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ABSTRACT

Domain generalization (DG) aims to learn models that perform well on unseen
target domains by training on multiple source domains. Sharpness-Aware Mini-
mization (SAM), known for finding flat minima that improve generalization, has
therefore been widely adopted in DG. However, we argue that the prevailing
approach of applying SAM to the aggregated loss for domain generalization is
fundamentally suboptimal. This “aggregated sharpness” objective can be deceptive,
leading to convergence to fake flat minima where the total loss surface is flat, but
the underlying per-domain landscapes remain sharp. To establish a more principled
objective, we analyze a worst-case risk formulation that reflects the true nature of
DG. Our analysis reveals that per-domain sharpness provides a valid upper bound
on this risk, while aggregated sharpness does not, making it a more theoretically
grounded target for robust domain generalization. Motivated by this, we propose
Domain-wise Gradual SAM (DGSAM), which applies gradual, domain-wise pertur-
bations to effectively control per-domain sharpness in a computationally efficient
manner. Extensive experiments demonstrate that DGSAM not only improves
average accuracy but also reduces performance variance across domains, while
incurring less computational overhead than SAM.

1 INTRODUCTION

Deep neural networks achieve remarkable performance under the independent and identically dis-
tributed (i.i.d.) assumption (Kawaguchi et al., 2017), yet this assumption often fails in practice due
to domain shifts. For example, in medical imaging, test data may differ in acquisition protocols
or device vendors (Li et al., 2020), and in autonomous driving, variations in weather or camera
settings introduce further domain shifts (Khosravian et al., 2021). Since it is impractical to include
every possible scenario in the training data, domain generalization (DG) seeks to learn models that
generalize to unseen target domains using only source domain data (Muandet et al., 2013; Arjovsky
et al., 2019; Li et al., 2018c; Volpi et al., 2018; Li et al., 2019).

A common DG strategy is to learn domain-invariant representations by aligning source domain
distributions and minimizing their discrepancies (Muandet et al., 2013; Arjovsky et al., 2019),
adversarial training (Li et al., 2018c; Ganin et al., 2016), data augmentation (Volpi et al., 2018;
Zhou et al., 2020; 2021), and meta-learning approaches (Li et al., 2019; Balaji et al., 2018). These
strategies share the common goal of solving the core challenge of DG: learning from source domains
with structured shifts (e.g., artistic style, weather conditions) to generalize to unseen variations of
these structures. More recently, flat minima in the loss landscape have been linked to improved
robustness under distributional shifts (Cha et al., 2021; Zhang et al., 2022; Chaudhari et al., 2019).
In particular, Sharpness-Aware Minimization (SAM) (Foret et al., 2021) perturbs model parameters
along high-curvature directions to locate flatter regions of the loss surface, and has been applied to
DG (Wang et al., 2023; Shin et al., 2024; Zhang et al., 2024).

However, we argue that the prevailing approach of applying SAM to the aggregated loss is funda-
mentally suboptimal. Our analysis reveals that the current SAM-based approach for DG pursues an
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unrealistic goal: robustness to perturbations of a probabilistic average of the source domains, rather
than the coherent shifts of per-domain source types that characterize real-world DG. This misalign-
ment can be deceptive, leading to convergence to fake flat minima that appear flat on aggregated
loss but remain sharp on separate domains. We find this occurs because aggregated sharpness is
an unreliable proxy for the per-domain flatness that is truly required for robust generalization. To
establish a more principled objective, we introduce a worst-case risk formulation that formalizes
this notion of coherent shifts. We then theoretically demonstrate that per-domain sharpness, not
aggregated sharpness, provides a valid upper bound on this risk, making it a more grounded target for
optimization.

Motivated by these insights, we propose a novel DG algorithm, Domain-wise Gradual Sharpness-
Aware Minimization (DGSAM) that employs a gradual and domain-specific perturbation mechanism
designed to effective control per-domain sharpness. DGSAM improves upon existing SAM-based
DG methods in three key aspects. First, it efficiently reduces the per-domain sharpness of source
domains rather than the aggregated sharpness of the total loss, enabling better learning of domain-
invariant features. Second, it achieves high computational efficiency by reusing gradients computed
during gradual perturbation, in contrast to traditional SAM-based methods that incur twice the
overhead of standard empirical risk minimization. Third, while prior approaches rely on proxy
curvature metrics, DGSAM controls the eigenvalues of the Hessian, which are the most direct
indicators of sharpness (Keskar et al., 2016; Ghorbani et al., 2019b). Our extensive experiments
confirm the superiority of this approach. DGSAM demonstrates a superior balance of accuracy and
robustness, achieving the highest average accuracy and the lowest average domain-wise variance
across five benchmarks. Furthermore, DGSAM shows broad compatibility by enhancing various DG
frameworks and confirms its scalability on large-scale Vision Transformer models, all while being
more computationally efficient than standard SAM.

2 PRELIMINARIES AND RELATED WORKS

2.1 DOMAIN GENERALIZATION

Let Ds := {Di}Si=1 denote the collection of training samples, where Di represents the training
samples from the i-th domain1. The total loss over all source domains is defined as:

Ls(θ) :=
1

|Ds|
∑

Di∈Ds

Li(θ), (1)

where Li denotes the loss evaluated on samples from the i-th domain, and θ is the model parameter.

A naïve approach to DG minimizes the empirical risk over the source domains.: θ∗s = argminθ Ls(θ).
However, this solution may fail to generalize to unseen target domains, as it is optimized solely on
the training distribution. The goal of domain generalization is to learn parameters θ that are robust to
domain shifts, performing well on previously unseen domains.

As the importance of DG has grown, several datasets (Li et al., 2017b; Fang et al., 2013; Peng
et al., 2019) and standardized protocols (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021) have been
introduced. Research directions in DG include domain-adversarial learning (Jia et al., 2020; Li et al.,
2018c; Akuzawa et al., 2020; Shao et al., 2019; Zhao et al., 2020), moment-based alignment (Ghifary
et al., 2016; Muandet et al., 2013; Li et al., 2018b), and contrastive loss-based domain alignment
(Yoon et al., 2019; Motiian et al., 2017). Other approaches focus on data augmentation (Xu et al.,
2020; Shi et al., 2020; Qiao et al., 2020), domain disentanglement (Li et al., 2017a; Khosla et al.,
2012), meta-learning (Li et al., 2018a; Zhang et al., 2021; Li et al., 2019), and ensemble learning
(Cha et al., 2021; Seo et al., 2020; Xu et al., 2014).

2.2 SHARPNESS-AWARE MINIMIZATION

A growing body of work connects generalization to the geometry of the loss surface, especially its
curvature (Hochreiter & Schmidhuber, 1994; Neyshabur et al., 2017; Keskar et al., 2017; Chaudhari
et al., 2019; Foret et al., 2021). Building on this, Foret et al. (2021) proposed Sharpness-Aware

1With slight abuse of notation, we also useDi to represent the underlying data distribution of the i-th domain.
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Minimization (SAM), which optimizes the model to minimize both the loss and the sharpness of the
solution. The SAM objective is defined as:

min
θ

max
∥ϵ∥≤ρ

L(θ + ϵ), (2)

where the inner maximization finds the worst-case perturbation ϵ within a neighborhood of radius ρ.

Following the success of SAM, several extensions have emerged, primarily focusing on refining
the sharpness surrogate (Kwon et al., 2021; Zhuang et al., 2022; Zhang et al., 2022) or reducing its
computational overhead (Du et al., 2022; Liu et al., 2022; Mordido et al., 2024). The promise of
improved generalization has naturally led to the exploration of sharpness-aware methods in domain
generalization. A common strategy is to apply SAM to the aggregated loss over source domains (Wang
et al., 2023; Shin et al., 2024; Cha et al., 2021; Dong et al., 2024), which seeks a solution that is flat
with respect to the total aggregated loss. Recognizing the importance of domain-level structure, recent
work has incorporated domain information, either by adding regularization to penalize inter-domain
loss variance (Zhang et al., 2024) or by iteratively refining loss landscapes for consistency across
domains (Li et al., 2025).

While these approaches represent important progress, they either still optimize for aggregated
sharpness or implicitly encourage per-domain flatness through consistency constraints without a
formal per-domain sharpness minimization objective. In the following section, we propose a domain-
wise objective that explicitly minimizes the sharpness within each domain’s loss landscape. A more
detailed categorization and comparison of existing approaches is provided in Appendix H.

3 RETHINKING SHARPNESS IN DOMAIN GENERALIZATION

The prevailing paradigm in the current literature is to apply SAM to the aggregated loss across all
source domains. We argue this approach is fundamentally suboptimal for domain generalization,
as it is built on an assumption that is misaligned with the core nature of the DG problem itself. By
collapsing the crucial structural information between domains, this strategy shifts the optimization
objective from learning features that are truly domain-invariant, to merely seeking robustness for a
probabilistic average of the source domains. This is a critical distinction, as this probabilistic average
may not represent any realistic domain and is not equivalent to the shared, invariant features required
for true generalization. This misalignment can be deceptive, leading to convergence to ‘fake flat
minima’. In Section 3.1, we first provide a formal and intuitive illustration of this pitfall. We then
propose a more principled objective grounded in a worst-case risk formulation that respects this
essential domain-specific structure in Section 3.2.

3.1 AGGREGATED SHARPNESS PITFALLS: THE FAKE FLAT MINIMA PROBLEM

To formalize our perspective, we distinguish between two key concepts. The prevailing approach for
SAM in DG focuses on aggregated sharpness, defined as:

Sagg(θ; ρ) = max
∥ϵ∥≤ρ

(
Ls(θ + ϵ)− Ls(θ)

)
.

where Ls is the total loss over all source domains, defined in equation 2.1. In contrast, our work
focuses on the per-domain sharpness of each source domain Di, defined as:

Si(θ; ρ) = max
∥ϵ∥≤ρ

(
Li(θ + ϵ)− Li(θ)

)
.

To generalize well to unseen domains, a model must learn representations that are robust to various
domain shifts. The most direct way to achieving this is to ensure that the learned solution is robust
against new domains that are variations of each of the source domains seen during training. Therefore,
an ideal DG approach should find a solution that is simultaneously flat with respect to every source
domain, a property directly captured by per-domain sharpness (Si).

The prevailing approach of minimizing aggregated sharpness (Sagg), however, does not guarantee this
ideal outcome. As aggregated sharpness is measured on the aggregated loss, it is possible for this
mixture to be flat while the loss landscapes of the underlying separate domains remain sharp. This
presents a critical failure mode: if an unseen test domain shares characteristics with a source domain
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for which the model has high per-domain sharpness, the model will likely fail, regardless of its low
aggregated sharpness. This divergence, where low aggregated sharpness masks high per-domain
sharpness, leads to what we term fake flat minima. The following proposition formally demonstrates
that aggregated and per-domain sharpness are not necessarily correlated.

Proposition 3.1. Let θ be a model parameter and ρ > 0 a fixed perturbation radius. Then, there
exist two local minima θ1 and θ2 such that

Sagg(θ1; ρ) < Sagg(θ2; ρ) but
1

S

S∑
i=1

Si(θ1; ρ) ≥
1

S

S∑
i=1

Si(θ2; ρ).

Equivalently,

Sagg(θ1; ρ) < Sagg(θ2; ρ) ≠⇒ 1

S

S∑
i=1

Si(θ1; ρ) <
1

S

S∑
i=1

Si(θ2; ρ).

The proof is deferred to Appendix B.1. This proposition provides the formal basis for the fake flat
minima phenomenon, confirming that a low value of aggregated sharpness (Sagg) can be achieved
even when the average per-domain sharpness

(
1
S

∑
i Si

)
remains high.

Figure 1: Fake flat minimum: two sharp
per-domain losses (dotted) cancel out
when summed, resulting in a deceptively
flat total loss (solid).

To illustrate this phenomenon, we present a 2-dimensional
toy example involving two domains and two loss functions.
Each domain shares the same base loss shape (Figure 2a)
but is shifted along one axis. Figures 2b and 2c visual-
ize the total loss from two perspectives. In this example,
region R1 corresponds to an ideal solution, where both
single domain losses exhibit flat minima. In contrast, re-
gion R2 remains sharp for each single domain loss, but
appears deceptively flat in the total loss due to cancellation
of opposing sharp valleys (Figure 1). As a result, both
SAM and SGD converge to region R2 (Figure 2d), which
constitutes a fake flat minimum.

(a) Loss landscape of a sin-
gle domain

(b) Side view of the total
loss landscape

(c) Rear view of the total
loss landscape

(d) Optimization trajecto-
ries

Figure 2: Toy example: two conflicting loss functions construct two different type of flat minima.
An interactive visualization of toy example is available at https://dgsam-toy-example.
netlify.app/.

The pitfall of the aggregated sharpness approach is not merely an theoretical concept. We confirm
this phenomenon in practical DG tasks using ResNet-50 on the PACS dataset. As visualized in
Appendix E, while SAM produces minima that are flat with respect to the total loss, the loss
landscapes for the separate domains remain sharp, providing direct empirical evidence of the fake flat
minima problem.

3.2 PER-DOMAIN SHARPNESS: A PRINCIPLED OBJECTIVE FOR DG

To establish a principled objective for SAM in DG, we need to define a performance measure that
truly reflects the challenges of the task. As we have argued, a true domain shift is not a random

4
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perturbation of the averaged sources. For instance, a model trained on ’Photo’ and ’Sketch’ domains
is not evaluated on their pooled mixture, but rather on a new, coherent domain such as ’Cartoon’ or
’Watercolor painting’. This new domain represents a coherent shift from one of the existing styles,
not a deviation from their probabilistic mixture. A truly robust model, therefore, must be resilient to
the worst-case shift originating from any of the each source domains it was trained on.

Based on this principled view, we now formalize the average worst-case domain risk. Let {Di}Si=1
denote the source distributions. For each source domain i, we define the local uncertainty set of
potential target domains as:

Uδ
i =

{
D : Div(D∥Di) ≤ δ

}
,

where Div(·∥·) is a divergence measure (e.g., KL-divergence, Wasserstein distance). This set Uδ
i

contains all unseen target domains that lie within a divergence δ of the source domain Di. The
average worst-case domain risk is then the expected risk under the worst-case shift from each source
domain:

E(θ; δ) := 1

S

S∑
i=1

sup
D∈Uδ

i

LD(θ).

This principled risk formulation allows us to formally investigate which notion of sharpness, aggre-
gated or per-domain, serves as a better optimization target.
Theorem 3.2. Let Ls(θ) denote the total loss over all source domains, Sagg(θ; ρ) the aggregated
sharpness, and Si(θ; ρ) the per-domain sharpness for the i-th domain. Then, for all θ and ρ ≥ ρ(δ),

E(θ; δ) ≤ Ls(θ) +
1

S

S∑
i=1

Si(θ; ρ).

where ρ(δ) is defined in equation 11 of Appendix B.2. Moreover, there exists a model parameter θ
such that

E(θ; δ) > Ls(θ) + Sagg(θ; ρ).

The proof is provided in Appendix B.2. Theorem 3.2 highlights that minimizing the average of
per-domain sharpness provides a valid upper bound for our principled DG risk measure, E(θ; δ). In
contrast, it also shows that aggregated sharpness offers no such guarantee, and can indeed be smaller
even when the true risk is higher. This result confirms that minimizing per-domain sharpness is
not merely an alternative, but a more appropriate and theoretically grounded surrogate for robust
generalization under domain shifts.

4 METHODOLOGY

Our goal is to design an algorithm that effectively controls per-domain sharpness across all source
domains, as motivated in Section 3. The conventional SAM approach, which perturbs parameters
along the single, aggregated gradient of the total loss, is ill-suited for this task. The total gradient
is often misaligned with domain-wise gradients, resulting in a suboptimal perturbation that fails to
uniformly increase domain-specific losses. We provide a detailed analysis and empirical illustration
of this failure mode in Appendix A. To overcome this limitation, in Section 4.1, we propose Domain-
wise Gradual Sharpness-Aware Minimization (DGSAM) that employs a gradual, domain-specific
perturbation mechanism to control per-domain sharpness. Subsequently, in Section 4.2, we provide a
theoretical analysis of how this mechanism implicitly controls per-domain sharpness.

4.1 THE DGSAM ALGORITHM

DGSAM’s update strategy is built upon a sequential perturbation scheme. Unlike the conventional
SAM that uses a single perturbation, DGSAM sequentially incorporates the unique gradient from
each source domain in successive steps. This transforms the perturbation process into a principled
mechanism for integrating geometric information from multiple domains, allowing for more effective
control of per-domain sharpness. The update rule of DGSAM is given by:

θt+1 = θt − γ

(
S

S + 1

) S+1∑
j=1

gj , where (3)

gj = ∇LBlj
(θ̃j−1) for j = 1, . . . , S, gS+1 = ∇LBl1

(θ̃S). (4)

5
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where l = (l1, . . . , lS) denotes a random permutation of the S source domain indices, and each LBlj

is the loss computed over a mini-batch Blj drawn from the lj-th domain.

In the ascent phase, as defined in equation 4, DGSAM performs S + 1 perturbation steps, each
based on the gradient of a separate domain, followed by a descent step that updates the model using
the aggregated gradients. Specifically, we begin with θ̃0 = θt and at each step j ∈ {1, . . . , S}, we
compute the domain-specific gradient gj = ∇LBlj

(θ̃j−1) for the j-th domain (sampled in random

order) and apply the perturbation ρ
gj

∥gj∥ to update θ̃j (See lines 7-9 in Algorithm 1). These gradients
are stored and later reused during the descent update to reduce computational overhead.

Note that the gradient g1 is computed at the unperturbed point θt so it does not reflect the curvature-
aware structure. To correct for this inconsistency, we perform one additional gradient computation at
the final perturbed point θ̃S using ∇LBl1

(θ̃S) again (lines 10-11 in Algorithm 1). This ensures that
all gradients contributing to the final update step are computed at perturbed points.

As a result, DGSAM collects S + 1 gradients
along a trajectory that sequentially accounts for
each domain’s geometry. These gradients are
then averaged for the final parameter update, as
in equation 3. This design ensures that the de-
scent direction is a more uniform reflection of
all respective domain geometries, preventing the
bias towards a single dominant domain that can
occur with conventional SAM. Furthermore, this
design is computationally efficient by reusing
the gradients from the ascent phase, DGSAM
requires only S +1 gradient computations per it-
eration, compared to the 2S required by standard
SAM.
The following theorem shows that DGSAM
achieves ϵ-stationarity under standard assump-
tions, aligning with the convergence guarantees
recently established for SAM in non-convex set-
tings Oikonomou & Loizou (2025).

Algorithm 1 DGSAM
1: Require: Initial parameter θ0, learning rate γ, ;

radius ρ; total iterations N ; training sets {Di}Si=1

2: for t← 0 to N − 1 do
3: Sample batches Bi ∼ Di for i = 1, · · · , S, and

set a random order l = permute({1, · · · , S})
4: θ̃0 ← θt
5: for j ← 1 to S + 1 do
6: if j ≤ S then
7: gj ← ∇LBlj

(θ̃j−1)

8: θ̃j ← θ̃j−1 + ρ
gj
∥gj∥

9: else if j = S + 1 then
10: gS+1 ← ∇LBl1

(θ̃S)
11: end if
12: end for

13: θt+1 ← θt − γ

(
S

S + 1

) S+1∑
j=1

gj

14: end for

Theorem 4.1 (ϵ-approximate stationary). Let Assumptions B.4 hold. Then, for any ϵ > 0, the iterates
of DGSAM satisfy for ρ ≤ ρ, γ ≤ γ, T ≥ T

min
t=0,...,T−1

E∥∇Ls(θt)∥ ≤ ϵ

where full expressions of ρ, γ, and T are given in Theorem B.10. We refer to Appendix B.3 for the
proof.

4.2 HOW DGSAM CONTROLS PER-DOMAIN SHARPNESS

Recent studies (Ma et al., 2023; Zhuang et al., 2022) have pointed out that SAM’s first-order
approximations may lead to suboptimal control of curvature. Luo et al. (2024) showed that aligning
the perturbation direction with an eigenvector can control the corresponding eigenvalue. However,
relying solely on the top eigenvectors is insufficient in multi-domain settings, where the directions may
conflict across domains. In such cases, it is more desirable to incorporate a broader set of eigenvectors
associated with large eigenvalues, capturing curvature shared across domains. Moreover, Wen et al.
(2023) demonstrated that controlling the entire eigenvalue spectrum yields tighter generalization
bounds than focusing solely on the top eigenvalue.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

In this regard, we analyze how DGSAM’s gradual perturbation mechanism implicitly controls the
per-domain sharpness. At the j-th step of the ascent phase, the gradient gj is computed as:

gj = ∇LBlj
(θ̃j−1) = ∇LBlj

(
θ̃0 +

j−1∑
k=1

ρ
gk
∥gk∥

)

≈ ∇LBlj
(θ̃0) + ρ∇2LBlj

(θ̃0)

j−1∑
k=1

gk
∥gk∥

+O(ρ2).

Since the Hessian ∇2LBlj
is symmetric and hence diagonalizable, we decompose it as ∇2LBlj

(θ̃0) =∑
n λnvnv

⊤
n , where Ej = {(λn, vn)} is the set of eigenpairs of ∇2LBlj

(θt). Then, the gj can be
approximated as

gj ≈ ∇LBlj
(θ̃0) + ρ

∑
(λ,v)∈Ej

λ

(
j−1∑
k=1

v⊤gk
∥v∥∥gk∥

)
v, (5)

In this approximation, the first term represents the standard ascent direction for the j-th domain,
while the second term is a curvature-aware correction term. This correction is a weighted sum of
the Hessian’s eigenvectors, where the weights depend on both the eigenvalues λ and the alignment
of eigenvectors with the perturbation directions from all previous domains (g1, . . . , gj−1). Thus,
DGSAM’s gradual perturbation strategy naturally integrates curvature information from the entire
sequence of domains, ensuring that the per-domain sharpness is controlled in a balanced and robust
manner. This theoretical insight is confirmed empirically. In Appendix C.2, we show that the
curvature-aware correction term contributes significantly to the ascent direction. Furthermore,
this mechanism’s effectiveness is demonstrated in our toy example (Section 3), where DGSAM
consistently finds the truly flat minima and avoids the fake flat minima trap

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Evaluation protocols, Baselines and Datasets For all main experiments, we adhere to the Do-
mainBed protocol (Gulrajani & Lopez-Paz, 2021), including model initialization, hyperparameter
tuning, and validation methods, to ensure a fair comparison. Our experiments are conducted on
five widely used DG benchmarks: PACS (Li et al., 2017b), VLCS (Fang et al., 2013), OfficeHome
(Venkateswara et al., 2017), TerraIncognita (Beery et al., 2018), and DomainNet (Peng et al., 2019).

We adopt the standard leave-one-domain-out setup: one domain is held out for testing, while the
model is trained on the remaining source domains (Gulrajani & Lopez-Paz, 2021). Model selection
is based on validation accuracy computed over the source domains. In addition to the average test
accuracy commonly reported in DG, we also report the standard deviation of per-domain performance
across test domains. This metric captures robustness to domain shifts and highlights potential
overfitting to domains that are similar to the training distribution. Each experiment is repeated three
times, and standard errors are reported.

Implementation Details We use a ResNet-50 (He et al., 2016) backbone pretrained on ImageNet,
and Adam (Kingma & Ba, 2015) as the base optimizer. We use the hyperparameter space, the
total number of iterations, and checkpoint frequency based on Wang et al. (2023). The specific
hyperparameter settings and search ranges are described in Appendix F.1.

5.2 ACCURACY AND DOMAIN-WISE VARIANCE ACROSS BENCHMARKS

Baselines on the DomainBed Protocol. We compare DGSAM with 18 baseline algorithms across
five widely used benchmark datasets: PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet.
The complete experimental setup and evaluation protocol follow DomainBed (Gulrajani & Lopez-Paz,
2021). Table 1 reports the average test accuracy and two types of standard deviation: (1) trial-
based standard deviation across three random seeds, denoted by ±, and (2) domain-wise standard
deviation, measuring performance variance across held-out domains. Higher accuracy and lower
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Table 1: Performance comparison on five DomainBed benchmarks. We report both trial-based
standard deviation (±) and test-domain standard deviation (SD). Bold and underlined entries indicate
the best and second-best results, excluding combined methods. Baseline results are sourced from
prior work (see Appendix G for references).

Algorithms PACS VLCS OfficeHome TerraInc DomainNet Avg (s/iter)Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

ARM† 85.1±0.6 8.0 77.6±0.7 13.1 64.8±0.4 10.2 45.5±1.3 7.4 35.5±0.5 16.7 61.7 11.1 0.12
VREx† 84.9±1.1 7.6 78.3±0.8 12.4 66.4±0.6 9.9 46.4±2.4 6.9 33.6±3.0 15.0 61.9 10.4 0.12
RSC† 85.2±1.0 7.6 77.1±0.7 13.0 65.5±1.0 10.0 46.6±1.0 7.0 38.9±0.7 17.3 62.7 11.0 0.15
MTL† 84.6±1.0 8.0 77.2±0.8 12.5 66.4±0.5 10.0 45.6±2.4 7.3 40.6±0.3 18.4 62.9 11.2 0.14
ERM† 85.5±0.6 7.0 77.3±1.1 12.5 66.5±0.4 10.8 46.1±2.9 8.0 40.9±0.3 18.6 63.3 11.4 0.12
SagNet† 86.3±0.5 6.9 77.8±0.7 12.5 68.1±0.3 9.5 48.6±0.3 7.1 40.3±0.3 17.9 64.2 10.8 0.36
CORAL† 86.2±0.6 7.5 78.8±0.7 12.0 68.7±0.4 9.6 47.7±0.4 7.0 41.5±0.3 18.3 64.6 10.9 0.14
GGA 86.4±1.7 6.6 78.7±1.0 12.2 67.0±0.5 10.5 48.5±2.0 7.4 44.5±0.3 19.7 65.0 11.3 0.54
GGA-L 86.5±1.5 6.6 78.4±1.0 12.6 66.5±0.4 10.0 49.8±2.8 6.0 44.5±0.3 19.7 65.1 11.0 0.36
GENIE 87.8±0.6 6.8 80.7±0.7 11.7 69.7±0.5 10.0 52.0±2.1 5.5 44.1±0.5 19.4 66.9 10.7 0.10
SWAD 88.1±0.4 5.9 79.1±0.4 12.8 70.6±0.3 9.2 50.0±0.3 7.9 46.5±0.2 19.9 66.9 11.2 0.12

GAM‡ 86.1±1.3 7.4 78.5±1.2 12.5 68.2±0.8 12.8 45.2±1.7 9.1 43.8±0.3 20.0 64.4 12.4 0.49
SAM† 85.8±1.3 6.9 79.4±0.6 12.5 69.6±0.3 9.5 43.3±0.3 7.5 44.3±0.2 19.4 64.5 11.2 0.24
Lookbehind-SAM 86.0±0.4 7.2 78.9±0.8 12.4 69.2±0.6 11.2 44.5±1.0 8.2 44.2±0.3 19.6 64.7 11.8 0.54
GSAM† 85.9±0.3 7.4 79.1±0.3 12.3 69.3±0.1 9.9 47.0±0.1 8.8 44.6±0.3 19.8 65.2 11.6 0.25
FAD 88.2±0.6 6.3 78.9±0.9 12.1 69.2±0.7 13.4 45.7±1.6 9.6 44.4±0.3 19.5 65.3 12.2 0.42
DISAM 87.1±0.5 5.6 79.9±0.2 12.3 70.3±0.2 10.3 46.6±1.4 6.9 45.4±0.3 19.5 65.9 10.9 0.37
SAGM 86.6±0.3 7.2 80.0±0.4 12.3 70.1±0.3 9.4 48.8±0.3 7.5 45.0±0.2 19.8 66.1 11.2 0.24

DGSAM 88.5±0.4 5.2 81.4±0.5 11.5 70.8±0.3 8.5 50.4±0.7 6.9 45.5±0.3 19.4 67.3 10.3 0.19
DGSAM + CORAL 88.8±0.4 5.2 81.9±0.5 11.4 71.2±0.4 8.6 50.8±0.7 6.9 46.2±0.2 19.5 67.8 10.3 0.19
DGSAM + SWAD 88.7±0.4 5.4 80.9±0.5 11.6 71.4±0.4 8.7 51.1±0.8 6.8 47.1±0.3 19.6 67.8 10.4 0.19
DGSAM + Mixup 89.4±0.4 5.5 81.7±0.4 11.4 71.3±0.3 8.0 50.5±0.6 6.9 48.3±0.3 19.7 68.2 10.3 0.20
DGSAM + ERM++ 90.1±0.5 5.3 81.0±0.3 11.5 74.9±0.2 8.6 52.1±0.9 6.4 51.0±0.3 20.9 69.8 10.5 0.29

Table 2: DG performances on ViT-B/16 backbone.

Algorithms PACS VLCS OfficeHome TerraInc DomainNet Avg

CORAL 95.4 82.5 83.3 52.0 59.5 74.5
DISAM 96.8 82.2 84.2 51.4 59.9 74.9
ERM 96.6 80.9 84.1 55.5 59.2 75.3
SAM 96.1 83.5 86.5 61.2 60.5 76.3

DGSAM 97.3 84.5 87.3 62.2 78.5 77.8

standard deviation indicate better and more robust generalization. DGSAM achieves the highest
average accuracy 67.3% and the lowest domain-level variance 10.3 among all methods, outperforming
baselines on PACS, VLCS, and OfficeHome, and ranking second on TerraIncognita and DomainNet.

Combination with Other DG Strategies. Beyond its strong standalone performance, DGSAM
also serves as a complementary component to other DG strategies. As shown in Table 1, integrating
DGSAM with diverse and orthogonal methods, including SWAD, Mixup (Lopez-Paz et al., 2018),
CORAL (Sun & Saenko, 2016), and ERM++ (Teterwak et al., 2025), consistently yields further
performance gains. This demonstrates the broad applicability of DGSAM as a foundational optimizer
that can enhance various DG frameworks. Detailed per-dataset results are provided in Appendix F.2.

Performance on a Large-Scale Backbone (ViT-B/16). While the standard DomainBed proto-
col provides a crucial benchmark, the ResNet-50 backbone is a relatively small-scale model. To
demonstrate that DGSAM is effective and scalable for more realistic, large-scale architectures, we
therefore conduct additional experiments using a Vision Transformer (ViT-B/16) backbone. As shown
in Table 2, DGSAM again consistently outperforms strong baselines, underscoring its effectiveness
across different architectures.

5.3 SHARPNESS ANALYSIS

To verify that DGSAM effectively induces flatter minima, we analyze the geometry of the loss
landscape at the converged model parameters using a ResNet-50 backbone on the DomainNet dataset.
We report three sharpness metrics: zeroth-order sharpness, the trace of the loss Hessian estimated
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Table 3: Comparison of the three sharpness metrics across different methods. Sep. denotes the average
per-domain sharpness across separate source domains, where the value in parentheses represents the
domain-wise standard deviation, i.e., variance across domains.

Method Zeroth-order Sharpness Hessian Trace Maximum Eigenvalue

Sep. Mean (SD) Aggregated Sep. Mean (SD) Aggregated Sep. Mean (SD) Aggregated

ERM 17.90 (5.62) 34.06 940.52 (181.66) 1372.51 89.24 (17.02) 121.86
SAM 4.79 (2.17) 19.68 5.83 (2.38) 9.31 1.51 (0.77) 1.85
SAGM 4.52 (2.34) 12.38 2.49 (1.76) 4.84 0.73 (0.36) 1.23
DISAM 3.95 (1.83) 8.14 3.50 (2.63) 5.70 0.83 (0.29) 1.45

DGSAM 2.98 (1.40) 6.41 2.13 (1.52) 4.93 0.65 (0.27) 1.18

via Hutchinson’s method Ubaru et al. (2017); Avron & Toledo (2011), and its maximum eigenvalue
(λmax) computed using the Lanczos algorithm Ghorbani et al. (2019a); Lin et al. (2016). As shown in
Table 3, DGSAM consistently outperforms the baselines. Notably, while SAGM exhibits a marginally
lower aggregated Hessian trace, DGSAM achieves a lower mean and standard deviation in the per-
domain Hessian trace. This empirically validates our theoretical analysis that minimizing per-domain
sharpness is more critical for robust generalization than minimizing the aggregated average, as it
ensures no specific domain remains sharp. This improved geometry is further corroborated by the
Hessian spectrum density in Figure 3, where DGSAM effectively suppresses the spectral tail and
controls the entire spectrum more effectively than SAM.
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Figure 3: Hessian spectrum density at converged Minima: (a) SAM and (b) DGSAM.

5.4 COMPUTATIONAL COST

0.000 0.037 0.073 0.110 0.147 0.183 0.220
Computational cost (s/iter)

DGSAM

SAM

ERM

0.169

0.217

0.110

Figure 4: Comparison of empirical computational
cost measured by training time per iteration.

In addition to performance improvements,
DGSAM significantly reduces the computa-
tional overhead commonly associated with SAM
variants. Let S denote the number of source do-
mains and c the unit cost of computing gradients
for one mini-batch. Then, the per-iteration cost
of ERM is S × c, as it requires one gradient
computation per domain. SAM performs two
backpropagations for all domain, yielding a cost
of 2S × c. In contrast, DGSAM requires only S + 1 gradient computations, resulting in a theoretical
cost of (S + 1)× c. Further details are provided in the Appendix D.1.

To validate this, we measure the actual training time per iteration on the PACS dataset. With S = 3
source domains, ERM takes S × c = 0.11 seconds per iteration. SAM incurs a cost of 0.217 seconds,
nearly double that of ERM, while DGSAM achieves 0.169 seconds per iteration. Although slightly
higher than its theoretical cost (S + 1) × c ≈ 0.148, the deviation is primarily due to additional
overheads such as gradient aggregation. Moreover, this efficiency is not achieved at the expense of
memory. As detailed in Appendix D.2, DGSAM requires less peak memory than both ERM and
SAM. Full results of cost on all datasets are included in Appendix F.2.
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6 DISCUSSION AND FUTURE DIRECTIONS

This paper revisits the role of sharpness minimization in domain generalization. While prior ap-
proaches have naively applied SAM to the aggregated loss across source domains, we reveal that this
strategy can converge to fake flat minima—solutions that appear flat on total loss but remain sharp in
separate domains, leading to poor generalization. To better capture the structure of domain-specific
risks, we introduced a new perspective based on the average worst-case domain risk, showing that
minimizing per-domain sharpness offers more meaningful control over robustness to distribution
shift than minimizing aggregated sharpness. This insight offers a fundamentally new direction for the
DG community, shifting the sharpness-aware optimization paradigm from single-source modeling to
domain-specific objectives. Based on this finding, we proposed DGSAM, an algorithm that gradually
applies perturbations along domain-specific directions and reuses gradients to efficiently reduce
per-domain sharpness. Experiments on five DG benchmarks showed that DGSAM not only improves
average accuracy but also significantly reduces domain-wise variance, achieving flatter minima across
respective domains and better generalization to unseen distributions.

Our findings open a new direction for sharpness-aware domain generalization, but leave several open
questions.When all local minima correspond to fake flat minima, it remains unclear which solutions
are truly optimal or how to guide the model toward them. Developing a more direct method for
minimizing per-domain sharpness, beyond sequential perturbation, could further improve training
stability and theoretical guarantees. Finally, because SAM is widely applied in multi-loss settings
such as multi-task learning (Le et al., 2024; Phan et al., 2022) and federated learning (Lee & Yoon,
2024; Qu et al., 2022; Caldarola et al., 2022), careful treatment of per-domain sharpness may likewise
enhance generalization in these broader contexts.
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Appendix

A LIMITATIONS OF TOTAL GRADIENT PERTURBATION

In SAM, each iteration performs gradient ascent to identify sensitive directions in the loss landscape
by perturbing the parameters as

θ̃t = θt + ϵ∗Ds
= θt + ρ

∇Ls(θt)

∥∇Ls(θt)∥
, (6)

where ϵ∗Ds
is the perturbation computed from the total loss gradient. However, this update direction

may not increase losses uniformly across source domains, as the total loss gradient ∇Ls(θt) does not
generally align with the per-domain gradients ∇Li(θt) for i = 1, . . . , S, as discussed in Section 3).

This misalignment between the total gradient and per-domain gradients leads to suboptimal pertur-
bations when applied uniformly across all domains. To empirically demonstrate this limitation, we
visualize in Figure 5 how different perturbation strategies affect the domain-wise loss increments
during training. Starting from θ0, we iteratively apply perturbations to compute the perturbed param-
eter θ̃i = θ0 +

∑i
j=1 ϵj on the DomainNet dataset (Peng et al., 2019) using ResNet-50 (He et al.,

2016). In Figure 5a, each ϵi is computed using the total loss gradient. In contrast, Figure 5b applies
perturbations sequentially using domain-specific gradients.

As shown in Figure 5a, total gradient perturbations often increase losses in an imbalanced manner
across domains. On the other hand, the domain-wise perturbation strategy in Figure 5b leads to a more
uniform increase in domain-wise losses. This observation suggests that applying domain-specific
gradients sequentially is more effective at capturing the structure of per-domain losses. As a result,
the resulting perturbations better reflect per-domain sharpness.
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(a) Perturbation by total gradient.
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(b) Perturbation by per-domain gradients.

Figure 5: Domain-wise loss increments under different perturbation strategies.

B THEORETICAL ANALYSIS AND PROOFS

B.1 PROOF OF PROPOSITION 3.1

Proof of Proposition 3.1. Let θ be a strict local minimum such that ∇Ls(θ) = 0 and H(θ) =
∇2Ls(θ) ≻ 0. Suppose ρ is sufficiently small. Then, the second-order Taylor expansion for Ls and
Li gives:

Ls(θ + ϵ) = Ls(θ) +∇Ls(θ)
⊤ϵ+

1

2
ϵ⊤H(θ)ϵ+ o(∥ϵ∥2)

and

Li(θ + ϵ) = Li(θ) +∇Li(θ)
⊤ϵ+

1

2
ϵ⊤Hi(θ)ϵ+ o(∥ϵ∥2), i = 1, . . . , S

where H and Hi are the Hessian matrices for Ls and Li, respectively, evaluated at θ.

Then, using ∇Ls(θ) = 0 and H(θ) = 1
S

∑S
i=1 Hi(θ), we have

Ls(θ + ϵ)− Ls(θ) =
1

2
ϵ⊤

(
1

S

S∑
i=1

Hi(θ)

)
ϵ+ o(∥ϵ∥2)
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which yields the zeroth-order sharpness for Ls:

Sagg(θ; ρ) = max
∥ϵ∥≤ρ

(Ls(θ + ϵ)− Ls(θ)) =
1

2S
ρ2σmax

(
S∑

i=1

Hi(θ)

)
+ o(∥ρ∥2)

where σmax(A) denotes the largest eigenvalue of the matrix A.

To show that the statement does not hold in general, it suffices to provide a counterexample. First, we
consider the case where ∥∇Li(θ)∥ = 0 for all i = 1, 2, . . . , S. Then, the zeroth-order sharpness of
the i-th domain loss function is given by

Si(θ; ρ) =
1

2
ρ2σmax (Hi(θ)) + o(∥ρ∥2).

This leads to the following expression of the average sharpness over all per-domain loss functions:

1

S

S∑
i=1

Si(θ; ρ) =
1

2S
ρ2

S∑
i=1

σmax (Hi(θ)) + o(∥ρ∥2).

Next, consider two different local minima θ1 and θ2. For sufficiently small ρ, we can write:

Sagg(θ1; θ) < Sagg(θ2; ρ) (7)
⇔

σmax

(
S∑

i=1

Hi(θ1)

)
< σmax

(
S∑

i=1

Hi(θ2)

)
. (8)

Similarly, for sufficiently small ρ, we have the following relationship between the average per-domain
sharpnesses at θ1 and θ2:

1

S

S∑
i=1

Si(θ; ρ) <
1

S

S∑
i=1

Si(θ; ρ) (9)

⇔
S∑

i=1

σmax (Hi(θ1)) <

S∑
i=1

σmax (Hi(θ2)) . (10)

Consequently, we conclude that Equation 7 does not imply Equation 9 since the largest eigenvalue of
a sum of matrices, σmax

(∑S
i=1 Hi(θ)

)
, is not generally equal to the sum of the largest eigenvalues

of the per-domain matrices,
∑S

i=1 σmax (Hi(θ)).

Secondly, let us consider the case where ∇Ls(θ) = 0, but there exists at least two elements such
that ∇Li(θ) ̸= 0. For simplicity, let S = 2. Without loss of generality, assume ∇L1(θ) > 0 and
∇L2(θ) = −∇L1(θ). Then, the sharpness for L1(θ) is given by

S1(θ; ρ) = ∥∇L1(θ)∥ρ+ o(∥ρ∥).

Now, consider two local minima θ1 and θ2 satisfying the following inequality:

Sagg(θ1; ρ) < Sagg(θ2; ρ).

A counterexample can be constructed such that for some G > 0 and 0 < c < 1,

∇L1(θ1) = G = −∇L2(θ1),

and
∇L1(θ2) = cG = −∇L2(θ2).

In this example, we find that 1
S

∑S
i=1 Si(θ1; ρ) > 1

S

∑S
i=1 Si(θ2; ρ),. However, such a choice of

gradients does not affect the Hessian matrices, and thus the inequality for the sharpness of the total
loss remains unchanged. Therefore, the sharpness for the total loss does not generally follow the
same ordering as the average sharpness of the per-domain losses.
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B.2 PROOF OF THEOREM 3.2

We begin by imposing some standard conditions on the loss function.
Assumption B.1. For each i, let Di be the i-th source domain distribution and LDi(θ) =
EX∼Di [ℓ(θ,X)] where ℓ is a loss function. Assume that ℓ(θ, x) is uniformly bounded for all θ
and x and Lipschitz continuous in θ. That is, there exist M and G such that

|ℓ(θ, x)| ≤ M, |ℓ(θ, x)− ℓ(θ′, x)| ≤ G∥θ − θ′∥ for all θ, θ′, x.

Moreover, if Div = W1 (the Wasserstein-1 distance), assume additionally that for each θ, the map
x 7→ ℓ(θ, x) is Lx–Lipschitz, i.e.

|ℓ(θ, x)− ℓ(θ, x′)| ≤ Lx d(x, x
′) for all θ, θ′, x.

Under Assumption B.1, the following lemma states the relationship between distribution shifts and
parameter perturbations.
Lemma B.2. Let Assumption B.1 hold, and let Di be the ith source distribution with

Li(θ) = Ex∼Di
[ℓ(θ;x)].

Fix a divergence or distance Div and threshold δ > 0, and set

Uδ
i = {D : Div(D∥Di) ≤ δ}.

Define the perturbation radius

ρ(δ) =



M

G

√
δ

2
, if Div = DKL,

M

G
δ, if Div = ∥ · ∥TV ,

Lx

G
δ, if Div = W1.

(11)

Then for all θ and any ρ ≥ ρ(δ),

sup
D∈Uδ

i

LD(θ) ≤ max
∥ϵ∥≤ρ

Li(θ + ϵ).

Proof. Fix ρ ≥ ρ(δ) where

ρ(δ) =



M

G

√
δ

2
, Div = DKL,

M

G
δ, Div = ∥ · ∥TV ,

Lx

G
δ, Div = W1.

We will show in each case that for all D with Div(D∥Di) ≤ δ,∣∣LD(θ)− Li(θ)
∣∣ ≤ Gρ(δ).

Case (i): Div = DKL and ρ(δ) = M
G

√
δ/2. Pinsker’s inequality gives

∥D − Di∥TV ≤
√

1
2 DKL(D∥Di) ≤

√
δ
2 ,

which leads to ∣∣LD(θ)− Li(θ)
∣∣ ≤ M ∥D − Di∥TV ≤ M

√
δ
2 = Gρ(δ).

Case (ii): Div = ∥ · ∥TV and ρ(δ) = M
G δ. The definition of total variation directly yields∣∣LD(θ)− Li(θ)
∣∣ ≤ M∥D − Di∥TV ≤ Mδ = Gρ(δ).
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Case (iii): Div = W1 and ρ(δ) = Lx

G δ. Assume in addition that x 7→ ℓ(θ;x) is Lx-Lipschitz. Then
by the Kantorovich–Rubinstein duality, we have∣∣LD(θ)− Li(θ)

∣∣ ≤ Lx W1(D,Di) ≤ Lx δ = Gρ(δ).

In each case, therefore, we obtain for all D ∈ Uδ
i

LD(θ) ≤ Li(θ) +Gρ (12)

On the other hand, for any perturbation ϵ with ∥ϵ∥ ≤ ρ, using the Lipschitz continuity of ℓ(·, x), we
obtain

Li(θ + ϵ)− Li(θ) = Ex∼Di

[
ℓ(θ + ϵ, x)− ℓ(θ, x)

]
≤ G∥ϵ∥

which yields

max
∥ϵ∥≤ρ

Li(θ + ϵ) ≤ Li(θ) +Gρ. (13)

Combining equation 12 and equation 13 and then taking the supremum over D ∈ Uδ
i gives

sup
D∈Uδ

i

LD(θ) ≤ max
∥ϵ∥≤ρ

LDi
(θ + ϵ).

Now, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Recall that

E(θ; δ) = 1

S

S∑
i=1

sup
D∈Uδ

i

LD(θ),

and

Ls(θ) =
1

S

S∑
i=1

Li(θ).

By Lemma B.2, for each i and ρ ≥ ρ(δ), we have

sup
D∈Uδ

i

LD(θ) ≤ max
∥ϵ∥≤ρ

Li(θ + ϵ) = Li(θ) + Si(θ; ρ).

where Si(θ; ρ) = max∥ϵ∥≤ρ Li(θ + ϵ)−Li(θ) is the per-domain sharpness for domain i. Averaging
over i = 1, . . . , S directly gives

E(θ; δ) = 1

S

S∑
i=1

sup
D∈Uδ

i

LD(θ)

≤ 1

S

S∑
i=1

[
Li(θ) + Si(θ; ρ)

]
= Ls(θ) +

1

S

S∑
i=1

Si(θ; ρ).

It remains to show that no analogous bound in terms of the aggregated sharpness Sagg(θ; ρ) can hold
uniformly. To this end, it is enough to find a counterexample. Let S = 2 and Div = DKL. Fix the
source distributions D1 = D2 = Uni{−1,+1} and define ℓ(θ, x) = θx, θ ∈ [0, 1]. Then, one can
compute

L1(θ) = L2(θ) = EX∼Di [θX] = 0, Ls(θ) =
L1(θ)+L2(θ)

2 = 0.
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If we take δ = ln 2, the adversarial set Uδ
i contains both point-masses δ+1 and δ−1. Hence, we have

sup
D∈Uδ

i

LD(θ) = max
x∈{+1,−1}

θ x = θ,

and therefore E(θ; δ) = θ. On the other hand, the aggregated sharpness is trivially zero since
Ls(θ) = 0. Thus for any θ, we find

E(θ; δ) = θ > 0 = Ls(θ) + Sagg(θ; ρ),

showing that no uniform bound of the form E(θ; δ) ≤ Ls(θ) + Sagg(θ; ρ) can hold.

B.3 CONVERGENCE ANALYSIS

Our convergence analysis builds upon the techniques developed in Gower et al. (2019); Khaled &
Richtárik (2020); Oikonomou & Loizou (2025).

B.3.1 PRELIMINARIES

Definition B.3 (Domain-wise Subsampling and Stochastic Gradient, (Gower et al., 2019; Khaled
& Richtárik, 2020)). Let D1, . . . ,DS be S source domains, and i-th data point is associated with
per-domain loss functions Li(θ), where θ ∈ Rp denotes the model parameters. We define the total
loss function as:

Ls(θ) :=
1

n

n∑
i=1

Li(θ),

where n is the total number of training samples aggregated from all domains.

We consider a two-level sampling process: First, a domain index r ∈ {1, . . . , S} is selected uniformly
at random. Then, a minibatch Br ⊂ Dr of fixed size τ is sampled uniformly from within the selected
domain. The domain-wise sampling vector vQ = (vQ1 , . . . , vQn ) is drawn from a distribution Q
defined by this two-level process. For each sample i, the sampling weight is given by:

vQi :=
S · 1i∈Br

τ
,

where 1i∈Br
is the indicator function that equals 1 if sample i is included in the minibatch and 0

otherwise. The resulting domain-wise stochastic gradient estimator is:

gQ(θ) :=
∑
i

vQi ∇L(i)(θ).

where L(i) is the loss evaluated on the i-th sample. According to the general arbitrary sampling
paradigm (Gower et al., 2019), since vQ ∼ Q satisfies E[vQi ] = 1 for all i, the estimator gQ(θ) is
unbiased:

EQ[g
Q(θ)] = ∇Ls(θ).

Furthermore, the second moment E[∥vQi ∥2] is finite under this scheme.
Assumption B.4. Let B be a minibatch sampled from the domain-wise subsampling distribution
the domain-wise subsampling distribution Q defined in Definition B.3, and let LB denote the loss
evaluated on B. We assume that LB is L-smooth. That is, there exists a constant L > 0 such that for
all θ, θ′ and any B,

∥∇LB(θ)−∇LB(θ
′)∥ ≤ L∥θ − θ′∥. (14)

Definition B.5 (Expected Residual Condition). Let θ∗ = argminθ Ls(θ). We say the Expected
Residual condition is satisfied if there exist nonnegative constants M1,M2,M3 ≥ 0 such that, for
any point θ, the following inequality holds for an unbiased estimator (stochastic gradient) g(θ) of the
true gradient ∇Ls(θ):

E∥g(θ)∥2 ≤ 2M1[Ls(θ)− Ls(θ
∗)] +M2∥∇Ls(θ)∥2 +M3.

Corollary B.6. Let Assumption B.4 holds and let the domain-wise stochastic gradient by gQ(θ)
which is an unbiased estimator of Ls(θ) for all θ with E[∥vQi ∥2] ≤ ∞. Then, it holds that

EQ∥gQ(θ)∥2 ≤ 2M1[Ls(θ)− Ls(θ
∗)] +M2∥∇Ls(θ)∥2 +M3.
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Proof. In Proposition 2 of Khaled & Richtárik (2020), it is proved that L-smoothness and unbiased
stochastic gradient with ED[v

2
i ] < ∞ imply Expected Residual condition (Definition B.5).

We collect a few basic inequalities that are frequently used throughout the proofs: For any a, b ∈ Rd

and any β > 0, we have:

|⟨a, b⟩| ≤ 1

2β
∥a∥2 + β

2
∥b∥2, (15)

∥a+ b∥2 ≤ (1 + β−1)∥a∥2 + (1 + β)∥b∥2, (16)

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, (17)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

≤ n

n∑
i=1

∥xi∥2. (18)

B.3.2 LEMMAS

We use a uniformly random permutation {l1, . . . , lS} over the domain indices. Blj means mini-
batch from j-th chosen domain and the choice of order is initialized at every step. Thus Blj
is the domain-wise subsampling with definition B.3. For notational simplicity, we will write

gtj = ∇LBlj

(
θt +

j−1∑
k=1

ρ
gt
k

∥gt
k∥

)
.

Lemma B.7. Let Assumption B.4 hold. Then the following inequality holds:

EQ∥gtj∥2 ≤ 2S2L2ρ2 + 2EQ∥gQ(θt)∥2,

where S is the number of domains.

Proof. It follows that

EQ∥gtj∥2 = EQ

∥∥∥∥∥∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

)∥∥∥∥∥
2

= EQ

∥∥∥∥∥∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

)
−∇LBlj

(θt) +∇LBlj
(θt)

∥∥∥∥∥
2

(17)

≤ 2EQ

∥∥∥∥∥∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

)
−∇LBlj

(θt)

∥∥∥∥∥
2

+ 2EQ

∥∥∥∇LBlj
(θt)

∥∥∥2
(14)

≤ 2L2ρ2EQ

∥∥∥∥∥
j−1∑
k=1

gtk
∥gtk∥

∥∥∥∥∥
2

+ 2EQ∥gQ(θt)∥2

(18)

≤ 2L2ρ2(j − 1)

j−1∑
k=1

EQ

∥∥∥∥ gtk
∥gtk∥

∥∥∥∥2 + 2EQ∥gQ(θt)∥2

≤ 2S2L2ρ2 + 2EQ∥gQ(θt)∥2.

Lemma B.8. Let Assumption B.4 hold. Then the following inequality holds:

EQ
〈
gtj , ∇Ls(θt)

〉
≥ −SLρ+ (1− SLρ

4
)∥∇Ls(θt)∥2,

where S is the number of domains.
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Proof.

EQ
〈
gtj , ∇Ls(θt)

〉
= EQ

〈
∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

)
, ∇Ls(θt)

〉

= EQ

〈
∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

)
−∇LBlj

(θt), ∇Ls(θt)

〉
+ EQ

〈
∇LBlj

(θt), ∇Ls(θt)
〉
.

We have

EQ

〈
∇LBlj

(θt), ∇Ls(θt)
〉
=
〈
EQ[∇LBlj

(θt)], ∇Ls(θt)
〉

=
〈
EQ[g

Q(θt)], ∇Ls(θt)
〉

= ∥∇Ls(θt)∥2,
and for β > 0

− EQ

〈
∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk

∥gtk∥

)
−∇LBlj

(θt), ∇Ls(θt)

〉
(15)

≤ 1

2β
EQ

∥∥∥∥∥∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk

∥gtk∥

)
−∇LBlj

(θt)

∥∥∥∥∥
2

+
β

2
EQ∥∇Ls(θt)∥2

(14)

≤ L2ρ2

2β
EQ

∥∥∥∥∥
j−1∑
k=1

gtk
∥gtk∥

∥∥∥∥∥
2

+
β

2
∥∇Ls(θt)∥2

≤ S2L2ρ2

2β
+

β

2
∥∇Ls(θt)∥2.

In sum,

EQ
〈
gtj , ∇Ls(θt)

〉
≥ −S2L2ρ2

2β
− β

2
∥∇Ls(θt)∥2 + ∥∇Ls(θt)∥2

= −S2L2ρ2

2β
+ (1− β

2
)∥∇Ls(θt)∥2

= −SLρ+ (1− SLρ

4
)∥∇Ls(θt)∥2

with β = SLρ
2 .

Lemma B.9 (Lemma A.8, (Oikonomou & Loizou, 2025)). Let (rt)t≥0 and (δt)t≥0 be sequences
of non-negative real numbers and let g > 1 and N ≥ 0. Assume that the following recursive
relationship holds:

rt ≤ gδt − δt+1 +N (19)
Then it holds

min
0≤t≤T−1

rt ≤
gT

T
δ0 +N.

B.3.3 PROOF OF THEOREM

Theorem B.10 (ϵ-approximate stationary). Let Assumption B.4 hold. Define

Tmin =
12M4

ϵ2S
max{1, 24M1M4SL

ϵ2
, 4M2L, 12M3SL},

ρ =
1

SL
min{1, ϵ

2

12
,

ϵ

2
√
6L

},

γ = min{1, 1

S
√
2M1LT

,
1

4M2L
,

ϵ2

12M3SL
}.
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For all ϵ > 0, if the DGSAM iteration(3) is employed, then for ρ ≤ ρ, γ ≤ γ, T ≥ Tmin

min
t=0,...,T−1

E∥∇Ls(θt)∥ ≤ ϵ

where the initial optimality gap M4 = Ls(θ0)− Ls(θ
∗), S is the number of domains, M1,M2,M3

are the constants for the expected residual condition.

Proof. For simplicity, we assume that the effect of the batch size is absorbed into the learning rate γ,
i.e., γ is defined as the product of the base learning rate and the batch size.

From the L-smoothness of Ls, we have

Ls(θt+1) ≤ Ls(θt) + ⟨∇Ls(θt), θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2

= Ls(θt)− γ
S

S + 1

〈
∇Ls(θt),

S+1∑
j=1

gtj

〉
+

Lγ2

2

(
S

S + 1

)2
∥∥∥∥∥∥
S+1∑
j=1

gtj

∥∥∥∥∥∥
2

,

since the DGSAM update is defined as θt+1 = θt − γ S
S+1

S+1∑
j=1

gtj .

By taking the expectation,

EQ[Ls(θt+1)− Ls(θ
∗) | θt]− [Ls(θt)− Ls(θ

∗)]

≤ −γ
S

S + 1

S+1∑
j=1

EQ
〈
∇Ls(θt), g

t
j

〉
+

Lγ2

2

(
S

S + 1

)2

EQ

∥∥∥∥∥∥
S+1∑
j=1

gtj

∥∥∥∥∥∥
2

(18)

≤ −γSEQ
〈
∇Ls(θt), g

t
j

〉
+

Lγ2S2

2
EQ
∥∥gtj∥∥2

Lem.B.7,B.8

≤ −γS

(
−SLρ+ (1− SLρ

4
)∥∇Ls(θt)∥2

)
+

Lγ2S2

2

(
2S2L2ρ2 + 2EQ∥gQ(θt)∥2

)
= −Sγ

(
1− SLρ

4

)
∥∇Ls(θt)∥2 + LS2γ2EQ∥gQ(θt)∥2 + S2Lγρ(1 + S2L2γρ)

Cor.B.6
≤ −Sγ

(
1− SLρ

4

)
∥∇Ls(θt)∥2 + 2M1LS

2γ2[Ls(θt)− Ls(θ
∗)] +M2LSγ

2∥∇Ls(θt)∥2

+M3LS
2γ2 + S2Lγρ(1 + S2L2γρ)

= −Sγ

(
1− SLρ

4
−M2Lγ

)
∥∇Ls(θt)∥2 + 2M1LS

2γ2[Ls(θt)− Ls(θ
∗)] + S2Lγ(ρ+ S2L2γρ2 +M3γ)

≤ −Sγ

2
∥∇Ls(θt)∥2 + 2M1LS

2γ2[Ls(θt)− Ls(θ
∗)] + S2Lγ(ρ+ S2L2γρ2 +M3γ).

The final inequality follows from the inequality 1− SLρ
4 −M2Lγ ≥ 1

2 , which is obtained from our
assumptions ρ ≤ 1

SL and γ ≤ 1
4M2L

.
In sum,

ED[Ls(θt+1)− Ls(θ
∗)]− [Ls(θt)− Ls(θ

∗)]

≤ −Sγ

2
∥∇Ls(θt)∥2 + 2M1LS

2γ2[Ls(θt)− Ls(θ
∗)] + S2Lγ(ρ+ S2L2γρ2 +M3γ)

=⇒ Sγ

2
∥∇Ls(θt)∥2 ≤ (1 + 2M1LS

2γ2)[Ls(θt)− Ls(θ
∗)]− ED[Ls(θt+1)− Ls(θ

∗)]

+ S2Lγ(ρ+ S2L2γρ2 +M3γ). (20)

By taking expectation and applying the tower property, we can conclude that

E∥∇Ls(θt)∥2 ≤ (1 + 2M1LS
2γ2)

2

Sγ
E[Ls(θt)− Ls(θ

∗)]− 2

Sγ
E[Ls(θt+1)− Ls(θ

∗)]

+ 2SL(ρ+ S2L2γρ2 +M3γ). (21)
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We now define the following auxiliary quantities:

rt := E∥∇Ls(θt)∥2 ≥ 0,

δt :=
2

Sγ
E[Ls(θt)− Ls(θ

∗)] ≥ 0,

g := (1 + 2M1LS
2γ2) > 1,

N := 2SL(ρ+ S2L2γρ2 +M3γ).

With these definitions, inequality 21 becomes:

rt ≤ gδt − δt+1 +N.

By applying Lemma B.9, we have

min
t=0,...,T−1

E∥∇Ls(θt)∥2 ≤ 2(1 + 2M1LS
2γ2)T

TSγ
[Ls(θ0)− Ls(θ

∗)] + 2SL(ρ+ S2L2γρ2 +M3γ).

From 1 + x ≤ ex, we can get

(1 + 2M1LS
2γ2)T ≤ exp(2TM1LS

2γ2) ≤ exp(1) ≤ 3,

since we have γ ≤ 1
S
√
2M1LT

which imply 2TM1LS
2γ2 ≤ 1.

Therefore,

min
t=0,...,T−1

E∥∇Ls(θt)∥2 ≤ 6M4

TSγ
+ 2SL(ρ+ S2L2γρ2 +M3γ).

The second term is less than ϵ2

2 with assumptions:

2SLρ ≤ ϵ2

6
⇐⇒ ρ ≤ ϵ2

12SL
,

γ ≤ 1,

4S2L3γρ2 ≤ ϵ2

6
⇐⇒ ρ ≤ ϵ

2SL
√
6L

with γ ≤ 1,

2SLM3γ ≤ ϵ2

6
⇐⇒ γ ≤ ϵ2

12SLM3
.

Likewise, we have the inequality for the first term:

6M4

TSγ
≤ ϵ2

2
⇐⇒ T ≥ 12M4

ϵ2Sγ
(22)

We have so far imposed the following inequalities on γ:

γ ≤ min

{
1

4M2L
,

1

S
√
2M1LT

, 1,
ϵ2

12M3SL

}
Consequently, T must satisfy the following conditions for (22).

T ≥ max

{
48M2M4L

ϵ2S
,
288M1M

2
4L

ϵ4
,
12M4

ϵ2S
,
144M3M4L

ϵ2

}
Finally, we have:

min
t=0,...,T−1

E∥∇Ls(θt)∥2 ≤ ϵ2.

withe these assumptions:

T ≥ 12M4

ϵ2S
max{1, 24M1M4SL

ϵ2
, 4M2L, 12M3SL},

ρ ≤ 1

SL
min{1, ϵ

2

12
,

ϵ

2
√
6L

},

γ ≤ min{1, 1

S
√
2M1LT

,
1

4M2L
,

ϵ2

12M3SL
}.
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C ADDITIONAL EXPERIMENTS

C.1 SENSITIVITY ANALYSIS OF DGSAM WITH RESPECT TO ρ

To analyze the sensitivity of DGSAM to ρ, we evaluated the performance of SAM and DGSAM across
different ρ values {0.001, 0.005, 0.01, 0.05, 0.1, 0.2} on the PACS and TerraIncognita datasets. As
shown in Figure 6, DGSAM consistently outperformed SAM and demonstrated superior performance
over a wider range of ρ values.
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Figure 6: Sensitivity analysis

C.2 COMPARISON OF TWO TERMS IN EQ 5

Figure 7 shows that the second term tends to be slightly smaller than the first term, but the two are
comparable in magnitude. This indicates that both terms contribute to the gradual perturbation.
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Figure 7: Comparison of magnitude of two terms in Eq 5 on the PACS

C.3 ROBUSTNESS TO EXTREME DOMAIN IMBALANCE

To further validate the robustness of our proposed DGSAM method against domain imbalance, we
conducted additional stress-test experiments under more extreme imbalance scenarios. For this
analysis, we utilized the TerraIncognita dataset and artificially increased the sample size imbalance
ratio between the largest and smallest domains from the original approximate ratio of 2:1 to 3:1, 5:1,
and 10:1.

The results are presented in Table 4. As the domain imbalance becomes more severe, the performance
of all methods gradually decreases. However, DGSAM consistently and significantly outperforms
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both ERM and SAM across all tested scenarios. Notably, even with a severe 10:1 imbalance
ratio, DGSAM’s performance degrades gracefully while maintaining a substantial performance
margin over the baselines. This result strongly demonstrates that DGSAM is inherently robust to
domain heterogeneity and imbalance, owing to its mechanism of applying perturbations based on the
normalized gradient for each domain.

Table 4: Performance comparison on TerraIncognita under varying degrees of domain imbalance.

Method \ Ratio 2:1 (Original) 3:1 4:1 5:1 10:1

ERM 35.7 35.3 35.2 34.9 32.1
SAM 34.5 34.7 34.2 34.1 31.9
DGSAM 41.8 41.6 41.4 41.1 38.3

C.4 SCALABILITY TO A LARGE NUMBER OF DOMAINS

The standard DGSAM implementation performs a sequential ascent over all S source domains,
which can become computationally inefficient and potentially unstable as the number of domains S
becomes very large. To address this scalability concern, we introduce a straightforward and practical
modification: domain subsampling.

Instead of iterating through all S domains, we can fix the number of sequential ascent steps to k
(where k ≪ S, e.g., k = 5) by randomly subsampling a subset of k domains at each training iteration.
The method presented in the main manuscript is a specific case of this more general framework where
k = S.

To verify the effectiveness of this approach, we applied DGSAM with domain subsampling (k = 5) to
datasets comprising several tens of domains: PovertyMap (Yeh et al., 2020) and GlobalWheat (David
et al., 2020). As shown in Table 5, DGSAM with subsampling not only addresses the scalability issue
but also maintains strong performance, outperforming both ERM and SAM. This refinement confirms
that DGSAM can be effectively and practically applied to large-scale scenarios with numerous
domains.

Table 5: Performance on datasets with a large number of domains using domain subsampling.

Method PovertyMap (23 domains) GlobalWheat (47 domains)

ERM 0.45 50.8
SAM 0.44 51.1
DGSAM (k = 5 subsampling) 0.50 51.9

C.5 ABLATION STUDIES ON STOCHASTIC ORDERING AND GRADIENT RE-USING

In this subsection, we empirically validate two critical design choices in the DGSAM algorithm: (1)
the stochasticity in the sequential domain order, and (2) the gradient reuse strategy for computational
efficiency. We conduct these ablation studies on the PACS and TerraIncognita datasets using the
ResNet-50 backbone. The results are summarized in Table 6.

Table 6: Ablation analysis on PACS and TerraIncognita datasets.

Method Configuration PACS TerraIncognita s/iterMean (SD) Mean (SD)

Not re-using 88.9 0.5 51.3 0.5 0.236
Fixed Order 83.6 2.6 46.1 1.8 0.169
DGSAM 88.5 0.4 49.9 0.7 0.169
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Impact of Random Domain Permutation. DGSAM permutes the order of source domains at
each iteration before applying sequential perturbations. To assess the impact of this stochasticity, we
compare our default setting with a “Fixed Order” variant, where the domain sequence for the gradual
ascent remains constant throughout training. As presented in Table 6, fixing the domain order leads to
a consistent degradation in average accuracy across benchmarks compared to the random permutation
strategy. Furthermore, we observe a marked increase in performance variance, suggesting that a
fixed sequence induces training instability. These results indicate that randomizing the perturbation
order serves as an essential regularizer, preventing the optimization from biasing towards a specific
trajectory and ensuring robust flatness across all domains.

Effect of Gradient Re-using. To minimize computational overhead, DGSAM approximates the
descent direction by aggregating the gradients computed during the gradual ascent steps, rather
than performing a fresh gradient computation at the final perturbed model parameter. We evaluate
the trade-off of this design by comparing it with a variant that performs an additional backward
pass at the final perturbed point to compute the exact gradient for the update. As shown in Table 6,
while the additional gradient computation yields marginal gains in accuracy, it incurs a substantial
computational penalty, leading to a considerable slowdown in training speed. Consequently, we adopt
the gradient reuse strategy as the default, as it maintains competitive performance while significantly
reducing the computational burden, offering a better balance for scalable domain generalization.

C.6 DETAILS OF THE EXPERIMENTAL VERIFICATION OF SHARPNESS

D COMPUTATION EFFICIENCY

D.1 ILLUSTRATION OF COMPUTATIONAL COST COMPARISON

(a) SAM

(b) DGSAM

Figure 8: Computational cost of SAM and DGSAM.

In standard domain generalization tasks, a single update step operates on a batch that comprises
mini-batches from all source domains. While the number of data samples per domain-specific
mini-batch may vary, we follow the DomainBed protocol (Gulrajani & Lopez-Paz, 2021), where
each mini-batch contains an equal number of samples. Throughout this paper, we assume uniform
mini-batch sizes across domains.

Let the computational cost of computing the loss and performing backpropagation on a single domain-
specific mini-batch from one domain be denoted as c. In the standard SAM algorithm, both an ascent
and a descent gradient must be computed for each of the S domain-specific mini-batches, resulting in
a total gradient computation cost of 2S × c per update theoretically.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

In contrast, as illustrated in the Figure 8, DGSAM computes gradients separately for each mini-batch,
using g1, . . . , gS not only as ascent gradients but also directly for the parameter update. Due to this
efficient reuse of gradients, DGSAM requires only (S + 1) × c in gradient computation cost per
update theoretically.

D.2 ADDITIONAL ANALYSIS ON COMPUTATIONAL RESOURCES

We provide a comprehensive analysis of computational resources, including both computational
complexity (GFLOPs) and memory usage. All measurements were conducted using a ResNet-50
backbone, and the results reported in Table 7 are averaged across the PACS and TerraIncognita
datasets. We report GFLOPs per update alongside mean and maximum memory allocation.

Computational Cost (GFLOPs). We measure the GFLOPs required for a single model update. As
expected, SAM nearly doubles the cost of ERM due to its dual forward-backward passes. DGSAM
successfully reduces this overhead, validating our efficiency analysis.

Memory Efficiency. Despite the moderate increase in GFLOPs compared to ERM, DGSAM achieves
the lowest memory consumption. While ERM and SAM typically perform the backward pass over a
full batch including data from all domains, DGSAM performs backward passes separately on each
domain-specific mini-batch, accumulating gradients before a single update. This approach prevents
memory cost from scaling linearly with the number of domains, resulting in significantly lower
memory usage compared to both ERM and SAM.

Table 7: Comparison of computational cost (GFLOPs per sample) and memory consumption (GB).

Method Computational Cost Memory Usage

GFLOPs / sample Mean (GB) Max (GB)

ERM 8.27 8.0 8.1
SAM 15.99 8.1 8.3
DGSAM 13.28 5.8 6.0

E VISUALIZATION OF LOSS LANDSCAPES

Figure 9 shows the 3D loss landscapes of converged solutions obtained by SAM and our proposed
DGSAM on the PACS dataset using ResNet-50. Each subplot corresponds to a different domain or
the aggregated total loss. While SAM finds flat minima in the total loss, it fails to flatten the loss
surfaces in respective domains. In contrast, DGSAM successfully reduces per-domain sharpness as
well as the total sharpness, demonstrating its ability to achieve flatter minima at the domain level.

Figure 10 illustrates how DGSAM sequentially applies domain-specific perturbations and aggregates
gradients to update the model.

F DETAILS OF MAIN EXPERIMENTS

F.1 IMPLEMENTATION DETAILS

We searched hyperparameters in the following ranges: the learning rate was chosen from {10−5, 2×
10−5, 3×10−5, 5×10−5}, the dropout rate from {0.0, 0.2, 0.5}, the weight decay from {10−4, 10−6},
and ρ from {0.03, 0.05, 0.1}. Each experiment was repeated three times, using 20 randomly initialized
models sampled from this space, following the DomainBed protocol (Gulrajani & Lopez-Paz, 2021).
The optimal hyperparameters selected based on DomainBed criteria for each dataset are provided in
Table 8 to ensure replicability. All our experiments were conducted on an NVIDIA A100 GPU, using
Python 3.11.5, PyTorch 2.0.0, Torchvision 0.15.1, and CUDA 11.7.
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Figure 9: Comparison of loss landscapes of converged minima using SAM and DGSAM across
different domains on the PACS dataset. We set the grid with two random direction. DGSAM
performs better than SAM in reducing per-domain sharpness in all three respective domains, and total
sharpness.

Figure 10: A visualization of DGSAM algorithm.

Table 8: Optimal hyperparameter settings for each dataset
Dataset Learning Rate Dropout Rate Weight Decay ρ

PACS 3× 10−5 0.5 10−4 0.03
VLCS 10−5 0.5 10−4 0.03
OfficeHome 10−5 0.5 10−6 0.1
TerraIncognita 10−5 0.2 10−6 0.05
DomainNet 2× 10−5 0.5 10−4 0.1
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F.2 FULL RESULTS

Here are the detailed results of the main experiment in Section 5.2 for each dataset. The outcomes
are marked with † if sourced from Wang et al. (2023), ‡ if sourced from Zhang et al. (2023a), and
are unlabeled if sourced from individual papers. We note that all results were conducted in the
same experimental settings as described in their respective papers. The value shown next to the
performance for each test domain represents the standard error across three trials.

Table 9: The performance of DGSAM with 18 baseline algorithms on PACS.

Algorithm A C P S Avg SD (s/iter)

MTL† (Blanchard et al., 2021) 87.5±0.8 77.1±0.5 96.4±0.8 77.3±1.8 84.6 8.0 0.12
VREx† (Krueger et al., 2021) 86.0±1.6 79.1±0.6 96.9±0.5 77.7±1.7 84.9 7.6 0.11
ARM† (Zhang et al., 2021) 86.8±0.6 76.8±0.5 97.4±0.3 79.3±1.2 85.1 8.0 0.11
RSC† (Huang et al., 2020) 85.4±0.8 79.7±1.8 97.6±0.3 78.2±1.2 85.2 7.6 0.14
ERM† 84.7±0.4 80.8±0.6 97.2±0.3 79.3±1.0 85.5 7.0 0.11
CORAL† (Sun & Saenko, 2016) 88.3±0.2 80.0±0.5 97.5±0.3 78.8±1.3 86.2 7.5 0.12
SagNet† (Nam et al., 2021) 87.4±1.0 80.7±0.6 97.1±0.1 80.0±0.4 86.3 6.9 0.32
GGA (Ballas & Diou, 2025) 86.5±1.8 81.2±3.0 97.1±0.9 80.8±0.9 86.4 6.6 0.49
GGA-L (Ballas & Diou, 2025) 88.0±1.0 81.2±2.0 97.1±0.3 80.8±2.5 86.5 6.6 0.33
GENIE (Cho et al., 2025) 88.7±0.7 82.8±1.3 98.5±0.1 81.3±0.4 87.8 6.8 0.09
SWAD (Cha et al., 2021) 89.3±0.2 83.4±0.6 97.3±0.3 82.5±0.5 88.1 5.9 0.11

SAM† (Foret et al., 2021) 85.6±2.1 80.9±1.2 97.0±0.4 79.6±1.6 85.8 6.9 0.22
GSAM† (Zhuang et al., 2022) 86.9±0.1 80.4±0.2 97.5±0.0 78.7±0.8 85.9 7.4 0.22
Lookbehind-SAM (Mordido et al., 2024) 86.8±0.2 80.2±0.3 97.4±0.8 79.7±0.2 86.0 7.2 0.50
GAM‡ (Zhang et al., 2023b) 85.9±0.9 81.3±1.6 98.2±0.4 79.0±2.1 86.1 7.4 0.43
SAGM (Wang et al., 2023) 87.4±0.2 80.2±0.3 98.0±0.2 80.8±0.6 86.6 7.2 0.22
DISAM (Zhang et al., 2024) 87.1±0.4 81.9±0.5 96.2±0.3 83.1±0.7 87.1 5.6 0.33
FAD (Zhang et al., 2023a) 88.5±0.5 83.0±0.8 98.4±0.2 82.8±0.9 88.2 6.3 0.38

DGSAM 88.9±0.2 84.8±0.7 96.9±0.2 83.5±0.3 88.5 5.2 0.17
DGSAM + SWAD 89.1±0.5 84.6±0.4 97.3±0.1 83.6±0.4 88.7 5.4 0.17
DGSAM + CORAL 89.5±0.3 84.9±0.3 97.0±0.2 83.7±0.7 88.8 5.2 0.18
DGSAM + Mixup 90.1±0.4 84.8±0.4 98.2±0.3 84.5±0.5 89.4 5.5 0.17
DGSAM + ERM++ 90.6±0.5 85.2±0.6 98.5±0.3 86.0±0.4 90.1 5.3 0.25

Table 10: The performance of DGSAM with 18 baseline algorithms on VLCS

Algorithm C L S V Avg SD (s/iter)

RSC† (Huang et al., 2020) 97.9±0.1 62.5±0.7 72.3±1.2 75.6±0.8 77.1 13.0 0.13
MTL† (Blanchard et al., 2021) 97.8±0.4 64.3±0.3 71.5±0.7 75.3±1.7 77.2 12.5 0.12
ERM† 98.0±0.3 64.7±1.2 71.4±1.2 75.2±1.6 77.3 12.5 0.11
ARM† (Zhang et al., 2021) 98.7±0.2 63.6±0.7 71.3±1.2 76.7±0.6 77.6 13.1 0.11
SagNet† (Nam et al., 2021) 97.9±0.4 64.5±0.5 71.4±1.3 77.5±0.5 77.8 12.5 0.32
VREx† (Krueger et al., 2021) 98.4±0.3 64.4±1.4 74.1±0.4 76.2±1.3 78.3 12.4 0.11
GGA-L (Ballas & Diou, 2025) 98.9±0.4 66.5±0.3 70.0±2.0 78.1±1.1 78.4 12.6 0.33
GGA (Ballas & Diou, 2025) 98.4±0.2 65.4±0.1 73.8±1.6 77.4±1.9 78.7 12.2 0.49
CORAL† (Sun & Saenko, 2016) 98.3±0.1 66.1±1.2 73.4±0.3 77.5±1.2 78.8 12.0 0.12
SWAD (Cha et al., 2021) 98.8±0.1 63.3±0.3 75.3±0.5 79.2±0.6 79.1 12.8 0.11
GENIE (Cho et al., 2025) 99.3±0.3 67.2±1.5 76.6±0.3 79.7±0.8 80.7 11.7 0.09

GAM‡ (Zhang et al., 2023b) 98.8±0.6 65.1±1.2 72.9±1.0 77.2±1.9 78.5 12.5 0.43
Lookbehind-SAM (Mordido et al., 2024) 98.7±0.6 65.1±1.1 73.1±0.4 78.7±0.9 78.9 12.4 0.50
FAD (Zhang et al., 2023a) 99.1±0.5 66.8±0.9 73.6±1.0 76.1±1.3 78.9 12.1 0.38
GSAM† (Zhuang et al., 2022) 98.7±0.3 64.9±0.2 74.3±0.0 78.5±0.8 79.1 12.3 0.22
SAM† (Foret et al., 2021) 99.1±0.2 65.0±1.0 73.7±1.0 79.8±0.1 79.4 12.5 0.22
DISAM (Zhang et al., 2024) 99.3±0.0 66.3±0.5 81.0±0.1 73.2±0.1 79.9 12.3 0.33
SAGM (Wang et al., 2023) 99.0±0.2 65.2±0.4 75.1±0.3 80.7±0.8 80.0 12.3 0.22

DGSAM + SWAD 99.3±0.7 67.2±0.3 77.7±0.6 79.2±0.5 80.9 11.6 0.17
DGSAM + ERM++ 99.2±0.3 67.4±0.2 77.8±0.1 79.5±0.4 81.0 11.5 0.25
DGSAM 99.0±0.5 67.0±0.5 77.9±0.5 81.8±0.4 81.4 11.5 0.17
DGSAM + Mixup 99.1±0.4 67.3±0.5 78.1±0.2 82.1±0.5 81.7 11.4 0.17
DGSAM + CORAL 99.3±0.8 67.4±0.7 79.5±0.5 81.5±0.1 81.9 11.4 0.18
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Table 11: The performance of DGSAM with 18 baseline algorithms on OfficeHome

Algorithm A C P R Avg SD (s/iter)

ARM† (Zhang et al., 2021) 58.9±0.8 51.0±0.5 74.1±0.1 75.2±0.3 64.8 10.2 0.11
RSC† (Huang et al., 2020) 60.7±1.4 51.4±0.3 74.8±1.1 75.1±1.3 65.5 10.0 0.14
MTL† (Blanchard et al., 2021) 61.5±0.7 52.4±0.6 74.9±0.4 76.8±0.4 66.4 10.0 0.12
VREx† (Krueger et al., 2021) 60.7±0.9 53.0±0.9 75.3±0.1 76.6±0.5 66.4 9.9 0.11
GGA-L (Ballas & Diou, 2025) 59.7±0.2 53.8±0.5 75.3±0.8 77.1±0.1 66.5 10.0 0.33
GGA (Ballas & Diou, 2025) 61.7±0.1 52.5±0.5 77.1±1.3 77.0±0.1 67.0 10.5 0.49
ERM† 63.1±0.3 51.9±0.4 77.2±0.5 78.1±0.2 67.6 10.8 0.11
SagNet† (Nam et al., 2021) 63.4±0.2 54.8±0.4 75.8±0.4 78.3±0.3 68.1 9.5 0.32
CORAL† (Sun & Saenko, 2016) 65.3±0.4 54.4±0.5 76.5±0.1 78.4±0.5 68.7 9.6 0.12
GENIE (Cho et al., 2025) 66.2±0.5 55.0±0.4 77.5±0.4 80.0±0.5 69.7 10.0 0.09
SWAD (Cha et al., 2021) 66.1±0.4 57.7±0.4 78.4±0.1 80.2±0.2 70.6 9.2 0.11

GAM‡ (Zhang et al., 2023b) 63.0±1.2 49.8±0.5 77.6±0.6 82.4±1.0 68.2 12.8 0.43
FAD (Zhang et al., 2023a) 63.5±1.0 50.3±0.8 78.0±0.4 85.0±0.6 69.2 13.4 0.40
Lookbehind-SAM (Mordido et al., 2024) 64.7±0.3 53.1±0.8 77.4±0.5 81.7±0.7 69.2 11.2 0.50
GSAM† (Zhuang et al., 2022) 64.9±0.1 55.2±0.2 77.8±0.0 79.2±0.0 69.3 9.9 0.22
SAM† (Foret et al., 2021) 64.5±0.3 56.5±0.2 77.4±0.1 79.8±0.4 69.6 9.5 0.22
SAGM (Wang et al., 2023) 65.4±0.4 57.0±0.3 78.0±0.3 80.0±0.2 70.1 9.4 0.22
DISAM (Zhang et al., 2024) 65.8±0.2 55.6±0.2 79.2±0.2 80.6±0.1 70.3 10.3 0.33

DGSAM 65.6±0.4 59.7±0.2 78.0±0.2 80.1±0.4 70.8 8.5 0.17
DGSAM + CORAL 66.4±0.5 59.6±0.2 78.3±0.3 80.5±0.5 71.2 8.6 0.18
DGSAM + Mixup 67.3±0.3 60.2±0.4 77.4±0.3 80.3±0.3 71.3 8.0 0.17
DGSAM + SWAD 66.2±0.6 59.9±0.1 78.1±0.4 81.2±0.5 71.4 8.7 0.17
DGSAM + ERM++ 70.9±0.5 62.7±0.1 82.3±0.2 83.8±0.1 74.9 8.6 0.25

Table 12: The performance of DGSAM with 18 baseline algorithms on TerraIncognita

Algorithm L100 L38 L43 L46 Avg SD (s/iter)

ARM† (Zhang et al., 2021) 49.3±0.7 38.3±2.4 55.8±0.8 38.7±1.3 45.5 7.4 0.11
MTL† (Blanchard et al., 2021) 49.3±1.2 39.6±6.3 55.6±1.1 37.8±0.8 45.6 7.3 0.12
ERM† 49.8±4.4 42.1±1.4 56.9±1.8 35.7±3.9 46.1 8.0 0.11
VREx† (Krueger et al., 2021) 48.2±4.3 41.7±1.3 56.8±0.8 38.7±3.1 46.4 6.9 0.11
RSC† (Huang et al., 2020) 50.2±2.2 39.2±1.4 56.3±1.4 40.8±0.6 46.6 7.0 0.13
CORAL† (Sun & Saenko, 2016) 51.6±2.4 42.2±1.0 57.0±1.0 39.8±2.9 47.7 7.0 0.12
GGA (Ballas & Diou, 2025) 50.9±2.2 42.5±1.0 59.7±1.4 41.5±3.5 48.5 7.4 0.49
SagNet† (Nam et al., 2021) 53.0±2.9 43.0±2.5 57.9±0.6 40.4±1.3 48.6 7.1 0.32
GGA-L (Ballas & Diou, 2025) 57.2±5.2 45.1±1.0 56.4±1.4 44.5±3.5 49.8 6.0 0.33
SWAD (Cha et al., 2021) 55.4±0.0 44.9±1.1 59.7±0.4 39.9±0.2 50.0 7.9 0.11
GENIE (Cho et al., 2025) 55.2±4.8 47.5±2.1 59.2±0.4 45.9±1.0 52.0 5.5 0.09

SAM† (Foret et al., 2021) 46.3±1.0 38.4±2.4 54.0±1.0 34.5±0.8 43.3 7.5 0.22
Lookbehind-SAM (Mordido et al., 2024) 44.6±0.8 41.1±1.4 57.4±1.2 34.9±0.6 44.5 8.2 0.50
GAM‡ (Zhang et al., 2023b) 42.2±2.6 42.9±1.7 60.2±1.8 35.5±0.7 45.2 9.1 0.43
FAD (Zhang et al., 2023a) 44.3±2.2 43.5±1.7 60.9±2.0 34.1±0.5 45.7 9.6 0.38
DISAM (Zhang et al., 2024) 46.2±2.9 41.6±0.1 58.0±0.5 40.5±2.2 46.6 6.9 0.33
GSAM† (Zhuang et al., 2022) 50.8±0.1 39.3±0.2 59.6±0.0 38.2±0.8 47.0 8.8 0.22
SAGM (Wang et al., 2023) 54.8±1.3 41.4±0.8 57.7±0.6 41.3±0.4 48.8 7.5 0.22

DGSAM 54.5±0.6 45.3±0.7 59.4±0.4 42.3±1.0 50.4 6.9 0.17
DGSAM + Mixup 54.7±0.9 45.2±0.4 59.5±0.4 42.5±0.8 50.5 6.9 0.17
DGSAM + CORAL 55.8±0.5 45.4±0.8 59.2±0.2 42.7±1.1 50.8 6.9 0.19
DGSAM + SWAD 55.6±1.2 45.9±0.5 59.6±0.5 43.1±0.9 51.1 6.8 0.17
DGSAM + ERM++ 56.2±0.9 49.3±1.3 59.8±0.5 43.2±0.7 52.1 6.4 0.25
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Table 13: The performance of DGSAM with 18 baseline algorithms on DomainNet

Algorithm C I P Q R S Avg SD (s/iter)

VREx† (Krueger et al., 2021) 47.3 ±3.5 16.0 ±1.5 35.8 ±4.6 10.9 ±0.3 49.6 ±4.9 42.0 ±3.0 33.6 15.0 0.18
ARM† (Zhang et al., 2021) 49.7 ±0.3 16.3 ±0.5 40.9 ±1.1 9.4 ±0.1 53.4 ±0.4 43.5 ±0.4 35.5 16.7 0.18
RSC† (Huang et al., 2020) 55.0 ±1.2 18.3 ±0.5 44.4 ±0.6 12.2 ±0.2 55.7 ±0.7 47.8 ±0.9 38.9 17.3 0.20
SagNet† (Nam et al., 2021) 57.7 ±0.3 19.0 ±0.2 45.3 ±0.3 12.7 ±0.5 58.1 ±0.5 48.8 ±0.2 40.3 17.9 0.53
MTL† (Blanchard et al., 2021) 57.9 ±0.5 18.5 ±0.4 46.0 ±0.1 12.5 ±0.1 59.5 ±0.3 49.2 ±0.1 40.6 18.4 0.20
ERM† 58.1 ±0.3 18.8 ±0.3 46.7 ±0.3 12.2 ±0.4 59.6 ±0.1 49.8 ±0.4 40.9 18.6 0.18
CORAL† (Sun & Saenko, 2016) 59.2 ±0.1 19.7 ±0.2 46.6 ±0.3 13.4 ±0.4 59.8 ±0.2 50.1 ±0.6 41.5 18.3 0.20
GENIE (Cho et al., 2025) 62.5 ±0.5 21.3 ±0.4 50.0 ±0.4 14.0 ±0.4 64.0 ±0.7 52.6 ±0.8 44.1 19.4 0.14
GGA (Ballas & Diou, 2025) 63.7 ±0.2 21.3 ±0.3 50.4 ±0.1 14.1 ±0.4 63.8 ±0.2 53.5 ±0.3 44.4 19.7 0.75
GGA-L (Ballas & Diou, 2025) 63.2 ±0.2 21.0 ±0.3 49.5 ±0.1 13.8 ±0.2 64.1 ±0.4 53.6 ±0.3 44.5 19.7 0.50
SWAD (Cha et al., 2021) 66.0 ±0.1 22.4 ±0.3 53.5 ±0.1 16.1 ±0.2 65.8 ±0.4 55.5 ±0.3 46.5 19.9 0.18

GAM‡ (Zhang et al., 2023b) 63.0 ±0.5 20.2 ±0.2 50.3 ±0.1 13.2 ±0.3 64.5 ±0.2 51.6 ±0.5 43.8 20.0 0.71
Lookbehind-SAM (Mordido et al., 2024) 64.3 ±0.3 20.8 ±0.1 50.4 ±0.1 15.0 ±0.4 63.1 ±0.3 51.4 ±0.3 44.1 19.4 0.71
SAM† (Foret et al., 2021) 64.5 ±0.3 20.7 ±0.2 50.2 ±0.1 15.1 ±0.3 62.6 ±0.2 52.7 ±0.3 44.3 19.4 0.34
FAD (Zhang et al., 2023a) 64.1 ±0.3 21.9 ±0.2 50.6 ±0.3 14.2 ±0.4 63.6 ±0.1 52.2 ±0.2 44.4 19.5 0.56
GSAM† (Zhuang et al., 2022) 64.2 ±0.3 20.8 ±0.2 50.9 ±0.0 14.4 ±0.8 63.5 ±0.2 53.9 ±0.2 44.6 19.8 0.36
SAGM (Wang et al., 2023) 64.9 ±0.2 21.1 ±0.3 51.5 ±0.2 14.8 ±0.2 64.1 ±0.2 53.6 ±0.2 45.0 19.8 0.34
DISAM (Zhang et al., 2024) 65.9 ±0.2 20.7 ±0.2 51.7 ±0.3 16.6 ±0.3 62.8 ±0.5 54.8 ±0.4 45.4 19.5 0.53

DGSAM 63.6 ±0.4 22.2 ±0.1 51.9 ±0.3 15.8 ±0.2 64.7 ±0.3 54.7 ±0.4 45.5 19.4 0.26
DGSAM + CORAL 64.3 ±0.2 22.5 ±0.2 54.2 ±0.3 16.2 ±0.2 64.9 ±0.1 55.2 ±0.2 46.2 19.5 0.28
DGSAM + SWAD 67.2 ±0.2 23.2 ±0.3 53.4 ±0.3 17.3 ±0.4 65.4 ±0.2 55.8 ±0.3 47.1 19.6 0.26
DGSAM + Mixup 67.4 ±0.3 25.4 ±0.1 54.8 ±0.2 17.6 ±0.3 67.5 ±0.4 57.3 ±0.3 48.3 19.7 0.26
DGSAM + ERM++ 71.3 ±0.3 26.9 ±0.2 58.6 ±0.2 17.9 ±0.5 70.5 ±0.2 60.8 ±0.5 51.0 20.9 0.43
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G BASELINE REFERENCES

Table 1 compares our proposed method with several baseline algorithms for domain generalization.
For a fair and consistent comparison, we report the performance metrics as presented in prior works.

Most results are sourced directly from the original papers introducing each algorithm. For certain
baselines, results are quoted from recent state-of-the-art papers to ensure the experimental settings
are as consistent as possible. Specifically, results marked with † are sourced from SAGM (Wang
et al., 2023), and the result for GAM (‡) is from FAD (Zhang et al., 2023a).

The references for each baseline algorithm and combined methodology are as follows:

• ARM (Zhang et al., 2021)
• VREx (Krueger et al., 2021)
• RSC (Huang et al., 2020)
• MTL (Blanchard et al., 2021)
• SagNet (Nam et al., 2021)
• CORAL (Sun & Saenko, 2016)
• GGA & GGA-L (Ballas & Diou, 2025)
• GENIE (Cho et al., 2025)
• SWAD (Cha et al., 2021)
• GAM (Zhang et al., 2023b)
• SAM (Foret et al., 2021)
• Lookbehind-SAM (Mordido et al., 2024)
• GSAM (Zhuang et al., 2022)
• FAD (Zhang et al., 2023a)
• DISAM (Zhang et al., 2024)
• SAGM (Wang et al., 2023)
• SFT (Li et al., 2025)
• MixUp (Lopez-Paz et al., 2018)
• ERM++ (Teterwak et al., 2025)

H RELATED WORKS AND DISCUSSION

In this section, we complement the discussion in Section 2.2 by providing a more detailed categoriza-
tion of SAM variants that have been applied to domain generalization. Our goal is to clarify how
existing approaches interpret and optimize flatness in the multi-domain setting, and how this differs
from the per-domain sharpness perspective underlying DGSAM.

Domain-Agnostic Sharpness Minimization. This line of work adapts SAM or its extensions to
DG by directly optimizing the aggregated sharpness. These algorithms do not utilize per-domain
information and simply focus on reducing the sharpness of the aggregated loss, such as zero-th order
sharpness or first-order sharpness.

For example, SAM and GAM, which were not originally designed for DG but are commonly used
as baselines, reduce the zero-th order and first-order sharpness of the aggregated loss, respectively.
FAM further aims to simultaneously reduce both zero-th order and first-order sharpness. On the other
hand, GSAM, SAGM, and ISAM (Dong et al., 2024) are variants of SAM that reduce aggregated
sharpness by mitigating gradient conflicts between the aggregated loss gradient and the surrogate
gap, thereby achieving better reduction of aggregated sharpness. UDIM (Shin et al., 2024) introduces
perturbations in both parameter space and data space for domain generalization. It reduces the loss
landscape inconsistency between source domains and unknown domains, where unknown domains
are emulated by perturbing instances from the source domain dataset. Although UDIM explores data
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space perturbations, it does not utilize domain labels and ultimately optimizes for the consistency of
aggregated loss landscapes.

Domain-Aware Sharpness Minimization. Another line of work explicitly incorporates domain
labels into the sharpness optimization process, yet differs from our per-domain sharpness minimization
approach.

DISAM (Zhang et al., 2024) introduces a domain loss variance regularization to achieve elastic
gradient calibration: domains with higher losses receive weaker perturbations, while domains
with lower losses receive stronger perturbations. This balancing mechanism promotes consistent
convergence across domains, but the optimization still targets aggregated sharpness. Self-Feedback
Training (SFT) (Li et al., 2025) seeks consistent flat minima across domains by iteratively measuring
and refining loss landscape inconsistency. While it implicitly encourages per-domain flatness through
consistency, it lacks a formal per-domain sharpness minimization formulation.

Distinction and Novelty of DGSAM. These two lines of work demonstrate that better control of
aggregated sharpness and mitigation of domain inconsistency can improve DG performance. However,
they still operate within the same objective: they ultimately seek to flatten the loss landscape of
the aggregated source risk, sometimes with regularizers that indirectly promote consistency across
domains.

By contrast, DGSAM starts from a DG-specific worst-case risk formulation and first asks a different
question: “Is aggregated sharpness an appropriate surrogate for the average worst-case domain risk?”
Our theoretical analysis shows that aggregated sharpness can be small even when some domains
remain sharp, which gives rise to the fake flat minima phenomenon. We then prove that the average
per-domain sharpness does provide a valid surrogate for the average worst-case domain risk.

This analysis yields an explicit per-domain sharpness objective whose minimizer is provably aligned
with the DG goal, and DGSAM is designed as an algorithm that directly optimizes this objective
while keeping the computational overhead practical. From a theoretical perspective, this provides
a new way to think about sharpness in DG. Prior SAM-based DG approaches typically follow the
original SAM line of analysis and study PAC-Bayes style bounds or regularization effects based
on aggregated sharpness. In contrast, our work offers a new perspective on sharpness in DG by
introducing a per-domain sharpness minimization framework that directly targets robustness to worst-
case domains. We view this shift in objective as the main novelty of DGSAM and as a foundation for
future sharpness-based methods in domain generalization.
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