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ABSTRACT

Domain generalization (DG) aims to learn models that perform well on unseen
target domains by training on multiple source domains. Sharpness-Aware Mini-
mization (SAM), known for finding flat minima that improve generalization, has
therefore been widely adopted in DG. However, we argue that the prevailing
approach of applying SAM to the aggregated loss for domain generalization is
fundamentally suboptimal. This “global sharpness” objective can be deceptive,
leading to convergence to fake flat minima where the total loss surface is flat, but
the underlying individual domain landscapes remain sharp. To establish a more
principled objective, we analyze a worst-case risk formulation that reflects the true
nature of DG. Our analysis reveals that individual sharpness provides a valid upper
bound on this risk, while global sharpness does not, making it a more theoretically
grounded target for robust domain generalization. Motivated by this, we propose
Decreased-overhead Gradual SAM (DGSAM), which applies gradual, domain-wise
perturbations to effectively control individual sharpness in a computationally effi-
cient manner. Extensive experiments demonstrate that DGSAM not only improves
average accuracy but also reduces performance variance across domains, while
incurring less computational overhead than SAM.

1 INTRODUCTION

Deep neural networks achieve remarkable performance under the independent and identically dis-
tributed (i.i.d.) assumption (Kawaguchi et al., 2017), yet this assumption often fails in practice due
to domain shifts. For example, in medical imaging, test data may differ in acquisition protocols
or device vendors (Li et al., 2020), and in autonomous driving, variations in weather or camera
settings introduce further domain shifts (Khosravian et al., 2021). Since it is impractical to include
every possible scenario in the training data, domain generalization (DG) seeks to learn models that
generalize to unseen target domains using only source domain data (Muandet et al., 2013; Arjovsky
et al., 2019; Li et al., 2018c; Volpi et al., 2018; Li et al., 2019).

A common DG strategy is to learn domain-invariant representations by aligning source domain
distributions and minimizing their discrepancies (Muandet et al., 2013; Arjovsky et al., 2019),
adversarial training (Li et al., 2018c; Ganin et al., 2016), data augmentation (Volpi et al., 2018;
Zhou et al., 2020; 2021), and meta-learning approaches (Li et al., 2019; Balaji et al., 2018). These
strategies share the common goal of solving the core challenge of DG: learning from source domains
with structured shifts (e.g., artistic style, weather conditions) to generalize to unseen variations of
these structures. More recently, flat minima in the loss landscape have been linked to improved
robustness under distributional shifts (Cha et al., 2021; Zhang et al., 2022; Chaudhari et al., 2019).
In particular, Sharpness-Aware Minimization (SAM) (Foret et al., 2021) perturbs model parameters
along high-curvature directions to locate flatter regions of the loss surface, and has been applied to
DG (Wang et al., 2023; Shin et al., 2024; Zhang et al., 2024).

However, we argue that the prevailing approach of applying SAM to the aggregated loss is funda-
mentally suboptimal. Our analysis reveals that the current SAM-based approach for DG pursues an
unrealistic goal: robustness to perturbations of a probabilistic average of the source domains, rather
than the coherent shifts of individual source types that characterize real-world DG. This misalignment
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can be deceptive, leading to convergence to fake flat minima that appear globally flat but remain
sharp on individual domains. We find this occurs because global sharpness is an unreliable proxy
for the individual-domain flatness that is truly required for robust generalization. To establish a
more principled objective, we introduce a worst-case risk formulation that formalizes this notion of
coherent shifts. We then theoretically demonstrate that individual sharpness, not global sharpness,
provides a valid upper bound on this risk, making it a more grounded target for optimization.

Motivated by these insights, we propose a novel DG algorithm, Decreased-overhead Gradual
Sharpness-Aware Minimization (DGSAM) that employs a gradual and domain-specific perturbation
mechanism designed to effective control individual sharpness. DGSAM improves upon existing
SAM-based DG methods in three key aspects. First, it efficiently reduces the individual sharpness
of source domains rather than the global sharpness of the total loss, enabling better learning of
domain-invariant features. Second, it achieves high computational efficiency by reusing gradients
computed during gradual perturbation, in contrast to traditional SAM-based methods that incur
twice the overhead of standard empirical risk minimization. Third, while prior approaches rely on
proxy curvature metrics, DGSAM controls the eigenvalues of the Hessian, which are the most direct
indicators of sharpness (Keskar et al., 2016; Ghorbani et al., 2019). Our extensive experiments
confirm the superiority of this approach. DGSAM demonstrates a superior balance of accuracy and
robustness, achieving the highest average accuracy and the lowest average domain-wise variance
across five benchmarks. Furthermore, DGSAM shows broad compatibility by enhancing various DG
frameworks and confirms its scalability on large-scale Vision Transformer models, all while being
more computationally efficient than standard SAM.

2 PRELIMINARIES AND RELATED WORK

2.1 DOMAIN GENERALIZATION

Let Ds := {Di}Si=1 denote the collection of training samples, where Di represents the training
samples from the i-th domain1. The total loss over all source domains is defined as:

Ls(θ) :=
1

|Ds|
∑

Di∈Ds

Li(θ), (1)

where Li denotes the loss evaluated on samples from the i-th domain, and θ is the model parameter.

A naïve approach to DG minimizes the empirical risk over the source domains.: θ∗s = argminθ Ls(θ).
However, this solution may fail to generalize to unseen target domains, as it is optimized solely on
the training distribution. The goal of domain generalization is to learn parameters θ that are robust to
domain shifts, performing well on previously unseen domains.

As the importance of DG has grown, several datasets (Li et al., 2017b; Fang et al., 2013; Peng
et al., 2019) and standardized protocols (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021) have been
introduced. Research directions in DG include domain-adversarial learning (Jia et al., 2020; Li et al.,
2018c; Akuzawa et al., 2020; Shao et al., 2019; Zhao et al., 2020), moment-based alignment (Ghifary
et al., 2016; Muandet et al., 2013; Li et al., 2018b), and contrastive loss-based domain alignment
(Yoon et al., 2019; Motiian et al., 2017). Other approaches focus on data augmentation (Xu et al.,
2020; Shi et al., 2020; Qiao et al., 2020), domain disentanglement (Li et al., 2017a; Khosla et al.,
2012), meta-learning (Li et al., 2018a; Zhang et al., 2021; Li et al., 2019), and ensemble learning
(Cha et al., 2021; Seo et al., 2020; Xu et al., 2014).

2.2 SHARPNESS-AWARE MINIMIZATION

A growing body of work connects generalization to the geometry of the loss surface, especially its
curvature (Hochreiter & Schmidhuber, 1994; Neyshabur et al., 2017; Keskar et al., 2017; Chaudhari
et al., 2019; Foret et al., 2021). Building on this, Foret et al. (2021) proposed Sharpness-Aware
Minimization (SAM), which optimizes the model to minimize both the loss and the sharpness of the
solution. The SAM objective is defined as:

min
θ

max
∥ϵ∥≤ρ

L(θ + ϵ), (2)

1With slight abuse of notation, we also useDi to represent the underlying data distribution of the i-th domain.
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where the inner maximization finds the worst-case perturbation ϵ within a neighborhood of radius ρ.

Following the success of SAM, several extensions have emerged, primarily focusing on refining
the sharpness surrogate (Kwon et al., 2021; Zhuang et al., 2022; Zhang et al., 2022) or reducing
its computational overhead (Du et al., 2022; Liu et al., 2022; Mordido et al., 2024). The promise
of improved generalization has naturally led to the exploration of sharpness-aware methods in
domain generalization. A common strategy is to apply SAM to the total loss aggregated over source
domains (Wang et al., 2023; Shin et al., 2024; Cha et al., 2021). This approach, however, implicitly
seeks a solution that is flat only with respect to the mixture of domains, treating the structured
multi-domain problem as a single i.i.d. one. Recognizing this potential limitation, more recent studies
incorporate domain-level structure, either by explicitly penalizing inter-domain loss variance (Zhang
et al., 2024) or by applying SAM variants in a domain-wise manner (Le & Woo, 2024).

3 RETHINKING SHARPNESS IN DOMAIN GENERALIZATION

The prevailing paradigm in the current literature is to apply SAM to the aggregated loss across all
source domains. We argue this approach is fundamentally suboptimal for domain generalization,
as it is built on an assumption that is misaligned with the core nature of the DG problem itself. By
collapsing the crucial structural information between domains, this strategy shifts the optimization
objective from learning features that are truly domain-invariant, to merely seeking robustness for a
probabilistic average of the source domains. This is a critical distinction, as this probabilistic average
may not represent any realistic domain and is not equivalent to the shared, invariant features required
for true generalization. This misalignment can be deceptive, leading to convergence to ‘fake flat
minima’. In Section 3.1, we first provide a formal and intuitive illustration of this pitfall. We then
propose a more principled objective grounded in a worst-case risk formulation that respects this
essential domain-specific structure in Section 3.2.

3.1 GLOBAL SHARPNESS PITFALLS: THE FAKE FLAT MINIMA PROBLEM

To formalize our perspective, we distinguish between two key concepts. The prevailing approach for
SAM in DG focuses on global sharpness, defined as:

Sglobal(θ; ρ) = max
∥ϵ∥≤ρ

(
Ls(θ + ϵ)− Ls(θ)

)
.

where Ls is the total loss over all source domains, defined in equation 2.1. In contrast, our work
focuses on the individual sharpness of each source domain Di, defined as:

Si(θ; ρ) = max
∥ϵ∥≤ρ

(
Li(θ + ϵ)− Li(θ)

)
.

To generalize well to unseen domains, a model must learn representations that are robust to various
domain shifts. The most direct way to achieving this is to ensure that the learned solution is robust
against new domains that are variations of each of the source domains seen during training. Therefore,
an ideal DG approach should find a solution that is simultaneously flat with respect to every individual
source domain, a property directly captured by individual sharpness (Si).

The prevailing approach of minimizing global sharpness (Sglobal), however, does not guarantee this
ideal outcome. As global sharpness is measured on the aggregated loss, it is possible for this mixture
to be flat while the loss landscapes of the underlying individual domains remain sharp. This presents
a critical failure mode: if an unseen test domain shares characteristics with a source domain for
which the model has high individual sharpness, the model will likely fail, regardless of its low global
sharpness. This divergence, where low global sharpness masks high individual sharpness, leads to
what we term fake flat minima. The following proposition formally demonstrates that global and
individual sharpness are not necessarily correlated.

Proposition 3.1. Let θ be a model parameter and ρ > 0 a fixed perturbation radius. Then, there
exist two local minima θ1 and θ2 such that

Sglobal(θ1; ρ) < Sglobal(θ2; ρ) but
1

S

S∑
i=1

Si(θ1; ρ) ≥
1

S

S∑
i=1

Si(θ2; ρ).
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Equivalently,

Sglobal(θ1; ρ) < Sglobal(θ2; ρ) ≠⇒ 1

S

S∑
i=1

Si(θ1; ρ) <
1

S

S∑
i=1

Si(θ2; ρ).

The proof is deferred to Appendix B.1. This proposition provides the formal basis for the fake flat
minima phenomenon, confirming that a low value of global sharpness (Sglobal) can be achieved even
when the average individual sharpness

(
1
S

∑
i Si

)
remains high.

Figure 1: Fake flat minimum: two
sharp individual losses (dotted) cancel
out when summed, resulting in a decep-
tively flat total loss (solid).

To illustrate this phenomenon, we present a 2-dimensional
toy example involving two domains and two loss functions.
Each domain shares the same base loss shape (Figure 2a)
but is shifted along one axis. Figures 2b and 2c visual-
ize the total loss from two perspectives. In this example,
region R1 corresponds to an ideal solution, where both
individual domain losses exhibit flat minima. In contrast,
region R2 remains sharp for each individual domain loss,
but appears deceptively flat in the total loss due to cancel-
lation of opposing sharp valleys (Figure 1). As a result,
both SAM and SGD converge to region R2 (Figure 2d),
which constitutes a fake flat minimum.

(a) Loss landscape of a sin-
gle domain

(b) Side view of the total
loss landscape

(c) Rear view of the total
loss landscape

(d) Optimization trajecto-
ries

Figure 2: Toy example: two conflicting loss functions construct two different type of flat minima.
An interactive visualization of toy example is available at https://dgsam-toy-example.
netlify.app/.

The pitfall of the global sharpness approach is not merely an theoretical concept. We confirm this
phenomenon in practical DG tasks using ResNet-50 on the PACS dataset. As visualized in Appendix E,
while SAM produces minima that are flat with respect to the total loss, the loss landscapes for the
individual domains remain sharp, providing direct empirical evidence of the fake flat minima problem.

3.2 INDIVIDUAL SHARPNESS: A PRINCIPLED OBJECTIVE FOR DG

To establish a principled objective for SAM in DG, we need to define a performance measure that
truly reflects the challenges of the task. As we have argued, a true domain shift is not a random
perturbation of the averaged sources. For instance, a model trained on ’Photo’ and ’Sketch’ domains
is not evaluated on their pooled mixture, but rather on a new, coherent domain such as ’Cartoon’ or
’Watercolor painting’. This new domain represents a coherent shift from one of the existing styles,
not a deviation from their probabilistic mixture. A truly robust model, therefore, must be resilient to
the worst-case shift originating from any of the individual source domains it was trained on.

Based on this principled view, we now formalize the average worst-case domain risk. Let {Di}Si=1
denote the source distributions. For each source domain i, we define the local uncertainty set of
potential target domains as:

Uδ
i =

{
D : Div(D∥Di) ≤ δ

}
,

where Div(·∥·) is a divergence measure (e.g., KL-divergence, Wasserstein distance). This set Uδ
i

contains all unseen target domains that lie within a divergence δ of the source domain Di. The
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average worst-case domain risk is then the expected risk under the worst-case shift from each source
domain:

E(θ; δ) := 1

S

S∑
i=1

sup
D∈Uδ

i

LD(θ).

This principled risk formulation allows us to formally investigate which notion of sharpness, global
or individual, serves as a better optimization target.

Theorem 3.2. Let Ls(θ) denote the total loss over all source domains, Sglobal(θ; ρ) the global
sharpness, and Si(θ; ρ) the individual sharpness for the i-th domain. Then, for all θ and ρ ≥ ρ(δ),

E(θ; δ) ≤ Ls(θ) +
1

S

S∑
i=1

Si(θ; ρ).

where ρ(δ) is defined in equation 11 of Appendix B.2. Moreover, there exists a model parameter θ
such that

E(θ; δ) > Ls(θ) + Sglobal(θ; ρ).

The proof is provided in Appendix B.2. Theorem 3.2 highlights that minimizing the average of
individual sharpness provides a valid upper bound for our principled DG risk measure, E(θ; δ). In
contrast, it also shows that global sharpness offers no such guarantee, and can indeed be smaller even
when the true risk is higher. This result confirms that minimizing individual sharpness is not merely
an alternative, but a more appropriate and theoretically grounded surrogate for robust generalization
under domain shifts.

4 METHODOLOGY

Our goal is to design an algorithm that effectively controls individual sharpness across all source
domains, as motivated in Section 3. The conventional SAM approach, which perturbs parameters
along the single, aggregated gradient of the total loss, is ill-suited for this task. The total gradient
is often misaligned with individual domain gradients, resulting in a suboptimal perturbation that
fails to uniformly increase domain-specific losses. We provide a detailed analysis and empirical
illustration of this failure mode in Appendix A. To overcome this limitation, in Section 4.1, we
propose Decreased-overhead Gradual Sharpness-Aware Minimization (DGSAM) that employs a
gradual, domain-specific perturbation mechanism to control individual sharpness. Subsequently, in
Section 4.2, we provide a theoretical analysis of how this mechanism implicitly controls individual
sharpness.

4.1 THE DGSAM ALGORITHM

DGSAM’s update strategy is built upon a sequential perturbation scheme. Unlike the conventional
SAM that uses a single perturbation, DGSAM sequentially incorporates the unique gradient from
each source domain in successive steps. This transforms the perturbation process into a principled
mechanism for integrating geometric information from multiple domains, allowing for more effective
control of individual sharpness. The general effectiveness of such a sequential scheme for finding
flatter minima has also been demonstrated in the standard i.i.d. setting by Lookbehind-SAM (Mordido
et al., 2024). The update rule of DGSAM is given by:

gj = ∇LBlj
(θ̃j−1) for j = 1, . . . , S, gS+1 = ∇LBl1

(θ̃S), (3)

θt+1 = θt − γ

(
S

S + 1

) S+1∑
j=1

gj . (4)

where l = (l1, . . . , lS) denotes a random permutation of the S source domain indices, and each LBlj

is the loss computed over a mini-batch Blj drawn from the lj-th domain.

In the ascent phase, as defined in equation 3, DGSAM performs S + 1 perturbation steps, each based
on the gradient of an individual domain, followed by a descent step that updates the model using
the aggregated gradients. Specifically, we begin with θ̃0 = θt and at each step j ∈ {1, . . . , S}, we

5
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compute the domain-specific gradient gj = ∇LBlj
(θ̃j−1) for the j-th domain (sampled in random

order) and apply the perturbation ρ
gj

∥gj∥ to update θ̃j (See lines 7-9 in Algorithm 1). These gradients
are stored and later reused during the descent update to reduce computational overhead.

Note that the gradient g1 is computed at the unperturbed point θt so it does not reflect the curvature-
aware structure. To correct for this inconsistency, we perform one additional gradient computation at
the final perturbed point θ̃S using ∇LBl1

(θ̃S) again (lines 10-11 in Algorithm 1). This ensures that
all gradients contributing to the final update step are computed at perturbed points.

As a result, DGSAM collects S + 1 gradients
along a trajectory that sequentially accounts for
each domain’s geometry. These gradients are
then averaged for the final parameter update, as
in equation 4. This design ensures that the de-
scent direction is a more uniform reflection of
all individual domain geometries, preventing the
bias towards a single dominant domain that can
occur with conventional SAM. Furthermore, this
design is computationally efficient by reusing
the gradients from the ascent phase, DGSAM
requires only S +1 gradient computations per it-
eration, compared to the 2S required by standard
SAM.
The following theorem shows that DGSAM
achieves ϵ-stationarity under standard assump-
tions, aligning with the convergence guarantees
recently established for SAM in non-convex set-
tings Oikonomou & Loizou (2025).

Algorithm 1 DGSAM
1: Require: Initial parameter θ0, learning rate γ, ;

radius ρ; total iterations N ; training sets {Di}Si=1

2: for t← 0 to N − 1 do
3: Sample batches Bi ∼ Di for i = 1, · · · , S, and

set a random order l = permute({1, · · · , S})
4: θ̃0 ← θt
5: for j ← 1 to S + 1 do
6: if j ≤ S then
7: gj ← ∇LBlj

(θ̃j−1)

8: θ̃j ← θ̃j−1 + ρ
gj
∥gj∥

9: else if j = S + 1 then
10: gS+1 ← ∇LBl1

(θ̃S)
11: end if
12: end for

13: θt+1 ← θt − γ

(
S

S + 1

) S+1∑
j=1

gj

14: end for

Theorem 4.1 (ϵ-approximate stationary). Let Assumptions B.4 hold. Then, for any ϵ > 0, the iterates
of DGSAM satisfy for ρ ≤ ρ, γ ≤ γ, T ≥ T

min
t=0,...,T−1

E∥∇Ls(θt)∥ ≤ ϵ

where full expressions of ρ, γ, and T are given in Theorem B.10. We refer to Appendix B.3 for the
proof.

4.2 HOW DGSAM CONTROLS INDIVIDUAL SHARPNESS

Recent studies (Ma et al., 2023; Zhuang et al., 2022) have pointed out that SAM’s first-order
approximations may lead to suboptimal control of curvature. Luo et al. (2024) showed that aligning
the perturbation direction with an eigenvector can control the corresponding eigenvalue. However,
relying solely on the top eigenvectors is insufficient in multi-domain settings, where the directions may
conflict across domains. In such cases, it is more desirable to incorporate a broader set of eigenvectors
associated with large eigenvalues, capturing curvature shared across domains. Moreover, Wen et al.
(2023) demonstrated that controlling the entire eigenvalue spectrum yields tighter generalization
bounds than focusing solely on the top eigenvalue.

In this regard, we analyze how DGSAM’s gradual perturbation mechanism implicitly controls the
individual sharpness. At the j-th step of the ascent phase, the gradient gj is computed as:

gj = ∇LBlj
(θ̃j−1) = ∇LBlj

(
θ̃0 +

j−1∑
k=1

ρ
gk
∥gk∥

)

≈ ∇LBlj
(θ̃0) + ρ∇2LBlj

(θ̃0)

j−1∑
k=1

gk
∥gk∥

+O(ρ2).

Since the Hessian ∇2LBlj
is symmetric and hence diagonalizable, we decompose it as ∇2LBlj

(θ̃0) =∑
n λnvnv

⊤
n , where Ej = {(λn, vn)} is the set of eigenpairs of ∇2LBlj

(θt). Then, the gj can be

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on five DomainBed benchmarks. We report both trial-based
standard deviation (±) and test-domain standard deviation (SD). Bold and underlined entries indicate
the best and second-best results, excluding combined methods. Baseline results are sourced from
prior work (see Appendix G for references).

Algorithms PACS VLCS OfficeHome TerraInc DomainNet Avg (s/iter)Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

ARM† 85.1±0.6 8.0 77.6±0.7 13.1 64.8±0.4 10.2 45.5±1.3 7.4 35.5±0.5 16.7 61.7 11.1 0.12
VREx† 84.9±1.1 7.6 78.3±0.8 12.4 66.4±0.6 9.9 46.4±2.4 6.9 33.6±3.0 15.0 61.9 10.4 0.12
RSC† 85.2±1.0 7.6 77.1±0.7 13.0 65.5±1.0 10.0 46.6±1.0 7.0 38.9±0.7 17.3 62.7 11.0 0.15
MTL† 84.6±1.0 8.0 77.2±0.8 12.5 66.4±0.5 10.0 45.6±2.4 7.3 40.6±0.3 18.4 62.9 11.2 0.14
ERM† 85.5±0.6 7.0 77.3±1.1 12.5 66.5±0.4 10.8 46.1±2.9 8.0 40.9±0.3 18.6 63.3 11.4 0.12
SagNet† 86.3±0.5 6.9 77.8±0.7 12.5 68.1±0.3 9.5 48.6±0.3 7.1 40.3±0.3 17.9 64.2 10.8 0.36
CORAL† 86.2±0.6 7.5 78.8±0.7 12.0 68.7±0.4 9.6 47.7±0.4 7.0 41.5±0.3 18.3 64.6 10.9 0.14
GGA 86.4±1.7 6.6 78.7±1.0 12.2 67.0±0.5 10.5 48.5±2.0 7.4 44.5±0.3 19.7 65.0 11.3 0.54
GGA-L 86.5±1.5 6.6 78.4±1.0 12.6 66.5±0.4 10.0 49.8±2.8 6.0 44.5±0.3 19.7 65.1 11.0 0.36
GENIE 87.8±0.6 6.8 80.7±0.7 11.7 69.7±0.5 10.0 52.0±2.1 5.5 44.1±0.5 19.4 66.9 10.7 0.10
SWAD 88.1±0.4 5.9 79.1±0.4 12.8 70.6±0.3 9.2 50.0±0.3 7.9 46.5±0.2 19.9 66.9 11.2 0,12

GAM‡ 86.1±1.3 7.4 78.5±1.2 12.5 68.2±0.8 12.8 45.2±1.7 9.1 43.8±0.3 20.0 64.4 12.4 0.49
SAM† 85.8±1.3 6.9 79.4±0.6 12.5 69.6±0.3 9.5 43.3±0.3 7.5 44.3±0.2 19.4 64.5 11.2 0.24
Lookbehind-SAM 86.0±0.4 7.2 78.9±0.8 12.4 69.2±0.6 11.2 44.5±1.0 8.2 44.2±0.3 19.6 64.7 11.8 0.54
GSAM† 85.9±0.3 7.4 79.1±0.3 12.3 69.3±0.1 9.9 47.0±0.1 8.8 44.6±0.3 19.8 65.2 11.6 0.25
FAD 88.2±0.6 6.3 78.9±0.9 12.1 69.2±0.7 13.4 45.7±1.6 9.6 44.4±0.3 19.5 65.3 12.2 0.42
DISAM 87.1±0.5 5.6 79.9±0.2 12.3 70.3±0.2 10.3 46.6±1.4 6.9 45.4±0.3 19.5 65.9 10.9 0.37
SAGM 86.6±0.3 7.2 80.0±0.4 12.3 70.1±0.3 9.4 48.8±0.3 7.5 45.0±0.2 19.8 66.1 11.2 0.24

DGSAM 88.5±0.4 5.2 81.4±0.5 11.5 70.8±0.3 8.5 50.4±0.7 6.9 45.5±0.3 19.4 67.3 10.3 0.19
DGSAM + CORAL 88.8±0.4 5.2 81.9±0.5 11.4 71.2±0.4 8.6 50.8±0.7 6.9 46.2±0.2 19.5 67.8 10.3 0.19
DGSAM + SWAD 88.7±0.4 5.4 80.9±0.5 11.6 71.4±0.4 8.7 51.1±0.8 6.8 47.1±0.3 19.6 67.8 10.4 0.19
DGSAM + Mixup 89.4±0.4 5.5 81.7±0.4 11.4 71.3±0.3 8.0 50.5±0.6 6.9 48.3±0.3 19.7 68.2 10.3 0.20
DGSAM + ERM++ 90.1±0.5 5.3 81.0±0.3 11.5 74.9±0.2 8.6 52.1±0.9 6.4 51.0±0.3 20.9 69.8 10.5 0.29

approximated as

gj ≈ ∇LBlj
(θ̃0) + ρ

∑
(λ,v)∈Ej

λ

(
j−1∑
k=1

v⊤gk
∥v∥∥gk∥

)
v, (5)

In this approximation, the first term represents the standard ascent direction for the j-th domain,
while the second term is a curvature-aware correction term. This correction is a weighted sum of
the Hessian’s eigenvectors, where the weights depend on both the eigenvalues λ and the alignment
of eigenvectors with the perturbation directions from all previous domains (g1, . . . , gj−1). Thus,
DGSAM’s gradual perturbation strategy naturally integrates curvature information from the entire
sequence of domains, ensuring that the sharpness of individual domain losses is controlled in a
balanced and robust manner. This theoretical insight is confirmed empirically. In Appendix C.2,
we show that the curvature-aware correction term contributes significantly to the ascent direction.
Furthermore, this mechanism’s effectiveness is demonstrated in our toy example (Section 3), where
DGSAM consistently finds the truly flat minima and avoids the fake flat minima trap

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Evaluation protocols, Baselines and Datasets For all main experiments, we adhere to the Do-
mainBed protocol (Gulrajani & Lopez-Paz, 2021), including model initialization, hyperparameter
tuning, and validation methods, to ensure a fair comparison. Our experiments are conducted on
five widely used DG benchmarks: PACS (Li et al., 2017b), VLCS (Fang et al., 2013), OfficeHome
(Venkateswara et al., 2017), TerraIncognita (Beery et al., 2018), and DomainNet (Peng et al., 2019).

We adopt the standard leave-one-domain-out setup: one domain is held out for testing, while the
model is trained on the remaining source domains (Gulrajani & Lopez-Paz, 2021). Model selection
is based on validation accuracy computed over the source domains. In addition to the average test
accuracy commonly reported in DG, we also report the standard deviation of per-domain performance
across test domains. This metric captures robustness to domain shifts and highlights potential
overfitting to domains that are similar to the training distribution. Each experiment is repeated three
times, and standard errors are reported.
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Table 2: DG performances on ViT-B/16 backbone.

Algorithms PACS VLCS OfficeHome TerraInc DomainNet Avg.

CORAL 95.4 82.5 83.3 52.0 59.5 74.5
DISAM 96.8 82.2 84.2 51.4 59.9 74.9
ERM 96.6 80.9 84.1 55.5 59.2 75.3
SAM 96.1 83.5 86.5 61.2 60.5 76.3

DGSAM 97.3 84.5 87.3 62.2 78.5 77.8

Implementation Details We use a ResNet-50 (He et al., 2016) backbone pretrained on ImageNet,
and Adam (Kingma & Ba, 2015) as the base optimizer. We use the hyperparameter space, the
total number of iterations, and checkpoint frequency based on Wang et al. (2023). The specific
hyperparameter settings and search ranges are described in Appendix F.1.

5.2 ACCURACY AND DOMAIN-WISE VARIANCE ACROSS BENCHMARKS

Baselines on the DomainBed Protocol. We compare DGSAM with 18 baseline algorithms across
five widely used benchmark datasets: PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet.
The complete experimental setup and evaluation protocol follow DomainBed (Gulrajani & Lopez-Paz,
2021). Table 1 reports the average test accuracy and two types of standard deviation: (1) trial-
based standard deviation across three random seeds, denoted by ±, and (2) domain-wise standard
deviation, measuring performance variance across held-out domains. Higher accuracy and lower
standard deviation indicate better and more robust generalization. DGSAM achieves the highest
average accuracy 67.3% and the lowest domain-level variance 10.3 among all methods, outperforming
baselines on PACS, VLCS, and OfficeHome, and ranking second on TerraIncognita and DomainNet.

Combination with Other DG Strategies. Beyond its strong standalone performance, DGSAM
also serves as a complementary component to other DG strategies. As shown in Table 1, integrating
DGSAM with diverse and orthogonal methods, including SWAD, Mixup (Lopez-Paz et al., 2018),
CORAL (Sun & Saenko, 2016), and ERM++ (Teterwak et al., 2025), consistently yields further
performance gains. This demonstrates the broad applicability of DGSAM as a foundational optimizer
that can enhance various DG frameworks. Detailed per-dataset results are provided in Appendix F.2.

Performance on a Large-Scale Backbone (ViT-B/16). While the standard DomainBed proto-
col provides a crucial benchmark, the ResNet-50 backbone is a relatively small-scale model. To
demonstrate that DGSAM is effective and scalable for more realistic, large-scale architectures, we
therefore conduct additional experiments using a Vision Transformer (ViT-B/16) backbone. As shown
in Table 2, DGSAM again consistently outperforms strong baselines, underscoring its effectiveness
across different architectures.

5.3 SHARPNESS ANALYSIS

Table 3: The zeroth-order sharpness result at converged minima

Individual domains Mean (Std) Total UnseenClipart Painting Quickdraw Real Sketch

SAM 1.63 6.22 7.86 4.89 3.38 4.79 (2.17) 19.68 70.59
DGSAM 1.17 2.78 4.74 4.39 1.80 2.98 (1.40) 6.41 42.46

To verify that DGSAM effectively reduces individual sharpness, we measure the zeroth-order sharp-
ness of the converged solutions. As shown in Table 3, DGSAM achieves substantially lower individual
sharpness across all source domains compared to SAM. Notably, this also leads to lower sharpness
on the unseen domain, empirically validating our theoretical analysis in Section 3.2 that individual
sharpness is a more appropriate surrogate for robust generalization. We gain further insight by
examining the Hessian spectrum density using stochastic Lanczos quadrature (Ghorbani et al., 2019).
The results, visualized in Figure 3, show that DGSAM not only suppresses large eigenvalues but also
controls the entire spectrum more effectively. This provides a deeper understanding of how DGSAM
achieves a more holistic control over the loss landscape geometry, consistent with our design goals.
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Figure 3: Hessian Spectrum Density at Converged Minima: (a) SAM and (b) DGSAM.

5.4 COMPUTATIONAL COST

0.000 0.037 0.073 0.110 0.147 0.183 0.220
Computational cost (s/iter)

DGSAM

SAM

ERM

0.169

0.217

0.110

Figure 4: Comparison of empirical computational
cost measured by training time per iteration.

In addition to performance improvements,
DGSAM significantly reduces the computa-
tional overhead commonly associated with SAM
variants. Let S denote the number of source do-
mains and c the unit cost of computing gradients
for one mini-batch. Then, the per-iteration cost
of ERM is S × c, as it requires one gradient
computation per domain. SAM performs two
backpropagations per domain, one for perturba-
tion and another for the update, yielding a cost of approximately 2S × c. In contrast, DGSAM
requires only S + 1 gradient computations per iteration, resulting in a theoretical cost of (S + 1)× c.
Further details are provided in the Appendix D.1.

To validate this, we measure the actual training time per iteration on the PACS dataset. With S = 3
source domains, ERM takes approximately S × c = 0.11 seconds per iteration. SAM incurs a cost
of 0.217 seconds, nearly double that of ERM, while DGSAM achieves 0.169 seconds per iteration.
Although slightly higher than its theoretical cost (S + 1)× c ≈ 0.148, the deviation is primarily due
to additional overheads such as gradient aggregation. These results confirm that DGSAM achieves
competitive performance with significantly lower computational burden compared to SAM. This
time-saving is not achieved at the expense of memory. As detailed in Appendix D.2, DGSAM
requires less memory than both ERM and SAM. Full results of cost on all datasets are included in
Appendix F.2.

6 DISCUSSION AND FUTURE DIRECTIONS

This paper revisits the role of sharpness minimization in domain generalization. While prior ap-
proaches have naively applied SAM to the aggregated loss across source domains, we reveal that this
strategy can converge to fake flat minima—solutions that appear flat globally but remain sharp in
individual domains, leading to poor generalization. To better capture the structure of domain-specific
risks, we introduced a new perspective based on the average worst-case domain risk, showing that
minimizing individual sharpness offers more meaningful control over robustness to distribution shift
than minimizing global sharpness. This insight offers a fundamentally new direction for the DG
community, shifting the sharpness-aware optimization paradigm from global to domain-specific
objectives. Based on this finding, we proposed DGSAM, an algorithm that gradually applies perturba-
tions along domain-specific directions and reuses gradients to efficiently reduce individual sharpness.
Experiments on five DG benchmarks showed that DGSAM not only improves average accuracy but
also significantly reduces domain-wise variance, achieving flatter minima across individual domains
and better generalization to unseen distributions.

Our findings open a new direction for sharpness-aware domain generalization, but leave several open
questions.When all local minima correspond to fake flat minima, it remains unclear which solutions
are truly optimal or how to guide the model toward them. Developing a more direct method for
minimizing individual sharpness, beyond sequential perturbation, could further improve training
stability and theoretical guarantees. Finally, because SAM is widely applied in multi-loss settings
such as multi-task learning (Le et al., 2024; Phan et al., 2022) and federated learning (Lee & Yoon,
2024; Qu et al., 2022; Caldarola et al., 2022), careful treatment of individual sharpness may likewise
enhance generalization in these broader contexts.
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Appendix

A LIMITATIONS OF TOTAL GRADIENT PERTURBATION

In SAM, each iteration performs gradient ascent to identify sensitive directions in the loss landscape
by perturbing the parameters as

θ̃t = θt + ϵ∗Ds
= θt + ρ

∇Ls(θt)

∥∇Ls(θt)∥
, (6)

where ϵ∗Ds
is the perturbation computed from the total loss gradient. However, this update direction

may not increase losses uniformly across source domains, as the total loss gradient ∇Ls(θt) does
not generally align with the individual domain gradients ∇Li(θt) for i = 1, . . . , S, as discussed in
Section 3).

This misalignment between the total gradient and individual domain gradients leads to suboptimal
perturbations when applied uniformly across all domains. To empirically demonstrate this limitation,
we visualize in Figure 5 how different perturbation strategies affect the domain-wise loss increments
during training. Starting from θ0, we iteratively apply perturbations to compute the perturbed
parameter θ̃i = θ0 +

∑i
j=1 ϵj on the DomainNet dataset (Peng et al., 2019) using ResNet-50 (He

et al., 2016). In Figure 5a, each ϵi is computed using the total loss gradient. In contrast, Figure 5b
applies perturbations sequentially using domain-specific gradients.

As shown in Figure 5a, total gradient perturbations often increase losses in an imbalanced manner
across domains. On the other hand, the domain-wise perturbation strategy in Figure 5b leads to a more
uniform increase in domain-wise losses. This observation suggests that applying domain-specific
gradients sequentially is more effective at capturing the structure of individual domain losses. As a
result, the resulting perturbations better reflect individual sharpness.
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(a) Perturbation by total gradient.
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(b) Perturbation by individual gradients.

Figure 5: Domain-wise loss increments under different perturbation strategies.

B THEORETICAL ANALYSIS AND PROOFS

B.1 PROOF OF PROPOSITION 3.1

Proof of Proposition 3.1. Let θ be a strict local minimum such that ∇Ls(θ) = 0 and H(θ) =
∇2Ls(θ) ≻ 0. Suppose ρ is sufficiently small. Then, the second-order Taylor expansion for Ls and
Li gives:

Ls(θ + ϵ) = Ls(θ) +∇Ls(θ)
⊤ϵ+

1

2
ϵ⊤H(θ)ϵ+ o(∥ϵ∥2)

and
Li(θ + ϵ) = Li(θ) +∇Li(θ)

⊤ϵ+
1

2
ϵ⊤Hi(θ)ϵ+ o(∥ϵ∥2), i = 1, . . . , S

where H and Hi are the Hessian matrices for Ls and Li, respectively, evaluated at θ.

Then, using ∇Ls(θ) = 0 and H(θ) = 1
S

∑S
i=1 Hi(θ), we have

Ls(θ + ϵ)− Ls(θ) =
1

2
ϵ⊤

(
1

S

S∑
i=1

Hi(θ)

)
ϵ+ o(∥ϵ∥2)
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which yields the zeroth-order sharpness for Ls:

Sglobal(θ; ρ) = max
∥ϵ∥≤ρ

(Ls(θ + ϵ)− Ls(θ)) =
1

2S
ρ2σmax

(
S∑

i=1

Hi(θ)

)
+ o(∥ρ∥2)

where σmax(A) denotes the largest eigenvalue of the matrix A.

To show that the statement does not hold in general, it suffices to provide a counterexample. First, we
consider the case where ∥∇Li(θ)∥ = 0 for all i = 1, 2, . . . , S. Then, the zeroth-order sharpness of
the i-th individual loss function is given by

Si(θ; ρ) =
1

2
ρ2σmax (Hi(θ)) + o(∥ρ∥2).

This leads to the following expression of the average sharpness over all individual loss functions:

1

S

S∑
i=1

Si(θ; ρ) =
1

2S
ρ2

S∑
i=1

σmax (Hi(θ)) + o(∥ρ∥2).

Next, consider two different local minima θ1 and θ2. For sufficiently small ρ, we can write:

Sglobal(θ1; θ) < Sglobal(θ2; ρ) (7)
⇔

σmax

(
S∑

i=1

Hi(θ1)

)
< σmax

(
S∑

i=1

Hi(θ2)

)
. (8)

Similarly, for sufficiently small ρ, we have the following relationship between the average individual
sharpnesses at θ1 and θ2:

1

S

S∑
i=1

Si(θ; ρ) <
1

S

S∑
i=1

Si(θ; ρ) (9)

⇔
S∑

i=1

σmax (Hi(θ1)) <

S∑
i=1

σmax (Hi(θ2)) . (10)

Consequently, we conclude that Equation 7 does not imply Equation 9 since the largest eigenvalue of
a sum of matrices, σmax

(∑S
i=1 Hi(θ)

)
, is not generally equal to the sum of the largest eigenvalues

of the individual matrices,
∑S

i=1 σmax (Hi(θ)).

Secondly, let us consider the case where ∇Ls(θ) = 0, but there exists at least two elements such
that ∇Li(θ) ̸= 0. For simplicity, let S = 2. Without loss of generality, assume ∇L1(θ) > 0 and
∇L2(θ) = −∇L1(θ). Then, the sharpness for L1(θ) is given by

S1(θ; ρ) = ∥∇L1(θ)∥ρ+ o(∥ρ∥).

Now, consider two local minima θ1 and θ2 satisfying the following inequality:

Sglobal(θ1; ρ) < Sglobal(θ2; ρ).

A counterexample can be constructed such that for some G > 0 and 0 < c < 1,

∇L1(θ1) = G = −∇L2(θ1),

and
∇L1(θ2) = cG = −∇L2(θ2).

In this example, we find that 1
S

∑S
i=1 Si(θ1; ρ) > 1

S

∑S
i=1 Si(θ2; ρ),. However, such a choice of

gradients does not affect the Hessian matrices, and thus the inequality for the sharpness of the total
loss remains unchanged. Therefore, the sharpness for the total loss does not generally follow the
same ordering as the average sharpness of the individual losses.
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B.2 PROOF OF THEOREM 3.2

We begin by imposing some standard conditions on the loss function.
Assumption B.1. For each i, let Di be the i-th source domain distribution and LDi(θ) =
EX∼Di [ℓ(θ,X)] where ℓ is a loss function. Assume that ℓ(θ, x) is uniformly bounded for all θ
and x and Lipschitz continuous in θ. That is, there exist M and G such that

|ℓ(θ, x)| ≤ M, |ℓ(θ, x)− ℓ(θ′, x)| ≤ G∥θ − θ′∥ for all θ, θ′, x.

Moreover, if Div = W1 (the Wasserstein-1 distance), assume additionally that for each θ, the map
x 7→ ℓ(θ, x) is Lx–Lipschitz, i.e.

|ℓ(θ, x)− ℓ(θ, x′)| ≤ Lx d(x, x
′) for all θ, θ′, x.

Under Assumption B.1, the following lemma states the relationship between distribution shifts and
parameter perturbations.
Lemma B.2. Let Assumption B.1 hold, and let Di be the ith source distribution with

Li(θ) = Ex∼Di
[ℓ(θ;x)].

Fix a divergence or distance Div and threshold δ > 0, and set

Uδ
i = {D : Div(D∥Di) ≤ δ}.

Define the perturbation radius

ρ(δ) =



M

G

√
δ

2
, if Div = DKL,

M

G
δ, if Div = ∥ · ∥TV ,

Lx

G
δ, if Div = W1.

(11)

Then for all θ and any ρ ≥ ρ(δ),

sup
D∈Uδ

i

LD(θ) ≤ max
∥ϵ∥≤ρ

Li(θ + ϵ).

Proof. Fix ρ ≥ ρ(δ) where

ρ(δ) =



M

G

√
δ

2
, Div = DKL,

M

G
δ, Div = ∥ · ∥TV ,

Lx

G
δ, Div = W1.

We will show in each case that for all D with Div(D∥Di) ≤ δ,∣∣LD(θ)− Li(θ)
∣∣ ≤ Gρ(δ).

Case (i): Div = DKL and ρ(δ) = M
G

√
δ/2. Pinsker’s inequality gives

∥D − Di∥TV ≤
√

1
2 DKL(D∥Di) ≤

√
δ
2 ,

which leads to ∣∣LD(θ)− Li(θ)
∣∣ ≤ M ∥D − Di∥TV ≤ M

√
δ
2 = Gρ(δ).

Case (ii): Div = ∥ · ∥TV and ρ(δ) = M
G δ. The definition of total variation directly yields∣∣LD(θ)− Li(θ)
∣∣ ≤ M∥D − Di∥TV ≤ Mδ = Gρ(δ).
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Case (iii): Div = W1 and ρ(δ) = Lx

G δ. Assume in addition that x 7→ ℓ(θ;x) is Lx-Lipschitz. Then
by the Kantorovich–Rubinstein duality, we have∣∣LD(θ)− Li(θ)

∣∣ ≤ Lx W1(D,Di) ≤ Lx δ = Gρ(δ).

In each case, therefore, we obtain for all D ∈ Uδ
i

LD(θ) ≤ Li(θ) +Gρ (12)

On the other hand, for any perturbation ϵ with ∥ϵ∥ ≤ ρ, using the Lipschitz continuity of ℓ(·, x), we
obtain

Li(θ + ϵ)− Li(θ) = Ex∼Di

[
ℓ(θ + ϵ, x)− ℓ(θ, x)

]
≤ G∥ϵ∥

which yields

max
∥ϵ∥≤ρ

Li(θ + ϵ) ≤ Li(θ) +Gρ. (13)

Combining equation 12 and equation 13 and then taking the supremum over D ∈ Uδ
i gives

sup
D∈Uδ

i

LD(θ) ≤ max
∥ϵ∥≤ρ

LDi
(θ + ϵ).

Now, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Recall that

E(θ; δ) = 1

S

S∑
i=1

sup
D∈Uδ

i

LD(θ),

and

Ls(θ) =
1

S

S∑
i=1

Li(θ).

By Lemma B.2, for each i and ρ ≥ ρ(δ), we have

sup
D∈Uδ

i

LD(θ) ≤ max
∥ϵ∥≤ρ

Li(θ + ϵ) = Li(θ) + Si(θ; ρ).

where Si(θ; ρ) = max∥ϵ∥≤ρ Li(θ + ϵ)− Li(θ) is the individual sharpness for domain i. Averaging
over i = 1, . . . , S directly gives

E(θ; δ) = 1

S

S∑
i=1

sup
D∈Uδ

i

LD(θ)

≤ 1

S

S∑
i=1

[
Li(θ) + Si(θ; ρ)

]
= Ls(θ) +

1

S

S∑
i=1

Si(θ; ρ).

It remains to show that no analogous bound in terms of the global sharpness Sglobal(θ; ρ) can hold
uniformly. To this end, it is enough to find a counterexample. Let S = 2 and Div = DKL. Fix the
source distributions D1 = D2 = Uni{−1,+1} and define ℓ(θ, x) = θx, θ ∈ [0, 1]. Then, one can
compute

L1(θ) = L2(θ) = EX∼Di [θX] = 0, Ls(θ) =
L1(θ)+L2(θ)

2 = 0.
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If we take δ = ln 2, the adversarial set Uδ
i contains both point-masses δ+1 and δ−1. Hence, we have

sup
D∈Uδ

i

LD(θ) = max
x∈{+1,−1}

θ x = θ,

and therefore E(θ; δ) = θ. On the other hand, the global sharpness is trivially zero since Ls(θ) = 0.
Thus for any θ, we find

E(θ; δ) = θ > 0 = Ls(θ) + Sglobal(θ; ρ),

showing that no uniform bound of the form E(θ; δ) ≤ Ls(θ) + Sglobal(θ; ρ) can hold.

B.3 CONVERGENCE ANALYSIS

Our convergence analysis builds upon the techniques developed in Gower et al. (2019); Khaled &
Richtárik (2020); Oikonomou & Loizou (2025).

B.3.1 PRELIMINARIES

Definition B.3 (Domain-wise Subsampling and Stochastic Gradient, (Gower et al., 2019; Khaled
& Richtárik, 2020)). Let D1, . . . ,DS be S source domains, and i-th data point is associated with
individual loss functions Li(θ), where θ ∈ Rp denotes the model parameters. We define the total loss
function as:

Ls(θ) :=
1

n

n∑
i=1

Li(θ),

where n is the total number of training samples aggregated from all domains.

We consider a two-level sampling process: First, a domain index r ∈ {1, . . . , S} is selected uniformly
at random. Then, a minibatch Br ⊂ Dr of fixed size τ is sampled uniformly from within the selected
domain. The domain-wise sampling vector vQ = (vQ1 , . . . , vQn ) is drawn from a distribution Q
defined by this two-level process. For each sample i, the sampling weight is given by:

vQi :=
S · 1i∈Br

τ
,

where 1i∈Br
is the indicator function that equals 1 if sample i is included in the minibatch and 0

otherwise. The resulting domain-wise stochastic gradient estimator is:

gQ(θ) :=
∑
i

vQi ∇L(i)(θ).

where L(i) is the loss evaluated on the i-th sample. According to the general arbitrary sampling
paradigm (Gower et al., 2019), since vQ ∼ Q satisfies E[vQi ] = 1 for all i, the estimator gQ(θ) is
unbiased:

EQ[g
Q(θ)] = ∇Ls(θ).

Furthermore, the second moment E[∥vQi ∥2] is finite under this scheme.
Assumption B.4. Let B be a minibatch sampled from the domain-wise subsampling distribution
the domain-wise subsampling distribution Q defined in Definition B.3, and let LB denote the loss
evaluated on B. We assume that LB is L-smooth. That is, there exists a constant L > 0 such that for
all θ, θ′ and any B,

∥∇LB(θ)−∇LB(θ
′)∥ ≤ L∥θ − θ′∥. (14)

Definition B.5 (Expected Residual Condition). Let θ∗ = argminθ Ls(θ). We say the Expected
Residual condition is satisfied if there exist nonnegative constants M1,M2,M3 ≥ 0 such that, for
any point θ, the following inequality holds for an unbiased estimator (stochastic gradient) g(θ) of the
true gradient ∇Ls(θ):

E∥g(θ)∥2 ≤ 2M1[Ls(θ)− Ls(θ
∗)] +M2∥∇Ls(θ)∥2 +M3.

Corollary B.6. Let Assumption B.4 holds and let the domain-wise stochastic gradient by gQ(θ)
which is an unbiased estimator of Ls(θ) for all θ with E[∥vQi ∥2] ≤ ∞. Then, it holds that

EQ∥gQ(θ)∥2 ≤ 2M1[Ls(θ)− Ls(θ
∗)] +M2∥∇Ls(θ)∥2 +M3.
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Proof. In Proposition 2 of Khaled & Richtárik (2020), it is proved that L-smoothness and unbiased
stochastic gradient with ED[v

2
i ] < ∞ imply Expected Residual condition (Definition B.5).

We collect a few basic inequalities that are frequently used throughout the proofs: For any a, b ∈ Rd

and any β > 0, we have:

|⟨a, b⟩| ≤ 1

2β
∥a∥2 + β

2
∥b∥2, (15)

∥a+ b∥2 ≤ (1 + β−1)∥a∥2 + (1 + β)∥b∥2, (16)

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, (17)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

≤ n

n∑
i=1

∥xi∥2. (18)

B.3.2 LEMMAS

We use a uniformly random permutation {l1, . . . , lS} over the domain indices. Blj means mini-
batch from j-th chosen domain and the choice of order is initialized at every step. Thus Blj
is the domain-wise subsampling with definition B.3. For notational simplicity, we will write

gtj = ∇LBlj

(
θt +

j−1∑
k=1

ρ
gt
k

∥gt
k∥

)
.

Lemma B.7. Let Assumption B.4 hold. Then the following inequality holds:

EQg
t
j
2 ≤ 2S2L2ρ2 + 2EQg

Q(θt)
2,

where S is the number of domains.

Proof. It follows that

EQg
t
j
2 = EQ ∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

) 2

= EQ ∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

)
−∇LBlj

(θt) +∇LBlj
(θt)

2

(17)

≤ 2EQ ∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

)
−∇LBlj

(θt)

2

+ 2EQ ∇LBlj
(θt)

2

(14)

≤ 2L2ρ2EQ

j−1∑
k=1

gtk
∥gtk∥

2

+ 2EQg
Q(θt)

2

(18)

≤ 2L2ρ2(j − 1)

j−1∑
k=1

EQ
gtk
∥gtk∥

2

+ 2EQg
Q(θt)

2

≤ 2S2L2ρ2 + 2EQg
Q(θt)

2.

Lemma B.8. Let Assumption B.4 hold. Then the following inequality holds:

EQ
〈
gtj , ∇Ls(θt)

〉
≥ −SLρ+ (1− SLρ

4
)∥∇Ls(θt)∥2,

where S is the number of domains.
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Proof.

EQ
〈
gtj , ∇Ls(θt)

〉
= EQ

〈
∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

)
, ∇Ls(θt)

〉

= EQ

〈
∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk
∥gtk∥

)
−∇LBlj

(θt), ∇Ls(θt)

〉
+ EQ

〈
∇LBlj

(θt), ∇Ls(θt)
〉
.

We have

EQ

〈
∇LBlj

(θt), ∇Ls(θt)
〉
=
〈
EQ[∇LBlj

(θt)], ∇Ls(θt)
〉

=
〈
EQ[g

Q(θt)], ∇Ls(θt)
〉

= ∥∇Ls(θt)∥2,
and for β > 0

− EQ

〈
∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk

∥gtk∥

)
−∇LBlj

(θt), ∇Ls(θt)

〉
(15)

≤ 1

2β
EQ

∥∥∥∥∥∇LBlj

(
θt +

j−1∑
k=1

ρ
gtk

∥gtk∥

)
−∇LBlj

(θt)

∥∥∥∥∥
2

+
β

2
EQ∥∇Ls(θt)∥2

(14)

≤ L2ρ2

2β
EQ

j−1∑
k=1

gtk
∥gtk∥

2

+
β

2
∥∇Ls(θt)∥2

≤ S2L2ρ2

2β
+

β

2
∥∇Ls(θt)∥2.

In sum,

EQ
〈
gtj , ∇Ls(θt)

〉
≥ −S2L2ρ2

2β
− β

2
∥∇Ls(θt)∥2 + ∥∇Ls(θt)∥2

= −S2L2ρ2

2β
+ (1− β

2
)∥∇Ls(θt)∥2

= −SLρ+ (1− SLρ

4
)∥∇Ls(θt)∥2

with β = SLρ
2 .

Lemma B.9 (Lemma A.8, (Oikonomou & Loizou, 2025)). Let (rt)t≥0 and (δt)t≥0 be sequences
of non-negative real numbers and let g > 1 and N ≥ 0. Assume that the following recursive
relationship holds:

rt ≤ gδt − δt+1 +N (19)
Then it holds

min
0≤t≤T−1

rt ≤
gT

T
δ0 +N.

B.3.3 PROOF OF THEOREM

Theorem B.10 (ϵ-approximate stationary). Let Assumption B.4 hold. Define

Tmin =
12M4

ϵ2S
max{1, 24M1M4SL

ϵ2
, 4M2L, 12M3SL},

ρ =
1

SL
min{1, ϵ

2

12
,

ϵ

2
√
6L

},

γ = min{1, 1

S
√
2M1LT

,
1

4M2L
,

ϵ2

12M3SL
}.
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For all ϵ > 0, if the DGSAM iteration(4) is employed, then for ρ ≤ ρ, γ ≤ γ, T ≥ Tmin

min
t=0,...,T−1

E∥∇Ls(θt)∥ ≤ ϵ

where the initial optimality gap M4 = Ls(θ0)− Ls(θ
∗), S is the number of domains, M1,M2,M3

are the constants for the expected residual condition.

Proof. For simplicity, we assume that the effect of the batch size is absorbed into the learning rate γ,
i.e., γ is defined as the product of the base learning rate and the batch size.

From the L-smoothness of Ls, we have

Ls(θt+1) ≤ Ls(θt) + ⟨∇Ls(θt), θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2

= Ls(θt)− γ
S

S + 1

〈
∇Ls(θt),

S+1∑
j=1

gtj

〉
+

Lγ2

2

(
S

S + 1

)2
∥∥∥∥∥∥
S+1∑
j=1

gtj

∥∥∥∥∥∥
2

,

since the DGSAM update is defined as θt+1 = θt − γ S
S+1

S+1∑
j=1

gtj .

By taking the expectation,

EQ[Ls(θt+1)− Ls(θ
∗) | θt]− [Ls(θt)− Ls(θ
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≤ −γ
S

S + 1

S+1∑
j=1
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〈
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t
j

〉
+
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2

(
S

S + 1

)2
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2

(18)
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〉
+

Lγ2S2

2
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Lem.B.7,B.8

≤ −γS

(
−SLρ+ (1− SLρ

4
)∥∇Ls(θt)∥2

)
+

Lγ2S2

2

(
2S2L2ρ2 + 2EQg

Q(θt)
2
)

= −Sγ

(
1− SLρ

4

)
∥∇Ls(θt)∥2 + LS2γ2EQg

Q(θt)
2 + S2Lγρ(1 + S2L2γρ)

Cor.B.6
≤ −Sγ

(
1− SLρ

4

)
∥∇Ls(θt)∥2 + 2M1LS

2γ2[Ls(θt)− Ls(θ
∗)] +M2LSγ

2∥∇Ls(θt)∥2

+M3LS
2γ2 + S2Lγρ(1 + S2L2γρ)

= −Sγ

(
1− SLρ

4
−M2Lγ

)
∥∇Ls(θt)∥2 + 2M1LS

2γ2[Ls(θt)− Ls(θ
∗)] + S2Lγ(ρ+ S2L2γρ2 +M3γ)

≤ −Sγ

2
∥∇Ls(θt)∥2 + 2M1LS

2γ2[Ls(θt)− Ls(θ
∗)] + S2Lγ(ρ+ S2L2γρ2 +M3γ).

The final inequality follows from the inequality 1− SLρ
4 −M2Lγ ≥ 1

2 , which is obtained from our
assumptions ρ ≤ 1

SL and γ ≤ 1
4M2L

.
In sum,

ED[Ls(θt+1)− Ls(θ
∗)]− [Ls(θt)− Ls(θ

∗)]

≤ −Sγ

2
∥∇Ls(θt)∥2 + 2M1LS

2γ2[Ls(θt)− Ls(θ
∗)] + S2Lγ(ρ+ S2L2γρ2 +M3γ)

=⇒ Sγ

2
∥∇Ls(θt)∥2 ≤ (1 + 2M1LS

2γ2)[Ls(θt)− Ls(θ
∗)]− ED[Ls(θt+1)− Ls(θ

∗)]

+ S2Lγ(ρ+ S2L2γρ2 +M3γ). (20)

By taking expectation and applying the tower property, we can conclude that

E∥∇Ls(θt)∥2 ≤ (1 + 2M1LS
2γ2)

2

Sγ
E[Ls(θt)− Ls(θ

∗)]− 2

Sγ
E[Ls(θt+1)− Ls(θ

∗)]

+ 2SL(ρ+ S2L2γρ2 +M3γ). (21)
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We now define the following auxiliary quantities:

rt := E∥∇Ls(θt)∥2 ≥ 0,

δt :=
2

Sγ
E[Ls(θt)− Ls(θ

∗)] ≥ 0,

g := (1 + 2M1LS
2γ2) > 1,

N := 2SL(ρ+ S2L2γρ2 +M3γ).

With these definitions, inequality 21 becomes:

rt ≤ gδt − δt+1 +N.

By applying Lemma B.9, we have

min
t=0,...,T−1

E∥∇Ls(θt)∥2 ≤ 2(1 + 2M1LS
2γ2)T

TSγ
[Ls(θ0)− Ls(θ

∗)] + 2SL(ρ+ S2L2γρ2 +M3γ).

From 1 + x ≤ ex, we can get

(1 + 2M1LS
2γ2)T ≤ exp(2TM1LS

2γ2) ≤ exp(1) ≤ 3,

since we have γ ≤ 1
S
√
2M1LT

which imply 2TM1LS
2γ2 ≤ 1.

Therefore,

min
t=0,...,T−1

E∥∇Ls(θt)∥2 ≤ 6M4

TSγ
+ 2SL(ρ+ S2L2γρ2 +M3γ).

The second term is less than ϵ2

2 with assumptions:

2SLρ ≤ ϵ2

6
⇐⇒ ρ ≤ ϵ2

12SL
,

γ ≤ 1,

4S2L3γρ2 ≤ ϵ2

6
⇐⇒ ρ ≤ ϵ

2SL
√
6L

with γ ≤ 1,

2SLM3γ ≤ ϵ2

6
⇐⇒ γ ≤ ϵ2

12SLM3
.

Likewise, we have the inequality for the first term:

6M4

TSγ
≤ ϵ2

2
⇐⇒ T ≥ 12M4

ϵ2Sγ
(22)

We have so far imposed the following inequalities on γ:

γ ≤ min

{
1

4M2L
,

1

S
√
2M1LT

, 1,
ϵ2

12M3SL

}
Consequently, T must satisfy the following conditions for (22).

T ≥ max

{
48M2M4L

ϵ2S
,
288M1M

2
4L

ϵ4
,
12M4

ϵ2S
,
144M3M4L

ϵ2

}
Finally, we have:

min
t=0,...,T−1

E∥∇Ls(θt)∥2 ≤ ϵ2.

withe these assumptions:
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C ADDITIONAL EXPERIMENTS

C.1 SENSITIVITY ANALYSIS OF DGSAM WITH RESPECT TO ρ

To analyze the sensitivity of DGSAM to ρ, we evaluated the performance of SAM and DGSAM across
different ρ values {0.001, 0.005, 0.01, 0.05, 0.1, 0.2} on the PACS and TerraIncognita datasets. As
shown in Figure 6, DGSAM consistently outperformed SAM and demonstrated superior performance
over a wider range of ρ values.
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Figure 6: Sensitivity analysis

C.2 COMPARISON OF TWO TERMS IN EQ 5

Figure 7 shows that the second term tends to be slightly smaller than the first term, but the two are
comparable in magnitude. This indicates that both terms contribute to the gradual perturbation.
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Figure 7: Comparison of magnitude of two terms in Eq 5 on the PACS

C.3 ROBUSTNESS TO EXTREME DOMAIN IMBALANCE

To further validate the robustness of our proposed DGSAM method against domain imbalance, we
conducted additional stress-test experiments under more extreme imbalance scenarios. For this
analysis, we utilized the TerraIncognita dataset and artificially increased the sample size imbalance
ratio between the largest and smallest domains from the original approximate ratio of 2:1 to 3:1, 5:1,
and 10:1.

The results are presented in Table 4. As the domain imbalance becomes more severe, the performance
of all methods gradually decreases. However, DGSAM consistently and significantly outperforms
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both ERM and SAM across all tested scenarios. Notably, even with a severe 10:1 imbalance
ratio, DGSAM’s performance degrades gracefully while maintaining a substantial performance
margin over the baselines. This result strongly demonstrates that DGSAM is inherently robust to
domain heterogeneity and imbalance, owing to its mechanism of applying perturbations based on the
normalized gradient for each domain.

Table 4: Performance comparison on TerraIncognita under varying degrees of domain imbalance.

Method \ Ratio 2:1 (Original) 3:1 4:1 5:1 10:1

ERM 35.7 35.3 35.2 34.9 32.1
SAM 34.5 34.7 34.2 34.1 31.9
DGSAM 41.8 41.6 41.4 41.1 38.3

C.4 SCALABILITY TO A LARGE NUMBER OF DOMAINS

The standard DGSAM implementation performs a sequential ascent over all S source domains,
which can become computationally inefficient and potentially unstable as the number of domains S
becomes very large. To address this scalability concern, we introduce a straightforward and practical
modification: domain subsampling.

Instead of iterating through all S domains, we can fix the number of sequential ascent steps to k
(where k ≪ S, e.g., k = 5) by randomly subsampling a subset of k domains at each training iteration.
The method presented in the main manuscript is a specific case of this more general framework where
k = S.

To verify the effectiveness of this approach, we applied DGSAM with domain subsampling (k = 5) to
datasets comprising several tens of domains: PovertyMap (Yeh et al., 2020) and GlobalWheat (David
et al., 2020). As shown in Table 5, DGSAM with subsampling not only addresses the scalability issue
but also maintains strong performance, outperforming both ERM and SAM. This refinement confirms
that DGSAM can be effectively and practically applied to large-scale scenarios with numerous
domains.

Table 5: Performance on datasets with a large number of domains using domain subsampling.

Method PovertyMap (23 domains) GlobalWheat (47 domains)

ERM 0.45 50.8
SAM 0.44 51.1
DGSAM (k = 5 subsampling) 0.50 51.9

D COMPUTATION EFFICIENCY

D.1 ILLUSTRATION OF COMPUTATIONAL COST COMPARISON

In standard domain generalization tasks, a single update step operates on a batch that comprises
mini-batches from all source domains. While the number of data samples per domain-specific
mini-batch may vary, we follow the DomainBed protocol (Gulrajani & Lopez-Paz, 2021), where
each mini-batch contains an equal number of samples. Throughout this paper, we assume uniform
mini-batch sizes across domains.

Let the computational cost of computing the loss and performing backpropagation on a single domain-
specific mini-batch from one domain be denoted as c. In the standard SAM algorithm, both an ascent
and a descent gradient must be computed for each of the S domain-specific mini-batches, resulting in
a total gradient computation cost of 2S × c per update theoretically.

In contrast, as illustrated in the Figure 8, DGSAM computes gradients separately for each mini-batch,
using g1, . . . , gS not only as ascent gradients but also directly for the parameter update. Due to this
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(a) SAM

(b) DGSAM

Figure 8: Computational cost of SAM and DGSAM.

efficient reuse of gradients, DGSAM requires only (S + 1) × c in gradient computation cost per
update theoretically.

D.2 ADDITIONAL ANALYSIS ON MEMORY EFFICIENCY

We provide further analysis of memory usage for DGSAM in comparison with ERM and SAM.
Table 6 reports both the mean and maximum memory allocation measured during training.

While ERM and SAM perform the backward pass over a full batch including data from all domains,
DGSAM performs backward passes separately on each domain-specific mini-batch, accumulating
gradients before a single update. This approach prevents memory cost from scaling linearly with the
number of domains.

Although ERM and SAM could also be implemented using per-domain mini-batches, this is not the
standard practice in domain generalization. Domain-wise mini-batch versions of ERM and SAM
reduce memory usage but increase runtime due to multiple backward passes per iteration. DGSAM,
on the other hand, requires fewer gradient computations per iteration than SAM, making it generally
more efficient in both memory and runtime.

Table 6: Comparison of memory consumption (in GB) across methods.

Method Mean Memory (GB) Max Memory (GB)
ERM 8.0 8.1
SAM 8.1 8.3
DGSAM 5.8 6.0

E VISUALIZATION OF LOSS LANDSCAPES

Figure 9 shows the 3D loss landscapes of converged solutions obtained by SAM and our proposed
DGSAM on the PACS dataset using ResNet-50. Each subplot corresponds to a different domain or
the aggregated total loss. While SAM finds flat minima in the total loss, it fails to flatten the loss
surfaces in individual domains. In contrast, DGSAM successfully reduces individual sharpness as
well as the total sharpness, demonstrating its ability to achieve flatter minima at the domain level.
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Figure 9: Comparison of loss landscapes of converged minima using SAM and DGSAM across
different domains on the PACS dataset. We set the grid with two random direction. DGSAM performs
better than SAM in reducing individual sharpness in all three individual domains, and total sharpness.

Figure 10 illustrates how DGSAM sequentially applies domain-specific perturbations and aggregates
gradients to update the model.

Figure 10: A visualization of DGSAM algorithm.

F DETAILS OF MAIN EXPERIMENTS

F.1 IMPLEMENTATION DETAILS

We searched hyperparameters in the following ranges: the learning rate was chosen from {10−5, 2×
10−5, 3×10−5, 5×10−5}, the dropout rate from {0.0, 0.2, 0.5}, the weight decay from {10−4, 10−6},
and ρ from {0.03, 0.05, 0.1}. Each experiment was repeated three times, using 20 randomly initialized

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

models sampled from this space, following the DomainBed protocol (Gulrajani & Lopez-Paz, 2021).
The optimal hyperparameters selected based on DomainBed criteria for each dataset are provided in
Table 7 to ensure replicability. All our experiments were conducted on an NVIDIA A100 GPU, using
Python 3.11.5, PyTorch 2.0.0, Torchvision 0.15.1, and CUDA 11.7.

Table 7: Optimal hyperparameter settings for each dataset
Dataset Learning Rate Dropout Rate Weight Decay ρ

PACS 3× 10−5 0.5 10−4 0.03
VLCS 10−5 0.5 10−4 0.03
OfficeHome 10−5 0.5 10−6 0.1
TerraIncognita 10−5 0.2 10−6 0.05
DomainNet 2× 10−5 0.5 10−4 0.1

F.2 FULL RESULTS

Here are the detailed results of the main experiment in Section 5.2 for each dataset. The outcomes
are marked with † if sourced from Wang et al. (2023), ‡ if sourced from Zhang et al. (2023a), and
are unlabeled if sourced from individual papers. We note that all results were conducted in the
same experimental settings as described in their respective papers. The value shown next to the
performance for each test domain represents the standard error across three trials.

Table 8: The performance of DGSAM with 18 baseline algorithms on PACS.

Algorithm A C P S Avg SD (s/iter)

MTL† (Blanchard et al., 2021) 87.5±0.8 77.1±0.5 96.4±0.8 77.3±1.8 84.6 8.0 0.12
VREx† (Krueger et al., 2021) 86.0±1.6 79.1±0.6 96.9±0.5 77.7±1.7 84.9 7.6 0.11
ARM† (Zhang et al., 2021) 86.8±0.6 76.8±0.5 97.4±0.3 79.3±1.2 85.1 8.0 0.11
RSC† (Huang et al., 2020) 85.4±0.8 79.7±1.8 97.6±0.3 78.2±1.2 85.2 7.6 0.14
ERM† 84.7±0.4 80.8±0.6 97.2±0.3 79.3±1.0 85.5 7.0 0.11
CORAL† (Sun & Saenko, 2016) 88.3±0.2 80.0±0.5 97.5±0.3 78.8±1.3 86.2 7.5 0.12
SagNet† (Nam et al., 2021) 87.4±1.0 80.7±0.6 97.1±0.1 80.0±0.4 86.3 6.9 0.32
GGA (Ballas & Diou, 2025) 86.5±1.8 81.2±3.0 97.1±0.9 80.8±0.9 86.4 6.6 0.49
GGA-L (Ballas & Diou, 2025) 88.0±1.0 81.2±2.0 97.1±0.3 80.8±2.5 86.5 6.6 0.33
GENIE (Cho et al., 2025) 88.7±0.7 82.8±1.3 98.5±0.1 81.3±0.4 87.8 6.8 0.09
SWAD (Cha et al., 2021) 89.3±0.2 83.4±0.6 97.3±0.3 82.5±0.5 88.1 5.9 0.11

SAM† (Foret et al., 2021) 85.6±2.1 80.9±1.2 97.0±0.4 79.6±1.6 85.8 6.9 0.22
GSAM† (Zhuang et al., 2022) 86.9±0.1 80.4±0.2 97.5±0.0 78.7±0.8 85.9 7.4 0.22
Lookbehind-SAM (Mordido et al., 2024) 86.8±0.2 80.2±0.3 97.4±0.8 79.7±0.2 86.0 7.2 0.50
GAM‡ (Zhang et al., 2023b) 85.9±0.9 81.3±1.6 98.2±0.4 79.0±2.1 86.1 7.4 0.43
SAGM (Wang et al., 2023) 87.4±0.2 80.2±0.3 98.0±0.2 80.8±0.6 86.6 7.2 0.22
DISAM (Zhang et al., 2024) 87.1±0.4 81.9±0.5 96.2±0.3 83.1±0.7 87.1 5.6 0.33
FAD (Zhang et al., 2023a) 88.5±0.5 83.0±0.8 98.4±0.2 82.8±0.9 88.2 6.3 0.38

DGSAM 88.9±0.2 84.8±0.7 96.9±0.2 83.5±0.3 88.5 5.2 0.17
DGSAM + SWAD 89.1±0.5 84.6±0.4 97.3±0.1 83.6±0.4 88.7 5.4 0.17
DGSAM + CORAL 89.5±0.3 84.9±0.3 97.0±0.2 83.7±0.7 88.8 5.2 0.18
DGSAM + Mixup 90.1±0.4 84.8±0.4 98.2±0.3 84.5±0.5 89.4 5.5 0.17
DGSAM + ERM++ 90.6±0.5 85.2±0.6 98.5±0.3 86.0±0.4 90.1 5.3 0.25
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Table 9: The performance of DGSAM with 18 baseline algorithms on VLCS

Algorithm C L S V Avg SD (s/iter)

RSC† (Huang et al., 2020) 97.9±0.1 62.5±0.7 72.3±1.2 75.6±0.8 77.1 13.0 0.13
MTL† (Blanchard et al., 2021) 97.8±0.4 64.3±0.3 71.5±0.7 75.3±1.7 77.2 12.5 0.12
ERM† 98.0±0.3 64.7±1.2 71.4±1.2 75.2±1.6 77.3 12.5 0.11
ARM† (Zhang et al., 2021) 98.7±0.2 63.6±0.7 71.3±1.2 76.7±0.6 77.6 13.1 0.11
SagNet† (Nam et al., 2021) 97.9±0.4 64.5±0.5 71.4±1.3 77.5±0.5 77.8 12.5 0.32
VREx† (Krueger et al., 2021) 98.4±0.3 64.4±1.4 74.1±0.4 76.2±1.3 78.3 12.4 0.11
GGA-L (Ballas & Diou, 2025) 98.9±0.4 66.5±0.3 70.0±2.0 78.1±1.1 78.4 12.6 0.33
GGA (Ballas & Diou, 2025) 98.4±0.2 65.4±0.1 73.8±1.6 77.4±1.9 78.7 12.2 0.49
CORAL† (Sun & Saenko, 2016) 98.3±0.1 66.1±1.2 73.4±0.3 77.5±1.2 78.8 12.0 0.12
SWAD (Cha et al., 2021) 98.8±0.1 63.3±0.3 75.3±0.5 79.2±0.6 79.1 12.8 0.11
GENIE (Cho et al., 2025) 99.3±0.3 67.2±1.5 76.6±0.3 79.7±0.8 80.7 11.7 0.09

GAM‡ (Zhang et al., 2023b) 98.8±0.6 65.1±1.2 72.9±1.0 77.2±1.9 78.5 12.5 0.43
Lookbehind-SAM (Mordido et al., 2024) 98.7±0.6 65.1±1.1 73.1±0.4 78.7±0.9 78.9 12.4 0.50
FAD (Zhang et al., 2023a) 99.1±0.5 66.8±0.9 73.6±1.0 76.1±1.3 78.9 12.1 0.38
GSAM† (Zhuang et al., 2022) 98.7±0.3 64.9±0.2 74.3±0.0 78.5±0.8 79.1 12.3 0.22
SAM† (Foret et al., 2021) 99.1±0.2 65.0±1.0 73.7±1.0 79.8±0.1 79.4 12.5 0.22
DISAM (Zhang et al., 2024) 99.3±0.0 66.3±0.5 81.0±0.1 73.2±0.1 79.9 12.3 0.33
SAGM (Wang et al., 2023) 99.0±0.2 65.2±0.4 75.1±0.3 80.7±0.8 80.0 12.3 0.22

DGSAM + SWAD 99.3±0.7 67.2±0.3 77.7±0.6 79.2±0.5 80.9 11.6 0.17
DGSAM + ERM++ 99.2±0.3 67.4±0.2 77.8±0.1 79.5±0.4 81.0 11.5 0.25
DGSAM 99.0±0.5 67.0±0.5 77.9±0.5 81.8±0.4 81.4 11.5 0.17
DGSAM + Mixup 99.1±0.4 67.3±0.5 78.1±0.2 82.1±0.5 81.7 11.4 0.17
DGSAM + CORAL 99.3±0.8 67.4±0.7 79.5±0.5 81.5±0.1 81.9 11.4 0.18

Table 10: The performance of DGSAM with 18 baseline algorithms on OfficeHome

Algorithm A C P R Avg SD (s/iter)

ARM† (Zhang et al., 2021) 58.9±0.8 51.0±0.5 74.1±0.1 75.2±0.3 64.8 10.2 0.11
RSC† (Huang et al., 2020) 60.7±1.4 51.4±0.3 74.8±1.1 75.1±1.3 65.5 10.0 0.14
MTL† (Blanchard et al., 2021) 61.5±0.7 52.4±0.6 74.9±0.4 76.8±0.4 66.4 10.0 0.12
VREx† (Krueger et al., 2021) 60.7±0.9 53.0±0.9 75.3±0.1 76.6±0.5 66.4 9.9 0.11
GGA-L (Ballas & Diou, 2025) 59.7±0.2 53.8±0.5 75.3±0.8 77.1±0.1 66.5 10.0 0.33
GGA (Ballas & Diou, 2025) 61.7±0.1 52.5±0.5 77.1±1.3 77.0±0.1 67.0 10.5 0.49
ERM† 63.1±0.3 51.9±0.4 77.2±0.5 78.1±0.2 67.6 10.8 0.11
SagNet† (Nam et al., 2021) 63.4±0.2 54.8±0.4 75.8±0.4 78.3±0.3 68.1 9.5 0.32
CORAL† (Sun & Saenko, 2016) 65.3±0.4 54.4±0.5 76.5±0.1 78.4±0.5 68.7 9.6 0.12
GENIE (Cho et al., 2025) 66.2±0.5 55.0±0.4 77.5±0.4 80.0±0.5 69.7 10.0 0.09
SWAD (Cha et al., 2021) 66.1±0.4 57.7±0.4 78.4±0.1 80.2±0.2 70.6 9.2 0.11

GAM‡ (Zhang et al., 2023b) 63.0±1.2 49.8±0.5 77.6±0.6 82.4±1.0 68.2 12.8 0.43
FAD (Zhang et al., 2023a) 63.5±1.0 50.3±0.8 78.0±0.4 85.0±0.6 69.2 13.4 0.40
Lookbehind-SAM (Mordido et al., 2024) 64.7±0.3 53.1±0.8 77.4±0.5 81.7±0.7 69.2 11.2 0.50
GSAM† (Zhuang et al., 2022) 64.9±0.1 55.2±0.2 77.8±0.0 79.2±0.0 69.3 9.9 0.22
SAM† (Foret et al., 2021) 64.5±0.3 56.5±0.2 77.4±0.1 79.8±0.4 69.6 9.5 0.22
SAGM (Wang et al., 2023) 65.4±0.4 57.0±0.3 78.0±0.3 80.0±0.2 70.1 9.4 0.22
DISAM (Zhang et al., 2024) 65.8±0.2 55.6±0.2 79.2±0.2 80.6±0.1 70.3 10.3 0.33

DGSAM 65.6±0.4 59.7±0.2 78.0±0.2 80.1±0.4 70.8 8.5 0.17
DGSAM + CORAL 66.4±0.5 59.6±0.2 78.3±0.3 80.5±0.5 71.2 8.6 0.18
DGSAM + Mixup 67.3±0.3 60.2±0.4 77.4±0.3 80.3±0.3 71.3 8.0 0.17
DGSAM + SWAD 66.2±0.6 59.9±0.1 78.1±0.4 81.2±0.5 71.4 8.7 0.17
DGSAM + ERM++ 70.9±0.5 62.7±0.1 82.3±0.2 83.8±0.1 74.9 8.6 0.25
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Table 11: The performance of DGSAM with 18 baseline algorithms on TerraIncognita

Algorithm L100 L38 L43 L46 Avg SD (s/iter)

ARM† (Zhang et al., 2021) 49.3±0.7 38.3±2.4 55.8±0.8 38.7±1.3 45.5 7.4 0.11
MTL† (Blanchard et al., 2021) 49.3±1.2 39.6±6.3 55.6±1.1 37.8±0.8 45.6 7.3 0.12
ERM† 49.8±4.4 42.1±1.4 56.9±1.8 35.7±3.9 46.1 8.0 0.11
VREx† (Krueger et al., 2021) 48.2±4.3 41.7±1.3 56.8±0.8 38.7±3.1 46.4 6.9 0.11
RSC† (Huang et al., 2020) 50.2±2.2 39.2±1.4 56.3±1.4 40.8±0.6 46.6 7.0 0.13
CORAL† (Sun & Saenko, 2016) 51.6±2.4 42.2±1.0 57.0±1.0 39.8±2.9 47.7 7.0 0.12
GGA (Ballas & Diou, 2025) 50.9±2.2 42.5±1.0 59.7±1.4 41.5±3.5 48.5 7.4 0.49
SagNet† (Nam et al., 2021) 53.0±2.9 43.0±2.5 57.9±0.6 40.4±1.3 48.6 7.1 0.32
GGA-L (Ballas & Diou, 2025) 57.2±5.2 45.1±1.0 56.4±1.4 44.5±3.5 49.8 6.0 0.33
SWAD (Cha et al., 2021) 55.4±0.0 44.9±1.1 59.7±0.4 39.9±0.2 50.0 7.9 0.11
GENIE (Cho et al., 2025) 55.2±4.8 47.5±2.1 59.2±0.4 45.9±1.0 52.0 5.5 0.09

SAM† (Foret et al., 2021) 46.3±1.0 38.4±2.4 54.0±1.0 34.5±0.8 43.3 7.5 0.22
Lookbehind-SAM (Mordido et al., 2024) 44.6±0.8 41.1±1.4 57.4±1.2 34.9±0.6 44.5 8.2 0.50
GAM‡ (Zhang et al., 2023b) 42.2±2.6 42.9±1.7 60.2±1.8 35.5±0.7 45.2 9.1 0.43
FAD (Zhang et al., 2023a) 44.3±2.2 43.5±1.7 60.9±2.0 34.1±0.5 45.7 9.6 0.38
DISAM (Zhang et al., 2024) 46.2±2.9 41.6±0.1 58.0±0.5 40.5±2.2 46.6 6.9 0.33
GSAM† (Zhuang et al., 2022) 50.8±0.1 39.3±0.2 59.6±0.0 38.2±0.8 47.0 8.8 0.22
SAGM (Wang et al., 2023) 54.8±1.3 41.4±0.8 57.7±0.6 41.3±0.4 48.8 7.5 0.22

DGSAM 54.5±0.6 45.3±0.7 59.4±0.4 42.3±1.0 50.4 6.9 0.17
DGSAM + Mixup 54.7±0.9 45.2±0.4 59.5±0.4 42.5±0.8 50.5 6.9 0.17
DGSAM + CORAL 55.8±0.5 45.4±0.8 59.2±0.2 42.7±1.1 50.8 6.9 0.19
DGSAM + SWAD 55.6±1.2 45.9±0.5 59.6±0.5 43.1±0.9 51.1 6.8 0.17
DGSAM + ERM++ 56.2±0.9 49.3±1.3 59.8±0.5 43.2±0.7 52.1 6.4 0.25

Table 12: The performance of DGSAM with 18 baseline algorithms on DomainNet

Algorithm C I P Q R S Avg SD (s/iter)

VREx† (Krueger et al., 2021) 47.3 ±3.5 16.0 ±1.5 35.8 ±4.6 10.9 ±0.3 49.6 ±4.9 42.0 ±3.0 33.6 15.0 0.18
ARM† (Zhang et al., 2021) 49.7 ±0.3 16.3 ±0.5 40.9 ±1.1 9.4 ±0.1 53.4 ±0.4 43.5 ±0.4 35.5 16.7 0.18
RSC† (Huang et al., 2020) 55.0 ±1.2 18.3 ±0.5 44.4 ±0.6 12.2 ±0.2 55.7 ±0.7 47.8 ±0.9 38.9 17.3 0.20
SagNet† (Nam et al., 2021) 57.7 ±0.3 19.0 ±0.2 45.3 ±0.3 12.7 ±0.5 58.1 ±0.5 48.8 ±0.2 40.3 17.9 0.53
MTL† (Blanchard et al., 2021) 57.9 ±0.5 18.5 ±0.4 46.0 ±0.1 12.5 ±0.1 59.5 ±0.3 49.2 ±0.1 40.6 18.4 0.20
ERM† 58.1 ±0.3 18.8 ±0.3 46.7 ±0.3 12.2 ±0.4 59.6 ±0.1 49.8 ±0.4 40.9 18.6 0.18
CORAL† (Sun & Saenko, 2016) 59.2 ±0.1 19.7 ±0.2 46.6 ±0.3 13.4 ±0.4 59.8 ±0.2 50.1 ±0.6 41.5 18.3 0.20
GENIE (Cho et al., 2025) 62.5 ±0.5 21.3 ±0.4 50.0 ±0.4 14.0 ±0.4 64.0 ±0.7 52.6 ±0.8 44.1 19.4 0.14
GGA (Ballas & Diou, 2025) 63.7 ±0.2 21.3 ±0.3 50.4 ±0.1 14.1 ±0.4 63.8 ±0.2 53.5 ±0.3 44.4 19.7 0.75
GGA-L (Ballas & Diou, 2025) 63.2 ±0.2 21.0 ±0.3 49.5 ±0.1 13.8 ±0.2 64.1 ±0.4 53.6 ±0.3 44.5 19.7 0.50
SWAD (Cha et al., 2021) 66.0 ±0.1 22.4 ±0.3 53.5 ±0.1 16.1 ±0.2 65.8 ±0.4 55.5 ±0.3 46.5 19.9 0.18

GAM‡ (Zhang et al., 2023b) 63.0 ±0.5 20.2 ±0.2 50.3 ±0.1 13.2 ±0.3 64.5 ±0.2 51.6 ±0.5 43.8 20.0 0.71
Lookbehind-SAM (Mordido et al., 2024) 64.3 ±0.3 20.8 ±0.1 50.4 ±0.1 15.0 ±0.4 63.1 ±0.3 51.4 ±0.3 44.1 19.4 0.71
SAM† (Foret et al., 2021) 64.5 ±0.3 20.7 ±0.2 50.2 ±0.1 15.1 ±0.3 62.6 ±0.2 52.7 ±0.3 44.3 19.4 0.34
FAD (Zhang et al., 2023a) 64.1 ±0.3 21.9 ±0.2 50.6 ±0.3 14.2 ±0.4 63.6 ±0.1 52.2 ±0.2 44.4 19.5 0.56
GSAM† (Zhuang et al., 2022) 64.2 ±0.3 20.8 ±0.2 50.9 ±0.0 14.4 ±0.8 63.5 ±0.2 53.9 ±0.2 44.6 19.8 0.36
SAGM (Wang et al., 2023) 64.9 ±0.2 21.1 ±0.3 51.5 ±0.2 14.8 ±0.2 64.1 ±0.2 53.6 ±0.2 45.0 19.8 0.34
DISAM (Zhang et al., 2024) 65.9 ±0.2 20.7 ±0.2 51.7 ±0.3 16.6 ±0.3 62.8 ±0.5 54.8 ±0.4 45.4 19.5 0.53

DGSAM 63.6 ±0.4 22.2 ±0.1 51.9 ±0.3 15.8 ±0.2 64.7 ±0.3 54.7 ±0.4 45.5 19.4 0.26
DGSAM + CORAL 64.3 ±0.2 22.5 ±0.2 54.2 ±0.3 16.2 ±0.2 64.9 ±0.1 55.2 ±0.2 46.2 19.5 0.28
DGSAM + SWAD 67.2 ±0.2 23.2 ±0.3 53.4 ±0.3 17.3 ±0.4 65.4 ±0.2 55.8 ±0.3 47.1 19.6 0.26
DGSAM + Mixup 67.4 ±0.3 25.4 ±0.1 54.8 ±0.2 17.6 ±0.3 67.5 ±0.4 57.3 ±0.3 48.3 19.7 0.26
DGSAM + ERM++ 71.3 ±0.3 26.9 ±0.2 58.6 ±0.2 17.9 ±0.5 70.5 ±0.2 60.8 ±0.5 51.0 20.9 0.43
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G BASELINE REFERENCES

Table 1 compares our proposed method with several baseline algorithms for domain generalization.
For a fair and consistent comparison, we report the performance metrics as presented in prior works.

Most results are sourced directly from the original papers introducing each algorithm. For certain
baselines, results are quoted from recent state-of-the-art papers to ensure the experimental settings
are as consistent as possible. Specifically, results marked with † are sourced from SAGM (Wang
et al., 2023), and the result for GAM (‡) is from FAD (Zhang et al., 2023a).

The references for each baseline algorithm and combined methodology are as follows:

• ARM (Zhang et al., 2021)
• VREx (Krueger et al., 2021)
• RSC (Huang et al., 2020)
• MTL (Blanchard et al., 2021)
• SagNet (Nam et al., 2021)
• CORAL (Sun & Saenko, 2016)
• GGA & GGA-L (Ballas & Diou, 2025)
• GENIE (Cho et al., 2025)
• SWAD (Cha et al., 2021)
• GAM (Zhang et al., 2023b)
• SAM (Foret et al., 2021)
• Lookbehind-SAM (Mordido et al., 2024)
• GSAM (Zhuang et al., 2022)
• FAD (Zhang et al., 2023a)
• DISAM (Zhang et al., 2024)
• SAGM (Wang et al., 2023)
• SFT (Li et al., 2025)
• MixUp (Lopez-Paz et al., 2018)
• ERM++ (Teterwak et al., 2025)
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