D)

3.1 PROBLEM FORMULATION: DOMAIN-INCREMENTAL LEARNING

We focus on the domain-incremental continual learning setting, where the primary goal is to learn
a model that adapts to each new domain while mitigating catastrophic forgetting on previously
seen domains. Formally, we consider a sequence of T domains, D1 → · · · → DT , where
Dt = {xt

i, y
t
i}

Nt
i=0 represents a dataset corresponding to domain t, sampled from an underlying

distribution Pt(X ,Y). xt
i ∈ X is the i-th image or text passage and yti ∈ Y is its label. Nt is the

total number of samples for domain t.

Furthermore, in the domain incremental scenario, ∀t, the marginal or conditional distributions over
X and Y can change, i.e., Pt(X ) ̸= Pt+1(X ) and Pt(Y|X ) ̸= Pt+1(Y|X ), while the label space Y
remains fixed across all domains. The goal is to learn a predictor fθ : X → Y , parameterized by
θ ∈ RP , to minimize the average expected risk across all N domains. To demonstrate the model’s
learning behavior over the sequence of domains and analyze catastrophic forgetting of the previously
seen domains, we evaluate the model after training on a specific domain t using the test dataset of that
domain, Dtest

t ∼ Pt(X ,Y), and from past domains, Dtest
i ∼ Pi(X ,Y),∀i ∈ [1, . . . , t− 1]. During

sequential training, the domain identity is known. However, during inference, the domain identity
is unknown. Let αs,t denote the accuracy on domain s after training on domain t. Following prior
work (Lopez-Paz & Ranzato, 2017), we compute the average accuracy (At) metric after training on
the domain t. Formally, At is given by At =

1
t

∑t
s=1 αs,t.

3.2 GENERATE TO DISCRIMINATE (G2D)

Generation of synthetic samples for domain discriminator. At each domain Dt, we fine-tune a
generative model G with samples from the current domain {xt

i, y
t
i)}

Nt
i=0. To perform finetuning, we

use parameter efficient techniques, i.e., LoRA (Hu et al., 2021), where the only trainable parameters
are low-rank matrices that are added to the attention layers, and for the text domain we use prompt
tuning (Lester et al., 2021) which learns continuous input token embeddings. Then, we generate
synthetic samplesMt from G. Given synthetically generated data from domainsD1, ...,Dt, we train
a domain discriminator1 Dθt on the union of the synthetically generated samplesM1∪Mt−1∪Mt,
for domain identity prediction (i.e., t-way classification). More formally, we construct a dataset of⋃t

i=1{(x, i)|x ∈ Mi}. In essence, our domain discriminator learns to predict domain membership,
or route samples to their corresponding or most similar domains.

Expert classification models. At each domain Dt, we sequentially fine-tune our classifier fθt as
the expert on domain t, and add fθt to our list of experts {fθ1 , ...., fθt−1

, fθt}. At inference time, we
use our domain discriminator to predict the most likely domain, and the test sample is routed to the
corresponding expert classifier for our class prediction (see Algorithm 1).

4 EXPERIMENT SETUP

4.1 TASKS, DATASET, AND METRICS

In our vision experiments, we assess the effectiveness of our approach using the following datasets:
DomainNet (Peng et al., 2019), CORe50 (Lomonaco & Maltoni, 2017), and DermCL, a newly in-

1In Appendix B, we include an ablation where the domain discriminator is also trained continually.
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Algorithm 1 Generate to Discriminate (G2D)

1: procedure ROUTING ALGORITHM(DT , f = {fθ1 , . . . fθT }, x)
2: domainIdx← DT (x) ▷ Predict the domain index for the given data point
3: fθ ← f [domainIdx] ▷ Index into the list of expert models
4: returnfθ(x) ▷ Run inference using the selected expert model
5: end procedure

troduced benchmark that we have curated from real-world dermatology tasks (Tschandl et al., 2018;
Cassidy et al., 2022; Pacheco et al., 2020; Daneshjou et al., 2022). DomainNet is a domain adap-
tation benchmark, consisting of six distinct domains: real (photos), quickdraw, painting, sketch,
infograph, and clipart (in order). Each domain has a fixed set of 345 classes and roughly 600,000
images. CORe50 is a continuous object recognition benchmark, consisting of multiple views of
the same objects taken in different sessions (variations in background, lighting, pose, occlusions,
etc). There is a sequence of 11 domains, where 3 domains are fixed as an out-of-distribution (OOD)
test set for consistency, and the remaining 8 domains are used for sequential training. Our intro-
duced DermCL benchmark consists of four domains of dermoscopic image datasets – HAM10000
(Tschandl et al., 2018), BCN2000 (Cassidy et al., 2022), PAD-UEFS-20 (Pacheco et al., 2020), and
DDI (Daneshjou et al., 2022), for a multi-class classification task, over 5 unified labels of skin le-
sions. Distribution shifts between domains in datasets exist in terms of patient demographics, dataset
collection period, camera types, and image quality. Following previous practice (e.g., DomainNet),
we keep the task sequence fixed for consistency to HAM10000→ BCN2000→ PAD-UEFS-20→
DDI. For the above datasets, we report the average accuracy averaged over 5 random seeds. For
DermCL, due to a high imbalance in label distribution, we report the average ROC AUC instead of
the average accuracy.

In our text experiments, we evaluate our method on the standard domain-incremental question-
answering benchmark as introduced by de Masson D’Autume et al. (2019). The benchmark con-
sists of three question-answering datasets: SQuAD v1.1Rajpurkar et al. (2016), TriviaQA (Joshi
et al., 2017) and QuAC Choi et al. (2018). TriviaQA has two sections, Web and Wikipedia, which
are considered separate datasets. Following de Masson D’Autume et al. (2019), we process our
dataset to include 60,000-90,000 training and 7,000-10,000 validation examples per domain. We
use four different orderings of domain sequences (see Appendix A). Following prior works (de Mas-
son D’Autume et al., 2019; Wang et al., 2020), we compute F1 score for question answering task
and evaluate the model at the end of all domains, i.e., we compute A4.

4.2 BASELINE METHODS

We compare our method with state-of-the-art continual learning methods that address the domain
incremental setting. First, we compare with elastic weight consolidation EWC (Kirkpatrick et al.,
2017), a traditional, parameter-based regularization method. EWC constrains parameters to lie in
regions of low error for previous domains by applying a penalty term determined by the Fisher
information matrix.

In the context of data-based regularization methods, we compare to generative replay (Generative
Replay), where a buffer of synthetic samples is used to train the label classifier. For the image
domain, we implement our variant of generative replay using Stable Diffusion. We also compare
with experience replay ER with limited examples (Chaudhry et al., 2019b), which maintains a subset
of actual samples from previously seen domains in its buffer (which are not available in reality under
data-sharing constraints).

For the vision datasets, we further compare with recent advances in prompt-based methods which
have greatly boosted state-of-the-art performance across many benchmarks. The objective of such
methods is to optimize prompts (i.e., small learnable parameters) to instruct the model prediction
and explicitly manage task-invariant and task-specific knowledge. We compare our method with
Learning to Prompt (L2P) (Wang et al., 2022c) and S-Prompts (Wang et al., 2022a), since they
address the domain-incremental setting. L2P learns to dynamically prompt a pre-trained model to
learn tasks sequentially under different task transitions. S-Prompts learns independent prompts per
domain and employs a KNN domain identifier to route samples to the corresponding domain at
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inference time and invoke the corresponding set of prompts (i.e., domain-specific model parame-
ters). We note that there exist two variants of S-Prompts (ViT-based, and CLIP-based). For a fair
comparison, we compare with the ViT-based (pre-trained ImageNet checkpoint) variant.

For our text experiments, we consider prominent baselines from prior work. Initially, we assess
vanilla sequential fine-tuning (SeqFT), which does not employ any lifelong learning regularization
techniques. We follow the precedent set in the work of de Masson D’Autume et al. (2019) for ER
and Generative Replay, either retaining or sampling text examples in proportion to the dataset sizes.
Additionally, we compare our approach with methods that leverage replay buffers for task-specific
test-time adaptation, namely MbPA++ (de Masson D’Autume et al., 2019) and Meta-MbPA (Wang
et al., 2020). Meta-MbPA trains the model to attain a more suitable initialization for test-time adapta-
tion and currently represents the state-of-the-art performance on the question-answering benchmark.

Lastly, we also compare against the setting of when access to real data from all domains is allowed
at every task step, termed the multi-task learning (MTL) baseline. This is equivalent to training on
the union of all existing data and can be viewed as an upper bound on performance when there is no
significant negative transfer between domains.

4.3 IMPLEMENTATION DETAILS

Vision. For the vision domain, we fine-tune an off-the-shelf, text-to-image Stable Diffusion (Rom-
bach et al., 2022) model, initialized with the pre-trained checkpoint. For parameter efficiency, we
fine-tune our generator with low-rank adaptation (i.e., LoRA) (Hu et al., 2021)2 where we only adapt
the attention weights and keep the remaining parameters of the UNet architecture frozen. The archi-
tecture of our domain discriminator is a vision transformer (ViT B-16) (Dosovitskiy et al., 2020),
initialized with the pre-trained ImageNet (Deng et al., 2009) checkpoint. The expert classifiers of
our approach also follow the same architecture as the domain discriminator. See Appendix C.1 for
additional implementation details.

Text. For our text generator, we use prompt tuning (Lester et al., 2021) to learn parameter-efficient
models. We use the pre-trained T5-Large v1.1 checkpoint adapted for prompt tuning as the back-
bone (Raffel et al., 2020) and the prompt embeddings are initialized randomly. For training our
domain discriminator and expert, we use low-rank adaptation (LoRA; Hu et al. (2021)) and freeze
the pre-trained BERT-Base (Kenton & Toutanova, 2019) backbone. See Appendix C.2 for additional
implementation and training details.

5 EXPERIMENTS

5.1 MAIN RESULTS: COMPARISON TO OTHER METHODS

Our method, G2D, consistently outperforms various domain-incremental learning baselines in all
three vision benchmarks, as detailed in Tables 1, 2, and 3. Specifically, we observe significant
absolute improvements of approximately 7.6, 6.0, and 10.0 points compared to previous state-of-
the-art methods on DomainNet, CORe50, and DermCL, respectively.

We also note that our method demonstrates better out-of-distribution (OOD) performance compared
to previous baselines, as evidenced by the results on CORe50 in Table 2, where evaluations en-
compass three OOD datasets. Table 3 illustrates our substantial advantage on DermCL compared
to standard benchmarks like DomainNet and CORe50, where we outperform exemplar-free meth-
ods like L2P and S-Prompts. This underscores the need for more realistic benchmarks in domain-
incremental learning. Prompt-based methods, while parameter-efficient, assume alignment between
pre-trained models and downstream tasks, which may not hold in domains like medical imaging.
This highlights the necessity for more comprehensive evaluations of methods in real-world scenar-
ios. Thus, we introduce DermCL to facilitate research in real-world evaluations and demonstrate
the performance of our approach.

For the text domain, our results on the question-answering benchmark are presented in Table 4. It
is evident that our approach, with full fine-tuning, G2D Full FT (66.6), outperforms both ER (61.2)

2See Appendix C.5 for details on LoRA finetuning vs. full finetuning for the generator.
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Method Average Accuracy (↑)
ER (50/class) 52.79± 0.03
EWC 47.62†

L2P 40.15†

S-Prompts 50.62†

Supervised Contrastive - CaSSLe 50.90†

Generative Replay (Ours) 52.97 ± 0.07
G2D 58.45 ± 0.56
G2D (Full FT) 54.37 ± 0.90

Upper Bound (MTL) 64.36 ± 0.04

Table 1: Results on DomainNet. We compare performance in terms of average accuracy after train-
ing on the last domain (averaged over 5 random seeds). ↑ indicates higher is better and † denotes
results obtained from Wang et al. (2022a). G2D (Full FT) is an ablation of our method, where we
use vanilla full fine-tuning instead of the LoRA fine-tuning approach for all models. Highest perfor-
mance is highlighted in green.

Method Average Accuracy (↑)
ER (50/class) 80.10 ± 0.56†

EWC 74.82 ± 0.60†

L2P 78.33 ± 0.06†

S-Prompts 83.13 ± 0.51†

Supervised Contrastive - CaSSLe 75.68± 0.60

Generative Replay (Ours) 86.28 ± 0.55
G2D 89.11 ± 0.30
G2D (Full FT) 86.60 ± 0.28

Upper Bound (MTL) 94.56 ± 0.12

Table 2: Results on CORe50. We compare performance in terms of average accuracy after training
on the last domain (averaged over 5 random seeds). ↑ indicates higher is better and † denotes results
obtained from Wang et al. (2022a).

and test-time adaptation techniques such as MbPA++ (61.9) and Meta-MbPA (64.9) and G2D with
parameter-efficient LoRA (64.7) is competitive with Meta-MbPA. It is important to note that all
of these baseline methods retain actual samples in their buffers (1% of total samples). Similarly,
when evaluating our approach on CORe50, it consistently outperforms methods that preserve real
examples from previous domains, specifically ER and L2P with a buffer size of 50 samples per class
(see Table 2). These findings underscore the ability of our method to enhance performance even in
scenarios characterized by stringent constraints on data sharing.

5.2 HOW TO MOST EFFECTIVELY USE SYNTHETIC DATA FOR CONTINUAL LEARNING?

We empirically evaluate how to more effectively use synthetic data for continual learning, by com-
paring our method G2D to our generative replay alternative. We use the same generator (i.e., Stable
Diffusion or T5) and classifier architectures (ViT B-16 or BERT-base) as G2D, and follow the stan-
dard generative replay approach (Shin et al., 2017): At domain Dt, we finetune the generator G with
samples from the current domain, sample from G, and add the generated samples to a replay buffer.
At domain Dt+1, we sequentially train our classifier on the union of synthetic samples from domains
1, ..., t − 1 and real samples from domain t. We evaluate this generative replay implementation on
all considered benchmarks for comprehensiveness. For the image domain, we show that across all
benchmarks (in Tables 1, 2, and 3), utilizing the same synthetic samples for training a domain dis-
criminator brings an absolute performance boost of 5.5, 2.83, and 8.7 points, respectively, over using
the synthetic samples for finetuning the downstream classifier. On the question-answering bench-
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Method ROC AUC (↑)
ER (50/class) 84.94± 0.69
EWC 72.29 ± 1.71
L2P 81.88 ± 0.48
S-Prompts 79.38 ± 0.12
Supervised Contrastive - CaSSLe 73.45± 0.70

Generative Replay (Ours) 81.29 ± 0.57
G2D 89.14 ± 2.47
G2D (Full FT) 89.95 ± 1.47

Upper Bound (MTL) 91.56 ± 0.56

Table 3: Results on DermCL. Comparing performance in terms of average ROC AUC after training
on the last domain (averaged over 5 random seeds). L2P and G2D use a buffer size of 0 images per
class. ↑ indicates higher is better.

Method Average F1(↑)
ER 61.2 ± 1.8
MbPA++ 61.9 ± 0.2†

Meta-MbPA 64.9 ± 0.3†

SeqFT 56.6 ± 5.7
EWC 55.9 ± 3.7
Generative Replay (Ours) 58.5 ± 3.7
G2D 64.7 ± 0.2
G2D (Full FT) 66.6 ± 0.7

Upper Bound (MTL) 68.6 ± 0.0

Table 4: Results on Question Answering task. Comparing performance in terms of average F1 across
methods after training on the last domain (averaged over 4 random domain sequences). ↑ indicates
higher is better, † denotes results obtained from Wang et al. (2020). ER, MbPA++ and Meta-MbPA
use a buffer size of 1% actual samples. Our approach demonstrates competitive performance, even
in the absence of retaining the actual samples, when compared to state-of-the-art methods.

mark, our method improves over generative replay by 6.2 F1 points. Note for generative replay, full
fine-tuning leads to greater performance than the LoRA fine-tuning approach; thus we report the
former for optimal performance of the baseline (see Appendix C.3 for details). In Table 8 (see Ap-
pendix F), we visualize generated samples for their quality. These gains can be attributed to the fact

Figure 2: Domain discrimination visualization. t-SNE visualizations of domain clusterings for
CORe50 benchmark (8 domains in total). On the left, the clusterings for the S-Prompts (Wang
et al., 2022a) domain identification method is visualized. On the right, the clusterings for our do-
main discriminator is visualized.
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that marginal distribution over a given domain p(x) can be modeled more easily than the conditional
p(y|x). Therefore, we observe that synthetic samples used for domain discrimination bring greater
performance improvement than those used for downstream classification.

5.3 DOMAIN DISCRIMINATION ANALYSIS

We analyze our domain discriminator, by comparison with the following methods. For the image
domain, we compare it with a previous state-of-the-art domain incremental learning method, S-
Prompts (Wang et al., 2022a). S-Prompts utilizes K-Means during training to store centroids for
each domain and employ K-NN during inference to identify the domain of a given test image feature
by determining its nearest centroid. Notably, both K-Means and K-NN operations are conducted
in the feature space of the fixed pre-trained vision transformer. In Figure 2, we present t-SNE
plots (Van der Maaten & Hinton, 2008) illustrating domain clusterings for the CORe50 benchmark,
which comprises a total of eight domains. These plots compare the performance of the S-Prompts
domain identification method with our discriminator. It is evident that our method achieves superior
clustering and excels in domain identification (achieving 98.48% accuracy). Figure 3 displays t-SNE
plots for the text domain, visualizing the domain discriminative capability (Aharoni & Goldberg,
2020) of a pre-trained language model with a discriminator trained on synthetic samples. Notably,
there is confusion between the TrWeb (orange) and TrWiki (green) domains, both derived from the
same TriviaQA dataset (Joshi et al., 2017). Similarly, the TrWiki (green) and SQuAD (red) domains,
originating from the same Wikipedia source, necessitate explicit discriminator training. It is evident
that training an explicit discriminator results in superior clustering. To assess domain identification
performance using generated samples (achieving 94.5% accuracy), we compare it with a theoretical
upper bound, namely a discriminator trained using real samples (achieving 97.1% accuracy). The
results show very close performance, with similar clustering patterns. In summary, it is evident that
our method significantly improves domain identifiability for both modalities.

5.4 PARAMETER EFFICIENT FINE-TUNING ANALYSIS

Although we focus on high-stakes settings (e.g., healthcare), where optimizing performance is often
most important, we employ parameter-efficient fine-tuning methods to address potential efficiency
concerns. For the vision domain generator, we fine-tune only the LoRA weight matrices (Hu et al.,
2021) added to the attention layers of the frozen pre-trained backbone. For the text domain, we
use prompt tuning (Lester et al., 2021) to learn parameter-efficient generative models. Despite this
great reduction in parameters, we observe that the performance of our domain discriminator trained
on these generated samples is sufficient for domain identification and outperforms previous existing
methods. For our downstream classifiers, we fine-tune only 1.04 ∼ 2.5% of trainable parameters.
We further analyze a full fine-tuning variant of our method, i.e., G2D (Full FT), to study the potential
performance drop we are experiencing from the great reduction in parameters. We find that our
method is comparable or at times has better performance than the naive full fine-tuning variant (see
Tables 1, 2, 3, and 4).

6 CONCLUSION

In this work, we investigate a novel approach to leveraging generative models for continual learn-
ing. We demonstrate its effectiveness across established vision and language benchmarks and a new,
challenging dermatology imaging task, achieving improvements of 7.6, 6.0, 6.2, and 10.0 points over
prior state-of-the-art domain incremental learning approaches. Further, we analyze how to most ef-
fectively leverage the capabilities of generative models and synthetic data for continual learning, by
comparing our method to generative replay. Surprisingly, we find that training a domain identifier
is more effective than using the same synthetic samples to augment training data for downstream
classification. We further analyze our domain discriminator, by comparing it with previous do-
main discrimination approaches, unsupervised clustering methods, and a discriminator trained using
real samples, where we find that our method significantly improves domain identifiability for both
modalities.
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REPRODUCIBILITY STATEMENT

We introduce a novel benchmark DermCL constructed from publicly available dermoscopic image
datasets – HAM10000 (Tschandl et al., 2018), BCN2000 (Cassidy et al., 2022), PAD-UEFS-20
(Pacheco et al., 2020), and DDI (Daneshjou et al., 2022). Following previous practice (e.g., Do-
mainNet), we keep the domain sequence fixed for consistency to HAM10000→ BCN2000→ PAD-
UEFS-20→ DDI and report the average performance over multiple random seeds. Further, in §4.3
and Appendix C, we detail all hyper-parameters to enable the reproducibility of all our experiments.
We also plan to release our code upon publication.

ETHICS STATEMENT

Training large models is expensive and has a detrimental impact on the environment (Strubell et al.,
2019). Continual learning on top of existing models is cheaper and better compared to re-training
from scratch since it requires a much smaller number of steps. With G2D, we aim to reduce the need
to re-train models from scratch whenever a new set of data is added is encountered thereby making
it cheaper and better for the environment. Furthermore, we implement our proposed method with
parameter-efficient fine-tuning techniques, as aforementioned in §5.4.
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Method Average Accuracy (↑)
S-Prompts 83.13 ± 0.51†

G2D 89.11 ± 0.30
G2D (ContDD) 88.13 ± 0.01

Table 5: Ablation results on CORe50: G2D (ContDD) is a variant of our method where the do-
main discriminator is also trained in a continual manner. In the table, we include G2D as well as
S-Prompts (i.e., the previous SOTA method) for easy comparison for the reader. We compare per-
formance in terms of average accuracy after training on the last domain (averaged over 5 random
seeds). ↑ indicates higher is better and † denotes results obtained from Wang et al. (2022a).

A DATASETS AND ORDERINGS

Question Answering. Our processed dataset includes SQuAD with 90, 000 training and 10, 000
validation examples, TriviaQA (Web) with 76, 000 training and 10, 000 validation examples, Triv-
iaQA (Wikipedia) with 60, 000 training and 8, 000 validation examples and QuAC with 80, 000
training and 7, 000 validation examples. We consider the following dataset orders for question an-
swering:
i. QuAC→TrWeb→TrWik→SQuAD
ii. SQuAD→TrWik→QuAC→TrWeb
iii. TrWeb→TrWik→SQuAD→QuAC
iv. TrWik→QuAC→TrWeb→SQuAD

DermCL. Conducting classification on dermoscopic images presents complexities arising from
intraclass variations encompassing lesion texture, scale, and color. This benchmark offers a se-
quence of four dermatology imaging tasks. Distribution shifts are present across all four domains
(HAM10000, BCN2000, PAD-UEFS-20, and, DDI), in both demographics and data collection tech-
niques. BCN2000 dataset was collected from Spanish hospitals between 2010 and 2016, PAD-
UEFS-20 dataset was obtained from Brazilian hospitals in 2020, and HAM10000 dataset was gath-
ered over the past 20 years from hospitals in Austria and Australia. Dermatoscopes were used for
collecting images in BCN2000 and HAM10000, while smartphone cameras were utilized for PAD-
UFES-20. Lastly, Diverse Dermatology Images (DDI) is a biopsy-proven skin disease dataset with
diverse skin tone representation. DDI has been attributed to exhibiting a huge performance drop,
due to the presence of more dark skin tones and uncommon diseases. The label space for DermCL
is defined as the following 5 unified labels: MEL, NEV, BCC, AKIEC, and Other diseases. All four
datasets in the sequence are publicly available.

B ABLATION: CLASS INCREMENTAL LEARNING CHALLENGE OF DOMAIN
DISCRIMINATOR

We include the following ablation to study the performance of when the domain discriminator is also
trained in a continual manner, termed G2D (ContDD). Note that this turns the learning of domain
discriminator into a class-incremental continual learning problem, introducing a new challenge on
top of our original domain incremental learning problem. To assess this, we select the benchmark
dataset with the most number of domains, which is the CORe50 benchmark with a total of 8 different
domains. We find that this continual fine-tuning of the domain discriminator results in a performance
drop of less than 1 point (see Table 6). Overall, our conclusions remain the same in that we still
outperform existing state-of-the-art baselines by a substantial margin.

C IMPLEMENTATION DETAILS

C.1 IMAGE EXPERIMENTS

In our method, we use Stable Diffusion (Rombach et al., 2022) as our conditional diffusion model,
with weights from the CompVis/stable-diffusion-v1-4 checkpoint. We finetune for 250,000 total
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steps with a learning rate of α = 1e − 5, using the LoRA implementation. For the downstream
classification task, we use a ViT-B/16 backbone (Dosovitskiy et al., 2020), pretrained on ImageNet-
1K (Russakovsky et al., 2015). We implement baselines with the same architecture and pre-trained
checkpoints, for consistency. For hyperparameter search, we use the source hold-out performance
to select the best combination of parameters. For each dataset, we perform a sweep over different
combinations of learning rate α ∈ [1e − 4, 5e − 4, 1e − 3, 5e − 3, 1e − 2, 5e − 2, 0.01], and batch
size ∈ [64, 128, 256]. We use default hyperparameters for LoRA, resulting in the rank (r) of 16 and
scaling factor (i.e., lora alpha) of 16. To ensure that we are evaluating our baselines comprehensively,
we also run a hyperparameter search for different regularization values λ ∈ [0.5, 1, 10, 100] for the
Elastic Weight Consolidation (EWC) method. For DomainNet, we train for 20 ∼ 30 epochs. For
CORe50, we train for 10 epochs. and For DermCL, we train for 10 epochs.

C.2 TEXT EXPERIMENTS

For our generator, we use the prompt tuning to learn the parameter-efficient models (Lester et al.,
2021). We use the pre-trained T5-Large v1.1 checkpoint adapted for prompt tuning as the backbone
(Raffel et al., 2020) and the prompt embeddings are initialized randomly. We set the prompt length to
400 tokens which accounts for 819K trainable parameters, i.e., around 0.1% in comparison to 784M
frozen T5-Large parameters. We input a special token into the model and conditionally generate a
document content, question, and answer, all separated by the special tokens. We employ the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 1.0, a warmup ratio of 0.01, and linearly
decay the learning rate over 5 epochs, use a batch size of 8 and set weight decay to 1e−5. Our
maximum sequence length is set to 512, and we truncate the document content after tokenizing the
question-answer pair. During the generation process, we provide multiple text prompts. We use
the following text prompts to conditional generate synthetic samples – “Generate article, question
and answer.”, “Generate context, question and answer.”, “Generate answers by copying from the
generated article.”, “Generate factual questions from the generated article.” During generation, we
use ancestral sampling, which selects the next token randomly based on the model’s probability
distribution over the entire vocabulary, thereby reducing the risk of repetition. We generate samples
with a minimum length of 50 tokens and a maximum of 1,000 tokens, retaining only those samples
that contain exactly one question-answer pair with the answer included in the generated document
content.

For training our domain discriminator and expert, we use the low-rank adaptation (LoRA; Hu et al.,
2021) and freeze the pre-trained BERT-Base (Kenton & Toutanova, 2019) backbone. BERT-base
has 12 Transformer layers, 12 self-attention heads, and 768 hidden dimensions (110M parameters).
We train our discriminator for 5 epochs and expert for 3 epochs using Adam optimizer and the
learning rate is set to 5e-4. For LoRA, we set the dimension of the low-rank matrices (r) to 32 and
the scaling factor to 32, which gives us around 1.2M trainable parameters (1.07% of full BERT-Base
110M parameters). In the case of a full fine-tuning scenario, for training our expert, we mainly
set hyper-parameters as mentioned in de Masson D’Autume et al. (2019). We use Adam as our
optimizer, set dropout to 0.1, and the base learning rate to 3e-5. We use a training batch of size
8, set the maximum total input sequence length after tokenization to 384 and to deal with longer
documents we set document stride to 128. We also set the maximum question length to 64. The
hyper-parameters for baseline methods are set as described in Wang et al. (2020). For ER (and
Generative Replay) we retain (or sample) 1% examples which account for around 6,000 examples
across all four considered domains

C.3 FURTHER IMPLEMENTATION DETAILS OF GENERATIVE REPLAY

We implement Generative Replay following standard practice (Shin et al., 2017), where the down-
stream classifier is continually fine-tuned on the union of synthetic images from previous domains
and real data from the current domain (i.e., all tasks so far are given equal weight). More explicitly,
if we have seen t− 1 tasks so far and currently training on the t-th task, then we consider all t tasks
with equal weight 1

t . This aligns with the manner in which the domain discriminator for G2D is
trained.
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Method DomainNet CORe50
Generative Replay (Full FT) 52.97 ± 0.07 86.28 ± 0.55
Generative Replay (LoRA) 49.67 ± 0.21 83.64 ± 0.45
Generative Replay (LoRA - Matched) 50.12 ± 0.09 84.21 ± 0.46
G2D (Full FT) 54.37 ± 0.90 86.60 ± 0.28
G2D (LoRA) 58.45 ± 0.56 89.11 ± 0.30

Table 6: Generative Replay LoRA ablation results on DomainNet and CORe50. In the table, we
include Generative Replay (Full FT) and both variants of G2D for easy comparison for the reader.
Further experimental details are noted in Appendix C.3. The highest performance is bolded.

We sought to make the comparison with G2D fair by (a) using the same replay buffer (i.e., fixing
to the same set of synthetic images / or text samples) for both methods and (b) using the “same”
fine-tuning approach for classifier models (detailed as follows):

Both approaches (for fine-tuning classifier models of G2D and the classifier for Generative Replay)
are done by sequential fine-tuning from the previous domain checkpoint. Hyperparameter tuning
is done over the same set of hyperparameters (learning rates, batch size, etc.) and chosen based
on performance on the held-out validation set of the first domain. Hyperparameters remain fixed
throughout the domain sequence, for both approaches (see Appendix C.1 and C.2 for hyperparameter
details). For G2D, we employ parameter-efficient fine-tuning (LoRA; Hu et al., 2021) while for G2D
(Full FT), we employ full fine-tuning.

Note that for Generative Replay, we opted against employing parameter-efficient fine-tuning (LoRA;
Hu et al., 2021) techniques due to its inferior performance compared to full fine-tuning (see Table
6). In the case of G2D, for two out of four benchmarks (DomainNet, CORe50), we see that LoRA
does not hurt performance for fine-tuning the classifier, but rather results in slight performance
improvement over full fine-tuning. We hypothesize that in the case of G2D, fine-tuning a smaller
set of parameters is more tractable and perhaps leads to less overfitting, since we are using distinct
sets of weights for simpler tasks (i.e., classification for a specific domain), relative to the more
challenging task of training a common classifier for Generative Replay (i.e., classification on all seen
domains). We run Generative Replay (LoRA) and Generative Replay (LoRA - Matched) ablations
for the two aforementioned benchmarks as follows.

For Generative Replay (LoRA), we use the same LoRA hyperparameters (rank = 16) as we did in
G2D (LoRA), resulting in the same number of trainable parameters 1.29% for both DomainNet and
COre50. For comprehensiveness, we also ran experiments where we “match” the number of total
trainable parameters, which we term Generative Replay (LoRA - Matched). For instance, for Do-
mainNet, we have 6 domains resulting in 6 expert classifiers each with 1.29% trainable parameters.
Thus, in terms of total LoRA parameters, there is a discrepancy between (1) sum of expert classifiers’
LoRA parameters for G2D and (2) single classifier’s LoRA parameters for Generative Replay. To ac-
count for this discrepancy, we adjust the rank hyperparameter to 16 x num expert classifiers to match
the number of total parameters. This results in the exact same number of trainable LoRA parameters
across both methods, resulting in using rank=(16x6)=96 for DomainNet and rank=(16x8)=128 for
CORe50.

We can clearly observe that even after carefully matching the number of total trainable parameters,
we still observe a performance drop when using LoRA for Generative Replay. We hypothesize
that using LoRA more often hurts performance for Generative Replay as the classifier here has to
perform the more challenging task of classification on all seen domains. On the contrary, for G2D,
each classifier expert has a much simpler task of classification for a specific domain.

We note that if the reader wishes to do an apples-to-apples comparison in terms of fine-tuning
techniques, we point the reader to comparing (i) G2D (Full FT) vs. Generative Replay (Full FT)
and (ii) G2D (LoRA) vs. Generative Replay (LoRA) vs. Generative Replay (LoRA-Matched).

Based on the direct comparison in Table 6 of all variants (Full FT, LoRA) for both methods (Gen-
erative Replay, G2D), we highlight benefits of 0.32 ∼ 8.66% improvement for the full fine-tuning
setting and 4.9 ∼ 8.78% improvement for the LoRA fine-tuning setting, which has additional bene-
fits of parameter efficiency. Further, our findings highlight how to better utilize recent PEFT methods
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in continual learning, in that when learning independent weights, performance is often at least on-
par with full fine-tuning. On the other hand, learning one set of parameters for multiple tasks can
lead to performance drops due to this restriction of parameters; therefore, not being able to utilize
PEFT solutions in an optimal fashion. Understanding this phenomena more in detail is an interesting
direction for future work.

C.4 COMPUTATIONAL COST

We elaborate on details regarding computational cost of our method, relative to naive expert learning:
Our method incurs an additional total of 6-8 hours of computational cost on a single A6000 GPU,
due to fine-tuning and sampling from the generator. Training the task discriminator, which takes
less than 1-3 hours is done in parallel with training the expert classifier, so given that we permit the
use of one more GPU, it does not incur additional compute time. There is an accuracy and compute
tradeoff: This increase in compute cost, results in a substantial performance improvement - up to an
absolute 8.1 point increase compared to expert learning (see Table 4). In high-stakes applications
such as healthcare, where missing even a single positive case (e.g., a fatal disease) could have critical
consequences (e.g., a patient’s death), this performance gain is significant, and thus, we deemed this
amount of tradeoff is meaningful.

C.5 LORA FINE-TUNING VS. FULL FINE-TUNING FOR GENERATOR

For parameter efficiency, we finetune our generator with low-rank adaptation (i.e., LoRA) (Hu et al.,
2021). This implementation choice was decided by preliminary results, which demonstrated minor
performance drops, compared to significant gains in terms of parameter efficiency (see Table 7).

Method Classification Accuracy Score (CAS) (↑)
Full Fine-tuning 66.28 ± 0.31
LoRA Fine-tuning 64.17 ± 0.20

Table 7: Ablation results on DomainNet: We compare the Classification Accuracy Score (CAS)
(Ravuri & Vinyals, 2019) for full fine-tuning of the generator vs. LoRA fine-tuning of the generator.
Full fine-tuning the generator achieves a CAS of 66.28 ± 0.31, while LoRA fine-tuning reaches
64.17 ± 0.20, with only fine-tuning at most 2.5% of trainable parameters. Noting this performance
vs parameter efficiency tradeoff, we proceeded with the LoRA-based implementation choice to make
the synthetic data generation process parameter efficient.

D ONGOING DISCUSSION ON UTILITY OF GENERATIVE MODELS IN
HEALTHCARE DEPLOYMENT SETTINGS.

In general, and for good reason, practice in healthcare moves considerably slower than exploratory
machine learning research. It is generally the case that ideas take root in the research community
long before they show up in the clinic. Following this convention, due to the recency of successes
of generative models (relative to discriminative models), contractual or regulatory requirements sur-
rounding generative models is still in nascent stages of development.

What is the current status quo? The setting where model weights may be shared but not the actual
training data is a well-known setting in the healthcare domain (Kamran et al., 2022; Ulloa-Cerna
et al., 2022; Walsh et al., 2023). We elaborate on two examples: (1) Kamran et al. (2022) presents
a multisite external validation study for early identification of COVID-19 patients at risk of clinical
deterioration, which require sharing the model trained on private EHR data from one US hospital
with 12 other US medical centers; (2) Ulloa-Cerna et al. (2022) presents a multisite external valida-
tion study for model development for identifying patients at increased risk of undiagnosed structural
heart disease, which requires sharing the model trained on private EHR data and patient echocardio-
graphy reports from one site with 10 other independent sites. While these are generally examples of
discriminative models being shared across facilities as opposed to generative models, this demon-
strates the general principle that in such domains, model sharing is often permissible in settings
where data sharing is not.
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On one hand, it seems intuitive that healthcare institutions might be queasier about sharing genera-
tive models than sharing discriminative models. On the other hand,

• Healthcare institutions are even queasier about sharing real data — and to this end there is
a large mainstream line of work investigating the use of generative models for direct
sharing or for producing synthetic datasets that could be disseminated in lieu of actual
patient data (Chen et al., 2021; Coyner et al., 2022; DuMont Schütte et al., 2021)

• From a standpoint of most contractual or regulatory requirements, it is not yet clear even
if generative models sit in a different category than discriminative models or if they should
follow the same current regulatory requirements for discriminative models.

• How institutional practices develop and the regulatory environment evolve will be in-
formed, to a large degree, by exploratory research that characterizes both (i) the potential
benefits and (ii) the potential risks associated with the dissemination of generative mod-
els trained on medical data. We see our research as helping to elucidate the potential
benefits.

E DOMAIN DISCRIMINATION CLUSTERINGS

Figure 3: Domain discrimination visualization. t-SNE visualizations of domain clusterings for
question-answering benchmark (4 domains in total). The left plot highlights the implicit domain dis-
criminative nature of pre-trained BERT-Base language model representations (Kenton & Toutanova,
2019). Notably, there is confusion between the TrWeb (orange) and TrWiki (green) domains, both
derived from the same TriviaQA dataset. Similarly, the TrWiki (green) and SQuAD (red) domains,
originating from the same Wikipedia source, necessitate explicit discriminator training. In the mid-
dle plot, we visualize the clustering of representations from the discriminator trained using generated
samples, achieving a domain discrimination accuracy of 94.5%. On the right plot, we present the
clustering from the discriminator trained using real samples, with an accuracy of 97.1%. Remark-
ably, the discriminator trained with synthetic samples closely mirrors the performance and clustering
patterns of the discriminator trained using real data.

F EXAMPLE GENERATIONS

We include example generations for both image and text domains.

F.1 IMAGE DOMAIN

F.2 TEXT DOMAIN
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Figure 4: Examples of generated images from DomainNet.
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Figure 5: Examples of real images from DomainNet (for comparison).
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Dataset Fields Generated sample

Correct
SQuAD Context: During the late 19th and early 20th centuries, the city’s trade sector expanded

greatly, and through the 20th century, more than half of its residents worked to-
ward higher status in the military. Other industries included industry, commerce,
public administration, and medicine. Its largest sector was public services - police,
fire services, and healthcare and was the nation’s third largest.

Question: What is one of the industry sectors that were the biggest?
Answer: public services

Incorrect
Context: In the United Kingdom there is a general agreement between the government and

the private sector in principle that both private and publicly funded institutions of
higher education constitute university colleges. Further, there is a mutual agreement
between the independent college and the university to promote higher education.
However, in both cases all the institutions of higher education are either controlled
by private individuals or by a national agency, in such a way as to protect freedom
of expression.

Question: What are some of the institutions of higher education that are controlled by private
individuals?

Answer: private individuals

Table 8: Generated samples (context, question-answer pair) for the SQuAD domain. For the incor-
rectly generated samples, we underline one possible correct answer.
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