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ABSTRACT

Domain generalization (DG) aims to learn models that perform well on unseen
target domains by training on multiple source domains. Sharpness-Aware Mini-
mization (SAM), known for finding flat minima that improve generalization, has
therefore been widely adopted in DG. However, we argue that the prevailing
approach of applying SAM to the aggregated loss for domain generalization is
fundamentally suboptimal. This “aggregated sharpness” objective can be deceptive,
leading to convergence to fake flat minima where the total loss surface is flat, but
the underlying per-domain landscapes remain sharp. To establish a more principled
objective, we analyze a worst-case risk formulation that reflects the true nature of
DG. Our analysis reveals that per-domain sharpness provides a valid upper bound
on this risk, while aggregated sharpness does not, making it a more theoretically
grounded target for robust domain generalization. Motivated by this, we propose
Domain-wise Gradual SAM (DGSAM), which applies gradual, domain-wise pertur-
bations to effectively control per-domain sharpness in a computationally efficient
manner. Extensive experiments demonstrate that DGSAM not only improves
average accuracy but also reduces performance variance across domains, while
incurring less computational overhead than SAM.

1 INTRODUCTION

Deep neural networks achieve remarkable performance under the independent and identically dis-
tributed (i.i.d.) assumption (Kawaguchi et al.| 2017), yet this assumption often fails in practice due
to domain shifts. For example, in medical imaging, test data may differ in acquisition protocols
or device vendors (Li et al., 2020), and in autonomous driving, variations in weather or camera
settings introduce further domain shifts (Khosravian et al.l 2021)). Since it is impractical to include
every possible scenario in the training data, domain generalization (DG) seeks to learn models that
generalize to unseen target domains using only source domain data (Muandet et al., 2013} |Arjovsky
et al.L 2019; Li et al.| 2018c; [Volpi et al.,|2018; [Li et al.| 2019).

A common DG strategy is to learn domain-invariant representations by aligning source domain
distributions and minimizing their discrepancies (Muandet et al., 2013} |Arjovsky et al., [2019),
adversarial training (L1 et al.| [2018c} |Ganin et al.| [2016)), data augmentation (Volpi et al., 2018;
Zhou et al., [2020; 2021), and meta-learning approaches (Li et al.l2019; [Balaji et al.,[2018)). These
strategies share the common goal of solving the core challenge of DG: learning from source domains
with structured shifts (e.g., artistic style, weather conditions) to generalize to unseen variations of
these structures. More recently, flat minima in the loss landscape have been linked to improved
robustness under distributional shifts (Cha et al.l 2021; Zhang et al., [2022} |Chaudhari et al., |2019).
In particular, Sharpness-Aware Minimization (SAM) (Foret et al.|2021)) perturbs model parameters
along high-curvature directions to locate flatter regions of the loss surface, and has been applied to
DG (Wang et al., 2023 |Shin et al.,|2024; Zhang et al., 2024)).

However, we argue that the prevailing approach of applying SAM to the aggregated loss is funda-
mentally suboptimal. Our analysis reveals that the current SAM-based approach for DG pursues an
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unrealistic goal: robustness to perturbations of a probabilistic average of the source domains, rather
than the coherent shifts of per-domain source types that characterize real-world DG. This misalign-
ment can be deceptive, leading to convergence to fake flat minima that appear flat on aggregated
loss but remain sharp on separate domains. We find this occurs because aggregated sharpness is
an unreliable proxy for the per-domain flatness that is truly required for robust generalization. To
establish a more principled objective, we introduce a worst-case risk formulation that formalizes
this notion of coherent shifts. We then theoretically demonstrate that per-domain sharpness, not
aggregated sharpness, provides a valid upper bound on this risk, making it a more grounded target for
optimization.

Motivated by these insights, we propose a novel DG algorithm, Domain-wise Gradual Sharpness-
Aware Minimization (DGSAM) that employs a gradual and domain-specific perturbation mechanism
designed to effective control per-domain sharpness. DGSAM improves upon existing SAM-based
DG methods in three key aspects. First, it efficiently reduces the per-domain sharpness of source
domains rather than the aggregated sharpness of the total loss, enabling better learning of domain-
invariant features. Second, it achieves high computational efficiency by reusing gradients computed
during gradual perturbation, in contrast to traditional SAM-based methods that incur twice the
overhead of standard empirical risk minimization. Third, while prior approaches rely on proxy
curvature metrics, DGSAM controls the eigenvalues of the Hessian, which are the most direct
indicators of sharpness (Keskar et al.| [2016; [Ghorbani et al., 2019b). Our extensive experiments
confirm the superiority of this approach. DGSAM demonstrates a superior balance of accuracy and
robustness, achieving the highest average accuracy and the lowest average domain-wise variance
across five benchmarks. Furthermore, DGSAM shows broad compatibility by enhancing various DG
frameworks and confirms its scalability on large-scale Vision Transformer models, all while being
more computationally efficient than standard SAM.

2 PRELIMINARIES AND RELATED WORKS

2.1 DOMAIN GENERALIZATION

Let Dy := {Di}le denote the collection of training samples, where D; represents the training
samples from the i-th domair'| The total loss over all source domains is defined as:
1
£u(0) = 5 > Li(0), e)
! DieD,

where £; denotes the loss evaluated on samples from the i-th domain, and 6 is the model parameter.

A naive approach to DG minimizes the empirical risk over the source domains.: 8% = arg ming £(6).
However, this solution may fail to generalize to unseen target domains, as it is optimized solely on
the training distribution. The goal of domain generalization is to learn parameters 6 that are robust to
domain shifts, performing well on previously unseen domains.

As the importance of DG has grown, several datasets (L1 et al., 2017b; [Fang et al.| [2013; [Peng
et al.| 2019) and standardized protocols (Gulrajani & Lopez-Paz, 2021} |Koh et al., [2021) have been
introduced. Research directions in DG include domain-adversarial learning (Jia et al.| [2020; LLi et al.,
2018c; |Akuzawa et al.| [2020; Shao et al., 2019} [Zhao et al.,2020), moment-based alignment (Ghifary,
et al., 2016; Muandet et al.,|2013}; [Li et al.l | 2018b), and contrastive loss-based domain alignment
(Yoon et al., |2019; Motiian et al.,|2017). Other approaches focus on data augmentation (Xu et al.,
20205 |Shi et al., [2020; |Qiao et al., [2020), domain disentanglement (Li et al., |2017a} |[Khosla et al.,
2012)), meta-learning (Li et al.| 2018a; Zhang et al} |2021} L1 et al., [2019)), and ensemble learning
(Cha et al., 20215 Seo et al., 2020; (Xu et al., |2014).

2.2 SHARPNESS-AWARE MINIMIZATION

A growing body of work connects generalization to the geometry of the loss surface, especially its
curvature (Hochreiter & Schmidhuber, |1994; Neyshabur et al., 2017; Keskar et al.,|2017}; |Chaudhari
et al.l [2019; [Foret et al., 2021). Building on this, [Foret et al.| (2021) proposed Sharpness-Aware

'With slight abuse of notation, we also use D; to represent the underlying data distribution of the i-th domain.



Under review as a conference paper at ICLR 2026

Minimization (SAM), which optimizes the model to minimize both the loss and the sharpness of the
solution. The SAM objective is defined as:

min max L£(0 + €), 2
0 llell<p ( ) @

where the inner maximization finds the worst-case perturbation € within a neighborhood of radius p.

Following the success of SAM, several extensions have emerged, primarily focusing on refining
the sharpness surrogate (Kwon et al., [2021; [Zhuang et al.| 2022} [Zhang et al., [2022) or reducing its
computational overhead (Du et al.| 2022} Liu et al., 2022; Mordido et al., [2024)). The promise of
improved generalization has naturally led to the exploration of sharpness-aware methods in domain
generalization. A common strategy is to apply SAM to the aggregated loss over source domains (Wang
et al.| 2023} Shin et al} 2024} |Cha et al.| 2021} Dong et al.,2024), which seeks a solution that is flat
with respect to the total aggregated loss. Recognizing the importance of domain-level structure, recent
work has incorporated domain information, either by adding regularization to penalize inter-domain
loss variance (Zhang et al., [2024)) or by iteratively refining loss landscapes for consistency across
domains (L1 et al., [2025)).

While these approaches represent important progress, they either still optimize for aggregated
sharpness or implicitly encourage per-domain flatness through consistency constraints without a
formal per-domain sharpness minimization objective. In the following section, we propose a domain-
wise objective that explicitly minimizes the sharpness within each domain’s loss landscape. A more
detailed categorization and comparison of existing approaches is provided in Appendix [H]

3 RETHINKING SHARPNESS IN DOMAIN GENERALIZATION

The prevailing paradigm in the current literature is to apply SAM to the aggregated loss across all
source domains. We argue this approach is fundamentally suboptimal for domain generalization,
as it is built on an assumption that is misaligned with the core nature of the DG problem itself. By
collapsing the crucial structural information between domains, this strategy shifts the optimization
objective from learning features that are truly domain-invariant, to merely seeking robustness for a
probabilistic average of the source domains. This is a critical distinction, as this probabilistic average
may not represent any realistic domain and is not equivalent to the shared, invariant features required
for true generalization. This misalignment can be deceptive, leading to convergence to ‘fake flat
minima’. In Section[3:1} we first provide a formal and intuitive illustration of this pitfall. We then
propose a more principled objective grounded in a worst-case risk formulation that respects this
essential domain-specific structure in Section [3.2]

3.1 AGGREGATED SHARPNESS PITFALLS: THE FAKE FLAT MINIMA PROBLEM

To formalize our perspective, we distinguish between two key concepts. The prevailing approach for
SAM in DG focuses on aggregated sharpness, defined as:
Sage (05 p) = HHl‘ra<X (ﬁs(e +e€) — Ls (9)) :
ell<p
where L; is the total loss over all source domains, defined in equation @ In contrast, our work
focuses on the per-domain sharpness of each source domain D;, defined as:
Si(0; p) = max (L;(0 + €) — L;(9)).

lel<p

To generalize well to unseen domains, a model must learn representations that are robust to various
domain shifts. The most direct way to achieving this is to ensure that the learned solution is robust
against new domains that are variations of each of the source domains seen during training. Therefore,
an ideal DG approach should find a solution that is simultaneously flat with respect to every source
domain, a property directly captured by per-domain sharpness (S;).

The prevailing approach of minimizing aggregated sharpness (S,,s), however, does not guarantee this
ideal outcome. As aggregated sharpness is measured on the aggregated loss, it is possible for this
mixture to be flat while the loss landscapes of the underlying separate domains remain sharp. This
presents a critical failure mode: if an unseen test domain shares characteristics with a source domain
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for which the model has high per-domain sharpness, the model will likely fail, regardless of its low
aggregated sharpness. This divergence, where low aggregated sharpness masks high per-domain
sharpness, leads to what we term fake flat minima. The following proposition formally demonstrates
that aggregated and per-domain sharpness are not necessarily correlated.

Proposition 3.1. Ler 0 be a model parameter and p > 0 a fixed perturbation radius. Then, there
exist two local minima 0, and 05 such that

Sage (015 p) < Suge(b2;p)  but

\\Mm

Si(01;p) 23 Si(02;p).
Equivalently,

s
> Sia;p).

1

Sagg (015 p) < Sugg(62; p)

to\
ED\H

S
Z ela

i

The proof is deferred to Appendix [B.1] This proposition provides the formal basis for the fake flat
minima phenomenon, confirming that a low value of aggregated sharpness (S,q¢) can be achieved
even when the average per-domain sharpness (% Do Si) remains high.

To illustrate this phenomenon, we present a 2-dimensional

toy example involving two domains and two loss functions. NN S
. . > 4
Each domain shares the same base loss shape (Figure 2a) NN Lo
. . . . . \ \ / V2
but is shifted along one axis. Figures 3 anq visual- “ NS
ize the total loss from two perspectives. In this example, \\ /\ ’/ == oomain2 o5
v v

region R1 corresponds to an ideal solution, where both
single domain losses exhibit flat minima. In contrast, re-
gion R2 remains sharp for each single domain loss, but
appears deceptively flat in the total loss due to cancellation
of opposing sharp valleys (Figure [I). As a result, both
SAM and SGD converge to region R2 (Figure 2d), which
constitutes a fake flat minimum.

Figure 1: Fake flat minimum: two sharp
per-domain losses (dotted) cancel out
when summed, resulting in a deceptively
flat total loss (solid).

s Domain 1 B Domain 1 s Domain 1 = SGD

I Domain 2 I Domain 2 o
= DGSAM

(a) Loss landscape of a sin-(b) Side view of the total (c) Rear view of the total (d) Optimization trajecto-
gle domain loss landscape loss landscape ries

Figure 2: Toy example: two conflicting loss functions construct two different type of flat minima.
An interactive visualization of toy example is available at https://dgsam-toy—example.
netlify.app/}

The pitfall of the aggregated sharpness approach is not merely an theoretical concept. We confirm
this phenomenon in practical DG tasks using ResNet-50 on the PACS dataset. As visualized in
Appendix [E| while SAM produces minima that are flat with respect to the total loss, the loss
landscapes for the separate domains remain sharp, providing direct empirical evidence of the fake flat
minima problem.

3.2 PER-DOMAIN SHARPNESS: A PRINCIPLED OBJECTIVE FOR DG

To establish a principled objective for SAM in DG, we need to define a performance measure that
truly reflects the challenges of the task. As we have argued, a true domain shift is not a random
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perturbation of the averaged sources. For instance, a model trained on Photo’ and *Sketch’ domains
is not evaluated on their pooled mixture, but rather on a new, coherent domain such as ’Cartoon’ or
>Watercolor painting’. This new domain represents a coherent shift from one of the existing styles,
not a deviation from their probabilistic mixture. A truly robust model, therefore, must be resilient to
the worst-case shift originating from any of the each source domains it was trained on.

Based on this principled view, we now formalize the average worst-case domain risk. Let {D; }5_,
denote the source distributions. For each source domain ¢, we define the local uncertainty set of
potential target domains as:

Uy = {D: Div(D||Dy) < 6},
where Div(-||-) is a divergence measure (e.g., KL-divergence, Wasserstein distance). This set U
contains all unseen target domains that lie within a divergence § of the source domain D;. The
average worst-case domain risk is then the expected risk under the worst-case shift from each source

domain:
S

1
£(6;0) := = Z sup Lp(6).
i=1 DeU?
This principled risk formulation allows us to formally investigate which notion of sharpness, aggre-
gated or per-domain, serves as a better optimization target.

Theorem 3.2. Let L;(0) denote the total loss over all source domains, Sag,(0; p) the aggregated
sharpness, and S;(0; p) the per-domain sharpness for the i-th domain. Then, for all 0 and p > p(9),

S
£(6;0) < L,(0) + % > Si(0:p).
i=1

where p(9) is defined in equationof Appendix Moreover, there exists a model parameter 6
such that
E(0;0) > L(0) + Suge(0; p).

The proof is provided in Appendix Theorem [3.2] highlights that minimizing the average of
per-domain sharpness provides a valid upper bound for our principled DG risk measure, £(6; ). In
contrast, it also shows that aggregated sharpness offers no such guarantee, and can indeed be smaller
even when the true risk is higher. This result confirms that minimizing per-domain sharpness is
not merely an alternative, but a more appropriate and theoretically grounded surrogate for robust
generalization under domain shifts.

4 METHODOLOGY

Our goal is to design an algorithm that effectively controls per-domain sharpness across all source
domains, as motivated in Section 3. The conventional SAM approach, which perturbs parameters
along the single, aggregated gradient of the total loss, is ill-suited for this task. The total gradient
is often misaligned with domain-wise gradients, resulting in a suboptimal perturbation that fails to
uniformly increase domain-specific losses. We provide a detailed analysis and empirical illustration
of this failure mode in Appendix [A] To overcome this limitation, in Section 4.1, we propose Domain-
wise Gradual Sharpness-Aware Minimization (DGSAM) that employs a gradual, domain-specific
perturbation mechanism to control per-domain sharpness. Subsequently, in Section 4.2, we provide a
theoretical analysis of how this mechanism implicitly controls per-domain sharpness.

4.1 THE DGSAM ALGORITHM

DGSAM’s update strategy is built upon a sequential perturbation scheme. Unlike the conventional
SAM that uses a single perturbation, DGSAM sequentially incorporates the unique gradient from
each source domain in successive steps. This transforms the perturbation process into a principled
mechanism for integrating geometric information from multiple domains, allowing for more effective
control of per-domain sharpness. The update rule of DGSAM is given by:

S+1

S
Or1 =0y —y <S+1) Z gj, Wwhere 3
j=1

9; =VLp, (0;-1)forj=1,....8, gsi1=VLp, (0s). )
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where | = (Iy,...,ls) denotes a random permutation of the .S source domain indices, and each Lp,
']
is the loss computed over a mini-batch B;; drawn from the /;-th domain.

In the ascent phase, as defined in equation f] DGSAM performs S + 1 perturbation steps, each
based on the gradient of a separate domain, followed by a descent step that updates the model using

the aggregated gradients. Specifically, we begin with 6, = ; and at each step j € {1,...,S}, we

compute the domain-specific gradient g; = V.L By, (f;—1) for the j-th domain (sampled in random

order) and apply the perturbation puiﬁ to update gj (See lines 7-9 in Algorithm . These gradients
are stored and later reused during the descent update to reduce computational overhead.

Note that the gradient g; is computed at the unperturbed point 6, so it does not reflect the curvature-
aware structure. To correct for this inconsistency, we perform one additional gradient computation at
the final perturbed point 6 using VLp, (0s) again (lines 10-11 in Algorithm. This ensures that
all gradients contributing to the final update step are computed at perturbed points.

As a result, DGSAM collects S + 1 gradients
along a trajectory that sequentially accounts for
each domain’s geometry. These gradients are
then averaged for the final parameter update, as
in equation [3] This design ensures that the de-
scent direction is a more uniform reflection of

Algorithm 1 DGSAM

1: Require: Initial parameter 6o, learning rate -y, ;
radius p; total iterations N; training sets {Di}le
2: fort <~ 0to N —1do
: Sample batches B; ~ D; fori =1,--- S, and

all respective domain geometries, preventing the A Séet a raendom order | = permute({1,---, 5})
bias towards a single dominant domain that can 0 €

. > . 5 forj+<1toS+1do
occur with conventional SAM. Furthermore, this 6 if j < S then
design is computationally efficient by reusing 7' gf Vg (6,_)
the gradients from the ascent phase, DGSAM - A ;
requires only S + 1 gradient computations per it- 8 0j 01+ Pm
eration, compared to the 2.5 required by standard . elseif j = S + 1 then
SAM. ) 10: gs+1 VﬂBll (és)
The following theorem shows that DGSAM ;. end if
achieves e-stationarity under standard assump- 2.  end for
tions, aligning with the convergence guarantees g 2!
recently established for SAM in non-convex set- 13 041 = 0¢ — v (AS n 1) > 9
tings |(Oikonomou & Loizou| (2025). J=1

14: end for

Theorem 4.1 (e-approximate stationary). Let Assumptions[B.4|hold. Then, for any € > 0, the iterates
of DGSAM satisfy for p < p,v <7, 1T >T

min  E|VL(6,)] < e
T-1

yeeey

where full expressions of p, 7, and T are given in Theorem We refer to Appendix|B.3|for the
proof.

4.2 How DGSAM CONTROLS PER-DOMAIN SHARPNESS

Recent studies (Ma et al., 2023} [Zhuang et al., 2022) have pointed out that SAM’s first-order
approximations may lead to suboptimal control of curvature. |Luo et al.|(2024) showed that aligning
the perturbation direction with an eigenvector can control the corresponding eigenvalue. However,
relying solely on the top eigenvectors is insufficient in multi-domain settings, where the directions may
conflict across domains. In such cases, it is more desirable to incorporate a broader set of eigenvectors
associated with large eigenvalues, capturing curvature shared across domains. Moreover, Wen et al.
(2023)) demonstrated that controlling the entire eigenvalue spectrum yields tighter generalization
bounds than focusing solely on the top eigenvalue.
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In this regard, we analyze how DGSAM’s gradual perturbation mechanism implicitly controls the
per-domain sharpness. At the j-th step of the ascent phase, the gradient g; is computed as:

g = VEBU (9};1) = VEBlj (90 + ZﬂH k||>

Since the Hessian V2L By, is symmetric and hence diagonalizable, we decompose it as V2L B, (50) =
>, Anvnv, , where Ej = {(\,,v,)} is the set of eigenpairs of VQEBlj (6:). Then, the g; can be
approximated as

~ VLp, (6o) +p > ,\(ZHU g ) 5)

0, ol

In this approximation, the first term represents the standard ascent direction for the j-th domain,
while the second term is a curvature-aware correction term. This correction is a weighted sum of
the Hessian’s eigenvectors, where the weights depend on both the eigenvalues A and the alignment
of eigenvectors with the perturbation directions from all previous domains (g1, ..., g;—1). Thus,
DGSAM’s gradual perturbation strategy naturally integrates curvature information from the entire
sequence of domains, ensuring that the per-domain sharpness is controlled in a balanced and robust
manner. This theoretical insight is confirmed empirically. In Appendix [C.2] we show that the
curvature-aware correction term contributes significantly to the ascent direction. Furthermore,
this mechanism’s effectiveness is demonstrated in our toy example (Section [3), where DGSAM
consistently finds the truly flat minima and avoids the fake flat minima trap

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Evaluation protocols, Baselines and Datasets For all main experiments, we adhere to the Do-
mainBed protocol (Gulrajani & Lopez-Paz,[2021)), including model initialization, hyperparameter
tuning, and validation methods, to ensure a fair comparison. Our experiments are conducted on
five widely used DG benchmarks: PACS (Li et al.| 2017b), VLCS (Fang et al.| 2013)), OfficeHome
(Venkateswara et al.,|2017), Terralncognita (Beery et al.,|2018)), and DomainNet (Peng et al., 2019).

We adopt the standard leave-one-domain-out setup: one domain is held out for testing, while the
model is trained on the remaining source domains (Gulrajani & Lopez-Paz, |2021). Model selection
is based on validation accuracy computed over the source domains. In addition to the average test
accuracy commonly reported in DG, we also report the standard deviation of per-domain performance
across test domains. This metric captures robustness to domain shifts and highlights potential
overfitting to domains that are similar to the training distribution. Each experiment is repeated three
times, and standard errors are reported.

Implementation Details We use a ResNet-50 (He et al.l 2016)) backbone pretrained on ImageNet,
and Adam (Kingma & Ba, [2015) as the base optimizer. We use the hyperparameter space, the
total number of iterations, and checkpoint frequency based on [Wang et al|(2023)). The specific
hyperparameter settings and search ranges are described in Appendix [F.1}

5.2 ACCURACY AND DOMAIN-WISE VARIANCE ACROSS BENCHMARKS

Baselines on the DomainBed Protocol. =~ We compare DGSAM with 18 baseline algorithms across
five widely used benchmark datasets: PACS, VLCS, OfficeHome, Terralncognita, and DomainNet.
The complete experimental setup and evaluation protocol follow DomainBed (Gulrajani & Lopez-Paz,
2021). Table [I] reports the average test accuracy and two types of standard deviation: (1) trial-
based standard deviation across three random seeds, denoted by +, and (2) domain-wise standard
deviation, measuring performance variance across held-out domains. Higher accuracy and lower
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Table 1: Performance comparison on five DomainBed benchmarks. We report both trial-based
standard deviation (&) and test-domain standard deviation (SD). Bold and underlined entries indicate
the best and second-best results, excluding combined methods. Baseline results are sourced from
prior work (see Appendix |G| for references).

PACS VLCS OfficeHome Terralnc DomainNet Avg

Algorithms Mean SD  Mean SD Mean SD Mean SD  Mean SD | Mean SD (s/iter)
ARMT 85.1+06 8.0 77.6+07 13.1 64.8+04 102 455+13 74 355+05 167 | 61.7 11.1  0.12
VREx' 84.9+11 7.6 783+0s 124 664+t06 9.9 464424 69 33.6430 15.0 | 619 104 0.12
RSCf 852+10 7.6 77.1x07 13.0 655+10 10.0 46.6+10 7.0 389+07 173 | 627 11.0 0.15
MTLF 84.6+10 8.0 77.2+0s 12.5 66.4+0s 100 456424 73 40.6+03 184 | 629 112 0.14
ERMT 85.5+06 7.0 773+11 125 66.5+04 10.8 46.1+20 8.0 409+03 186 | 633 114 0.12
SagNet' 86.3+05s 6.9 77.8+07 12.5 68.1x03 9.5 48.6+03 7.1 403403 179 | 642 10.8 0.36
CORAL' 86.2+06 7.5 788+07 12.0 68.7+04 9.6 47.7+04 7.0 41.5+03 183 | 646 109 0.14
GGA 86.4+17 6.6 787+xi0 122 67.0x05 10.5 485120 74 445103 197 | 650 113 054
GGA-L 86.5+15 6.6 784+10 12.6 66.5+04 100 49.8+25 6.0 44.5+03 197 | 651 11.0 0.36
GENIE 87.8+06 6.8 80.7+07 11.7 69.7+0s 10.0 52.0+21 5.5 44.1+05 194 | 669 10.7 0.10
SWAD 88.1+04 59 79.1+04 12.8 70.6+03 9.2 50.0+03 7.9 46.5+02 199 | 669 112  0.12
GAM?* 86.1+13 74 785+12 125 68.2+0s8 12.8 452417 9.1 438+03 200 | 644 124 049
SAMT 858+13 6.9 794406 12.5 69.6+03 9.5 4334103 7.5 443102 194 | 645 112 0.24
Lookbehind-SAM 86.0404 7.2 789+0s 124 692+06 112 445410 82 442403 19.6 | 647 11.8 0.54
GSAM' 859+03 74 79.1%03 123 693+01 99 47.0+01 8.8 44.6+03 198 | 652 11.6 0.25
FAD 882406 6.3 789x09 12.1 69.2+07 13.4 457116 9.6 444103 195 | 653 122 042
DISAM 87.1+05s 5.6 79.9+02 123 703+02 103 46.6+14 69 454403 195 | 659 109 0.37
SAGM 86.6+03 7.2 80.0+04 12.3 70.1+03 9.4 488+03 7.5 45.0+02 19.8 | 66.1 112 0.24
DGSAM 88.5+04 5.2 814+0s 115 70.8+03 85 504+07 69 455+03 194 | 67.3 103 0.19
DGSAM + CORAL 88.8+04 52 819+0s 114 71.2+04 86 50.8+07 69 462+02 195 | 67.8 103 0.19
DGSAM + SWAD 88.7+04 54 80.9+0s 11.6 71.4+0s 8.7 5l.1+0s 6.8 47.1+03 19.6 | 67.8 104  0.19
DGSAM + Mixup 89.4404 55 81.7+04 114 713+03 8.0 50.5+06 6.9 483403 19.7 | 682 103  0.20
DGSAM + ERM++  90.1+0s 5.3 81.0x03 11.5 749402 8.6 52.1+00 64 51.0003 209 | 69.8 105 0.29

Table 2: DG performances on ViT-B/16 backbone.

Algorithms PACS VLCS OfficeHome Terralnc DomainNet Avg

CORAL 954 82.5 83.3 52.0 59.5 74.5
DISAM 96.8 82.2 84.2 514 59.9 74.9
ERM 96.6 80.9 84.1 55.5 59.2 75.3
SAM 96.1 83.5 86.5 61.2 60.5 76.3
DGSAM 97.3 84.5 87.3 62.2 78.5 77.8

standard deviation indicate better and more robust generalization. DGSAM achieves the highest
average accuracy 67.3% and the lowest domain-level variance 10.3 among all methods, outperforming
baselines on PACS, VLCS, and OfficeHome, and ranking second on Terralncognita and DomainNet.

Combination with Other DG Strategies. Beyond its strong standalone performance, DGSAM
also serves as a complementary component to other DG strategies. As shown in Table[I] integrating
DGSAM with diverse and orthogonal methods, including SWAD, Mixup (Lopez-Paz et al.,|2018)),
CORAL (Sun & Saenko, 2016), and ERM++ (Teterwak et al., 2025), consistently yields further
performance gains. This demonstrates the broad applicability of DGSAM as a foundational optimizer
that can enhance various DG frameworks. Detailed per-dataset results are provided in Appendix

Performance on a Large-Scale Backbone (ViT-B/16).  While the standard DomainBed proto-
col provides a crucial benchmark, the ResNet-50 backbone is a relatively small-scale model. To
demonstrate that DGSAM is effective and scalable for more realistic, large-scale architectures, we
therefore conduct additional experiments using a Vision Transformer (ViT-B/16) backbone. As shown
in Table 2| DGSAM again consistently outperforms strong baselines, underscoring its effectiveness
across different architectures.

5.3 SHARPNESS ANALYSIS

To verify that DGSAM effectively induces flatter minima, we analyze the geometry of the loss
landscape at the converged model parameters using a ResNet-50 backbone on the DomainNet dataset.
We report three sharpness metrics: zeroth-order sharpness, the trace of the loss Hessian estimated
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Table 3: Comparison of the three sharpness metrics across different methods. Sep. denotes the average
per-domain sharpness across separate source domains, where the value in parentheses represents the
domain-wise standard deviation, i.e., variance across domains.

Method Zeroth-order Sharpness Hessian Trace Maximum Eigenvalue
Sep. Mean (SD) Aggregated Sep. Mean (SD) Aggregated Sep. Mean (SD) Aggregated
ERM 17.90 (5.62) 34.06 940.52 (181.66)  1372.51 89.24 (17.02) 121.86
SAM 4.79 (2.17) 19.68 5.83(2.38) 9.31 1.51 (0.77) 1.85
SAGM 4.52(2.34) 12.38 2.49 (1.76) 4.84 0.73 (0.36) 1.23
DISAM 3.95(1.83) 8.14 3.50 (2.63) 5.70 0.83(0.29) 1.45
DGSAM 2.98 (1.40) 6.41 2.13 (1.52) 493 0.65 (0.27) 1.18

via Hutchinson’s method [Ubaru et al.| (2017); [Avron & Toledo|(2011), and its maximum eigenvalue
(Amaz) computed using the Lanczos algorithm (Ghorbani et al.|(2019a); |Lin et al| (2016). As shown in

Table 3] DGSAM consistently outperforms the baselines. Notably, while SAGM exhibits a marginally
lower aggregated Hessian trace, DGSAM achieves a lower mean and standard deviation in the per-
domain Hessian trace. This empirically validates our theoretical analysis that minimizing per-domain
sharpness is more critical for robust generalization than minimizing the aggregated average, as it
ensures no specific domain remains sharp. This improved geometry is further corroborated by the
Hessian spectrum density in Figure 3] where DGSAM effectively suppresses the spectral tail and
controls the entire spectrum more effectively than SAM.

10! 10!
—— Domain 1 _ —— Domain 1
10-1 X 107} .
o Domain 2 | _ Domain 2
$1073 —— Domain 3 | ©107 —— Domain 3
3 & 0-s
1077 IX
0 2 7 6 8 10 12 14 0 2 [ 6 8 10 12 14
Eigenvalue Eigenvalue
(a) SAM (b) DGSAM

Figure 3: Hessian spectrum density at converged Minima: (a) SAM and (b) DGSAM.

5.4 COMPUTATIONAL COST

In addition to performance improvements,
DGSAM significantly reduces the computa-
tional overhead commonly associated with SAM
variants. Let .S denote the number of source do-
mains and c the unit cost of computing gradients ~ PSSAM 0-169
for one mini-batch. Then, the per-iteration cost O OO utational cost (sfiter)
of ERM is S X ¢, as it requires one gradient

computation per domain. SAM performs two
backpropagations for all domain, yielding a cost
of 25 x c. In contrast, DGSAM requires only S + 1 gradient computations, resulting in a theoretical
cost of (S + 1) x c. Further details are provided in the Appendix D.1]

ERM 0.110
SAM 0.217

Figure 4: Comparison of empirical computational
cost measured by training time per iteration.

To validate this, we measure the actual training time per iteration on the PACS dataset. With S = 3
source domains, ERM takes S x ¢ = 0.11 seconds per iteration. SAM incurs a cost of 0.217 seconds,
nearly double that of ERM, while DGSAM achieves 0.169 seconds per iteration. Although slightly
higher than its theoretical cost (S + 1) x ¢ & 0.148, the deviation is primarily due to additional
overheads such as gradient aggregation. Moreover, this efficiency is not achieved at the expense of
memory. As detailed in Appendix DGSAM requires less peak memory than both ERM and
SAM. Full results of cost on all datasets are included in Appendix [F.2]

9
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6 DISCUSSION AND FUTURE DIRECTIONS

This paper revisits the role of sharpness minimization in domain generalization. While prior ap-
proaches have naively applied SAM to the aggregated loss across source domains, we reveal that this
strategy can converge to fake flat minima—solutions that appear flat on total loss but remain sharp in
separate domains, leading to poor generalization. To better capture the structure of domain-specific
risks, we introduced a new perspective based on the average worst-case domain risk, showing that
minimizing per-domain sharpness offers more meaningful control over robustness to distribution
shift than minimizing aggregated sharpness. This insight offers a fundamentally new direction for the
DG community, shifting the sharpness-aware optimization paradigm from single-source modeling to
domain-specific objectives. Based on this finding, we proposed DGSAM, an algorithm that gradually
applies perturbations along domain-specific directions and reuses gradients to efficiently reduce
per-domain sharpness. Experiments on five DG benchmarks showed that DGSAM not only improves
average accuracy but also significantly reduces domain-wise variance, achieving flatter minima across
respective domains and better generalization to unseen distributions.

Our findings open a new direction for sharpness-aware domain generalization, but leave several open
questions.When all local minima correspond to fake flat minima, it remains unclear which solutions
are truly optimal or how to guide the model toward them. Developing a more direct method for
minimizing per-domain sharpness, beyond sequential perturbation, could further improve training
stability and theoretical guarantees. Finally, because SAM is widely applied in multi-loss settings
such as multi-task learning (Le et al., 2024} [Phan et al., 2022) and federated learning (Lee & Yoon,
2024} Qu et al.,2022; (Caldarola et al.,2022), careful treatment of per-domain sharpness may likewise
enhance generalization in these broader contexts.
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Appendix

A LIMITATIONS OF TOTAL GRADIENT PERTURBATION

In SAM, each iteration performs gradient ascent to identify sensitive directions in the loss landscape
by perturbing the parameters as

VL(6:)
IV L)
where €7, is the perturbation computed from the total loss gradient. However, this update direction

may not increase losses uniformly across source domains, as the total loss gradient V£(6;) does not
generally align with the per-domain gradients V.£;(6;) fori =1,...,.5, as discussed in Section .

ét:9t+6%529t+p (6)

This misalignment between the total gradient and per-domain gradients leads to suboptimal pertur-
bations when applied uniformly across all domains. To empirically demonstrate this limitation, we
visualize in Figure 5] how different perturbation strategies affect the domain-wise loss increments
during training. Starting from 6, we iteratively apply perturbations to compute the perturbed param-
eter 0, = 0y + 2?21 €; on the DomainNet dataset (Peng et al.,2019) using ResNet-50 (He et al.,
2016)). In FigureB_%L each ¢; is computed using the total Toss gradient. In contrast, Figure [5bapplies
perturbations sequentially using domain-specific gradients.

As shown in Figure [5a total gradient perturbations often increase losses in an imbalanced manner
across domains. On the other hand, the domain-wise perturbation strategy in Figure[5b|leads to a more
uniform increase in domain-wise losses. This observation suggests that applying domain-specific
gradients sequentially is more effective at capturing the structure of per-domain losses. As a result,
the resulting perturbations better reflect per-domain sharpness.

14 1.4
= —_—C =

L3 P 13
i.i‘lz 0 S-D/‘

5 — R S 12
= —5 =
< 11 =

D D11
Q10 q

< 10

6o 61 6 63 64 s 6o 6:(C) 62(P) 65(Q) 64(R) 65(S)
(a) Perturbation by total gradient. (b) Perturbation by per-domain gradients.

Figure 5: Domain-wise loss increments under different perturbation strategies.

B THEORETICAL ANALYSIS AND PROOFS

B.1 PROOF OF PROPOSITION[3.1]

Proof of Proposition[3-1] Let 6 be a strict local minimum such that VL,(0) = 0 and H(0) =
V2L, (0) = 0. Suppose p is sufficiently small. Then, the second-order Taylor expansion for £, and
L; gives:

L0 +6) = £(60) + VL(0) e+ 5 HO+ ofe])

and
1
Li(0+€)=Li(0)+VL(O) e+ ieTHi(G)e +o(|lel>), i=1,...,8

where H and H; are the Hessian matrices for £ and L;, respectively, evaluated at 6.

Then, using VL(6) = 0 and H(6) = & Zle H,(0), we have
L0+ ¢€) — Ls(0) = le‘r lES:H(H) e+ o(|le]|?)
S S 2 S — K2
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which yields the zeroth-order sharpness for L:

S

1

Sagg(9§p) = Hrgfgi)(ﬂs(e + 6) - ‘CS<9>) = ﬁPQUmaw (Z HZ(9)> + 0(||P||2)
= i=1

where 0,4, (A) denotes the largest eigenvalue of the matrix A.

To show that the statement does not hold in general, it suffices to provide a counterexample. First, we
consider the case where | VL;(0)|| = 0forall i = 1,2,...,S. Then, the zeroth-order sharpness of
the ¢-th domain loss function is given by

§:(0:) = 500 (Hu(0)) + ol o]*).

This leads to the following expression of the average sharpness over all per-domain loss functions:
1< 1 ,e
=D 0810:0) = 57D s (H:(0)) + (6],
i=1 i=1

Next, consider two different local minima 6, and 6». For sufficiently small p, we can write:

Sagg (013 0) < Sagg(62; p) @)
==

S S
Omax (Z Hz(91)> < Omax <Z Hz(92)> . (8)

Similarly, for sufficiently small p, we have the following relationship between the average per-domain
sharpnesses at 6 and 6:

1 1 &
52 Sillip) < 5D _Sil0ip) ©
i=1 i=1
<~
S S
Zamaz (Hz(al)) < ngax (H1(92)) . (10)
i=1 i=1

Consequently, we conclude that Equation [7]does not imply Equation [J]since the largest eigenvalue of

a sum of matrices, 0;,qz Zf:l H;(0) ), is not generally equal to the sum of the largest eigenvalues
of the per-domain matrices, Zil Omaz (H;(0)).

Secondly, let us consider the case where V.Ls(0) = 0, but there exists at least two elements such
that V£, (0) # 0. For simplicity, let S = 2. Without loss of generality, assume V£ (6) > 0 and
VL2(0) = —VL1(0). Then, the sharpness for £1(0) is given by

81(0;p) = [VLL(O)][p + o(llp])-

Now, consider two local minima ¢, and 65 satisfying the following inequality:
Sagg(al; P) < Sagg(02§ P)
A counterexample can be constructed such that for some G > 0and 0 < ¢ < 1,
VL1(01) =G =-VLy(0),

and
V£1(02) =cG = 7V£2<92).

In this example, we find that ¢ Zil Si(61;p) > % Zle Si(02; p),. However, such a choice of
gradients does not affect the Hessian matrices, and thus the inequality for the sharpness of the total
loss remains unchanged. Therefore, the sharpness for the total loss does not generally follow the
same ordering as the average sharpness of the per-domain losses. [
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B.2 PROOF OF THEOREM[3.2]

We begin by imposing some standard conditions on the loss function.

Assumption B.1. For each i, let D; be the i-th source domain distribution and Lp, () =
Ex~p,[¢(0, X)] where £ is a loss function. Assume that £(0, z) is uniformly bounded for all ¢
and x and Lipschitz continuous in 6. That is, there exist M and G such that

|00, x)| < M, [£(0,z)— 0 ,2)| <G|0—0 forallb,§ x.

Moreover, if Div = W7 (the Wasserstein-1 distance), assume additionally that for each 6, the map
x +— l(0,z) is L,~Lipschitz, i.e.

100, 2) — £(0,2")| < L, d(x,x") forallf,6, z.

Under Assumption [B.1] the following lemma states the relationship between distribution shifts and
parameter perturbations.

Lemma B.2. Let Assumption[B.1|hold, and let D; be the ith source distribution with
Li(0) = Ezp, [€(0; )]
Fix a divergence or distance Div and threshold § > 0, and set
U? = { D : Div(D||D;) < 6}.
Define the perturbation radius

M )

2’
p(0) = vel 6, if Div=| - |rv, an
Lo s i Div=m.

lf Div = DKL)

Then for all 6 and any p > p(9),
sup Lp(f) < max L£;(0+¢).

Deus [lel| <p
Proof. Fix p > p(9) where
M
\/7 Div = DKLa
2’
pO) =4 =4,  Div=|"|rv.
Lm
5 5, Div = Wl.

We will show in each case that for all D with Div(D||D;) < 6,
£6(0) - £i(0)] < G p(0).

Case (i): Div = Dxy, and p(d) = %\/6 /2. Pinsker’s inequality gives
ID = Dillrv < 4/5 Dxu(DIDi) < /3,
2 2

|£0(6) — Li(6)] < M |[D —Dillry < My/§ = G p(6).

which leads to

Case (ii): Div = || - ||y and p(6) = 24 5. The definition of total variation directly yields

|Lp(0) — Li(0)| < M||D — Dif|ry < M6 = Gp(5).
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Case (iii): Div = Wj and p(d) = L—Gf 0. Assume in addition that « — ¢(0; x) is L,-Lipschitz. Then

by the Kantorovich—Rubinstein duality, we have

|Lp(0) — Li(0)] < La Wi(D,D;) < Ly 6 = Gp(d).

In each case, therefore, we obtain for all D € L{f

Lp(0) < Li(0) + Gp

On the other hand, for any perturbation € with ||e|| < p, using the Lipschitz continuity of £(-,

obtain
Li(0+¢€) —Li(0) =Ezup, [5(9 +ex)— (0, a:)} < G|le]]
which yields

mnax Li(0+¢€) < Li(0) + Gp.
ell<p

Combining equation|12|and equation |13|and then taking the supremum over D € U gives

sup Lp(0) < max Lp,(0+e€).
Deus lell<

Now, we are ready to prove Theorem [3.2]

Proof of Theorem Recall that

s
£(0;6) == sup Lp(0)
S 1 DGUf
and
18
i=1

By LemmaB.2] for each i and p > p(§), we have

sup Lp(0) < max L;(0 +€) = L;(0) + Si(6; p).
Deus lell<p

(12)

x), we

(13)

where S;(0; p) = max|¢j<, L£i(0 + €) — L;(0) is the per-domain sharpness for domain i. Averaging

overi =1,...,S directly gives
S
— sup Lp(0
S z:: €M5
S
s
1
tg2 50

It remains to show that no analogous bound in terms of the aggregated sharpness S,44(8; p) can hold
uniformly. To this end, it is enough to find a counterexample. Let S = 2 and Div = Dxy,. Fix the
source distributions D1 = Dy = Uni{—1, +1} and define £(0, z) = 0x,0 € [0, 1]. Then, one can

compute
L1(0) = L3(0) = Exp,[0X] =0, L(9) = 22@OFL0) g
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If we take 6 = In 2, the adversarial set L{f contains both point-masses 1 and d_;. Hence, we have

sup Lp(f) = max 6Oz =90,
DEU? ze{+1,—-1}

and therefore £(0;6) = 0. On the other hand, the aggregated sharpness is trivially zero since
L4(0) = 0. Thus for any 6, we find

E(0;0) =0 >0=Ls(0) + Sage(0; p),
showing that no uniform bound of the form £(6; ) < L(0) + Sage(0; p) can hold.

B.3 CONVERGENCE ANALYSIS

Our convergence analysis builds upon the techniques developed in|Gower et al.|(2019); Khaled &
Richtarik| (2020); (Oikonomou & Loizou| (2025).

B.3.1 PRELIMINARIES

Definition B.3 (Domain-wise Subsampling and Stochastic Gradient, (Gower et al., 2019 |Khaled
& Richtarikl, [2020)). Let Dq,...,Dg be S source domains, and i-th data point is associated with
per-domain loss functions £¢(6), where # € R? denotes the model parameters. We define the total
loss function as:

1~
£(0) =~ > L),
i=1
where n is the total number of training samples aggregated from all domains.

We consider a two-level sampling process: First, a domain index r € {1,..., S} is selected uniformly
at random. Then, a minibatch B, C D, of fixed size 7 is sampled uniformly from within the selected

domain. The domain-wise sampling vector v = (’UIQ, ...,v2) is drawn from a distribution Q

’r n

defined by this two-level process. For each sample ¢, the sampling weight is given by:

b2 S lien,
1" T ?

where 1;c . is the indicator function that equals 1 if sample ¢ is included in the minibatch and O
otherwise. The resulting domain-wise stochastic gradient estimator is:

g°(0) =Y v2VLO ().

where £(9) is the loss evaluated on the i-th sample. According to the general arbitrary sampling
paradigm (Gower et al., 2019), since v2 ~ Q satisfies E[vZQ] = 1 for all 7, the estimator gQ(G) is
unbiased:
Eolg?(6)] = VL(6).

Furthermore, the second moment E[||v2||?] is finite under this scheme.
Assumption B.4. Let B be a minibatch sampled from the domain-wise subsampling distribution
the domain-wise subsampling distribution Q defined in Definition[B.3] and let £z denote the loss
evaluated on 5. We assume that Lz is L-smooth. That is, there exists a constant L > 0 such that for
all 0,0 and any B,

IVLs(0) = VLs(0)] < LI — 6] (14)
Definition B.5 (Expected Residual Condition). Let 8* = argmin,y £,(0). We say the Expected
Residual condition is satisfied if there exist nonnegative constants M7, Ms, M3 > 0 such that, for
any point 6, the following inequality holds for an unbiased estimator (stochastic gradient) g(6) of the
true gradient VL (6):

Ellg(0)|* < 2M:[L4(0) — L(07)] + M| VL(0)||* + Ms.

Corollary B.6. Let Assumption holds and let the domain-wise stochastic gradient by g (f)
which is an unbiased estimator of L(0) for all 0 with E[||v2||?] < oc. Then, it holds that

Eollg2(0)]* < 2Mi[L,(8) — L(6%)] + Mo||VL(9)|* + Ms.
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Proof. In Proposition 2 of Khaled & Richtarik] (2020), it is proved that L-smoothness and unbiased
stochastic gradient with Ep[v7] < oo imply Expected Residual condition (Definition |B.5)). O

We collect a few basic inequalities that are frequently used throughout the proofs: For any a,b € R?
and any 3 > 0, we have:

1
b >+ S o) 15
(@, B < 55 lall” + H 1% (15)
la+lI* < (1+ 87 lall® + (1+ B)lJb]*, (16)
la+ 8II* < 2]lall* + 2[1B]1%, (17)
2 n
<n Yl (18)
i=1
B.3.2 LEMMAS
We use a uniformly random permutation {ly,...,ls} over the domain indices. B;, means mini-

batch from j-th chosen domain and the ch01ce of order is initialized at every step Thus By,
is the domain-wise subsampling with definition For notational simplicity, we will write

Jj—1 t
t 9k
g; =V_Lp, <9t + > ,0@)-
J 4 = el
Lemma B.7. Let Assumption[B. 4| hold. Then the following inequality holds:
Eollgf||® < 25%Lp” + 2Eqllg2(6:)|*,
where S is the number of domains.

Proof. 1t follows that

2

Eollgill? =Eg

(5t

k

2

Vip, <9t + Zp” ”> —VLp, (0:) + VLp, (61)
9k

O

2
2
+ QEQ Hv‘cBl]‘ (et)

VLip, <9t +Zp” II> — VL, (6:)
gl _
-1

@@ gt
< 2L2p? ﬁ +2EQ||9Q(915)”2
k= k
@) t )2
i

+2Eo|lg%(6,)|I?

S2L22 Z

k=
< 282[%)% 21Eg||g ()17

Lemma B.8. Ler Assumption[BA4 hold. Then the following inequality holds:
SL
Eo(gh VL,(0)) > —SLp+ (1= = P)IVL6.)’,

where S is the number of domains.
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Proof.
j—1 t
Eo(gj, VLs(60)) = EQ<VEBlj <9t + Zp”i't:”) , vcs(at)>
k=1
i t
- 1E9<v,c3lj ( ”§£||> ~VLp, (00). vas(et)>
+Eo(VLp, (00), VL)),
‘We have
Eo(VLp, (00), VL(0:)) = (EalVLz, (0,)], VL))
= (Eolg®(6:)], VL(6:))
= VL0,
and for 8 > 0
-1
_ ]EQ<VLB,7, <9t +y p”z’;”> ~ VL, (), vcs(at)>
_ > Pllgk _
2
E 1
S % Q V/JBZ ( > _V‘CBlj (et) + gEQ”V‘CS(Gt)HQ
k 1
@@ L2 2 ik
2L’ Z §Hm<9t>n2
SQLQ 2 9
< — .
< S5+ SIvLen)
In sum,
52L2 2 ﬂ
Eo(gf, VL(00)) = — =555 = SIVLE)I + V(6]
LB :
=-S5 - DIVLG
SL
= —SLp+ (1= 20 IVL(O)I
with 3 = 522, O

Lemma B.9 (Lemma A.8, (Oikonomou & Loizou, 2025)). Let (r;):>0 and (0;)¢>0 be sequences
of non-negative real numbers and let g > 1 and N > 0. Assume that the following recursive
relationship holds:

re < g0y — Oe41 + N (19)
Then it holds
9 5 N
i < = .
03?%1%71” =7 +

B.3.3 PROOF OF THEOREM

Theorem B.10 (e-approximate stationary). Let Assumption|[B.4|hold. Define
12My 24 M7 My SL
2

Tmin = 54
e2S

max{1,

,AM,L,12M3SL},

_ 1 . €2 €
p= SL min{1, 12’ ﬁL
1 1 €2
" S\V2ML LT’ 4MsL’ 12M35L}'

¥ = min{1
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For all € > 0, if the DGSAM itemtion(@ is employed, then for p < p, v <7, T > Thin
min  E[VL,(0)| <e
=0,...,T—1

where the initial optimality gap My = Ls(00) — Ls(0%), S is the number of domains, M, My, Ms
are the constants for the expected residual condition.

Proof. For simplicity, we assume that the effect of the batch size is absorbed into the learning rate -,
i.e., 7y is defined as the product of the base learning rate and the batch size.

From the L-smoothness of L, we have

L001) < L4000 + (VL(8), O —00) + 5 |01 — 0
= L(0:) — S <v,c (6), ng> (5)2 ngt- 2
J 2 \S+1 ot 7
since the DGSAM update is defined as 6;41 = 0, — Vsi-s-l il gﬁ.
j=

By taking the expectation,
Eo[L(0r11) — L:(07) | 0:] — [L:(67) — L:(67)]

S S+1 L’}/ 2 S+1
TS ZEQ (VL(0:), 65) + =5~ (S+1) Zg?

L
< —SEQ(VL(6:), ) +
Lem BB
<

AE

7*5?
ol

SL
—5 (=szo+ (1= SV L0 ) +

SL
. (1 - p) VL8] + LSy Eallg®(6,)|2 + S*Lyp(1 + S2L27p)

Corl[B.6l SL
< -8y <1 - p> IVLo(00)]1% + 2M1 LS*Y?[Ls(6r) — Lo(67)] + M2LSy||VLo(6:)])*

L~?5?
57 (257L2%% + 2B l9%(61) )

+ M3LS?y? + S?Lyp(1 4+ S?L?p)

SL
= —Sy <1 - Tp - MzM) IVL(O0)|” + 2M1 LS*y?[L(0;) — L(6%)] + S*Loy(p + S*L?yp® + Mz7)

<—*HVE (O)I” + 2MLS**[Ly(6:) — Ly(67)] + S L(p + S*LPyp” + My).

The final 1nequahty follows from the inequality 1 — % — MsLy > %, which is obtained from our

assumptions p < S randy < o7 1v12 7-
In sum,

ED{E (Or1) = Lo(07)] = [£:(0:) — L:(67)]
< *fIIVl? (O0)II* +2M1 LS*Y?[Ly(0:) — Ls(0%)] + S*Lry(p + S*L*yp? + M)
IIVE (OI* < (1 +2M LS?9?)[Ls(8r) — L4(07)] — Ep[Ls(0er1) — Ls(07)]
+ SQL'y(p + S2L2yp? + M37). (20)
By taking expectation and applying the tower property, we can conclude that
E[VL(0:)|7 < (1 +2M; LS*y?) SQV [£5(61) = L£:(67)] = %E[£S(9t+1) — L:(67)]

+2SL(p + S?L?yp* + M3y). (1)
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We now define the following auxiliary quantities:

e := E||VL(6:)]* > 0,

2

Sy

g:=(1+2M,LS%*y%) > 1,

N :=2SL(p+ S?L*vyp? + Mzy).
With these definitions, inequality 21| becomes:

T < g6 — g1 + V.

5t = E[ﬁs(et) — Lb(e*)] 2 0,

By applying Lemma|[B.9] we have

. 2 2(1+ 2M1L5272)T
<
poomin EIVL (0] < TS
From 1 4+ z < e, we can get

(1+2M,LS**)T < exp(2T M, LS*~?%) < exp(1) < 3,

[£:(60) — L4(0%)] + 25 L(p + S*L?yp® + Mz7).

since we have v < S\/ﬁ which imply 2T M; LS?4? < 1.

Therefore,

6M.
. , 2< 4 2712 2 )
,_min  E[[VL(0)]" < T5, +2SL(p + S*L7yp” + Ms)

ERRRE

The second term is less than % with assumptions:

€ €
28Lp < — = p< —,
P=% P= 1251

y<1,
48 L3~p* < ¢ — p< ¢ ithy < 1
— —— Wi ,
= p_QSL 6L IS
€2 2
2SLM3y < — <= 7 < ————.
=7 7= 12SLM;
Likewise, we have the inequality for the first term:
6My € 12My
— < — = T>
TSy = 2 ~ €29y

We have so far imposed the following inequalities on ~y:

(22)

7 < min {4M2L’ SYRMLIT 12M3SL}
Consequently, 7' must satisfy the following conditions for (22).
48Mo My L 288MyMZL 12M, 144M3zM,L
€e2s 7 €t T 28 €2 }

szax{

Finally, we have:

withe these assumptions:
12M,
€25

24 M, My SL
2

T > AM,L,12M3SL},

max{1,

1 . €2 €
P < ﬁ mln{la Ev ﬁ}7

1 1 €2
SV2M, LT’ 4M>L’ 12M35L}'

v < min{1,
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C ADDITIONAL EXPERIMENTS

C.1 SENSITIVITY ANALYSIS OF DGSAM WITH RESPECT TO p

To analyze the sensitivity of DGSAM to p, we evaluated the performance of SAM and DGSAM across
different p values {0.001,0.005,0.01,0.05,0.1,0.2} on the PACS and Terralncognita datasets. As
shown in Figure[6] DGSAM consistently outperformed SAM and demonstrated superior performance
over a wider range of p values.

== SAM
88 >2 DGSAM
== = ERM
587 48
o e
<85 <44
84 40
0 0.001 0.005 0.01 0.05 0.1 0.2 0 0.001 0.005 0.01 0.05 0.1 0.2
Y Y
(a) PACS (b) Terralncognita

Figure 6: Sensitivity analysis

C.2 COMPARISON OF TWO TERMS IN EQ[3]

Figure[7]shows that the second term tends to be slightly smaller than the first term, but the two are
comparable in magnitude. This indicates that both terms contribute to the gradual perturbation.
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Norm of first term

Figure 7: Comparison of magnitude of two terms in Eq[5{on the PACS

C.3 ROBUSTNESS TO EXTREME DOMAIN IMBALANCE

To further validate the robustness of our proposed DGSAM method against domain imbalance, we
conducted additional stress-test experiments under more extreme imbalance scenarios. For this
analysis, we utilized the Terralncognita dataset and artificially increased the sample size imbalance
ratio between the largest and smallest domains from the original approximate ratio of 2:1 to 3:1, 5:1,
and 10:1.

The results are presented in Table[d] As the domain imbalance becomes more severe, the performance
of all methods gradually decreases. However, DGSAM consistently and significantly outperforms
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both ERM and SAM across all tested scenarios. Notably, even with a severe 10:1 imbalance
ratio, DGSAM’s performance degrades gracefully while maintaining a substantial performance
margin over the baselines. This result strongly demonstrates that DGSAM is inherently robust to
domain heterogeneity and imbalance, owing to its mechanism of applying perturbations based on the
normalized gradient for each domain.

Table 4: Performance comparison on Terralncognita under varying degrees of domain imbalance.

Method \ Ratio  2:1 (Original)  3:1 4:1 5.1 10:1

ERM 35.7 353 352 349 321
SAM 34.5 347 342 341 319
DGSAM 41.8 41.6 414 411 383

C.4 SCALABILITY TO A LARGE NUMBER OF DOMAINS

The standard DGSAM implementation performs a sequential ascent over all S source domains,
which can become computationally inefficient and potentially unstable as the number of domains .S
becomes very large. To address this scalability concern, we introduce a straightforward and practical
modification: domain subsampling.

Instead of iterating through all .S domains, we can fix the number of sequential ascent steps to k
(where k < S, e.g., k = 5) by randomly subsampling a subset of k£ domains at each training iteration.
The method presented in the main manuscript is a specific case of this more general framework where
k=2S.

To verify the effectiveness of this approach, we applied DGSAM with domain subsampling (k = 5) to
datasets comprising several tens of domains: PovertyMap (Yeh et al., [2020) and GlobalWheat (David
et all 2020). As shown in Table[5} DGSAM with subsampling not only addresses the scalability issue
but also maintains strong performance, outperforming both ERM and SAM. This refinement confirms
that DGSAM can be effectively and practically applied to large-scale scenarios with numerous
domains.

Table 5: Performance on datasets with a large number of domains using domain subsampling.

Method PovertyMap (23 domains) GlobalWheat (47 domains)
ERM 0.45 50.8
SAM 0.44 51.1
DGSAM (k = 5 subsampling) 0.50 51.9

C.5 ABLATION STUDIES ON STOCHASTIC ORDERING AND GRADIENT RE-USING

In this subsection, we empirically validate two critical design choices in the DGSAM algorithm: (1)
the stochasticity in the sequential domain order, and (2) the gradient reuse strategy for computational
efficiency. We conduct these ablation studies on the PACS and Terralncognita datasets using the
ResNet-50 backbone. The results are summarized in Table

Table 6: Ablation analysis on PACS and Terralncognita datasets.

PACS Terralncognita

Method Configuration Mean (SD) Mean (SD) sliter
Not re-using 88.9 0.5 513 0.5 0.236
Fixed Order 83.6 26 461 1.8 0.169
DGSAM 885 04 499 0.7  0.169
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Impact of Random Domain Permutation. DGSAM permutes the order of source domains at
each iteration before applying sequential perturbations. To assess the impact of this stochasticity, we
compare our default setting with a “Fixed Order” variant, where the domain sequence for the gradual
ascent remains constant throughout training. As presented in Table[f] fixing the domain order leads to
a consistent degradation in average accuracy across benchmarks compared to the random permutation
strategy. Furthermore, we observe a marked increase in performance variance, suggesting that a
fixed sequence induces training instability. These results indicate that randomizing the perturbation
order serves as an essential regularizer, preventing the optimization from biasing towards a specific
trajectory and ensuring robust flatness across all domains.

Effect of Gradient Re-using. To minimize computational overhead, DGSAM approximates the
descent direction by aggregating the gradients computed during the gradual ascent steps, rather
than performing a fresh gradient computation at the final perturbed model parameter. We evaluate
the trade-off of this design by comparing it with a variant that performs an additional backward
pass at the final perturbed point to compute the exact gradient for the update. As shown in Table 6]
while the additional gradient computation yields marginal gains in accuracy, it incurs a substantial
computational penalty, leading to a considerable slowdown in training speed. Consequently, we adopt
the gradient reuse strategy as the default, as it maintains competitive performance while significantly
reducing the computational burden, offering a better balance for scalable domain generalization.

C.6 DETAILS OF THE EXPERIMENTAL VERIFICATION OF SHARPNESS
D COMPUTATION EFFICIENCY

D.1 ILLUSTRATION OF COMPUTATIONAL COST COMPARISON
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Figure 8: Computational cost of SAM and DGSAM.

In standard domain generalization tasks, a single update step operates on a batch that comprises
mini-batches from all source domains. While the number of data samples per domain-specific
mini-batch may vary, we follow the DomainBed protocol (Gulrajani & Lopez-Paz, 2021]), where
each mini-batch contains an equal number of samples. Throughout this paper, we assume uniform
mini-batch sizes across domains.

Let the computational cost of computing the loss and performing backpropagation on a single domain-
specific mini-batch from one domain be denoted as c. In the standard SAM algorithm, both an ascent
and a descent gradient must be computed for each of the S domain-specific mini-batches, resulting in
a total gradient computation cost of 25 x ¢ per update theoretically.
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In contrast, as illustrated in the Figure[§] DGSAM computes gradients separately for each mini-batch,
using g1, . . ., gs not only as ascent gradients but also directly for the parameter update. Due to this
efficient reuse of gradients, DGSAM requires only (S + 1) X ¢ in gradient computation cost per
update theoretically.

D.2 ADDITIONAL ANALYSIS ON COMPUTATIONAL RESOURCES

We provide a comprehensive analysis of computational resources, including both computational
complexity (GFLOPs) and memory usage. All measurements were conducted using a ResNet-50
backbone, and the results reported in Table [7] are averaged across the PACS and Terralncognita
datasets. We report GFLOPs per update alongside mean and maximum memory allocation.

Computational Cost (GFLOPs). We measure the GFLOPs required for a single model update. As
expected, SAM nearly doubles the cost of ERM due to its dual forward-backward passes. DGSAM
successfully reduces this overhead, validating our efficiency analysis.

Memory Efficiency. Despite the moderate increase in GFLOPs compared to ERM, DGSAM achieves
the lowest memory consumption. While ERM and SAM typically perform the backward pass over a
full batch including data from all domains, DGSAM performs backward passes separately on each
domain-specific mini-batch, accumulating gradients before a single update. This approach prevents
memory cost from scaling linearly with the number of domains, resulting in significantly lower
memory usage compared to both ERM and SAM.

Table 7: Comparison of computational cost (GFLOPs per sample) and memory consumption (GB).

Method Computational Cost Memory Usage
GFLOPs / sample Mean (GB) Max (GB)
ERM 8.27 8.0 8.1
SAM 15.99 8.1 8.3
DGSAM 13.28 5.8 6.0

E VISUALIZATION OF LOSS LANDSCAPES

Figure 0] shows the 3D loss landscapes of converged solutions obtained by SAM and our proposed
DGSAM on the PACS dataset using ResNet-50. Each subplot corresponds to a different domain or
the aggregated total loss. While SAM finds flat minima in the total loss, it fails to flatten the loss
surfaces in respective domains. In contrast, DGSAM successfully reduces per-domain sharpness as
well as the total sharpness, demonstrating its ability to achieve flatter minima at the domain level.

Figure [T0]illustrates how DGSAM sequentially applies domain-specific perturbations and aggregates
gradients to update the model.

F DETAILS OF MAIN EXPERIMENTS

F.1 IMPLEMENTATION DETAILS

We searched hyperparameters in the following ranges: the learning rate was chosen from {107°,2 x
1075,3x107°,5x 107}, the dropout rate from {0.0, 0.2, 0.5}, the weight decay from {10~%,107°},
and p from {0.03, 0.05, 0.1}. Each experiment was repeated three times, using 20 randomly initialized
models sampled from this space, following the DomainBed protocol (Gulrajant & Lopez-Paz, 2021).
The optimal hyperparameters selected based on DomainBed criteria for each dataset are provided in
Table[8]to ensure replicability. All our experiments were conducted on an NVIDIA A100 GPU, using
Python 3.11.5, PyTorch 2.0.0, Torchvision 0.15.1, and CUDA 11.7.

29



Under review as a conference paper at ICLR 2026

Art Photo Sketch Total

TS
PPN

Figure 9: Comparison of loss landscapes of converged minima using SAM and DGSAM across
different domains on the PACS dataset. We set the grid with two random direction. DGSAM
performs better than SAM in reducing per-domain sharpness in all three respective domains, and total
sharpness.
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Figure 10: A visualization of DGSAM algorithm.

Table 8: Optimal hyperparameter settings for each dataset

Dataset | Learning Rate  Dropout Rate  Weight Decay 1)

PACS 3x107° 0.5 1074 0.03
VLCS 107° 0.5 1074 0.03
OfficeHome 107° 0.5 10~ 0.1
Terralncognita 107° 0.2 107° 0.05
DomainNet 2x107° 0.5 1074 0.1
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F.2 FULL RESULTS

Here are the detailed results of the main experiment in Section [5.2]for each dataset. The outcomes
are marked with t if sourced from Wang et al|(2023)), 1 if sourced from|Zhang et al.| (2023al)), and
are unlabeled if sourced from individual papers. We note that all results were conducted in the
same experimental settings as described in their respective papers. The value shown next to the
performance for each test domain represents the standard error across three trials.

Table 9: The performance of DGSAM with 18 baseline algorithms on PACS.

Algorithm | A C P S [ Avg  SD  (sfiter)
MTLF 87.5+0.8  77.14£05 96.4+0.8 773+18 | 846 80  0.12

VREx" (Krueger et al. lgﬁl 86.0+1.6  79.14£0.6 969405 777417 | 849 76  0.11

ARMT (Zhang et al 86.840.6 768405 974403 793+12 | 851 80 0.1
854408 797418 97.6+03 782+12 | 852 76 0.4

847404  80.840.6 972403 793+10 | 855 7.0 0.1

88.3+02  80.04£0.5 975403 788+13 | 862 75  0.12

874+1.0 80.74£0.6 97.1+0.1  80.0+04 | 863 69 032

86.5+1.8 812430 97.1+09 808409 | 864 66 049

88.0+£1.0 812420 97.14£03 80.8+25 | 865 66 033

887407 828+13 985+0.1 813404 | 87.8 68  0.09

893402 834406 973403 825405 | 881 59 0.1

SAMT (Foret et al.}[2021) 85.6+2.1 809+12 97.0+04 79.6+16 | 858 69 022
GSAM | 86.9+0.1 804402 975400 787408 | 859 74 022
A 2024) | 86.8+02 802403 974408 797402 | 860 72  0.50

859409 813+1.6 982404 79.04+2.1 | 861 74 043

874402 802403 98.0+02 80.8+0.6 | 866 72 022

87.1404 819405 962403 831407 | 87.1 56 033

88.5+0.5 83.040.8 98.4+02 828409 | 882 63 038

DGSAM 889402 848407 969+02 835403 | 885 52  0.17

DGSAM + SWAD 89.140.5 84.64+04 973+0.1 83.6+04 | 887 54  0.17

DGSAM + CORAL 89.5+0.3  849+03 97.0+02 837407 | 888 52 0.8

DGSAM + Mixup 90.1404  84.8+04 982403 845405 | 894 55  0.17

DGSAM + ERM++ 90.6+0.5 852406 98.5403 860404 | 90.1 53 025

Table 10: The performance of DGSAM with 18 baseline algorithms on VLCS

Algorithm | C L S Y [ Avg SD  (sfiter)
Rsct M » 97.940.1 625407 723412 756408 | 77.1  13.0  0.13
MTL' (Blanchard et al| 2021) 97.8+£04  64.3£03  715+£07  753%17 | 772 125 012
ERM' 980403 647412 714412 752+16 | 773 125 0.1
ARM' (Zhang et al} 987402  63.6+0.7 713+12 767406 | 776 131 0.1
SagNet' (Nam et al. 97.9404 645405 714413 775405 | 778 125 032
VREx" (Krueger et al | 984403 644+14 741404 762413 | 783 124 0.1
GGA-L (Ballas & Diou 989404  665+03 700420 78.1+1.1 | 784 126 033
GGA <| | 984402  65440.1 73.8+1.6 774419 | 787 122 049
CORAL 98340.1 66.1+12 734403 775+12 | 788 120  0.12
SWAD (Cha et al’ 98.840.1 633403 753405 792406 | 79.1 128 0.1
GENIE | 993403 672415 766403  79.7408 | 80.7 117  0.09
GAM! 1 98.8+£0.6  65.1%12 729+10 772419 | 785 125 043
Lookbehind-SAM | 98.740.6  65.14+1.1  73.14£04 787409 | 789 124  0.50
FAD (Zhang et al [2023a) 99.140.5 668409 73.6+£1.0 761413 | 789 121 038
GSAM @mﬁm}l 987403 649402 743400 785408 | 79.1 123 022
SAMT <|zgm 99.140.2  65.0+1.0 737+£1.0  79.8+0.1 | 794 125 022
DISA 993400 663405 81.0+0.1  73240.1 | 799 123 033
SAGM (Wang et a 990402 652404 751403 807408 | 80.0 123 022
DGSAM + SWAD 993407 672403 777406 792405 | 809 116  0.17
DGSAM + ERM++ 992403 674402 77.840.1 795404 | 81.0 115 025
DGSAM 99.040.5  67.040.5 77.9405 81.8+04 | 814 115  0.17
DGSAM + Mixup 99.14£04 673405 78.1+£02 821405 | 817 114  0.17
DGSAM + CORAL 993408 674407 79.5£0.5 81.54+0.1 | 81.9 114 0.8
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Table 11: The performance of DGSAM with 18 baseline algorithms on OfficeHome

Algorithm | A C P R [ Avg SD  (sfiter)
58.940.8 51.010.5 74.110.1 75.240.3 64.8 10.2 0.11
RSCT ( 60.7+1.4 51.440.3 74.8+1.1 75.1+1.3 65.5 10.0 0.14
) 61.51+0.7 52.440.6 74.91+0.4 76.8+0.4 66.4 10.0 0.12
60.71+0.9 53.010.9 75.310.1 76.61+0.5 66.4 9.9 0.11
59.7+0.2 53.840.5 75.310.8 77.110.1 66.5 10.0 0.33
61.710.1 525405  77.1+£1.3  77.040.1 67.0 10.5 0.49
63.1+0.3 51.94+0.4 77.240.5 78.1+0.2 67.6 10.8 0.11
63.41+0.2 54.8+0.4 75.8+0.4 78.31+0.3 68.1 9.5 0.32
65.3+0.4 54.440.5 76.510.1 78.410.5 68.7 9.6 0.12
66.2£0.5 550404  77.5+04  80.0£0.5 69.7 10.0 0.09
66.14+0.4 57.74+0.4 78.440.1 80.2+0.2 70.6 9.2 0.11
63.0+1.2 49.840.5 77.61+0.6 82.441.0 68.2 12.8 0.43
M 63.5+£1.0 503408  78.0+04  85.0+0.6 69.2 134 0.40
Vi 2024) | 647403 531408 774405 817407 | 692 112 050
) 64.910.1 55.240.2  77.84£0.0  79.240.0 69.3 9.9 0.22
SAMT ( 64.5£03 565402  77.440.1 79.8+0.4 69.6 9.5 0.22
65.41+0.4 57.01+0.3 78.01+0.3 80.0+£0.2 70.1 9.4 0.22
DISAM ( 65.84+0.2 55.61+0.2 79.240.2 80.640.1 70.3 10.3 0.33
DGSAM 65.64+0.4 59.740.2 78.04+0.2 80.14+0.4 70.8 8.5 0.17
DGSAM + CORAL 66.410.5 59.61+0.2 78.31+0.3 80.54+0.5 712 8.6 0.18
DGSAM + Mixup 67.31+0.3 60.21+0.4 77.440.3 80.34+0.3 71.3 8.0 0.17
DGSAM + SWAD 66.21+0.6 59.940.1 78.1+0.4 81.240.5 714 8.7 0.17
DGSAM + ERM++ 70.940.5 62.740.1 82.3+0.2 83.8+0.1 749 8.6 0.25

Table 12: The performance of DGSAM with 18 baseline algorithms on Terralncognita

Algorithm [ L100 L38 L43 L46 | Avg  SD_ (sfiter)
ARMT (Zhang et al.}[2021) 493407 383424 558408 387413 | 455 74 0.1
MTLT (Blanchard et al | [2021) 493+12  39.6+63 556411  37.8+08 | 456 73 0.12
ERM' 49.8+44 421414 569+18 357439 | 461 80 0.1
VREx! (Krueger et al.} 2021 482443 417413 56.8+08 387430 | 464 69 0.1
RSCT (Huang et al.[[2020 502422 392414  563+14 408406 | 466 7.0  0.13
CORALT (Sun & Saenko}[2016 516424 422410 57.0£1.0 398429 | 477 7.0 0.2
GGA (Ballas & Diou 509422 425410 597414 415435 | 485 74 049
530429  43.0425 579406 404+13 | 486 7.1 032
572452  451£1.0 564+14 445435 | 498 60 033
554£00  449%1.1  59.7+£04 399402 | 500 7.9 0.1l
552448  47.542.1 592404  459+10 | 520 55 0.09
SAMT (Foret et al.}[2021) 463£1.0  384+24 540410 345+08 | 433 75 022
Lookbehind-SAM (Mordido et al][2024) | 44.6£0.8 41.1+14 574£12 349106 | 445 82  0.50
GAM!? (Zhang et al]2023b) 422426 429417  602+18 355407 | 452 9.1 043
FAD (Zhang et al| 2023a) 443£22  435£17  609+£2.0  341£05 | 457 96 038
DISAM (Zhang et al} [2024) 462429  41.6+0.1  58.0+£05 405422 | 466 69 033
GSAM' (Zhuang et al ]| 50.8+£0.1  39.3£02  59.6£0.0 382408 | 47.0 88 022
SAGM (Wang et a 548+13 414408 577406 413404 | 488 7.5 022
DGSAM 545406 453407 594404 423+10 | 504 69 0.7
DGSAM + Mixup 547409 452404  595+04 425408 | 505 69 0.7
DGSAM + CORAL 558405 454408 592402 427+11 | 508 69  0.19
DGSAM + SWAD 55.6£1.2 459405  59.6£05  43.1£09 | 511 68 0.7
DGSAM + ERM++ 562409 49313 59.8+£05 432407 | 521 64 025
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Table 13: The performance of DGSAM with 18 baseline algorithms on DomainNet

Algorithm C 1 P Q R S { Avg SD (s/iter)
473435 16015 358446 109+£03  496+49 420430 | 336 150 018
4974203 163405  409+11 94201  534£04 435404 | 355 167 018
55012 183£05 444206 122402 557£07  478£09 | 389 173 020
577403 190£02 453403 127405  581+£05 488402 | 403 179 053
579405  185£04 460401 125401  595+03  492£0.1 | 406 184 020
581£03 18803 46703 122404  596£0.1 49804 | 409 186 0.8
CORALT 592201 197402  466+03 13404 59802 50106 | 415 183 020
GENIE (Cho et al [[2075) 625405  213£04 50004 140404  640+£07 52608 | 441 194 014
637402  213£03 504401  141+£04 63802 535403 | 444 197 075
632£02  210£03 495401 138402  641£04  536£03 | 445 197 050
660£0.1  224£03 535401  161+02  658+£04 555+£03 | 465 199 018
63.0£05  202£02 50301 132403  645+02 51605 | 438 200 071
643£03  208£0.1 50401  150+04  631£03 51403 | 441 194 071
645+£03  207£02 502401  151+03 62602 52703 | 443 194 034
64103  219£02 506403 142404  636+£01 522£02 | 444 195 056
64203  208£02 509400 144408  635+02 539£02 | 446 198 036
649£02  2L1£03 515402 148402  641+£02  536£02 | 450 198 034
659402 207402 517403 166403 62805 548104 | 454 195 053
DGSAM 63.6+£04  222£01 51903 158402  647+03  547£04 | 455 194 026
DGSAM + CORAL 643£02  225£02 542403 162402 649£01  552£02 | 462 195 028
DGSAM + SWAD 672402  232£03 534403 173404  654£02  558£03 | 471 196 026
DGSAM + Mixup 674£03  254£01 548402 176403  67.5+04 573£03 | 483 197 026
DGSAM + ERM++ 713403 269402 586402 179405  705+£02 608405 | 510 209 043
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G BASELINE REFERENCES

Table[T] compares our proposed method with several baseline algorithms for domain generalization.
For a fair and consistent comparison, we report the performance metrics as presented in prior works.

Most results are sourced directly from the original papers introducing each algorithm. For certain
baselines, results are quoted from recent state-of-the-art papers to ensure the experimental settings
are as consistent as possible. Specifically, results marked with { are sourced from SAGM (Wang|

2023)), and the result for GAM (%) is from FAD (Zhang et al.| [2023a).

The references for each baseline algorithm and combined methodology are as follows:

* ARM (Zhang et al| 2021)

* VREx (Krueger et al} 202T)

* RSC (Huang et al.| 2020)

e MTL (Blanchard et al. [2021))

. SagNet

* CORAL (Sun & Saenkol [2016)

* GGA & GGA-L (Ballas & Diou, 2025)
- GENIE

+ SWAD

* GAM (Zhang et al| 2023b)

- SAM

» Lookbehind-SAM (Mordido et al.| [2024)
e GSAM (Zhuang et al} 2022)

* FAD (Zhang et al|| [2023a4)

* DISAM (Zhang et al, 2024)

- SAGM

. SFT

¢ MixUp (Copez-Paz et al} 2018)

o ERM++ (Teterwak et all,[2025)

H RELATED WORKS AND DISCUSSION

In this section, we complement the discussion in Section 2.2]by providing a more detailed categoriza-
tion of SAM variants that have been applied to domain generalization. Our goal is to clarify how
existing approaches interpret and optimize flatness in the multi-domain setting, and how this differs
from the per-domain sharpness perspective underlying DGSAM.

Domain-Agnostic Sharpness Minimization. This line of work adapts SAM or its extensions to
DG by directly optimizing the aggregated sharpness. These algorithms do not utilize per-domain
information and simply focus on reducing the sharpness of the aggregated loss, such as zero-th order
sharpness or first-order sharpness.

For example, SAM and GAM, which were not originally designed for DG but are commonly used
as baselines, reduce the zero-th order and first-order sharpness of the aggregated loss, respectively.
FAM further aims to simultaneously reduce both zero-th order and first-order sharpness. On the other
hand, GSAM, SAGM, and ISAM (Dong et al.}[2024) are variants of SAM that reduce aggregated
sharpness by mitigating gradient conflicts between the aggregated loss gradient and the surrogate
gap, thereby achieving better reduction of aggregated sharpness. UDIM introduces
perturbations in both parameter space and data space for domain generalization. It reduces the loss
landscape inconsistency between source domains and unknown domains, where unknown domains
are emulated by perturbing instances from the source domain dataset. Although UDIM explores data
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space perturbations, it does not utilize domain labels and ultimately optimizes for the consistency of
aggregated loss landscapes.

Domain-Aware Sharpness Minimization. Another line of work explicitly incorporates domain
labels into the sharpness optimization process, yet differs from our per-domain sharpness minimization
approach.

DISAM (Zhang et al.| [2024) introduces a domain loss variance regularization to achieve elastic
gradient calibration: domains with higher losses receive weaker perturbations, while domains
with lower losses receive stronger perturbations. This balancing mechanism promotes consistent
convergence across domains, but the optimization still targets aggregated sharpness. Self-Feedback
Training (SFT) [2025)) seeks consistent flat minima across domains by iteratively measuring
and refining loss landscape inconsistency. While it implicitly encourages per-domain flatness through
consistency, it lacks a formal per-domain sharpness minimization formulation.

Distinction and Novelty of DGSAM. These two lines of work demonstrate that better control of
aggregated sharpness and mitigation of domain inconsistency can improve DG performance. However,
they still operate within the same objective: they ultimately seek to flatten the loss landscape of
the aggregated source risk, sometimes with regularizers that indirectly promote consistency across
domains.

By contrast, DGSAM starts from a DG-specific worst-case risk formulation and first asks a different
question: “Is aggregated sharpness an appropriate surrogate for the average worst-case domain risk?”
Our theoretical analysis shows that aggregated sharpness can be small even when some domains
remain sharp, which gives rise to the fake flat minima phenomenon. We then prove that the average
per-domain sharpness does provide a valid surrogate for the average worst-case domain risk.

This analysis yields an explicit per-domain sharpness objective whose minimizer is provably aligned
with the DG goal, and DGSAM is designed as an algorithm that directly optimizes this objective
while keeping the computational overhead practical. From a theoretical perspective, this provides
a new way to think about sharpness in DG. Prior SAM-based DG approaches typically follow the
original SAM line of analysis and study PAC-Bayes style bounds or regularization effects based
on aggregated sharpness. In contrast, our work offers a new perspective on sharpness in DG by
introducing a per-domain sharpness minimization framework that directly targets robustness to worst-
case domains. We view this shift in objective as the main novelty of DGSAM and as a foundation for
future sharpness-based methods in domain generalization.
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