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ABSTRACT

Domain generalization (DG) aims to learn models that perform well on unseen
target domains by training on multiple source domains. Sharpness-Aware Mini-
mization (SAM), known for finding flat minima that improve generalization, has
therefore been widely adopted in DG. However, we argue that the prevailing
approach of applying SAM to the aggregated loss for domain generalization is
fundamentally suboptimal. This “global sharpness™ objective can be deceptive,
leading to convergence to fake flat minima where the total loss surface is flat, but
the underlying individual domain landscapes remain sharp. To establish a more
principled objective, we analyze a worst-case risk formulation that reflects the true
nature of DG. Our analysis reveals that individual sharpness provides a valid upper
bound on this risk, while global sharpness does not, making it a more theoretically
grounded target for robust domain generalization. Motivated by this, we propose
Decreased-overhead Gradual SAM (DGSAM), which applies gradual, domain-wise
perturbations to effectively control individual sharpness in a computationally effi-
cient manner. Extensive experiments demonstrate that DGSAM not only improves
average accuracy but also reduces performance variance across domains, while
incurring less computational overhead than SAM.

1 INTRODUCTION

Deep neural networks achieve remarkable performance under the independent and identically dis-
tributed (i.i.d.) assumption (Kawaguchi et al.,|2017), yet this assumption often fails in practice due
to domain shifts. For example, in medical imaging, test data may differ in acquisition protocols
or device vendors (Li et al., [2020), and in autonomous driving, variations in weather or camera
settings introduce further domain shifts (Khosravian et al.,[2021)). Since it is impractical to include
every possible scenario in the training data, domain generalization (DG) seeks to learn models that
generalize to unseen target domains using only source domain data (Muandet et al.l 2013} |Arjovsky
et al.,[2019; |Li et al., 2018c; [Volpi et al., [2018} L1 et al., 2019).

A common DG strategy is to learn domain-invariant representations by aligning source domain
distributions and minimizing their discrepancies (Muandet et al. 2013} |Arjovsky et al. [2019),
adversarial training (Li et al.| [2018c; |Ganin et al.| [2016), data augmentation (Volpi et al., 2018
Zhou et al., [2020; 2021), and meta-learning approaches (Li et al., 2019; Balaji et al.,|2018)). These
strategies share the common goal of solving the core challenge of DG: learning from source domains
with structured shifts (e.g., artistic style, weather conditions) to generalize to unseen variations of
these structures. More recently, flat minima in the loss landscape have been linked to improved
robustness under distributional shifts (Cha et al.||2021}; [Zhang et al.,2022; (Chaudhari et al., 2019).
In particular, Sharpness-Aware Minimization (SAM) (Foret et al., [2021)) perturbs model parameters
along high-curvature directions to locate flatter regions of the loss surface, and has been applied to
DG (Wang et al., 2023} |Shin et al.| |2024; Zhang et al.| 2024)).

However, we argue that the prevailing approach of applying SAM to the aggregated loss is funda-
mentally suboptimal. Our analysis reveals that the current SAM-based approach for DG pursues an
unrealistic goal: robustness to perturbations of a probabilistic average of the source domains, rather
than the coherent shifts of individual source types that characterize real-world DG. This misalignment
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can be deceptive, leading to convergence to fake flat minima that appear globally flat but remain
sharp on individual domains. We find this occurs because global sharpness is an unreliable proxy
for the individual-domain flatness that is truly required for robust generalization. To establish a
more principled objective, we introduce a worst-case risk formulation that formalizes this notion of
coherent shifts. We then theoretically demonstrate that individual sharpness, not global sharpness,
provides a valid upper bound on this risk, making it a more grounded target for optimization.

Motivated by these insights, we propose a novel DG algorithm, Decreased-overhead Gradual
Sharpness-Aware Minimization (DGSAM) that employs a gradual and domain-specific perturbation
mechanism designed to effective control individual sharpness. DGSAM improves upon existing
SAM-based DG methods in three key aspects. First, it efficiently reduces the individual sharpness
of source domains rather than the global sharpness of the total loss, enabling better learning of
domain-invariant features. Second, it achieves high computational efficiency by reusing gradients
computed during gradual perturbation, in contrast to traditional SAM-based methods that incur
twice the overhead of standard empirical risk minimization. Third, while prior approaches rely on
proxy curvature metrics, DGSAM controls the eigenvalues of the Hessian, which are the most direct
indicators of sharpness (Keskar et al.l 2016; |Ghorbani et al.| [2019). Our extensive experiments
confirm the superiority of this approach. DGSAM demonstrates a superior balance of accuracy and
robustness, achieving the highest average accuracy and the lowest average domain-wise variance
across five benchmarks. Furthermore, DGSAM shows broad compatibility by enhancing various DG
frameworks and confirms its scalability on large-scale Vision Transformer models, all while being
more computationally efficient than standard SAM.

2 PRELIMINARIES AND RELATED WORK

2.1 DOMAIN GENERALIZATION

Let Dy := {Di}le denote the collection of training samples, where D; represents the training
samples from the i-th domair'| The total loss over all source domains is defined as:

L(0) = — > Lio), 4}

D] D;€D,

where £; denotes the loss evaluated on samples from the i-th domain, and @ is the model parameter.

A naive approach to DG minimizes the empirical risk over the source domains.: 8% = arg ming £(0).
However, this solution may fail to generalize to unseen target domains, as it is optimized solely on
the training distribution. The goal of domain generalization is to learn parameters 6 that are robust to
domain shifts, performing well on previously unseen domains.

As the importance of DG has grown, several datasets (Li et al., |2017b; [Fang et al., 2013 [Peng
et al.,[2019) and standardized protocols (Gulrajani & Lopez-Paz,|2021};|Koh et al., [2021)) have been
introduced. Research directions in DG include domain-adversarial learning (Jia et al.| [2020; Li et al.,
2018c; |Akuzawa et al.| [2020; Shao et al.|[2019; Zhao et al.,|2020)), moment-based alignment (Ghifary
et al., [2016; Muandet et al., [2013; |L1 et al., |2018b), and contrastive loss-based domain alignment
(Yoon et al.| 2019; Motiian et al.| 2017). Other approaches focus on data augmentation (Xu et al.,
20205 |Shi et al., [2020; |Qiao et al., [2020), domain disentanglement (Li et al., |2017aj [Khosla et al.|
2012), meta-learning (Li et al., 2018aj; |[Zhang et al., [2021}; L1 et al.,|2019), and ensemble learning
(Cha et al., 20215 Seo et al., 2020; [ Xu et al., 2014).

2.2  SHARPNESS-AWARE MINIMIZATION

A growing body of work connects generalization to the geometry of the loss surface, especially its
curvature (Hochreiter & Schmidhuber, |1994; Neyshabur et al., 2017; Keskar et al., 2017} |Chaudhari
et al.l [2019; [Foret et al., [2021). Building on this, [Foret et al.| (2021) proposed Sharpness-Aware
Minimization (SAM), which optimizes the model to minimize both the loss and the sharpness of the
solution. The SAM objective is defined as:

min max £(0 + ¢€), 2
6 llell<p ( ) @

'With slight abuse of notation, we also use D; to represent the underlying data distribution of the i-th domain.
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where the inner maximization finds the worst-case perturbation € within a neighborhood of radius p.

Following the success of SAM, several extensions have emerged, primarily focusing on refining
the sharpness surrogate (Kwon et al.l 2021} [Zhuang et al., [2022; Zhang et al [2022)) or reducing
its computational overhead (Du et al., 2022 [Liu et al., 2022; Mordido et al.| [2024). The promise
of improved generalization has naturally led to the exploration of sharpness-aware methods in
domain generalization. A common strategy is to apply SAM to the total loss aggregated over source
domains (Wang et al.| 2023} Shin et al., [2024; (Cha et al.,[2021)). This approach, however, implicitly
seeks a solution that is flat only with respect to the mixture of domains, treating the structured
multi-domain problem as a single i.i.d. one. Recognizing this potential limitation, more recent studies
incorporate domain-level structure, either by explicitly penalizing inter-domain loss variance (Zhang
et al.,[2024)) or by applying SAM variants in a domain-wise manner (Le & Woo) 2024)).

3 RETHINKING SHARPNESS IN DOMAIN GENERALIZATION

The prevailing paradigm in the current literature is to apply SAM to the aggregated loss across all
source domains. We argue this approach is fundamentally suboptimal for domain generalization,
as it is built on an assumption that is misaligned with the core nature of the DG problem itself. By
collapsing the crucial structural information between domains, this strategy shifts the optimization
objective from learning features that are truly domain-invariant, to merely seeking robustness for a
probabilistic average of the source domains. This is a critical distinction, as this probabilistic average
may not represent any realistic domain and is not equivalent to the shared, invariant features required
for true generalization. This misalignment can be deceptive, leading to convergence to ‘fake flat
minima’. In Section[3.1] we first provide a formal and intuitive illustration of this pitfall. We then
propose a more principled objective grounded in a worst-case risk formulation that respects this
essential domain-specific structure in Section [3.2]

3.1 GLOBAL SHARPNESS PITFALLS: THE FAKE FLAT MINIMA PROBLEM

To formalize our perspective, we distinguish between two key concepts. The prevailing approach for
SAM in DG focuses on global sharpness, defined as:

Salobal (05 p) = Hm”ax (Ls(0+€) — L(0)).

where L; is the total loss over all source domains, defined in equation @ In contrast, our work
focuses on the individual sharpness of each source domain D;, defined as:

Si(0;p) = jnax (Li(0+€)— Li(0)).

To generalize well to unseen domains, a model must learn representations that are robust to various
domain shifts. The most direct way to achieving this is to ensure that the learned solution is robust
against new domains that are variations of each of the source domains seen during training. Therefore,
an ideal DG approach should find a solution that is simultaneously flat with respect to every individual
source domain, a property directly captured by individual sharpness (S;).

The prevailing approach of minimizing global sharpness (Sgiopat), however, does not guarantee this
ideal outcome. As global sharpness is measured on the aggregated loss, it is possible for this mixture
to be flat while the loss landscapes of the underlying individual domains remain sharp. This presents
a critical failure mode: if an unseen test domain shares characteristics with a source domain for
which the model has high individual sharpness, the model will likely fail, regardless of its low global
sharpness. This divergence, where low global sharpness masks high individual sharpness, leads to
what we term fake flat minima. The following proposition formally demonstrates that global and
individual sharpness are not necessarily correlated.

Proposition 3.1. Ler 6 be a model parameter and p > 0 a fixed perturbation radius. Then, there
exist two local minima 0, and 65 such that

Sglobal(el; P) < Sglobal(02; but

S S
Z 917 Z 927
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Equivalently,

Sglobal(al; P) < Sglobal(927 ?5 ZS 01 P 927

I\Mm

The proof is deferred to Appendix [B.1] This proposition provides the formal basis for the fake flat
minima phenomenon, confirming that a low value of global sharpness (Sgiobai) can be achieved even
when the average individual sharpness (% Do SZ-) remains high.

To illustrate this phenomenon, we present a 2-dimensional

toy example involving two domains and two loss functions. NN Py

Each domain shares the same base loss shape (Figure 2a) “ “\ L

but is shifted along one axis. Figures [2b] and [2c] visual- N oN S o

ize the total loss from two perspectives. In this example, \\ /\ ’/ == Domainz s
- v

region R1 corresponds to an ideal solution, where both
individual domain losses exhibit flat minima. In contrast,
region R2 remains sharp for each individual domain loss,
but appears deceptively flat in the total loss due to cancel-
lation of opposing sharp valleys (Figure[I). As a result,
both SAM and SGD converge to region R2 (Figure 2d),
which constitutes a fake flat minimum.

Figure 1: Fake flat minimum: two
sharp individual losses (dotted) cancel
out when summed, resulting in a decep-
tively flat total loss (solid).

I Domain 1 s Domain 1 B Domain 1 = SGD

[ Domain 2 B Domain 2 B
= DGSAM

(a) Loss landscape of a sin-(b) Side view of the total (c) Rear view of the total (d) Optimization trajecto-
gle domain loss landscape loss landscape ries

Figure 2: Toy example: two conflicting loss functions construct two different type of flat minima.
An interactive visualization of toy example is available at https://dgsam-toy—-example.
netlify.app/.

The pitfall of the global sharpness approach is not merely an theoretical concept. We confirm this
phenomenon in practical DG tasks using ResNet-50 on the PACS dataset. As visualized in Appendix [E]
while SAM produces minima that are flat with respect to the total loss, the loss landscapes for the
individual domains remain sharp, providing direct empirical evidence of the fake flat minima problem.

3.2 INDIVIDUAL SHARPNESS: A PRINCIPLED OBJECTIVE FOR DG

To establish a principled objective for SAM in DG, we need to define a performance measure that
truly reflects the challenges of the task. As we have argued, a true domain shift is not a random
perturbation of the averaged sources. For instance, a model trained on ’Photo’ and ’Sketch’ domains
is not evaluated on their pooled mixture, but rather on a new, coherent domain such as ’Cartoon’ or
’Watercolor painting’. This new domain represents a coherent shift from one of the existing styles,
not a deviation from their probabilistic mixture. A truly robust model, therefore, must be resilient to
the worst-case shift originating from any of the individual source domains it was trained on.

Based on this principled view, we now formalize the average worst-case domain risk. Let {D; }5_;
denote the source distributions. For each source domain ¢, we define the local uncertainty set of
potential target domains as:

= {D: Div(D||D;) < 6},

where Div(-||-) is a divergence measure (e.g., KL-divergence, Wasserstein distance). This set U
contains all unseen target domains that lie within a divergence § of the source domain D;. The
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average worst-case domain risk is then the expected risk under the worst-case shift from each source

domain:
S

1
£(0;9) = < sup Lp(0).
8 ; Deu
This principled risk formulation allows us to formally investigate which notion of sharpness, global
or individual, serves as a better optimization target.

Theorem 3.2. Ler L;(8) denote the total loss over all source domains, Sgiopa(6; p) the global
sharpness, and S;(0; p) the individual sharpness for the i-th domain. Then, for all 6 and p > p(0),

S
£(6:0) < L,(6) + 5 > S:(6:p).
i=1

where p(9) is defined in equationof Appendix Moreover, there exists a model parameter 0
such that
5(07 5) > Ev(e) + Sglobal(e; p)'

The proof is provided in Appendix B.2] Theorem [3.2] highlights that minimizing the average of
individual sharpness provides a valid upper bound for our principled DG risk measure, £(6;6). In
contrast, it also shows that global sharpness offers no such guarantee, and can indeed be smaller even
when the true risk is higher. This result confirms that minimizing individual sharpness is not merely
an alternative, but a more appropriate and theoretically grounded surrogate for robust generalization
under domain shifts.

4 METHODOLOGY

Our goal is to design an algorithm that effectively controls individual sharpness across all source
domains, as motivated in Section 3. The conventional SAM approach, which perturbs parameters
along the single, aggregated gradient of the total loss, is ill-suited for this task. The total gradient
is often misaligned with individual domain gradients, resulting in a suboptimal perturbation that
fails to uniformly increase domain-specific losses. We provide a detailed analysis and empirical
illustration of this failure mode in Appendix [A] To overcome this limitation, in Section 4.1, we
propose Decreased-overhead Gradual Sharpness-Aware Minimization (DGSAM) that employs a
gradual, domain-specific perturbation mechanism to control individual sharpness. Subsequently, in
Section 4.2, we provide a theoretical analysis of how this mechanism implicitly controls individual
sharpness.

4.1 THE DGSAM ALGORITHM

DGSAM'’s update strategy is built upon a sequential perturbation scheme. Unlike the conventional
SAM that uses a single perturbation, DGSAM sequentially incorporates the unique gradient from
each source domain in successive steps. This transforms the perturbation process into a principled
mechanism for integrating geometric information from multiple domains, allowing for more effective
control of individual sharpness. The general effectiveness of such a sequential scheme for finding
flatter minima has also been demonstrated in the standard i.i.d. setting by Lookbehind-SAM (Mordido
et al.| 2024)). The update rule of DGSAM is given by:

95 =VLp, (0;-1)forj=1,....5, gsi1=VLp, (0s), 3)
g S5+
Or1 =0 —v| =—— ;. 4
t+1 ¢ ’Y(S+1);gj @
where I = (Iy,...,ls) denotes a random permutation of the .S source domain indices, and each £ By,

is the loss computed over a mini-batch B;; drawn from the /;-th domain.

In the ascent phase, as defined in equation [3] DGSAM performs S + 1 perturbation steps, each based
on the gradient of an individual domain, followed by a descent step that updates the model using

the aggregated gradients. Specifically, we begin with 6, = 0; and at each step j € {1,...,S}, we
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compute the domain-specific gradient g; = V.L By, ( i—1) for the j-th domain (sampled in random

order) and apply the perturbation pui—-?” to update 0] (See lines 7-9 in Algorithm . These gradients
J
are stored and later reused during the descent update to reduce computational overhead.

Note that the gradient g; is computed at the unperturbed point 6; so it does not reflect the curvature-
aware structure. To correct for this inconsistency, we perform one additional gradient computation at

the final perturbed point O using VLp, (05) again (lines 10-11 in Algonthm . This ensures that
all gradients contributing to the final update step are computed at perturbed points.

As a result, DGSAM collects S + 1 gradients
along a trajectory that sequentially accounts for
each domain’s geometry. These gradients are
then averaged for the final parameter update, as
in equation 4] This design ensures that the de-
scent direction is a more uniform reflection of
all individual domain geometries, preventing the

Algorithm 1 DGSAM

1: Require: Initial parameter 6o, learning rate -y, ;
radius p; total iterations N; training sets {D; }5-,
2: fort <~ O0to N —1do
3:  Sample batches B; ~ D; fori =1, -
set a random order [ = permute( {1

-, S, and
-, 8}

bias towards a single dominant domain that can 4 o i 0:

. . .5 forj+1toS+1do
occur with conventional SAM. Furthermore, this 6 if j < S then
design is computationally efficient by reusing 7: gf —VLis (0, 1)
the gradients from the ascent phase, DGSAM ! EA
requires only S + 1 gradient computations perit- 8 0; 0,1 + p=tr H ”
eration, compared to the 2.5 required by standard . elseif j = S + 1 theil
SAM. . 10: gs+1 < V‘C’Bll (és)
The following theorem shows that DGSAM ;. end if
achieves e-stationarity under standard assump- 12:  end for
tions, aligning with the convergence guarantees S+l
recently established for SAM in non-convex set- 13: Or41 < 0: — ( S+ 1) Z 9i
tings |(Oikonomou & Loizou| (2025).

14: end for

Theorem 4.1 (e-approximate stationary). Let Assumptions[B.4|hold. Then, for any € > 0, the iterates
of DGSAM satisfy for p < p,v <7, T >T
min
=0,...,
where full expressions of p, 7, and T are given in Theorem We refer to Appendix |B.3|for the
proof.

EIVL@)] <e

4.2 How DGSAM CONTROLS INDIVIDUAL SHARPNESS

Recent studies (Ma et al.| [2023; [Zhuang et al., 2022) have pointed out that SAM’s first-order
approximations may lead to suboptimal control of curvature. |Luo et al.[(2024) showed that aligning
the perturbation direction with an eigenvector can control the corresponding eigenvalue. However,
relying solely on the top eigenvectors is insufficient in multi-domain settings, where the directions may
conflict across domains. In such cases, it is more desirable to incorporate a broader set of eigenvectors
associated with large eigenvalues, capturing curvature shared across domains. Moreover, Wen et al.
(2023)) demonstrated that controlling the entire eigenvalue spectrum yields tighter generalization
bounds than focusing solely on the top eigenvalue.

In this regard, we analyze how DGSAM’s gradual perturbation mechanism implicitly controls the
individual sharpness. At the j-th step of the ascent phase the gradient g; is computed as:

g] — VEBlj (é_j—l) = VACB,J_ (90 + Zp“ k”)

~ VLp, (6o) + pV>La, (00) Z Torl +0(p?).

Since the Hessian V2L B, is symmetric and hence diagonalizable, we decompose it as V2L B, (éo) =
>, Anvnv,, where Ej = {(\,,vy,)} is the set of eigenpairs of VQEB,j (6¢). Then, the g; can be
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Table 1: Performance comparison on five DomainBed benchmarks. We report both trial-based
standard deviation (&) and test-domain standard deviation (SD). Bold and underlined entries indicate
the best and second-best results, excluding combined methods. Baseline results are sourced from
prior work (see Appendix |G| for references).

PACS VLCS OfficeHome Terralnc DomainNet Avg

Algorithms Mean SD  Mean SD Mean SD Mean SD  Mean SD | Mean SD (s/iter)
ARMT 85.1+06 8.0 77.6+07 13.1 64.8+04 102 455+13 74 355+05 167 | 61.7 11.1  0.12
VREx' 84.9+11 7.6 783+0s 124 664+t06 9.9 464424 69 33.6430 15.0 | 619 104 0.12
RSCf 852+10 7.6 77.1x07 13.0 655+10 10.0 46.6+10 7.0 389+07 173 | 627 11.0 0.15
MTLF 84.6+10 8.0 77.2+0s 12.5 66.4+0s 100 456424 73 40.6+03 184 | 629 112 0.14
ERMT 85.5+06 7.0 773+11 125 66.5+04 10.8 46.1+20 8.0 409+03 186 | 633 114 0.12
SagNet' 86.3+05s 6.9 77.8+07 12.5 68.1x03 9.5 48.6+03 7.1 403403 179 | 642 10.8 0.36
CORAL' 86.2+06 7.5 788+07 12.0 68.7+04 9.6 47.7+04 7.0 41.5+03 183 | 646 109 0.14
GGA 86.4+17 6.6 787+xi0 122 67.0x05 10.5 485120 74 445103 197 | 650 113 054
GGA-L 86.5+15 6.6 784+10 12.6 66.5+04 100 49.8+25 6.0 44.5+03 197 | 651 11.0 0.36
GENIE 87.8+06 6.8 80.7+07 11.7 69.7+0s 10.0 52.0+21 5.5 44.1+05 194 | 669 10.7 0.10
SWAD 88.1+04 59 79.1+04 12.8 70.6+03 9.2 50.0403 7.9 46.5+02 199 | 669 112 0,12
GAM?* 86.1+13 74 785+12 125 68.2+0s8 12.8 452417 9.1 438+03 200 | 644 124 049
SAMT 858+13 6.9 794406 12.5 69.6+03 9.5 4334103 7.5 443102 194 | 645 112 0.24
Lookbehind-SAM 86.0404 7.2 789+0s 124 692+06 112 445410 82 442403 19.6 | 647 11.8 0.54
GSAM' 859+03 74 79.1%03 123 693+01 99 47.0+01 8.8 44.6+03 198 | 652 11.6 0.25
FAD 882406 6.3 789x09 12.1 69.2+07 13.4 457116 9.6 444103 195 | 653 122 042
DISAM 87.1x05 5.6 799+02 123 70.3+02 103 46.6+14 6.9 454103 195 | 659 109 0.37
SAGM 86.6+03 7.2 80.0+04 12.3 70.1+03 9.4 488+03 7.5 45.0+02 19.8 | 66.1 112 0.24
DGSAM 88.5+04 5.2 814+0s 115 70.8+03 85 504+07 69 455+03 194 | 67.3 103 0.19
DGSAM + CORAL 88.8+04 52 819+0s 114 71.2+04 86 50.8+07 69 462+02 195 | 67.8 103 0.19
DGSAM + SWAD 88.7+04 54 80.9+0s 11.6 71.4+0s 8.7 5l.1+0s 6.8 47.1+03 19.6 | 67.8 104  0.19
DGSAM + Mixup 89.4404 55 81.7+04 114 713+03 8.0 50.5+06 6.9 483403 19.7 | 682 103  0.20
DGSAM + ERM++  90.1+0s 5.3 81.0x03 11.5 749402 8.6 52.1+00 64 51.0003 209 | 69.8 105 0.29

approximated as

U
~ VL, Bo)+p D A Z” o, 5)

o ole]

In this approximation, the first term represents the standard ascent direction for the j-th domain,
while the second term is a curvature-aware correction term. This correction is a weighted sum of
the Hessian’s eigenvectors, where the weights depend on both the eigenvalues A and the alignment
of eigenvectors with the perturbation directions from all previous domains (gs, . .., g;—1). Thus,
DGSAM'’s gradual perturbation strategy naturally integrates curvature information from the entire
sequence of domains, ensuring that the sharpness of individual domain losses is controlled in a
balanced and robust manner. This theoretical insight is confirmed empirically. In Appendix [C.2}
we show that the curvature-aware correction term contributes significantly to the ascent direction.
Furthermore, this mechanism’s effectiveness is demonstrated in our toy example (Section E]), where
DGSAM consistently finds the truly flat minima and avoids the fake flat minima trap

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Evaluation protocols, Baselines and Datasets For all main experiments, we adhere to the Do-
mainBed protocol (Gulrajani & Lopez-Paz,|2021])), including model initialization, hyperparameter
tuning, and validation methods, to ensure a fair comparison. Our experiments are conducted on
five widely used DG benchmarks: PACS (Li et al.| 2017b), VLCS (Fang et al.| 2013)), OfficeHome
(Venkateswara et al.|[2017), Terralncognita (Beery et al.,|2018)), and DomainNet (Peng et al., 2019).

We adopt the standard leave-one-domain-out setup: one domain is held out for testing, while the
model is trained on the remaining source domains (Gulrajani & Lopez-Paz, |[2021). Model selection
is based on validation accuracy computed over the source domains. In addition to the average test
accuracy commonly reported in DG, we also report the standard deviation of per-domain performance
across test domains. This metric captures robustness to domain shifts and highlights potential
overfitting to domains that are similar to the training distribution. Each experiment is repeated three
times, and standard errors are reported.
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Table 2: DG performances on ViT-B/16 backbone.

Algorithms PACS VLCS OfficcHome Terralnc DomainNet Avg.

CORAL 95.4 82.5 83.3 52.0 59.5 74.5
DISAM 96.8 82.2 84.2 514 59.9 74.9
ERM 96.6 80.9 84.1 55.5 59.2 75.3
SAM 96.1 83.5 86.5 61.2 60.5 76.3
DGSAM 97.3 84.5 87.3 62.2 78.5 77.8

Implementation Details We use a ResNet-50 (He et al., 2016) backbone pretrained on ImageNet,
and Adam (Kingma & Ba, [2015) as the base optimizer. We use the hyperparameter space, the
total number of iterations, and checkpoint frequency based on [Wang et al.| (2023). The specific
hyperparameter settings and search ranges are described in Appendix [F.I]

5.2 ACCURACY AND DOMAIN-WISE VARIANCE ACROSS BENCHMARKS

Baselines on the DomainBed Protocol. =~ We compare DGSAM with 18 baseline algorithms across
five widely used benchmark datasets: PACS, VLCS, OfficeHome, Terralncognita, and DomainNet.
The complete experimental setup and evaluation protocol follow DomainBed (Gulrajani & Lopez-Paz,
2021). Table [I] reports the average test accuracy and two types of standard deviation: (1) trial-
based standard deviation across three random seeds, denoted by +, and (2) domain-wise standard
deviation, measuring performance variance across held-out domains. Higher accuracy and lower
standard deviation indicate better and more robust generalization. DGSAM achieves the highest
average accuracy 67.3% and the lowest domain-level variance 10.3 among all methods, outperforming
baselines on PACS, VLCS, and OfficeHome, and ranking second on Terralncognita and DomainNet.

Combination with Other DG Strategies. Beyond its strong standalone performance, DGSAM
also serves as a complementary component to other DG strategies. As shown in Table|l} integrating
DGSAM with diverse and orthogonal methods, including SWAD, Mixup (Lopez-Paz et al.| 2018)),
CORAL (Sun & Saenko, 2016), and ERM++ (Teterwak et al., [2025)), consistently yields further
performance gains. This demonstrates the broad applicability of DGSAM as a foundational optimizer
that can enhance various DG frameworks. Detailed per-dataset results are provided in Appendix [F.2]

Performance on a Large-Scale Backbone (ViT-B/16). While the standard DomainBed proto-
col provides a crucial benchmark, the ResNet-50 backbone is a relatively small-scale model. To
demonstrate that DGSAM is effective and scalable for more realistic, large-scale architectures, we
therefore conduct additional experiments using a Vision Transformer (ViT-B/16) backbone. As shown
in Table 2] DGSAM again consistently outperforms strong baselines, underscoring its effectiveness
across different architectures.

5.3 SHARPNESS ANALYSIS

Table 3: The zeroth-order sharpness result at converged minima

Individual domains
Clipart Painting Quickdraw Real Sketch

SAM 1.63 6.22 7.86 4.89 338 |4.79(2.17) 19.68 70.59
DGSAM 1.17 2.78 4.74 439 1.80 |298(1.40) 6.41 42.46

‘Mean (Std) Total Unseen

To verify that DGSAM effectively reduces individual sharpness, we measure the zeroth-order sharp-
ness of the converged solutions. As shown in Table[3} DGSAM achieves substantially lower individual
sharpness across all source domains compared to SAM. Notably, this also leads to lower sharpness
on the unseen domain, empirically validating our theoretical analysis in Section [3.2]that individual
sharpness is a more appropriate surrogate for robust generalization. We gain further insight by
examining the Hessian spectrum density using stochastic Lanczos quadrature (Ghorbani et al.| [2019).
The results, visualized in Figure[3] show that DGSAM not only suppresses large eigenvalues but also
controls the entire spectrum more effectively. This provides a deeper understanding of how DGSAM
achieves a more holistic control over the loss landscape geometry, consistent with our design goals.
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Figure 3: Hessian Spectrum Density at Converged Minima: (a) SAM and (b) DGSAM.

5.4 COMPUTATIONAL COST

In addition to performance improvements,
DGSAM significantly reduces the computa-

tional overhead commonly associated with SAM ERM — |
variants. Let S denote the number of source do- SAM 037
mains and c the unit cost of computing gradients ~ PSSAM 0-169

0.000 0.037 0.073 0.110 0.147 0.183 0.220

for one mini-batch. Then, the per-iteration cost Computational cost (s/iter)

of ERM is S X ¢, as it requires one gradient
computation per domain. SAM performs two
backpropagations per domain, one for perturba-
tion and another for the update, yielding a cost of approximately 2S5 x c. In contrast, DGSAM
requires only S + 1 gradient computations per iteration, resulting in a theoretical cost of (S + 1) X c.
Further details are provided in the Appendix [D.1]

Figure 4: Comparison of empirical computational
cost measured by training time per iteration.

To validate this, we measure the actual training time per iteration on the PACS dataset. With S = 3
source domains, ERM takes approximately S x ¢ = 0.11 seconds per iteration. SAM incurs a cost
of 0.217 seconds, nearly double that of ERM, while DGSAM achieves 0.169 seconds per iteration.
Although slightly higher than its theoretical cost (S + 1) x ¢ ~ 0.148, the deviation is primarily due
to additional overheads such as gradient aggregation. These results confirm that DGSAM achieves
competitive performance with significantly lower computational burden compared to SAM. This
time-saving is not achieved at the expense of memory. As detailed in Appendix DGSAM
requires less memory than both ERM and SAM. Full results of cost on all datasets are included in

Appendix [F2]
6 DISCUSSION AND FUTURE DIRECTIONS

This paper revisits the role of sharpness minimization in domain generalization. While prior ap-
proaches have naively applied SAM to the aggregated loss across source domains, we reveal that this
strategy can converge to fake flat minima—solutions that appear flat globally but remain sharp in
individual domains, leading to poor generalization. To better capture the structure of domain-specific
risks, we introduced a new perspective based on the average worst-case domain risk, showing that
minimizing individual sharpness offers more meaningful control over robustness to distribution shift
than minimizing global sharpness. This insight offers a fundamentally new direction for the DG
community, shifting the sharpness-aware optimization paradigm from global to domain-specific
objectives. Based on this finding, we proposed DGSAM, an algorithm that gradually applies perturba-
tions along domain-specific directions and reuses gradients to efficiently reduce individual sharpness.
Experiments on five DG benchmarks showed that DGSAM not only improves average accuracy but
also significantly reduces domain-wise variance, achieving flatter minima across individual domains
and better generalization to unseen distributions.

Our findings open a new direction for sharpness-aware domain generalization, but leave several open
questions.When all local minima correspond to fake flat minima, it remains unclear which solutions
are truly optimal or how to guide the model toward them. Developing a more direct method for
minimizing individual sharpness, beyond sequential perturbation, could further improve training
stability and theoretical guarantees. Finally, because SAM is widely applied in multi-loss settings
such as multi-task learning (Le et al.| 2024} Phan et al.,[2022) and federated learning (Lee & Yoon,
2024} |Qu et al., |2022} |Caldarola et al., 2022), careful treatment of individual sharpness may likewise
enhance generalization in these broader contexts.



Under review as a conference paper at ICLR 2026

REFERENCES

Kei Akuzawa, Yusuke Iwasawa, and Yutaka Matsuo. Adversarial Invariant Feature Learning with
Accuracy Constraint for Domain Generalization. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2019, Wiirzburg, Germany, September 16-20,
2019, Proceedings, Part 11, pp. 315-331. Springer, 2020.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant Risk Minimization.
arXiv preprint arXiv:1907.02893, 2019.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. MetaReg: Towards Domain General-
ization using Meta-Regularization. In Advances in Neural Information Processing Systems, pp.
998-1008, 2018.

Aristotelis Ballas and Christos Diou. Gradient-guided annealing for domain generalization. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 20558-20568, 2025.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in Terra Incognita. In Proceedings of
the European conference on computer vision (ECCV), pp. 456-473, 2018.

Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. Domain
Generalization by Marginal Transfer Learning. Journal of Machine Learning Research, 22(2):
1-55, 2021.

Debora Caldarola, Barbara Caputo, and Marco Ciccone. Improving generalization in federated
learning by seeking flat minima. In European Conference on Computer Vision, pp. 654-672.
Springer, 2022.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. SWAD: Domain Generalization by Seeking Flat Minima. In Proceedings of the 35th
International Conference on Neural Information Processing Systems, pp. 22405-22418, 2021.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing Gradient Descent
into Wide Valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124018,
2019.

Sumin Cho, Dongwon Kim, and Kwangsu Kim. One-step generalization ratio guided optimization
for domain generalization. In Forty-second International Conference on Machine Learning, 2025.

Etienne David, Simon Madec, Pouria Sadeghi-Tehran, Helge Aasen, Bangyou Zheng, Shouyang Liu,
Norbert Kirchgessner, Goro Ishikawa, Koichi Nagasawa, Minhajul A Badhon, et al. Global wheat
head detection (gwhd) dataset: A large and diverse dataset of high-resolution rgb-labelled images
to develop and benchmark wheat head detection methods. Plant Phenomics, 2020.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent Tan. Efficient Sharpness-Aware Minimization for Improved Training of Neural Networks.
In International Conference on Learning Representations (ICLR), 2022.

Hao Fang, Behjat Siddiquie, Yogesh Siddiqui, Amit K Roy-Chowdhury, and Larry S Davis. Unbiased
Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 1657-1664, 2013.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-Aware Minimization
for Efficiently Improving Generalization. In International Conference on Learning Representations
(ICLR), 2021.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois
Laviolette, Mario March, and Victor Lempitsky. Domain-Adversarial Training of Neural Networks.
Journal of Machine Learning Research, 17(59):1-35, 2016.

Muhammad Ghifary, David Balduzzi, W Bastiaan Kleijn, and Mengjie Zhang. Scatter Component
Analysis: A Unified Framework for Domain Adaptation and Domain Generalization. [IEEE
transactions on pattern analysis and machine intelligence, 39(7):1414-1430, 2016.

10



Under review as a conference paper at ICLR 2026

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232-2241.
PMLR, 2019.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtarik. SGD: General Analysis and Improved Rates. In International conference on machine
learning, pp. 5200-5209. PMLR, 2019.

Ishaan Gulrajani and David Lopez-Paz. In Search of Lost Domain Generalization. In International
Conference on Learning Representations (ICLR), 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Simplifying Neural Nets by Discovering Flat Minima. In
Proceedings of the 7th International Conference on Neural Information Processing Systems, pp.
529-536, 1994.

Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-Challenging Improves Cross-
Domain Generalization. In Computer Vision—-ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part Il 16, pp. 124—140. Springer, 2020.

Yunpei Jia, Jie Zhang, Shiguang Shan, and Xilin Chen. Single-Side Domain Generalization for Face
Anti-Spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8484-8493, 2020.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in Deep Learning.
arXiv preprint arXiv:1710.05468, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. In
International Conference on Learning Representations (ICLR), 2017.

Ahmed Khaled and Peter Richtarik. Better Theory for Sgd in the Nonconvex World. Transactions on
Machine Learning Research, 2020.

Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A Efros, and Antonio Torralba. Undoing
the Damage of Dataset Bias. In Computer Vision—-ECCV 2012: 12th European Conference on
Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part I 12, pp. 158-171.
Springer, 2012.

Amir Khosravian, Abdollah Amirkhani, Hossein Kashiani, and Masoud Masih-Tehrani. Generalizing
State-of-the-Art Object Detectors for Autonomous Vehicles in Unseen Environments. Expert
Systems with Applications, 183:115417, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. WILDS: A
Benchmark of in-the-Wild Distribution Shifts. In International conference on machine learning,
pp. 5637-5664, 2021.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-Distribution Generalization via Risk Ex-
trapolation (Rex). In International conference on machine learning, pp. 5815-5826. PMLR,
2021.

11



Under review as a conference paper at ICLR 2026

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. ASAM: Adaptive Sharpness-
Aware Minimization for Scale-Invariant Learning of Deep Neural Networks. In International
Conference on Machine Learning, pp. 5905-5914. PMLR, 2021.

Binh M Le and Simon S Woo. Gradient Alignment for Cross-Domain Face Anti-Spoofing. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
188-199, 2024.

Thanh-Thien Le, Viet Dao, Linh Nguyen, Thi-Nhung Nguyen, Linh Ngo, and Thien Nguyen.
Sharpseq: Empowering continual event detection through sharpness-aware sequential-task learning.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 3632—
3644, 2024.

Taechwan Lee and Sung Whan Yoon. Rethinking the flat minima searching in federated learning. In
Forty-first International Conference on Machine Learning, 2024.

Aodi Li, Liansheng Zhuang, Xiao Long, Minghong Yao, and Shafei Wang. Seeking consistent
flat minima for better domain generalization via refining loss landscapes. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 15349—-15359, 2025.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, Broader and Artier Domain
Generalization. In Proceedings of the IEEE International Conference on Computer Vision, pp.
5542-5550, 2017a.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, Broader and Artier Domain
Generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542-5550, 2017b.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to Generalize: Meta-Learning
for Domain Generalization. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018a.

Haoliang Li, YuFei Wang, Renjie Wan, Shiqi Wang, Tie-Qiang Li, and Alex Kot. Domain General-
ization for Medical Imaging Classification with Linear-Dependency Regularization. Advances in
Neural Information Processing Systems, 33:3118-3129, 2020.

Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain Generalization
via Conditional Invariant Representations. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018b.

Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
Deep Domain Generalization via Conditional Invariant Adversarial Networks. In Proceedings of
the European conference on computer vision (ECCV), pp. 624-639, 2018c.

Yiying Li, Yongxin Yang, Wei Zhou, and Timothy Hospedales. Feature-Critic Networks for Heteroge-
neous Domain Generalization. In International Conference on Machine Learning, pp. 3915-3924.
PMLR, 2019.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards Efficient and Scalable
Sharpness-Aware Minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360-12370, 2022.

Yann N Dauphin David Lopez-Paz, Hongyi Zhang, and Moustapha Cisse. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, volume 3, 2018.

Haocheng Luo, Tuan Truong, Tung Pham, Mehrtash Harandi, Dinh Phung, and Trung Le. Explicit
eigenvalue regularization improves sharpness-aware minimization. Advances in Neural Information
Processing Systems, 37:4424-4453, 2024.

Haiping Ma, Yajing Zhang, Shengyi Sun, Ting Liu, and Yu Shan. A comprehensive survey on
nsga-ii for multi-objective optimization and applications. Artificial Intelligence Review, 56(12):
15217-15270, 2023.

12



Under review as a conference paper at ICLR 2026

Goncalo Mordido, Pranshu Malviya, Aristide Baratin, and Sarath Chandar. Lookbehind-Sam: K
steps Back, 1 step Forward. In Forty-first International Conference on Machine Learning, 2024.

Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto. Unified Deep Supervised
Domain Adaptation and Generalization. In Proceedings of the IEEE international conference on
computer vision, pp. 5715-5725, 2017.

Krikamol Muandet, David Balduzzi, and Bernhard Scholkopf. Domain Generalization via Invariant
Feature Representation. In International conference on machine learning, pp. 10-18, 2013.

Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing Domain
Gap by Reducing Style Bias. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8690-8699, 2021.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring Gen-
eralization in Deep Learning. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 5949-5958, 2017.

Dimitris Oikonomou and Nicolas Loizou. Sharpness-Aware Minimization: General Analysis and
Improved Rates. In The Thirteenth International Conference on Learning Representations, 2025.

Xingchao Peng, Ziwei Bai, Xiang Xia, Zhangzhi Huang, and Kate Saenko. Moment Matching for
Multi-source Domain Adaptation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1406-1415, 2019.

Hoang Phan, Lam Tran, Ngoc N Tran, Nhat Ho, Dinh Phung, and Trung Le. Improving multi-task
learning via seeking task-based flat regions. arXiv preprint arXiv:2211.13723, 2022.

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to Learn Single Domain Generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12556-12565, 2020.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
sharpness aware minimization. In International conference on machine learning, pp. 18250-18280.
PMLR, 2022.

Seonguk Seo, Yumin Suh, Dongwan Kim, Geeho Kim, Jongwoo Han, and Bohyung Han. Learning to
Optimize Domain Specific Normalization for Domain Generalization. In Computer Vision-ECCV
2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXII 16,
pp. 68-83. Springer, 2020.

Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C Yuen. Multi-Adversarial Discriminative Deep
Domain Generalization for Face Presentation Attack Detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10023-10031, 2019.

Yichun Shi, Xiang Yu, Kihyuk Sohn, Manmohan Chandraker, and Anil K Jain. Towards Universal
Representation Learning for Deep Face Recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6817-6826, 2020.

Seungjae Shin, HeeSun Bae, Byeonghu Na, Yoon-Yeong Kim, and Il-chul Moon. Unknown Domain
Inconsistency Minimization for Domain Generalization. In International Conference on Learning
Representations (ICLR), 2024.

Baochen Sun and Kate Saenko. Deep CORAL: Correlation Alignment for Deep Domain Adaptation.
In Computer Vision—-ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and
15-16, 2016, Proceedings, Part I1I 14, pp. 443-450. Springer, 2016.

Piotr Teterwak, Kuniaki Saito, Theodoros Tsiligkaridis, Kate Saenko, and Bryan A Plummer. Erm++:
An improved baseline for domain generalization. In 2025 IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 8525-8535. IEEE, 2025.

Hemanth Venkateswara, Joao Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
Hashing Network for Unsupervised Domain Adaptation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 5018-5027, 2017.

13



Under review as a conference paper at ICLR 2026

Riccardo Volpi, Hongseok Namkoong, Aman Sinha, John C Duchi, and Vittorio Murino. Generalizing
to Unseen Domains via Adversarial Data Augmentation. In Advances in Neural Information
Processing Systems, pp. 5334-5344, 2018.

Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-Aware Gradient Matching for
Domain Generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3769-3778, 2023.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes sharpness?
In The eleventh international conference on learning representations, 2023.

Zheng Xu, Wen Li, Li Niu, and Dong Xu. Exploiting Low-Rank Structure from Latent Domains for
Domain Generalization. In Computer Vision-ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part 11l 13, pp. 628-643. Springer, 2014.

Zhenlin Xu, Deyi Liu, Junlin Yang, Colin Raffel, and Marc Niethammer. Robust and Generalizable
Visual Representation Learning via Random Convolutions. In International Conference on
Learning Representations (ICLR), 2020.

Christopher Yeh, Anthony Perez, Anne Driscoll, George Azzari, Zhongyi Tang, David Lobell,
Stefano Ermon, and Marshall Burke. Using publicly available satellite imagery and deep learning
to understand economic well-being in africa. Nature communications, 11(1):2583, 2020.

Chris Yoon, Ghassan Hamarneh, and Rafeef Garbi. Generalizable Feature Learning in the Presence
of Data Bias and Domain Class Imbalance with Application to Skin Lesion Classification. In
Medical Image Computing and Computer Assisted Intervention—-MICCAI 2019: 22nd International
Conference, Shenzhen, China, October 13—17, 2019, Proceedings, Part IV 22, pp. 365-373.
Springer, 2019.

Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea Finn.
Adaptive Risk Minimization: Learning to Adapt to Domain Shift. Advances in Neural Information
Processing Systems, 34:23664-23678, 2021.

Ruipeng Zhang, Ziqing Fan, Jiangchao Yao, Ya Zhang, and Yanfeng Wang. Domain-Inspired
Sharpness-Aware Minimization Under Domain Shifts. In International Conference on Learning
Representations (ICLR), 2024.

Xingxuan Zhang, Renzhe Xu, Han Yu, Yancheng Dong, Pengfei Tian, and Peng Cui. Flatness-
Aware Minimization for Domain Generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5189-5202, 2023a.

Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient Norm Aware Minimiza-
tion Seeks First-Order Flatness and Improves Generalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20247-20257, 2023b.

Zhiyuan Zhang, Ruixuan Luo, Qi Su, and Xu Sun. GA-SAM: Gradient-Strength based Adap-
tive Sharpness-Aware Minimization for Improved Generalization. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 3888-3903, 2022.

Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain Generalization
via Entropy Regularization. Advances in neural information processing systems, 33:16096-16107,
2020.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel
domains for domain generalization. In Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XVI 16, pp. 561-578. Springer, 2020.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. In
International Conference on Learning Representations (ICLR), 2021.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek, James
s Duncan, Ting Liu, et al. Surrogate Gap Minimization Improves Sharpness-Aware Training. In
International Conference on Learning Representations (ICLR), 2022.

14



Under review as a conference paper at ICLR 2026

Appendix Contents

A Limitations of Total Gradient Perturbation

B Theoretical Analysis and Proofs

B.1 Proof of Proposition [3.1]
B.2 Proof of Theorem[3.2]

B.3 Convergence Analysis

C Additional Experiments

C.1 Sensitivity Analysis of DGSAM with respect to p
C.2 Comparison of two terms in Eq 3]

C.3 Robustness to Extreme Domain Imbalance

C.4 Scalability to a Large Number of Domains

D Computation Efficiency

D.1 Mlustration of Computational Cost Comparison

D.2 Additional Analysis on Memory Efficiency

E Visualization of Loss Landscapes

F Details of Main Experiments

F.1 Implementation Details

F.2 Full Results

G Baseline References

15



Under review as a conference paper at ICLR 2026

Appendix

A LIMITATIONS OF TOTAL GRADIENT PERTURBATION

In SAM, each iteration performs gradient ascent to identify sensitive directions in the loss landscape
by perturbing the parameters as

VLy(6;)
IV L6

where €7, is the perturbation computed from the total loss gradient. However, this update direction
may not increase losses uniformly across source domains, as the total loss gradient V £(6;) does
not generally align with the individual domain gradients V.L;(6;) fori = 1,..., S, as discussed in
Section 3).

This misalignment between the total gradient and individual domain gradients leads to suboptimal
perturbations when applied uniformly across all domains. To empirically demonstrate this limitation,
we visualize in Figure[5|how different perturbation strategies affect the domain-wise loss increments

during training. Starting from 6y, we iteratively apply perturbations to compute the perturbed
parameter 6; = 6y + ZZ‘:I ¢; on the DomainNet dataset (Peng et al., 2019) using ResNet-50 (He
et al.,|2016). In Figure@ each ¢; is computed using the total Toss gradient. In contrast, Figure[5b|

applies perturbations sequentially using domain-specific gradients.

0r=0,+¢€p =0 +p (©)

As shown in Figure 53] total gradient perturbations often increase losses in an imbalanced manner
across domains. On the other hand, the domain-wise perturbation strategy in Figure[5b|leads to a more
uniform increase in domain-wise losses. This observation suggests that applying domain-specific
gradients sequentially is more effective at capturing the structure of individual domain losses. As a
result, the resulting perturbations better reflect individual sharpness.
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(a) Perturbation by total gradient. (b) Perturbation by individual gradients.

Figure 5: Domain-wise loss increments under different perturbation strategies.

B THEORETICAL ANALYSIS AND PROOFS

B.1 PROOF OF PROPOSITION [3.1]

Proof of Proposition[3.1] Let 6 be a strict local minimum such that VL,(0) = 0 and H(#) =
V2L,(6) = 0. Suppose p is sufficiently small. Then, the second-order Taylor expansion for £, and
L; gives:
1
L0+ €) = Ly(0) + VL(0) e + e H(O)e + o [e]|*)
and

1
Li(0+€)=Li(0)+VLi(O) e+ 5Jﬁg(é))e +o(|le]?), i=1,...,8
where H and H; are the Hessian matrices for £ and L;, respectively, evaluated at 6.

Then, using VLs(6) = 0 and H(#) = + 37| H;(0), we have

S
L0+ €) — Ly(0) = %J (; ZHAH)) e+ o(|e]|?)
=1
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which yields the zeroth-order sharpness for L:

Setoval (05 p) = ﬁfﬂg;(ﬁs(@ﬂ) — Ly(0)) = p Omaz (ZH ) +o(llpl1?)

where 0,4, (A) denotes the largest eigenvalue of the matrix A.

To show that the statement does not hold in general, it suffices to provide a counterexample. First, we
consider the case where | VL;(0)|| = 0forall i = 1,2,...,S. Then, the zeroth-order sharpness of
the ¢-th individual loss function is given by

§:(0:) = 500 (Hu(0)) + ol o]*).

This leads to the following expression of the average sharpness over all individual loss functions:
18
. 2 )
E;Si(e’ 259 Zamaz i(0)) + o(llpll*)-

Next, consider two different local minima 6, and 6». For sufficiently small p, we can write:

Setobal (013 0) < Sgiobal (02 p) @)
=
s 5
Omax (Z Hz(91)> < Omaz <Z Hz(92)> . (8)
i=1 i1

Similarly, for sufficiently small p, we have the following relationship between the average individual
sharpnesses at 6 and 6:

Mm

Si(0; p) &)

0) \

S
Z
i=1 i:l
=

S S
Zamaz (Hz(al)) < ngax (H1(92)) . (10)
i=1 i=1

Consequently, we conclude that Equation [7]does not imply Equation [J]since the largest eigenvalue of
a sum of matrices, 0;,qz Zf:l H;(0) ), is not generally equal to the sum of the largest eigenvalues
of the individual matrices, Zle Omaz (Hi(9)).

Secondly, let us consider the case where V.Ls(0) = 0, but there exists at least two elements such
that V£, (0) # 0. For simplicity, let S = 2. Without loss of generality, assume V£ (6) > 0 and
VL2(0) = —VL1(0). Then, the sharpness for £1(0) is given by

81(0;p) = [VLL(O)][p + o(llp])-

Now, consider two local minima 6; and 65 satisfying the following inequality:
Sgtobat (013 p) < Sgiobal (023 p)-

A counterexample can be constructed such that for some G > 0and 0 < ¢ < 1,
VL1(01) =G =-VLy(0),

and
V£1(02) =cG = *Vﬁg(@g)

In this example, we find that % Zf 1Si(0150) > 5 Zl 1 Si(62; p),. However, such a choice of
gradients does not affect the Hess1an matrices, and thus the inequality for the sharpness of the total
loss remains unchanged. Therefore, the sharpness for the total loss does not generally follow the
same ordering as the average sharpness of the individual losses. O
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B.2 PROOF OF THEOREM[3.2]

We begin by imposing some standard conditions on the loss function.

Assumption B.1. For each i, let D; be the i-th source domain distribution and Lp, () =
Ex~p,[¢(0, X)] where £ is a loss function. Assume that £(0, z) is uniformly bounded for all ¢
and x and Lipschitz continuous in 6. That is, there exist M and G such that

|00, x)| < M, [£(0,z)— 0 ,2)| <G|0—0 forallb,§ x.

Moreover, if Div = W7 (the Wasserstein-1 distance), assume additionally that for each 6, the map
x +— l(0,z) is L,~Lipschitz, i.e.

100, 2) — £(0,2")| < L, d(x,x") forallf,6, z.

Under Assumption [B.1] the following lemma states the relationship between distribution shifts and
parameter perturbations.

Lemma B.2. Let Assumption[B.1|hold, and let D; be the ith source distribution with
Li(0) = Ezp, [€(0; )]
Fix a divergence or distance Div and threshold § > 0, and set
U? = { D : Div(D||D;) < 6}.
Define the perturbation radius

M )

2’
p(0) = vel 6, if Div=| - |rv, an
Lo s i Div=m.

lf Div = DKL)

Then for all 6 and any p > p(9),
sup Lp(f) < max L£;(0+¢).

Deus [lel| <p
Proof. Fix p > p(9) where
M
\/7 Div = DKLa
2’
pO) =4 =4,  Div=|"|rv.
Lm
5 5, Div = Wl.

We will show in each case that for all D with Div(D||D;) < 6,
£6(0) - £i(0)] < G p(0).

Case (i): Div = Dxy, and p(d) = %\/6 /2. Pinsker’s inequality gives
ID = Dillrv < 4/5 Dxu(DIDi) < /3,
2 2

|£0(6) — Li(6)] < M |[D —Dillry < My/§ = G p(6).

which leads to

Case (ii): Div = || - ||y and p(6) = 24 5. The definition of total variation directly yields

|Lp(0) — Li(0)| < M||D — Dif|ry < M6 = Gp(5).

18
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Case (iii): Div = Wj and p(d) = L—Gf 0. Assume in addition that « — ¢(0; x) is L,-Lipschitz. Then

by the Kantorovich—Rubinstein duality, we have

|Lp(0) — Li(0)] < La Wi(D,D;) < Ly 6 = Gp(d).

In each case, therefore, we obtain for all D € L{f

Lp(0) < Li(0) + Gp

On the other hand, for any perturbation € with ||e|| < p, using the Lipschitz continuity of £(-,

obtain
Li(0+¢€) —Li(0) =Ezup, [5(9 +ex)— (0, a:)} < G|le]]
which yields

mnax Li(0+¢€) < Li(0) + Gp.
ell<p

Combining equation|12|and equation |13|and then taking the supremum over D € U gives

sup Lp(0) < max Lp,(0+e€).
Deus lell<

Now, we are ready to prove Theorem [3.2]

Proof of Theorem Recall that

s
£(0;6) == sup Lp(0)
S 1 DGUf
and
18
i=1

By LemmaB.2] for each i and p > p(§), we have

sup Lp(0) < max L;(0 +€) = L;(0) + Si(6; p).
Deus lell<p

(12)

x), we

(13)

where S;(0; p) = max <, Li(0 4 €) — L;(0) is the individual sharpness for domain i. Averaging

overi =1,...,S directly gives
S
— sup Lp(0
S z:: €M5
S
s
1
tg2 50

It remains to show that no analogous bound in terms of the global sharpness Sgiopat (6; p) can hold
uniformly. To this end, it is enough to find a counterexample. Let S = 2 and Div = Dxy,. Fix the
source distributions D1 = Dy = Uni{—1, +1} and define £(0, z) = 0x,0 € [0, 1]. Then, one can

compute
L1(0) = L3(0) = Exp,[0X] =0, L(9) = 22@OFL0) g
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If we take 6 = In 2, the adversarial set L{f contains both point-masses 1 and d_;. Hence, we have

sup Lp(f) = max Oz =20,
Deus ve{+1,-1}
and therefore £(0; §) = 6. On the other hand, the global sharpness is trivially zero since £4(6) = 0.
Thus for any 6, we find
5(07 5) =60>0= Ls(a) + Sglobal(e;p)a
showing that no uniform bound of the form £(6; ) < L4(6) + Sgiobai (#; p) can hold.

B.3 CONVERGENCE ANALYSIS

Our convergence analysis builds upon the techniques developed in|Gower et al.|(2019); [Khaled &
Richtarik| (2020); (Oikonomou & Loizou| (2025).

B.3.1 PRELIMINARIES

Definition B.3 (Domain-wise Subsampling and Stochastic Gradient, (Gower et al., | 2019; | Khaled
& Richtarik, [2020)). Let Dy, ..., Dg be S source domains, and i-th data point is associated with
individual loss functions £¢(6), where € R? denotes the model parameters. We define the total loss
function as:

I .
£(0) =~ > L),
i=1
where n is the total number of training samples aggregated from all domains.

We consider a two-level sampling process: First, a domain index r € {1,..., S} is selected uniformly
at random. Then, a minibatch B, C D, of fixed size 7 is sampled uniformly from within the selected
Q

domain. The domain-wise sampling vector v = (vg,...,vS) is drawn from a distribution Q

defined by this two-level process. For each sample ¢, the sampling weight is given by:

S-1;
v,'Q — zGBT7

T

where 1;¢p, is the indicator function that equals 1 if sample ¢ is included in the minibatch and O
otherwise. The resulting domain-wise stochastic gradient estimator is:

g°(0) =Y v2vLO ().

where £(*) is the loss evaluated on the i-th sample. According to the general arbitrary sampling
paradigm (Gower et al., 2019), since v2 ~ Q satisfies E[v2] = 1 for all 7, the estimator g<(6) is
unbiased:
Eo[g®(0)] = VL(0).

Furthermore, the second moment E[[|v2|?] s finite under this scheme.
Assumption B.4. Let B be a minibatch sampled from the domain-wise subsampling distribution
the domain-wise subsampling distribution Q defined in Definition[B.3] and let £z denote the loss
evaluated on B. We assume that Lz is L-smooth. That is, there exists a constant L > 0 such that for
all 6,6’ and any B,

IVLs(0) = VLs(0)| < L6 — 6. (14)
Definition B.5 (Expected Residual Condition). Let 8* = argmin, £;(0). We say the Expected
Residual condition is satisfied if there exist nonnegative constants M7, Ms, M3 > 0 such that, for

any point 6, the following inequality holds for an unbiased estimator (stochastic gradient) g(6) of the
true gradient VL (6):

Ellg(0)|I” < 2My[L(0) — Li(67)] + Ma||VL(6)]|* + Ms.

Corollary B.6. Let Assumption holds and let the domain-wise stochastic gradient by g<(6)
which is an unbiased estimator of L(0) for all § with E[||v2||?] < oc. Then, it holds that

Eollg2(0)]* < 2Mi[L,(8) — L(6%)] + Mo||VL(9)|* + Ms.
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Proof. In Proposition 2 of Khaled & Richtarik] (2020), it is proved that L-smoothness and unbiased
stochastic gradient with Ep [v?] < oo imply Expected Residual condition (Definition [B.5). O

We collect a few basic inequalities that are frequently used throughout the proofs: For any a,b € R?
and any 3 > 0, we have:

1
b >+ S o) 15
(@, B < 55 lall” + H 1% (15)
la+lI* < (1+ 87 lall® + (1+ B)lJb]*, (16)
la+ 8II* < 2]lall* + 2[1B]1%, (17)
2 n
<n Yl (18)
i=1
B.3.2 LEMMAS
We use a uniformly random permutation {ly,...,ls} over the domain indices. B;; means mini-

batch from j-th chosen domain and the ch01ce of order is initialized at every step Thus By,
is the domain-wise subsampling with definition [B.3] For notational simplicity, we will write

— 9k
9; = VLn, <9t * k;pm,u)'
Lemma B.7. Let Assumption[B.4|hold. Then the following inequality holds:
Eog}® < 25°L%p” + 2E0g°(6:)%,

where S is the number of domains.

Proof. 1t follows that

Eggf =Eg VﬁBlj ( Z t >

2

k
2

=Eo V‘Csz <9t + ZP ” ”) - VEBL]. (et) + V‘CBLJ- (915)
9

2

QIEQ Vip, (et + Zp I ) ~VLp, (0:) +2Bg VLp, (6:)”
k 1

NI

gkl

=

2 2 Q 2
< 2L% Z H kH + 2E092(6;)

E

< 2L7p%( ZEQ Hng +2Egg°(6,)

< 252L2p2+2EQg (0,)2.

Lemma B.8. Ler Assumption[B.4|hold. Then the following inequality holds:
SL
Eo(g} VL,(8:)) = =SLp+ (1= = D) VL 0],

where S is the number of domains.

21



Under review as a conference paper at ICLR 2026

Proof.
j—1 gt
EQ@;" VES(Ot)> = EQ<V‘CBlj <0t + Zp”g’;”> ) Vﬁs(at)>
k=1 k
j t
=Eo{ VLp, Ik ) Ly, (0,), VL(6r)
d gl ’
+Eo(VLp, (00), VL)),
‘We have
Eo(VLp, (00), VL(0:)) = (EalVLz, (0,)], VL))
= (Eolg®(6:)], VL(6:))
= [IVL(60)]I%,
and for 8 > 0
i1 g
_ ]EQ<VLB,_7, <9t +y p”g’;”> —VLg, (6,), vcs(at)>
_ k
. 2
@ 1
> % Q v‘ch ( > _V‘Csz (at) + gEQ”V‘CS(Qt)”Q
k=1
) L2 2 Jj—1 5
2L’ Z + S IVL(6)?
=1
SQLQ 2 9
< — .
<55ty IIVES(@)H
In sum,
t 52L2PQ B 2 2
EQ<gja Vﬁs(et» > - 25 - §HVLS(915)H + ||v£s(0t)”
S*L?p? B 2
=~ * (1= SIVL ()]
SL
= —SLp+ (1= 20 IVL(O)I
with 3 = 522, O

Lemma B.9 (Lemma A.8, (Oikonomou & Loizou, 2025)). Let (r;):>0 and (0;)¢>0 be sequences
of non-negative real numbers and let g > 1 and N > 0. Assume that the following recursive
relationship holds:

re < g0y — Oe41 + N (19)
Then it holds
9 5 N
i < = .
03?%1%71” =7 +

B.3.3 PROOF OF THEOREM

Theorem B.10 (e-approximate stationary). Let Assumption|[B.4|hold. Define
12My 24 M7 My SL
2

Tmin = 54
e2S

max{1,

,AM,L,12M3SL},

_ 1 . €2 €
p= SL min{1, 12’ ﬁL
1 1 €2
" S\V2ML LT’ 4MsL’ 12M35L}'

¥ = min{1
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For all € > 0, if the DGSAM itemtion(EI) is employed, then for p < p, v <7, T > Thin
min  E[VL,(0)| <e
=0,...,T—1

where the initial optimality gap My = Ls(00) — Ls(0%), S is the number of domains, M, My, Ms
are the constants for the expected residual condition.

Proof. For simplicity, we assume that the effect of the batch size is absorbed into the learning rate -,
i.e., 7y is defined as the product of the base learning rate and the batch size.

From the L-smoothness of L, we have

L001) < L4000 + (VL(8), O —00) + 5 |01 — 0
= L(0:) — S <v,c (6), ng> (5)2 ngt- 2
J 2 \S+1 ot 7
since the DGSAM update is defined as 6;41 = 0, — Vsi-s-l il gﬁ.
j=

By taking the expectation,
Eo[L(0r11) — L:(07) | 0:] — [L:(67) — L:(67)]

S S+1 L’}/ 2 S+1
TS ZEQ (VL(0:), 65) + =5~ (S+1) Zg?

L
< —VSEo(VL(8:), g) + =5
Lem BB
<

AE

SQ
Eollgf|”

L’}/ZSQ

5 (297L7p% + 2E0g°(6,)?)

8 (—SLp - S—)HW o )

SL
— 5y (1 - p) IVL(0)? + LS*V*Eog®(6:)> + S*Lrp(1 + S*L*yp)

Corl[B.6l SL
< -8y <1 - p> IVLo(00)]1% + 2M1 LS*Y?[Ls(6r) — Lo(67)] + M2LSy||VLo(6:)])*

+ M3LS?y? + S?Lyp(1 4+ S?L?p)

SL
= —Sy <1 - Tp - MzM) IVL(O0)|” + 2M1 LS*y?[L(0;) — L(6%)] + S*Loy(p + S*L?yp® + Mz7)

<—*HVE (O)I” + 2MLS**[Ly(6:) — Ly(67)] + S L(p + S*LPyp” + My).

The final 1nequahty follows from the inequality 1 — % — MsLy > %, which is obtained from our

assumptions p < S randy < o7 1v12 7-
In sum,

ED{E (Or1) = Lo(07)] = [£:(0:) — L:(67)]
< *fIIVl? (O0)II* +2M1 LS*Y?[Ly(0:) — Ls(0%)] + S*Lry(p + S*L*yp? + M)
IIVE (OI* < (1 +2M LS?9?)[Ls(8r) — L4(07)] — Ep[Ls(0er1) — Ls(07)]
+ SQL'y(p + S2L2yp? + M37). (20)
By taking expectation and applying the tower property, we can conclude that
E[VL(0:)|7 < (1 +2M; LS*y?) SQV [£5(61) = L£:(67)] = %E[£S(9t+1) — L:(67)]

+2SL(p + S?L?yp* + M3y). (1)
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We now define the following auxiliary quantities:

e := E||VL(6:)]* > 0,

2

Sy

g:=(1+2M,LS%*y%) > 1,

N :=2SL(p+ S?L*vyp? + Mzy).
With these definitions, inequality 21| becomes:

T < g6 — g1 + V.

5t = E[ﬁs(et) — Lb(e*)] 2 0,

By applying Lemma|[B.9] we have

. 2 2(1+ 2M1L5272)T
<
poomin EIVL (0] < TS
From 1 4+ z < e, we can get

(1+2M,LS**)T < exp(2T M, LS*~?%) < exp(1) < 3,

[£:(60) — L4(0%)] + 25 L(p + S*L?yp® + Mz7).

since we have v < S\/ﬁ which imply 2T M; LS?4? < 1.

Therefore,

6M.
. , 2< 4 2712 2 )
,_min  E[[VL(0)]" < T5, +2SL(p + S*L7yp” + Ms)

ERRRE

The second term is less than % with assumptions:

€ €
28Lp < — = p< —,
P=% P= 1251

y<1,
48 L3~p* < ¢ — p< ¢ ithy < 1
— —— Wi ,
= p_QSL 6L IS
€2 2
2SLM3y < — <= 7 < ————.
=7 7= 12SLM;
Likewise, we have the inequality for the first term:
6My € 12My
— < — = T>
TSy = 2 ~ €29y

We have so far imposed the following inequalities on ~y:

(22)

7 < min {4M2L’ SYRMLIT 12M3SL}
Consequently, 7' must satisfy the following conditions for (22).
48Mo My L 288MyMZL 12M, 144M3zM,L
€e2s 7 €t T 28 €2 }

szax{

Finally, we have:

withe these assumptions:
12M,
€25

24 M, My SL
2

T > AM,L,12M3SL},

max{1,

1 . €2 €
P < ﬁ mln{la Ev ﬁ}7

1 1 €2
SV2M, LT’ 4M>L’ 12M35L}'

v < min{1,
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C ADDITIONAL EXPERIMENTS

C.1 SENSITIVITY ANALYSIS OF DGSAM WITH RESPECT TO p

To analyze the sensitivity of DGSAM to p, we evaluated the performance of SAM and DGSAM across
different p values {0.001,0.005,0.01,0.05,0.1,0.2} on the PACS and Terralncognita datasets. As
shown in Figure[6] DGSAM consistently outperformed SAM and demonstrated superior performance
over a wider range of p values.

== SAM
88 >2 DGSAM
== = ERM
587 48
o e
<85 <44
84 40
0 0.001 0.005 0.01 0.05 0.1 0.2 0 0.001 0.005 0.01 0.05 0.1 0.2
Y Y
(a) PACS (b) Terralncognita

Figure 6: Sensitivity analysis

C.2 COMPARISON OF TWO TERMS IN EQ[3]

Figure[7]shows that the second term tends to be slightly smaller than the first term, but the two are
comparable in magnitude. This indicates that both terms contribute to the gradual perturbation.

14 ®
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Norm of first term

Figure 7: Comparison of magnitude of two terms in Eq[5{on the PACS

C.3 ROBUSTNESS TO EXTREME DOMAIN IMBALANCE

To further validate the robustness of our proposed DGSAM method against domain imbalance, we
conducted additional stress-test experiments under more extreme imbalance scenarios. For this
analysis, we utilized the Terralncognita dataset and artificially increased the sample size imbalance
ratio between the largest and smallest domains from the original approximate ratio of 2:1 to 3:1, 5:1,
and 10:1.

The results are presented in Table[d] As the domain imbalance becomes more severe, the performance
of all methods gradually decreases. However, DGSAM consistently and significantly outperforms

25



Under review as a conference paper at ICLR 2026

both ERM and SAM across all tested scenarios. Notably, even with a severe 10:1 imbalance
ratio, DGSAM’s performance degrades gracefully while maintaining a substantial performance
margin over the baselines. This result strongly demonstrates that DGSAM is inherently robust to
domain heterogeneity and imbalance, owing to its mechanism of applying perturbations based on the
normalized gradient for each domain.

Table 4: Performance comparison on Terralncognita under varying degrees of domain imbalance.

Method \ Ratio  2:1 (Original)  3:1 4:1 5:1  10:1

ERM 35.7 353 352 349 321
SAM 34.5 347 342 341 319
DGSAM 41.8 41.6 414 411 383

C.4 SCALABILITY TO A LARGE NUMBER OF DOMAINS

The standard DGSAM implementation performs a sequential ascent over all S source domains,
which can become computationally inefficient and potentially unstable as the number of domains .S
becomes very large. To address this scalability concern, we introduce a straightforward and practical
modification: domain subsampling.

Instead of iterating through all S domains, we can fix the number of sequential ascent steps to k
(where k < S, e.g., k = 5) by randomly subsampling a subset of k¥ domains at each training iteration.
The method presented in the main manuscript is a specific case of this more general framework where
k=S5.

To verify the effectiveness of this approach, we applied DGSAM with domain subsampling (k = 5) to
datasets comprising several tens of domains: PovertyMap (Yeh et al.l 2020) and GlobalWheat (David
et al|[2020). As shown in Table[5} DGSAM with subsampling not only addresses the scalability issue
but also maintains strong performance, outperforming both ERM and SAM. This refinement confirms
that DGSAM can be effectively and practically applied to large-scale scenarios with numerous
domains.

Table 5: Performance on datasets with a large number of domains using domain subsampling.

Method PovertyMap (23 domains) GlobalWheat (47 domains)
ERM 0.45 50.8
SAM 0.44 51.1
DGSAM (k = 5 subsampling) 0.50 51.9

D COMPUTATION EFFICIENCY

D.1 ILLUSTRATION OF COMPUTATIONAL COST COMPARISON

In standard domain generalization tasks, a single update step operates on a batch that comprises
mini-batches from all source domains. While the number of data samples per domain-specific
mini-batch may vary, we follow the DomainBed protocol (Gulrajani & Lopez-Paz, 2021)), where
each mini-batch contains an equal number of samples. Throughout this paper, we assume uniform
mini-batch sizes across domains.

Let the computational cost of computing the loss and performing backpropagation on a single domain-
specific mini-batch from one domain be denoted as c. In the standard SAM algorithm, both an ascent
and a descent gradient must be computed for each of the .S domain-specific mini-batches, resulting in
a total gradient computation cost of 2.5 x c¢ per update theoretically.

In contrast, as illustrated in the Figure [§] DGSAM computes gradients separately for each mini-batch,
using g1, - . ., gs not only as ascent gradients but also directly for the parameter update. Due to this
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Figure 8: Computational cost of SAM and DGSAM.

efficient reuse of gradients, DGSAM requires only (S + 1) X ¢ in gradient computation cost per
update theoretically.

D.2 ADDITIONAL ANALYSIS ON MEMORY EFFICIENCY

We provide further analysis of memory usage for DGSAM in comparison with ERM and SAM.
Table[6]reports both the mean and maximum memory allocation measured during training.

While ERM and SAM perform the backward pass over a full batch including data from all domains,
DGSAM performs backward passes separately on each domain-specific mini-batch, accumulating
gradients before a single update. This approach prevents memory cost from scaling linearly with the
number of domains.

Although ERM and SAM could also be implemented using per-domain mini-batches, this is not the
standard practice in domain generalization. Domain-wise mini-batch versions of ERM and SAM
reduce memory usage but increase runtime due to multiple backward passes per iteration. DGSAM,
on the other hand, requires fewer gradient computations per iteration than SAM, making it generally
more efficient in both memory and runtime.

Table 6: Comparison of memory consumption (in GB) across methods.

Method Mean Memory (GB) Max Memory (GB)

ERM 8.0 8.1
SAM 8.1 8.3
DGSAM 5.8 6.0

E VISUALIZATION OF LOSS LANDSCAPES

Figure 0] shows the 3D loss landscapes of converged solutions obtained by SAM and our proposed
DGSAM on the PACS dataset using ResNet-50. Each subplot corresponds to a different domain or
the aggregated total loss. While SAM finds flat minima in the total loss, it fails to flatten the loss
surfaces in individual domains. In contrast, DGSAM successfully reduces individual sharpness as
well as the total sharpness, demonstrating its ability to achieve flatter minima at the domain level.
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Figure 9: Comparison of loss landscapes of converged minima using SAM and DGSAM across
different domains on the PACS dataset. We set the grid with two random direction. DGSAM performs
better than SAM in reducing individual sharpness in all three individual domains, and total sharpness.
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Figure[T0]illustrates how DGSAM sequentially applies domain-specific perturbations and aggregates
gradients to update the model.
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Figure 10: A visualization of DGSAM algorithm.

F DETAILS OF MAIN EXPERIMENTS

F.1 IMPLEMENTATION DETAILS
We searched hyperparameters in the following ranges: the learning rate was chosen from {107°,2 x

107°,3x107°,5x 107"}, the dropout rate from {0.0, 0.2, 0.5}, the weight decay from {10~*,107°},
and p from {0.03, 0.05, 0.1}. Each experiment was repeated three times, using 20 randomly initialized
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models sampled from this space, following the DomainBed protocol (Gulrajani & Lopez-Paz, 2021)).
The optimal hyperparameters selected based on DomainBed criteria for each dataset are provided in
Table [/|to ensure replicability. All our experiments were conducted on an NVIDIA A100 GPU, using
Python 3.11.5, PyTorch 2.0.0, Torchvision 0.15.1, and CUDA 11.7.

Table 7: Optimal hyperparameter settings for each dataset

Dataset { Learning Rate  Dropout Rate ~ Weight Decay P

PACS 3x107° 0.5 1074 0.03
VLCS 107° 0.5 10" 0.03
OfficeHome 107° 0.5 107° 0.1
Terralncognita 107° 0.2 107° 0.05
DomainNet 2x107° 0.5 1074 0.1

F.2 FULL RESULTS

Here are the detailed results of the main experiment in Section [5.2|for each dataset. The outcomes
are marked with 7 if sourced from Wang et al.| (2023)), I if sourced from|Zhang et al.|(2023a), and
are unlabeled if sourced from individual papers. We note that all results were conducted in the
same experimental settings as described in their respective papers. The value shown next to the
performance for each test domain represents the standard error across three trials.

Table 8: The performance of DGSAM with 18 baseline algorithms on PACS.

Algorithm | A C P S [ Avg  SD  (sfiter)
MTLF (Blanchard et al.}|2021) 87.5+0.8 77.140.5 96.440.8 77.3+1.8 84.6 8.0 0.12
VREx' (Krueger et al.|[2021) 86.0£1.6 79.14£0.6 96.940.5 77.7+1.7 84.9 7.6 0.11
ARMT (Zhang et al.}|2021) 86.840.6 76.81+0.5 97.440.3 79.3+1.2 85.1 8.0 0.11
Rsct (Huang et al.||2020) 85.440.8 79.7+1.8 97.61+0.3 78.24+1.2 85.2 7.6 0.14
ERMT 847404  80.8+0.6 972403 793410 | 855 7.0 0.1
CORAL' (Sun & Saenko|[2016) 88.340.2 80.040.5 97.54+0.3 78.8+1.3 86.2 75 0.12
SagNet! (Nam et al, 2021) 874410 80.740.6 97.140.1  80.0404 | 863 69 032
GGA (Ballas & Diou, 2025) 86.5+1.8 812430 971409 808409 | 864 6.6  0.49
GGA-L (Ballas & Diou}|2025) 88.0+1.0 81.242.0 97.14£0.3 80.8+£2.5 86.5 6.6 0.33
GENIE (Cho et al.}|2025) 88.7+0.7 82.8+1.3 98.540.1 81.31+0.4 87.8 6.8 0.09
SWAD (Cha et al.; 2021) 89.34+0.2 83.440.6 97.31+0.3 82.54+0.5 88.1 5.9 0.11
SAMT (Foret et al.} 2021) 85.642.1 80.9+1.2 97.04+0.4 79.6+1.6 85.8 6.9 0.22
GSAMT (Zhuang et al.,2022) 86.940.1 804402 975400 787408 | 859 74 022
Lookbehind-SAM (Mordido et al] 2024) | 86.840.2 802403 97.4408 797402 | 860 72 050
GAM? (Zhang et al| 2023b) 859409  813k1.6 982404 790421 | 861 7.4 043
SAGM (Wang et al.|[2023) 87.4+0.2 80.240.3 98.010.2 80.8+0.6 86.6 7.2 0.22
DISAM (Zhang et al.}|2024) 87.14+0.4 81.940.5 96.240.3 83.1£0.7 87.1 5.6 0.33
FAD (Zhang et al.|[2023a) 88.54+0.5 83.04+0.8 98.440.2 82.84+0.9 88.2 6.3 0.38
DGSAM 88.940.2 84.840.7 96.940.2 83.54+0.3 88.5 52 0.17
DGSAM + SWAD 89.14+0.5 84.640.4 97.310.1 83.61+0.4 88.7 54 0.17
DGSAM + CORAL 89.54+0.3 84.940.3 97.04+0.2 83.7+£0.7 88.8 52 0.18
DGSAM + Mixup 90.14+0.4 84.8+0.4 98.240.3 84.5+0.5 89.4 5.5 0.17
DGSAM + ERM++ 90.640.5 85.240.6 98.54+0.3 86.0+0.4 90.1 53 0.25
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Table 9: The performance of DGSAM with 18 baseline algorithms on VLCS

Algorithm | C L S v [ Avg SD  (sfiter)
Rrsct 979401 625407 723+12 756408 | 77.1 130 0.3
MTL' (Blanchard et al | 2021) 97.8£04  643+03  7154£07  753£17 | 772 125 012
ERMT 98.0+03 64712 714412 752416 | 773 125 011
ARM' (Zhang et al. 987402 636407 713+12 767406 | 776 131 011
SagNet' ‘ 979404 645405 714+13 775405 | 778 125 032
VREx ! 984+03 64414 741404 762413 | 783 124 011

98.9+04 665403  70.0+2.0 78.1+£l1.1 784 126 0.33
984402 654401 738%1.6 77.4+£19 | 787 12.2 0.49

|’

CORAL Sun & Saenkol |2 98.3+£0.1  66.1+1.2 734403  77.5£1.2 | 788 12.0 0.12
SWAD l ml 98.840.1  63.34+03  753£0.5  79.2+0.6 | 79.1 12.8 0.11

99.3£03  672%15  76.6+£03  79.7£0.8 | 80.7 117 0.09

GAM? (Zhang et al ) 98.84£0.6  65.1+12 729410 772419 | 785 125 043
Lookbehind-SAM | 12024) | 98.74£0.6 65.1+1.1  73.14£04 787409 | 789 124  0.50
FAD ( 1[2023a) 99.14£0.5 668409 73.6+£1.0 761413 | 789 121 038
GSAM <M| 987403  64.9402 743400 785408 | 79.1 123 022
saMt ‘IM' 99.14£0.2  65.0£1.0 73.7+£1.0 798401 | 794 125 022

DISA 99.3£0.0  66.3+0.5  81.0+0.1 73.2+£0.1 799 123 0.33
SAGM (Wang et al. 99.0£0.2 652404  75.1+03  80.7£0.8 | 80.0 123 0.22
DGSAM + SWAD 99.3£0.7 672403  77.7+£0.6  79.2+£0.5 809 11.6 0.17
DGSAM + ERM++ 99.24£03 674402  77.8£0.1 79.5£04 | 81.0 115 0.25
DGSAM 99.0£0.5  67.0+0.5 779405 81.8£04 | 814 115 0.17
DGSAM + Mixup 99.1+£04 673405  78.1+£02  82.1+£0.5 | 81.7 11.4 0.17
DGSAM + CORAL 99.3£0.8  67.440.7  79.5+£0.5  81.5+0.1 81.9 11.4 0.18

Table 10: The performance of DGSAM with 18 baseline algorithms on OfficeHome

Algorithm [ A C P R [ Avg  SD  (sfiter)

58.9+£0.8 51.0+05  74.1+0.1  752+£03 | 64.8 10.2 0.11
60.7£14 514403  748%*1.1 751+£13 | 655 10.0 0.14
61.5£0.7 524406  749+04  76.8+£04 | 664  10.0 0.12
60.7£0.9  53.0£09  75.3%+0.1 76.6£0.5 66.4 9.9 0.11
59.7£0.2 538405  75.3+0.8  77.1+£0.1 66.5 10.0 0.33
61.7£0.1 525405 77.1+13  77.0£0.1 67.0 105 0.49
63.1£03 519404 772405 78.1+£02 | 67.6 10.8 0.11
63.4+£0.2 548404 758404  783+0.3 | 68.1 9.5 0.32
653+£04 544405 76.5+0.1  78.4+£0.5 68.7 9.6 0.12
66.2+£0.5  55.04+04  77.5+04  80.0£0.5 | 69.7 10.0 0.09
66.1£04 577404  78.440.1 80.2+0.2 | 70.6 9.2 0.11

63.0£1.2 498405 77.6+£0.6 82.4+£1.0 | 682 128 0.43
63.5£1.0 503408  78.0+04  85.0+0.6 | 692 134 0.40
647403  53.1+£0.8  77.4+0.5  81.7£0.7 | 692 112 0.50
649+0.1 552402  77.8£0.0 79.2+£0.0 | 69.3 9.9 0.22
64.5£03 565402  77.4%+0.1 79.8£04 | 69.6 9.5 0.22
654404  57.04+03  78.0+0.3  80.0£0.2 | 70.1 9.4 0.22
65.840.2  55.64+02 792402  80.6£0.1 70.3 10.3 0.33

DGSAM 65.6+£04  59.7402  78.0+0.2  80.1+£04 | 70.8 8.5 0.17
DGSAM + CORAL 66.4£0.5 59.6+02  783+03  80.5£0.5 71.2 8.6 0.18
DGSAM + Mixup 673103 602404  774+03  80.3£03 | 713 8.0 0.17
DGSAM + SWAD 66.2+£0.6  59.940.1  78.1+04  81.2+0.5 71.4 8.7 0.17
DGSAM + ERM++ 70.9+£0.5  62.740.1 82.3+0.2  83.8£0.1 74.9 8.6 0.25
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Table 11: The performance of DGSAM with 18 baseline algorithms on Terralncognita

Algorithm [ L100 L38 143 L46 [ Avg  SD  (sfiter)
ARM (Zhang et al 2021) 493407 383424 558408 387+13 | 455 74 0.1
MTL (Blanchard et al.[[2021) 493412  39.6+63 55641.1 378408 | 456 73  0.12
ERM' 498+44 421414 569+18 357439 | 461 80  0.11
VREx" (Krueger et al|[2021 482443 417413  568+08 387431 | 464 69  0.11
RSCT (Huang et al.}[2020 502422 392414 563+14 408406 | 466 70 0.3
CORALT (Sun & Saenko}[2016 516424 422410 570410 398429 | 477 70 012
GGA (Ballas & Diou 509422 425410 597414 415435 | 485 74 049
53.042.9 430425 579406 404413 | 486 7.1 032
572452 451410 564414 445435 | 498 60 033
554400 449411 597404 399402 | 500 79 0.1
552448 475421 592404 459410 | 520 55  0.09
SAMT (Foret et al 463210 384424 540410 345108 | 433 75 022
Lookbehind-SAM. < 10024) | 446408 411414 574412 349406 | 445 82 050
GAM? (Zhang et al[[2023b) 422426 429417 602418 355407 | 452 9.1 0.43
FAD <WIW| 443422  435+17 609420 341405 | 457 96 038
DISA P04 462429  41.640.1 580405 405422 | 466 69 033
GSAMT 50.840.1 393402  59.6400 382408 | 47.0 88 022
SAGM (Wang et a 548413 414408 577406 413404 | 488 75 022
DGSAM 545406 453407 594404 423410 | 504 69 017
DGSAM + Mixup 547409 452404 595404 425408 | 505 69  0.17
DGSAM + CORAL 55.840.5 454408 592402 427411 | 508 69  0.19
DGSAM + SWAD 556412 459405  59.6405 43.1409 | 511 68 0.7
DGSAM + ERM++ 562409 493+13  59.8405 432407 | 521 64 025

Table 12: The performance of DGSAM with 18 baseline algorithms on DomainNet

Algorithm [ C I P Q R S [ Avg SD (s/iter)
VREx T 473 £3.5 16.0 £1.5 358 £4.6 10.9 +0.3 49.6 £4.9 42.0 £3.0 33.6 15.0 0.18
49.7 £0.3 16.3 £0.5 409 £1.1 9.4 +0.1 534 +04 435 £04 355 16.7 0.18
Rsc 55.0 £1.2 18.3 +£0.5 444 +£0.6 12.2 +0.2 55.7 £0.7 47.8 £0.9 38.9 17.3 0.20
SagNet 57.7 £03 19.0 £0.2 453 £0.3 12.7 0.5 58.1 £0.5 48.8 £0.2 40.3 17.9 0.53
MTLT 579 £0.5 18.5 £04 46.0 £0.1 12.5 £0.1 59.5£0.3 49.2 £0.1 40.6 18.4 0.20
ERMT 58.1 £0.3 18.8 £0.3 46.7 £0.3 122 +04 59.6 £0.1 49.8 £04 40.9 18.6 0.18
CORALT 59.2 £0.1 19.7 £0.2 46.6 £0.3 134 £0.4 59.8 £0.2 50.1 £0.6 415 18.3 0.20
GENIE (Cho et al.| 62.5 £0.5 21.3 £04 50.0 £0.4 14.0 £0.4 64.0 £0.7 52.6 £0.8 44.1 19.4 0.14
GGA \M'E\ 637402 213403 504401 141404 638402 535403 | 444 197 075
GGA- \L-mlw 63.2 £0.2 21.0 £0.3 49.5 £0.1 13.8 £0.2 64.1 £0.4 53.6 £0.3 44.5 19.7 0.50
m 66.0 £0.1 224 403 53.5 £0.1 16.1 £0.2 65.8 £0.4 555403 46.5 19.9 0.18
63.0 £0.5 20.2 £0.2 50.3 £0.1 13.2 403 64.5 +0.2 51.6 £0.5 43.8 20.0 0.71
64.3 +0.3 20.8 £0.1 50.4 £0.1 15.0 £0.4 63.1 £0.3 51.4 £0.3 44.1 19.4 0.71
64.5 £0.3 20.7 £0.2 50.2 £0.1 15.1 £0.3 62.6 £0.2 52.7£0.3 443 19.4 0.34
64.1 £0.3 21.9 £0.2 50.6 £0.3 142 £04 63.6 £0.1 52.2 £0.2 44.4 19.5 0.56
64.2 £0.3 20.8 £0.2 50.9 £0.0 144 £0.8 63.5 £0.2 53.9 402 44.6 19.8 0.36
64.9 £0.2 21.1 £0.3 51.5 £0.2 14.8 £0.2 64.1 £0.2 53.6 £0.2 45.0 19.8 0.34
65.9 £0.2 20.7 £0.2 51.7 £0.3 16.6 £0.3 62.8 £0.5 54.8 £0.4 454 19.5 0.53
DGSAM 63.6 +0.4 222 £0.1 51.9 £0.3 15.8 0.2 64.7 £0.3 547 £0.4 45.5 19.4 0.26
DGSAM + CORAL 64.3 +0.2 22.5 0.2 542 +0.3 16.2 £0.2 64.9 +0.1 552 +£0.2 46.2 19.5 0.28
DGSAM + SWAD 67.2 £0.2 23.2 403 534 £03 17.3 £0.4 65.4 £0.2 55.8 £0.3 47.1 19.6 0.26
DGSAM + Mixup 67.4 £0.3 25.4 +0.1 54.8 £0.2 17.6 £0.3 67.5 £0.4 57.3 £0.3 483 19.7 0.26
DGSAM + ERM++ 71.3 £03 26.9 £0.2 58.6 £0.2 17.9 £0.5 70.5 £0.2 60.8 £0.5 51.0 209 0.43
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G BASELINE REFERENCES

Table [T compares our proposed method with several baseline algorithms for domain generalization.
For a fair and consistent comparison, we report the performance metrics as presented in prior works.

Most results are sourced directly from the original papers introducing each algorithm. For certain
baselines, results are quoted from recent state-of-the-art papers to ensure the experimental settings
are as consistent as possible. Specifically, results marked with | are sourced from SAGM

2023)), and the result for GAM (%) is from FAD (Zhang et al.| 2023a).

The references for each baseline algorithm and combined methodology are as follows:

* ARM (Zhang et al, 2021)

* VREx (Krueger et al., 2021)

* RSC (Huang et al} 2020)

» MTL (Blanchard et al.| [2021))

. SagNet 2021)

» CORAL (Sun & Saenkol, [2016))

« GGA & GGA-L (Ballas & Diou, 2025)
. GENIE

* SWAD 2021)

* GAM (Zhang et al} 2023b)

.« sAM

* Lookbehind-SAM (Mordido et al,[2024)
* GSAM (Zhuang et al. 2022)

* FAD (Zhang et al |, [2023a)

* DISAM (Zhang et al., 2024)

. SAGM

* SFT [2025)

» MixUp (Lopez-Paz et al.| 2018)

» ERM++ (Teterwak et all [2025))
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