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Abstract

Generative models are popular for medical imaging tasks such as anomaly detec-1

tion, feature extraction, data visualization, or image generation. Since they are2

parameterized by deep learning models, they are often sensitive to distribution3

shifts and unreliable when applied to out-of-distribution data, creating a risk of,4

e.g. underrepresentation bias. This behavior can be flagged using uncertainty5

quantification methods for generative models, but their availability remains limited.6

We propose SLUG: A new UQ method for VAEs that combines recent advances in7

Laplace approximations with stochastic trace estimators to scale gracefully with8

image dimensionality. We show that our UQ score – unlike the VAE’s encoder vari-9

ances – correlates strongly with reconstruction error and racial underrepresentation10

bias for dermatological images.11

1 Introduction12

Variational Autoencoders (VAEs) stand out as one of the most widely used generative models in13

medical imaging because of their capacity to learn semantic, low-dimensional latent spaces. VAEs14

are often used to analyze and manipulate key characteristics of high-dimensional data, e.g. for data15

visualization [3], data generation [8], and anomaly detection [14].16

Despite these advantages, generative models are parameterized with modern Deep Neural Networks17

(DNNs), which struggle with out-of-distribution (OOD) [13]. To tackle OOD performance in18

predictive models, uncertainty quantification (UQ) has emerged as an important tool [9], where the19

prediction is endowed with an associated uncertainty. This has proven useful for detecting silent20

failures and ensuring that unexpected outcomes do not occur. While UQ techniques have been21

proposed and studied with promising success for discriminative models [1], their applicability to22

generative models such as VAEs is underexplored. The adoption of a Bayesian approach can help23

address this issue; however, current Bayesian generative models tend to be computationally expensive,24

difficult to tune, or rely on uncorrelated posterior approximations [12, 2].25

We propose a novel epistemic UQ method for VAEs building on the Sketched Lanczos Uncertainty26

(SLU) algorithm recently proposed for discriminative models [11]. SLU computes a rank-k approxi-27

mation of the generalized Gauss-Newton (GNN) matrix, which captures the epistemic uncertainty28

according to a Laplace approximation [7]. However, SLU scales quadratically with the output dimen-29

sion, which is intractable in image-generative models. Our proposed Sketched Lanczos Uncertainty30

Global (SLUG) measure overcomes this challenge using scalable stochastic trace estimators [6] to31

produce a per-image score.32

We demonstrate SLUG’s ability to detect underrepresentation bias in dermatological images. It is33

well known that dark skin tones are severely underrepresented in public datasets and that DNNs-based34
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systems tend to reproduce and amplify this bias [5, 10]. Our experiments show that SLUG strongly35

correlates with the performance of the VAE and can serve to flag both bias and performance loss.36

In short, we contribute a novel UQ method for VAEs that capture out-of-distribution data and37

demonstrate its utility in flagging errors and underrepresentation bias using two publicly available38

real-world dermatology datasets: Fitzpatrick17k [5], and PASSION [4].39

2 Method40

Given the VAE fϕ,θ with encoder and decoder parameters (ϕ, θ) ∈ Rp, we define its Jacobian41

J{ϕ,θ} with respect to parameters and construct the Generalized Gauss-Newton (GGN) matrix as42

G{ϕ,θ} =
∑n

i=1 J{ϕ,θ}(xi)
TH(xi)J{ϕ,θ}(xi), where H(xi) is the Hessian of the loss w.r.t. to the43

neural network output and {xi ∈ RW×H×C}ni=1 the training set.44

The GGN commonly appears as the inverse covariance of the linearized Laplace approximation (LLA)45

to the true posterior [7]. Currently, LLA is the most promising Bayesian posterior approximation [7],46

but it is, unfortunately, intractable for generative models as its computational cost scales quadratically47

with the generated data dimension, specifically O((WHC)2p) for a network with p parameters.48

Recently, Miani et al. [11] developed a sketching-based algorithm to evaluate the associated predictive49

uncertainty, which scales logarithmically with p. The resulting Sketched Lanczos Uncertainty (SLU)50

algorithm, however, still scales quadratically with the image dimension, making it impractical for51

VAEs. Our approach extends SLU to scale gracefully to large images.52

2.1 Scaling to VAEs: Sketched Lanczos Uncertainty Global score (SLUG)53

We based our proposed score on the SLU algorithm [11]. Let U denote the matrix containing the54

leading eigenvectors of the GGN, then the SLU approximates the predictive variance of the linearized55

Laplace approximation with I−UU⊤ is covariance, i.e., for a specific pixel (w, h, c),56

SLUw,h,c(x) = ewhcJθ∗(x)(I−UU⊤)Jθ∗(x)⊤e⊤whc, (1)

where ewhc is a one-hot encoding vector that selects the pixel position to compute the uncertainty.57

SLU approximates this predictive uncertainty using several tricks from randomized numerical linear58

algebra. Unfortunately, even SLU does not scale to neural networks with high-dimensional outputs59

like those in generative models. Producing one predictive variance per generated pixel requires60

O(WHC) SLU invocations, which is practically prohibitive. Our main interest is in measuring61

a scalar uncertainty score for a generated image, and we choose the sum of per-pixel predictive62

variances, which we denote the Sketched Lanczos Uncertainty Global (SLUG) score. We use a63

stochastic trace estimator [6] to estimate the SLUG score,64

SLUG(x) =
∑
w,h,c

SLUw,h,c(x) (2)

= Tr(Jθ∗(x) (I−UU⊤) Jθ∗(x)⊤) (3)

≈ 1

S

S∑
s=1

ϵsJθ∗(x) (I−UU⊤) Jθ∗(x)⊤ϵ⊤s , (4)

where ϵs ∼ N (0, I). This can be implemented using only S invocations of SLU.65

3 Experiments and results66

Datasets. In our experiments, we use two dermatology datasets. The VAE is trained on the67

Fitzpatrick17k dataset [5], which includes 16,577 images labeled with Fitzpatrick skin types (FST).68

To evaluate the impact of skin tone representation in the training data, we create three subsets of69

1,668 images each: Dataset A – Light (100% FST 1–2), Dataset B – Mixed (50% FST 1–2 and 50%70

FST 5–6), and Dataset C – Black (100% FST 5–6). Two separate test sets of 512 images each are71

sampled for lighter and darker skin tones. For external validation and to assess model bias, we use72

the PASSION dataset [4], which contains 4,901 dermatology images from Sub-Saharan countries73

with darker skin tones (FST 3–6).74
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Figure 1: On Fitzpatrick17k, the performance on light and dark skin tones changes with their
representation. The VAE encoder uncertainty is a poor indicator, while SLUG follows performance
across groups and training scenarios.

Figure 2: On the external PASSION dataset, we see again how reduced MSE is flagged by increased
SLUG uncertainty across dark skin tone groups.

Racial bias. Fig. 1 shows that SLUG effectively captures racial bias in the Fitzpatrick17k75

dataset—unlike the VAE’s latent uncertainty. We also evaluate the trained models in Fitzpatrick17k76

on the external PASSION dataset. The results reveal a consistent pattern: performance degrades as77

skin tone darkens (see Fig. 2). Notably, our SLUG score also captures this racial bias in the external78

dataset, highlighting its utility as a metric to flag bias.79

4 Conclusion80

This work highlights the urgent need for precise and scalable UQ for generative models. Despite the81

widespread use of generative AI, we still lack a reliable mechanism to ensure its trustworthiness. We82

demonstrate that epistemic UQ can warn of performance loss, and detect bias.83

We expect that these results will motivate the recognition of epistemic uncertainty as an essential tool84

for generative models. While our SLUG method for VAEs can capture bias and performance loss in85

dermatological images, it will be valuable to see how epistemic uncertainty and bias interact in other86

large generative models, such as diffusion models.87

5 Potential Negative Impact Statement88

This paper studies the relationship between epistemic uncertainty and racial bias in dermatology89

using generative models, evaluated on the Fitzpatrick17k and a Sub-Saharan dataset. The analysis is90

limited to racial categories present in these datasets and does not consider other sources of bias, such91

as gender, age, or data origin. These unexamined factors may also influence uncertainty and model92

performance.93
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The models are evaluated on curated datasets and not tested under out-of-distribution or real-world94

clinical conditions. As a result, their robustness and reliability in practice remain unclear. Further95

evaluation in real-world and OOD settings is necessary to assess clinical safety.96

While the method proposed may help identify racial bias, they do not prevent misuse or biased97

deployment. Ensuring fairness in clinical applications requires broader efforts, including careful98

validation, and responsible use by practitioners and developers.99

References100

[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad101

Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. “A102

review of uncertainty quantification in deep learning: Techniques, applications and challenges”.103

In: Information fusion 76 (2021), pp. 243–297.104

[2] Erik Daxberger and José Miguel Hernández-Lobato. “Bayesian variational autoencoders for105

unsupervised out-of-distribution detection”. In: arXiv preprint arXiv:1912.05651 (2019).106

[3] Jan Ehrhardt and Matthias Wilms. “Autoencoders and variational autoencoders in medical107

image analysis”. In: Biomedical Image Synthesis and Simulation. Elsevier, 2022, pp. 129–162.108

[4] Philippe Gottfrois, Fabian Gröger, Faly Herizo Andriambololoniaina, Ludovic Amruthalingam,109

Alvaro Gonzalez-Jimenez, Christophe Hsu, Agnes Kessy, Simone Lionetti, Daudi Mavura,110

Wingston Ng’ambi, et al. “PASSION for Dermatology: Bridging the Diversity Gap with111

Pigmented Skin Images from Sub-Saharan Africa”. In: International Conference on Medical112

Image Computing and Computer-Assisted Intervention. Springer. 2024, pp. 703–712.113

[5] Matthew Groh, Caleb Harris, Luis Soenksen, Felix Lau, Rachel Han, Aerin Kim, Arash114

Koochek, and Omar Badri. “Evaluating deep neural networks trained on clinical images in115

dermatology with the fitzpatrick 17k dataset”. In: Proceedings of the IEEE/CVF Conference116

on Computer Vision and Pattern Recognition. 2021, pp. 1820–1828.117

[6] Michael F Hutchinson. “A stochastic estimator of the trace of the influence matrix for Laplacian118

smoothing splines”. In: Communications in Statistics-Simulation and Computation 18.3 (1989),119

pp. 1059–1076.120

[7] Alexander Immer, Maciej Korzepa, and Matthias Bauer. “Improving predictions of Bayesian121

neural nets via local linearization”. In: International conference on artificial intelligence and122

statistics. PMLR. 2021, pp. 703–711.123

[8] Lennart R Koetzier, Jie Wu, Domenico Mastrodicasa, Aline Lutz, Matthew Chung, W Adam124

Koszek, Jayanth Pratap, Akshay S Chaudhari, Pranav Rajpurkar, Matthew P Lungren, et al.125

“Generating synthetic data for medical imaging”. In: Radiology 312.3 (2024), e232471.126

[9] Benjamin Kompa, Jasper Snoek, and Andrew L Beam. “Second opinion needed: commu-127

nicating uncertainty in medical machine learning”. In: NPJ Digital Medicine 4.1 (2021),128

p. 4.129

[10] Miguel López-Pérez, Søren Hauberg, and Aasa Feragen. “Are generative models fair? a study130

of racial bias in dermatological image generation”. In: Scandinavian Conference on Image131

Analysis. Springer. 2025, pp. 389–402.132

[11] Marco Miani, Lorenzo Beretta, and Søren Hauberg. “Sketched Lanczos uncertainty score:133

a low-memory summary of the Fisher information”. In: Advances in Neural Information134

Processing Systems. Ed. by A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J.135

Tomczak, and C. Zhang. Vol. 37. 2024, pp. 23123–23154.136

[12] Marco Miani, Frederik Warburg, Pablo Moreno-Muñoz, Nicki Skafte, and Søren Hauberg.137

“Laplacian autoencoders for learning stochastic representations”. In: Advances in Neural138

Information Processing Systems 35 (2022), pp. 21059–21072.139

[13] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily fooled: High140

confidence predictions for unrecognizable images”. In: Proceedings of the IEEE conference141

on computer vision and pattern recognition. 2015, pp. 427–436.142

[14] Hansen Wijanarko, Evelyne Calista, Li-Fen Chen, and Yong-Sheng Chen. “Tri-VAE: Triplet143

Variational Autoencoder for Unsupervised Anomaly Detection in Brain Tumor MRI”. In:144

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024,145

pp. 3930–3939.146

4


	Introduction
	Method
	Scaling to VAEs: Sketched Lanczos Uncertainty Global score (SLUG)

	Experiments and results
	Conclusion
	Potential Negative Impact Statement

