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ABSTRACT

The scarcity of experimental data in materials science often necessitates property
predictions based on large-scale simulations, which may suffer from accuracy and
reliability limitations. Uni-modal representations derived from simulated struc-
tures inherently incorporate approximations—such as the choice of exchange-
correlation functional in Density Functional Theory (DFT)—which constrain ma-
chine learning models in capturing complex experimental characterizations. In
this work, we propose a novel multi-modal framework, MatFusion, that integrates
embeddings from domain-specific large language models (LLMs) and structural
models to enhance the prediction of experimental material properties. Our ap-
proach combines LLM-derived embeddings of material compositions with graph-
based structural representations, achieving a 9.15% reduction in mean absolute er-
ror (MAE) for experimental bandgap prediction. By leveraging both experiential
knowledge from materials science literature and first-principles structural infor-
mation, our framework transcends traditional representation constraints, offering
a powerful paradigm for improving experimental materials property predictions.

1 INTRODUCTION

Materials discovery has traditionally been slow and costly, relying on experimental trial and er-
ror, which inherently limits the pace of innovation. Efficient and accurate property prediction is
crucial for accelerating advancements in fields such as transistors (Radisavljevic et al., 2011), pho-
tovoltaics (Polman et al., 2016), and light-emitting diodes (LEDs)(Schubert & Kim, 2005). Recent
breakthroughs in deep learning have shown great promise in expediting this process by providing
rapid, scalable predictions of material properties, often leveraging large-scale simulation datasets
such as the Materials Project (MP)(Jain et al., 2013) and JARVIS (Choudhary et al., 2020). While
these datasets offer valuable insights, they may not fully capture real-world material performance
due to inherent approximations, system errors, and microstructural variations (Zhuo et al., 2018;
Billah et al., 2025). Beyond simulation-driven approaches, an alternative yet underutilized source
of information is materials science literature, which contains a wealth of experiential knowledge.
Experimental results recorded in text data can be effectively encoded by large language models
(LLMs), generating semantically meaningful embeddings that capture domain-specific insights.
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Figure 1: Overview of MatFusion. Materials composition are used to retrieve structure (either exact
match or fuzzy match through Regex) in the database. Text and graph embeddings are obtained from
LLMs and GNNs. The embeddings are fused through cross-attention and learnable concatenation.

In this work, we introduce MatFusion, a novel multi-modal learning framework that bridges large
language model (LLM) embeddings with structural representations to advance experimental mate-
rials property prediction (see Figure 1). MatFusion leverages text embeddings from DARWIN (Xie
et al., 2024), an LLM designed specifically for materials science, and structural embeddings from
the powerful CrystalFormer (Wang et al., 2024) pre-trained on 55,722 computational structures to
encode crystal graph representations. We retrieve the structure data based on materials composition
using either exact match or fuzzy match through Regex. To effectively integrate these modalities,
we develop an enhanced cross-attention module that fuses text and structural embeddings, providing
unified representations for downstream predictions.

We evaluate MatFusion on the bandgap prediction task, as bandgap is a fundamental material prop-
erty. To this end, we curate two datasets: small and large, where small includes composi-
tional context information, while large consists of compositions alone. Both datasets incorporate
experimental and computational data. Through extensive experiments, we find that (1) MatFusion
performs better on downstream tasks when using composition embeddings alone rather than incor-
porating additional context information; (2) MatFusion significantly enhances experimental bandgap
prediction but offers little improvement for computational bandgap prediction, where structural em-
beddings alone are sufficient; (3) domain-specific text embeddings from DARWIN outperform gen-
eral LLMs (BERT, T5, LLaMA2) in experimental property prediction. Overall, MatFusion improves
experimental bandgap prediction accuracy by 23.72% compared to DARWIN’s standalone text em-
beddings and 9.15% compared to CrystalFormer’s structural embeddings.

2 RELATED WORK

Language models for materials science. Natural language processing (NLP) has been widely
used in materials science. Mat2Vec (Tshitoyan et al., 2019) and MatBERT (Walker et al., 2021)
are pre-trained on materials science literature, which can be further fine-tuned to tackle specific
tasks, such as crystal property prediction (Korolev & Protsenko, 2023; Rubungo et al., 2023), crystal
recommendation and ranking (Qu et al., 2024), and synthesis action retrieval (Song et al., 2023).
These approaches offer an alternative to crystal graph representations by modeling structures based
on text descriptions (Ganose & Jain, 2019).

GNNs for materials. Crystal structure can be constructed as graphs (Xie & Grossman, 2018; Huang
et al., 2022), which crystal GNNs (Chen et al., 2019; Schütt et al., 2021; Batzner et al., 2022;
Chen & Ong, 2022; Liao & Smidt, 2022; Yan et al., 2022; Du et al., 2023) are tailored to learn
their representations. Recently, CrystalFormer (Wang et al., 2024) proposes a graph construction
method that preserves periodic invariance and a crystal graph transformer that can encode angular
information, achieving state-of-the-art performance in various property prediction tasks.

Multi-modal models for molecule. MoleculeBind Mirza et al. (2024) aligned SMILES, molecular
graphs, and 3D structures. Chemeleon (Park et al., 2024) integrates text descriptions in a diffu-
sion model trained on crystal structures. Ock et al. (2024) integrates transformer-based language
models with GNNs in latent space to improve adsorption energy predictions. Both studies utilize
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contrastive learning (Chen et al., 2020; You et al., 2020; Wang et al., 2021a;b; Luo et al., 2023) for
self-supervised training.

3 MATFUSION

As illustrated in Figure 1, materials composition is used to match and retrieve the structure in the
database. If no exact match can be found, we use regular expressions (Regex) to extract the core
composition and perform a next round of search. If multiple structures exist in the database for the
same composition, the one with the lowest formation energy will be selected. Graph and text em-
beddings are obtained from a GNN model and an LLM (in our case, CrystalFormer and DARWIN),
respectively. A cross-attention module will be then employed to fuse the text and graph embeddings.

Specifically, we first project the embedding from each modality to a shared dimension d. Let Hm1 →
RB↑d and Hm2 → RB↑d denote the projected embeddings of two modalities. In each MatFusion
layer, the scaled dot-product m1-to-m2 cross-attention will be computed as follows:

Q
(m1) = W

(m1)
q Hm1, K

(m2) = W
(m2)
k Hm2, V

(m2) = W
(m2)
v Hm2.

CrossAtt
(
Q

(m1),K(m2),V(m2)) = softmax
(
Q

(m1)
K

(m2)↓
↑
d

)
V

(m2).

The other branch of the MatFusion layer computes the m2-to-m1 attention from another direction,
allowing both representations to attend to each other.

These cross-attended embeddings are then passed into subsequent layers, including a residual con-
nection layer and a feed-forward layer. We conduct preliminary experiments to explore the impact
of the number of stacked MatFusion layers on model performance. The results show that stack 4
MatFusion layers and a following linear achieve the best performance in our task. Based on this
observation, we adapt this configuration to obtain the cross-attended outputs and then concatenate
them as the input to a linear layer to get the final fused embeddings. The fused embeddings can be
simply fed into a MLP for downstream tasks.

4 EXPERIMENTAL SETUP

Dataset Curation We constructed two datasets: large (24k samples) and small (4.4k samples,
subset of large). Both datasets consist of experimental data from matbench expt gap and
computational data from matbench mp gap (Jain et al., 2013) (see Table 4 for details). Each
experimental data sample includes a materials composition and its experimental bandgap. Each
computational data sample contains a materials composition, its structure (CIF) and bandgap calcu-
lated using Perdew–Burke–Ernzerhof (PBE) (Perdew et al., 1996) DFT. When curating dataset, we
retain experimental data and remove duplicate entries from the computational data if necessary. The
key distinction between these two datasets is that each experimental data in the small dataset is
associated with a set of context sentences extracted from materials science literature containing the
corresponding composition.

Other Setups. The baselines are the prediction performance with uni-modal embeddings. Structural
embeddings are derived from CrystalFormer, while text embeddings are from DARWIN. We also
test text embeddings from various LLMs including BERT (Devlin, 2018), T5 (Ni et al., 2021),
LLaMA2 (Touvron et al., 2023), and MatBERT (Wan et al., 2024) (see details in Figure 2). The
MLP used for bandgap prediction has some hyper-parameters: learning rate (ω), batch size (B),
dropout rate (ε), and layer configurations (L). We use AdamW optimizer with decoupled weight
decay regularization (ϑ). Early stopping is applied. We use mean absolute error (MAE) as the
metric and also report standard deviation (STD) from 5 runs (see subsection A.2).

5 RESULTS

Baseline and Fusion methods. Table 1 shows the uni-modal (fine-tuned MatBERT and Crystal-
Former) and MatFusion performance. On small, the formula-based text embeddings achieve an
MAE of 0.8250 for experimental data, outperforming the context-based approach, which reaches
0.8733. A simpler fusion baseline using direct concatenation of uni-modal embeddings yields sub-
optimal results, achieving an MAE of 0.5799 (see Appendix Table 5), suggesting the need for a
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more expressive fusion mechanism. MatFusion further improves prediction accuracy, consistently
surpassing the baseline models, with the best performance at 0.5558. For computational data, the
formula-based approach performs slightly worse than the context-based method, but the overall
trends align with those observed for experimental materials. As the training set scales up, the
formula-based fusion approach achieves the highest accuracy for experimental data, with an MAE
of 0.3601. Similarly, MatFusion significantly outperforms baseline text embeddings for computa-
tional data, achieving the best MAE of 0.2780, though a slight gap remains compared to using graph
embeddings. These results highlight the critical role of structural information in predicting material
properties.

Table 1: Uni-modal and MatFusion comparison on experimental and computational data.
Dataset Embedding Type MAEexp STDexp MAEcomp STDcomp

Small

Text@Context 0.8733 0.0869 0.7657 0.0071
Text@Formula 0.8250 0.0626 0.7943 0.0185
Fusion@Context 0.5745 0.0405 0.3273 0.0065
Fusion@Formula 0.5558 0.0542 0.3297 0.0214
Graph@Structure 0.6348 0.0689 0.3155 0.0105

Large
Text@Formula 0.5658 0.0536 0.6742 0.0193
Fusion@Formula 0.3601 0.0312 0.2780 0.0055
Graph@Structure 0.3958 0.0279 0.2776 0.0031

Model Comparison. As illustrated in Table 2, we also test text embeddings derived from other
LLMs. The results show that the embeddings generated by autoregressive models, such as the
LLaMA series, consistently outperform non-autoregressive models like BERT. Furthermore, mod-
els fine-tuned on materials science literature exhibit enhanced predictive power compared to their
general counterparts. Using text embeddings extracted by DARWIN, MatFusion achieves the high-
est performance (0.3596) in predicting experimental materials.

Table 2: Text-modal and fusion performance across different text models.
Model Embedding Type MAEexp STDexp MAEcomp STDcomp

BERT Text@Formula 0.6201 0.0266 0.6978 0.0288
Fusion@Formula 0.3720 0.0251 0.2751 0.0037

T5 Text@Formula 0.5585 0.0663 0.6353 0.0276
Fusion@Formula 0.3803 0.0278 0.2698 0.0018

LLaMA2 Text@Formula 0.4844 0.0360 0.5514 0.0062
Fusion@Formula 0.3782 0.0195 0.2781 0.0036

DARWIN Text@Formula 0.4714 0.0298 0.5409 0.0131
Fusion@Formula 0.3596 0.0170 0.2857 0.0062

Dataset Scaling. We incrementally scale up the training set of one data modality from small to
large while fixing the other modality. Table 3 shows that such scaling up enhances the prediction
performance on the scaled modality but deteriorates the performance on the other one.

Table 3: Scaling up the training set of one data modality but fixing the other.
Embedding Type Scaled Modality MAEexp Trend MAEcomp Trend
Text@Formula Exp. 0.8341 → 0.6687 0.7846 → 0.8058

Comp. 0.8112 → 0.7864 0.7538 → 0.6813

Graph@Structure Exp. 0.5957 → 0.4085 0.3118 → 0.3265
Comp. 0.6064 → 0.6267 0.2989 → 0.2727

Fusion@Formula Exp. 0.5396 → 0.3850 0.3418 → 0.3525
Comp. 0.5916 → 0.6043 0.3102 → 0.2771

6 CONCLUSION

We propose MatFusion, a multi-modal framework that bridges LLMs and structural embeddings
for experimental materials property prediction. Through extensive evaluations on bandgap pre-
diction tasks, we demonstrate that our framework significantly improves prediction accuracy by
23.72% compared to standalone text embeddings and 9.15% compared to structural embeddings.
The improvement is more pronounced for experimental bandgap prediction, likely because text-
based representations encapsulate empirical knowledge and experimental intuition, which may aid
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experimental property prediction but be less relevant—or even disruptive—for computational ones
governed by physical relationships. Additionally, context information does not enhance performance
as much as expected compared to using only material composition, possibly due to noise, irrelevant
details, or data imbalance from limited context sentences for some materials. For future work, we
plan to explore standardized GPT-generated descriptions for more uniform and informative contex-
tual representation, use more advanced structure matching algorithms, and extend to predict other
material properties or support different downstream tasks.
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