

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AGGREGATED SHARPNESS-AWARE MINIMIZATION IS SUBOPTIMAL IN DOMAIN GENERALIZATION: TO- WARDS PER-DOMAIN SHARPNESS-AWARE MINIMIZA- TION

Anonymous authors

Paper under double-blind review

ABSTRACT

Domain generalization (DG) aims to learn models that perform well on unseen target domains by training on multiple source domains. Sharpness-Aware Minimization (SAM), known for finding flat minima that improve generalization, has therefore been widely adopted in DG. However, we argue that the prevailing approach of applying SAM to the aggregated loss for domain generalization is fundamentally suboptimal. This “aggregated sharpness” objective can be deceptive, leading to convergence to fake flat minima where the total loss surface is flat, but the underlying per-domain landscapes remain sharp. To establish a more principled objective, we analyze a worst-case risk formulation that reflects the true nature of DG. Our analysis reveals that per-domain sharpness provides a valid upper bound on this risk, while aggregated sharpness does not, making it a more theoretically grounded target for robust domain generalization. Motivated by this, we propose *Domain-wise Gradual SAM (DGSAM)*, which applies gradual, domain-wise perturbations to effectively control per-domain sharpness in a computationally efficient manner. Extensive experiments demonstrate that DGSAM not only improves average accuracy but also reduces performance variance across domains, while incurring less computational overhead than SAM.

1 INTRODUCTION

Deep neural networks achieve remarkable performance under the independent and identically distributed (i.i.d.) assumption (Kawaguchi et al., 2017), yet this assumption often fails in practice due to *domain shifts*. For example, in medical imaging, test data may differ in acquisition protocols or device vendors (Li et al., 2020), and in autonomous driving, variations in weather or camera settings introduce further domain shifts (Khosravian et al., 2021). Since it is impractical to include every possible scenario in the training data, *domain generalization* (DG) seeks to learn models that generalize to unseen target domains using only source domain data (Muandet et al., 2013; Arjovsky et al., 2019; Li et al., 2018c; Volpi et al., 2018; Li et al., 2019).

A common DG strategy is to learn domain-invariant representations by aligning source domain distributions and minimizing their discrepancies (Muandet et al., 2013; Arjovsky et al., 2019), adversarial training (Li et al., 2018c; Ganin et al., 2016), data augmentation (Volpi et al., 2018; Zhou et al., 2020; 2021), and meta-learning approaches (Li et al., 2019; Balaji et al., 2018). These strategies share the common goal of solving the core challenge of DG: learning from source domains with structured shifts (e.g., artistic style, weather conditions) to generalize to unseen variations of these structures. More recently, flat minima in the loss landscape have been linked to improved robustness under distributional shifts (Cha et al., 2021; Zhang et al., 2022; Chaudhari et al., 2019). In particular, Sharpness-Aware Minimization (SAM) (Foret et al., 2021) perturbs model parameters along high-curvature directions to locate flatter regions of the loss surface, and has been applied to DG (Wang et al., 2023; Shin et al., 2024; Zhang et al., 2024).

However, we argue that the prevailing approach of applying SAM to the aggregated loss is fundamentally suboptimal. Our analysis reveals that the current SAM-based approach for DG pursues an

unrealistic goal: robustness to perturbations of a probabilistic average of the source domains, rather than the coherent shifts of per-domain source types that characterize real-world DG. This misalignment can be deceptive, leading to convergence to *fake flat minima* that appear flat on aggregated loss but remain sharp on separate domains. We find this occurs because aggregated sharpness is an unreliable proxy for the per-domain flatness that is truly required for robust generalization. To establish a more principled objective, we introduce a worst-case risk formulation that formalizes this notion of coherent shifts. We then theoretically demonstrate that per-domain sharpness, not aggregated sharpness, provides a valid upper bound on this risk, making it a more grounded target for optimization.

Motivated by these insights, we propose a novel DG algorithm, **Domain-wise Gradual Sharpness-Aware Minimization (DGSAM)** that employs a gradual and domain-specific perturbation mechanism designed to effective control per-domain sharpness. DGSAM improves upon existing SAM-based DG methods in three key aspects. First, it efficiently reduces the per-domain sharpness of source domains rather than the aggregated sharpness of the total loss, enabling better learning of domain-invariant features. Second, it achieves high computational efficiency by reusing gradients computed during gradual perturbation, in contrast to traditional SAM-based methods that incur twice the overhead of standard empirical risk minimization. Third, while prior approaches rely on proxy curvature metrics, DGSAM controls the eigenvalues of the Hessian, which are the most direct indicators of sharpness (Keskar et al., 2016; Ghorbani et al., 2019b). Our extensive experiments confirm the superiority of this approach. DGSAM demonstrates a superior balance of accuracy and robustness, achieving the highest average accuracy and the lowest average domain-wise variance across five benchmarks. Furthermore, DGSAM shows broad compatibility by enhancing various DG frameworks and confirms its scalability on large-scale Vision Transformer models, all while being more computationally efficient than standard SAM.

2 PRELIMINARIES AND RELATED WORKS

2.1 DOMAIN GENERALIZATION

Let $\mathcal{D}_s := \{\mathcal{D}_i\}_{i=1}^S$ denote the collection of training samples, where \mathcal{D}_i represents the training samples from the i -th domain¹. The total loss over all source domains is defined as:

$$\mathcal{L}_s(\theta) := \frac{1}{|\mathcal{D}_s|} \sum_{\mathcal{D}_i \in \mathcal{D}_s} \mathcal{L}_i(\theta), \quad (1)$$

where \mathcal{L}_i denotes the loss evaluated on samples from the i -th domain, and θ is the model parameter.

A naïve approach to DG minimizes the empirical risk over the source domains.: $\theta_s^* = \arg \min_{\theta} \mathcal{L}_s(\theta)$. However, this solution may fail to generalize to unseen target domains, as it is optimized solely on the training distribution. The goal of domain generalization is to learn parameters θ that are robust to domain shifts, performing well on previously unseen domains.

As the importance of DG has grown, several datasets (Li et al., 2017b; Fang et al., 2013; Peng et al., 2019) and standardized protocols (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021) have been introduced. Research directions in DG include domain-adversarial learning (Jia et al., 2020; Li et al., 2018c; Akuzawa et al., 2020; Shao et al., 2019; Zhao et al., 2020), moment-based alignment (Ghifary et al., 2016; Muandet et al., 2013; Li et al., 2018b), and contrastive loss-based domain alignment (Yoon et al., 2019; Motian et al., 2017). Other approaches focus on data augmentation (Xu et al., 2020; Shi et al., 2020; Qiao et al., 2020), domain disentanglement (Li et al., 2017a; Khosla et al., 2012), meta-learning (Li et al., 2018a; Zhang et al., 2021; Li et al., 2019), and ensemble learning (Cha et al., 2021; Seo et al., 2020; Xu et al., 2014).

2.2 SHARPNESS-AWARE MINIMIZATION

A growing body of work connects generalization to the geometry of the loss surface, especially its curvature (Hochreiter & Schmidhuber, 1994; Neyshabur et al., 2017; Keskar et al., 2017; Chaudhari et al., 2019; Foret et al., 2021). Building on this, Foret et al. (2021) proposed Sharpness-Aware

¹With slight abuse of notation, we also use \mathcal{D}_i to represent the underlying data distribution of the i -th domain.

108 Minimization (SAM), which optimizes the model to minimize both the loss and the sharpness of the
 109 solution. The SAM objective is defined as:

$$\min_{\theta} \max_{\|\epsilon\| \leq \rho} \mathcal{L}(\theta + \epsilon), \quad (2)$$

113 where the inner maximization finds the worst-case perturbation ϵ within a neighborhood of radius ρ .

114 Following the success of SAM, several extensions have emerged, primarily focusing on refining
 115 the sharpness surrogate (Kwon et al., 2021; Zhuang et al., 2022; Zhang et al., 2022) or reducing its
 116 computational overhead (Du et al., 2022; Liu et al., 2022; Mordido et al., 2024). The promise of
 117 improved generalization has naturally led to the exploration of sharpness-aware methods in domain
 118 generalization. A common strategy is to apply SAM to the aggregated loss over source domains (Wang
 119 et al., 2023; Shin et al., 2024; Cha et al., 2021; Dong et al., 2024), which seeks a solution that is flat
 120 with respect to the total aggregated loss. Recognizing the importance of domain-level structure, recent
 121 work has incorporated domain information, either by adding regularization to penalize inter-domain
 122 loss variance (Zhang et al., 2024) or by iteratively refining loss landscapes for consistency across
 123 domains (Li et al., 2025).

124 While these approaches represent important progress, they either still optimize for aggregated
 125 sharpness or implicitly encourage per-domain flatness through consistency constraints without a
 126 formal per-domain sharpness minimization objective. In the following section, we propose a domain-
 127 wise objective that explicitly minimizes the sharpness within each domain’s loss landscape. A more
 128 detailed categorization and comparison of existing approaches is provided in Appendix H.

130 3 RETHINKING SHARPNESS IN DOMAIN GENERALIZATION

131 The prevailing paradigm in the current literature is to apply SAM to the aggregated loss across all
 132 source domains. We argue this approach is fundamentally suboptimal for domain generalization,
 133 as it is built on an assumption that is misaligned with the core nature of the DG problem itself. By
 134 collapsing the crucial structural information between domains, this strategy shifts the optimization
 135 objective from learning features that are truly domain-invariant, to merely seeking robustness for a
 136 probabilistic average of the source domains. This is a critical distinction, as this probabilistic average
 137 may not represent any realistic domain and is not equivalent to the shared, invariant features required
 138 for true generalization. This misalignment can be deceptive, leading to convergence to ‘fake flat
 139 minima’. In Section 3.1, we first provide a formal and intuitive illustration of this pitfall. We then
 140 propose a more principled objective grounded in a worst-case risk formulation that respects this
 141 essential domain-specific structure in Section 3.2.

142 3.1 AGGREGATED SHARPNESS PITFALLS: THE FAKE FLAT MINIMA PROBLEM

143 To formalize our perspective, we distinguish between two key concepts. The prevailing approach for
 144 SAM in DG focuses on aggregated sharpness, defined as:

$$S_{\text{agg}}(\theta; \rho) = \max_{\|\epsilon\| \leq \rho} (\mathcal{L}_s(\theta + \epsilon) - \mathcal{L}_s(\theta)).$$

149 where \mathcal{L}_s is the total loss over all source domains, defined in equation 2.1. In contrast, our work
 150 focuses on the per-domain sharpness of each source domain \mathcal{D}_i , defined as:

$$S_i(\theta; \rho) = \max_{\|\epsilon\| \leq \rho} (\mathcal{L}_i(\theta + \epsilon) - \mathcal{L}_i(\theta)).$$

154 To generalize well to unseen domains, a model must learn representations that are robust to various
 155 domain shifts. The most direct way to achieving this is to ensure that the learned solution is robust
 156 against new domains that are variations of each of the source domains seen during training. Therefore,
 157 an ideal DG approach should find a solution that is simultaneously flat with respect to every source
 158 domain, a property directly captured by per-domain sharpness (S_i).

159 The prevailing approach of minimizing aggregated sharpness (S_{agg}), however, does not guarantee this
 160 ideal outcome. As aggregated sharpness is measured on the aggregated loss, it is possible for this
 161 mixture to be flat while the loss landscapes of the underlying separate domains remain sharp. This
 presents a critical failure mode: if an unseen test domain shares characteristics with a source domain

for which the model has high per-domain sharpness, the model will likely fail, regardless of its low aggregated sharpness. This divergence, where low aggregated sharpness masks high per-domain sharpness, leads to what we term *fake flat minima*. The following proposition formally demonstrates that aggregated and per-domain sharpness are not necessarily correlated.

Proposition 3.1. *Let θ be a model parameter and $\rho > 0$ a fixed perturbation radius. Then, there exist two local minima θ_1 and θ_2 such that*

$$\mathcal{S}_{agg}(\theta_1; \rho) < \mathcal{S}_{agg}(\theta_2; \rho) \quad \text{but} \quad \frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta_1; \rho) \geq \frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta_2; \rho).$$

Equivalently,

$$\mathcal{S}_{agg}(\theta_1; \rho) < \mathcal{S}_{agg}(\theta_2; \rho) \Rightarrow \frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta_1; \rho) < \frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta_2; \rho).$$

The proof is deferred to Appendix B.1. This proposition provides the formal basis for the fake flat minima phenomenon, confirming that a low value of aggregated sharpness (\mathcal{S}_{agg}) can be achieved even when the average per-domain sharpness ($\frac{1}{S} \sum_i \mathcal{S}_i$) remains high.

To illustrate this phenomenon, we present a 2-dimensional toy example involving two domains and two loss functions. Each domain shares the same base loss shape (Figure 2a) but is shifted along one axis. Figures 2b and 2c visualize the total loss from two perspectives. In this example, region **R1** corresponds to an *ideal solution*, where both single domain losses exhibit flat minima. In contrast, region **R2** remains sharp for each single domain loss, but appears deceptively flat in the total loss due to cancellation of opposing sharp valleys (Figure 1). As a result, both SAM and SGD converge to region **R2** (Figure 2d), which constitutes a *fake flat minimum*.

Figure 1: Fake flat minimum: two sharp per-domain losses (dotted) cancel out when summed, resulting in a deceptively flat total loss (solid).

(a) Loss landscape of a single domain
(b) Side view of the total loss landscape
(c) Rear view of the total loss landscape
(d) Optimization trajectories

Figure 2: Toy example: two conflicting loss functions construct two different type of flat minima. An interactive visualization of toy example is available at <https://dgsam-toy-example.netlify.app/>.

The pitfall of the aggregated sharpness approach is not merely an theoretical concept. We confirm this phenomenon in practical DG tasks using ResNet-50 on the PACS dataset. As visualized in Appendix E, while SAM produces minima that are flat with respect to the total loss, the loss landscapes for the separate domains remain sharp, providing direct empirical evidence of the fake flat minima problem.

3.2 PER-DOMAIN SHARPNESS: A PRINCIPLED OBJECTIVE FOR DG

To establish a principled objective for SAM in DG, we need to define a performance measure that truly reflects the challenges of the task. As we have argued, a true domain shift is not a random

216 perturbation of the averaged sources. For instance, a model trained on 'Photo' and 'Sketch' domains
 217 is not evaluated on their pooled mixture, but rather on a new, coherent domain such as 'Cartoon' or
 218 'Watercolor painting'. This new domain represents a coherent shift from one of the existing styles,
 219 not a deviation from their probabilistic mixture. A truly robust model, therefore, must be resilient to
 220 the worst-case shift originating from any of the each source domains it was trained on.

221 Based on this principled view, we now formalize the average worst-case domain risk. Let $\{\mathcal{D}_i\}_{i=1}^S$
 222 denote the source distributions. For each source domain i , we define the local uncertainty set of
 223 potential target domains as:

$$\mathcal{U}_i^\delta = \{\mathcal{D} : \text{Div}(\mathcal{D} \parallel \mathcal{D}_i) \leq \delta\},$$

224 where $\text{Div}(\cdot \parallel \cdot)$ is a divergence measure (e.g., KL-divergence, Wasserstein distance). This set \mathcal{U}_i^δ
 225 contains all unseen target domains that lie within a divergence δ of the source domain \mathcal{D}_i . The
 226 average worst-case domain risk is then the expected risk under the worst-case shift from each source
 227 domain:

$$\mathcal{E}(\theta; \delta) := \frac{1}{S} \sum_{i=1}^S \sup_{\mathcal{D} \in \mathcal{U}_i^\delta} \mathcal{L}_{\mathcal{D}}(\theta).$$

228 This principled risk formulation allows us to formally investigate which notion of sharpness, aggregated
 229 or per-domain, serves as a better optimization target.

230 **Theorem 3.2.** *Let $\mathcal{L}_s(\theta)$ denote the total loss over all source domains, $\mathcal{S}_{\text{agg}}(\theta; \rho)$ the aggregated
 231 sharpness, and $\mathcal{S}_i(\theta; \rho)$ the per-domain sharpness for the i -th domain. Then, for all θ and $\rho \geq \rho(\delta)$,*

$$\mathcal{E}(\theta; \delta) \leq \mathcal{L}_s(\theta) + \frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta; \rho).$$

232 where $\rho(\delta)$ is defined in equation 11 of Appendix B.2. Moreover, there exists a model parameter θ
 233 such that

$$\mathcal{E}(\theta; \delta) > \mathcal{L}_s(\theta) + \mathcal{S}_{\text{agg}}(\theta; \rho).$$

234 The proof is provided in Appendix B.2. Theorem 3.2 highlights that minimizing the average of
 235 per-domain sharpness provides a valid upper bound for our principled DG risk measure, $\mathcal{E}(\theta; \delta)$. In
 236 contrast, it also shows that aggregated sharpness offers no such guarantee, and can indeed be smaller
 237 even when the true risk is higher. This result confirms that minimizing per-domain sharpness is
 238 not merely an alternative, but a more appropriate and theoretically grounded surrogate for robust
 239 generalization under domain shifts.

240 4 METHODOLOGY

241 Our goal is to design an algorithm that effectively controls per-domain sharpness across all source
 242 domains, as motivated in Section 3. The conventional SAM approach, which perturbs parameters
 243 along the single, aggregated gradient of the total loss, is ill-suited for this task. The total gradient
 244 is often misaligned with domain-wise gradients, resulting in a suboptimal perturbation that fails to
 245 uniformly increase domain-specific losses. We provide a detailed analysis and empirical illustration
 246 of this failure mode in Appendix A. To overcome this limitation, in Section 4.1, we propose **Domain-
 247 wise Gradual Sharpness-Aware Minimization (DGSAM)** that employs a gradual, domain-specific
 248 perturbation mechanism to control per-domain sharpness. Subsequently, in Section 4.2, we provide a
 249 theoretical analysis of how this mechanism implicitly controls per-domain sharpness.

250 4.1 THE DGSAM ALGORITHM

251 DGSAM's update strategy is built upon a sequential perturbation scheme. Unlike the conventional
 252 SAM that uses a single perturbation, DGSAM sequentially incorporates the unique gradient from
 253 each source domain in successive steps. This transforms the perturbation process into a principled
 254 mechanism for integrating geometric information from multiple domains, allowing for more effective
 255 control of per-domain sharpness. The update rule of DGSAM is given by:

$$\theta_{t+1} = \theta_t - \gamma \left(\frac{S}{S+1} \right) \sum_{j=1}^{S+1} g_j, \quad \text{where} \tag{3}$$

$$g_j = \nabla \mathcal{L}_{B_{l_j}}(\tilde{\theta}_{j-1}) \text{ for } j = 1, \dots, S, \quad g_{S+1} = \nabla \mathcal{L}_{B_{l_1}}(\tilde{\theta}_S). \tag{4}$$

270 where $l = (l_1, \dots, l_S)$ denotes a random permutation of the S source domain indices, and each $\mathcal{L}_{B_{l_j}}$
 271 is the loss computed over a mini-batch B_{l_j} drawn from the l_j -th domain.
 272

273 In the ascent phase, as defined in equation 4, DGSAM performs $S + 1$ perturbation steps, each
 274 based on the gradient of a separate domain, followed by a descent step that updates the model using
 275 the aggregated gradients. Specifically, we begin with $\tilde{\theta}_0 = \theta_t$ and at each step $j \in \{1, \dots, S\}$, we
 276 compute the domain-specific gradient $g_j = \nabla \mathcal{L}_{B_{l_j}}(\tilde{\theta}_{j-1})$ for the j -th domain (sampled in random
 277 order) and apply the perturbation $\rho \frac{g_j}{\|g_j\|}$ to update $\tilde{\theta}_j$ (See lines 7-9 in Algorithm 1). These gradients
 278 are stored and later reused during the descent update to reduce computational overhead.
 279

280 Note that the gradient g_1 is computed at the unperturbed point θ_t so it does not reflect the curvature-
 281 aware structure. To correct for this inconsistency, we perform one additional gradient computation at
 282 the final perturbed point $\tilde{\theta}_S$ using $\nabla \mathcal{L}_{B_{l_1}}(\tilde{\theta}_S)$ again (lines 10-11 in Algorithm 1). This ensures that
 283 all gradients contributing to the final update step are computed at perturbed points.
 284

285 As a result, DGSAM collects $S + 1$ gradients
 286 along a trajectory that sequentially accounts for
 287 each domain’s geometry. These gradients are
 288 then averaged for the final parameter update, as
 289 in equation 3. This design ensures that the de-
 290 scent direction is a more uniform reflection of
 291 all respective domain geometries, preventing the
 292 bias towards a single dominant domain that can
 293 occur with conventional SAM. Furthermore, this
 294 design is computationally efficient by reusing
 295 the gradients from the ascent phase, DGSAM
 296 requires only $S + 1$ gradient computations per it-
 297 eration, compared to the $2S$ required by standard
 298 SAM.
 299 The following theorem shows that DGSAM
 300 achieves ϵ -stationarity under standard assump-
 301 tions, aligning with the convergence guarantees
 302 recently established for SAM in non-convex set-
 303 tings Oikonomou & Loizou (2025).
 304

Algorithm 1 DGSAM

```

1: Require: Initial parameter  $\theta_0$ , learning rate  $\gamma$ , ;
   radius  $\rho$ ; total iterations  $N$ ; training sets  $\{\mathcal{D}_i\}_{i=1}^S$ 
2: for  $t \leftarrow 0$  to  $N - 1$  do
3:   Sample batches  $B_i \sim \mathcal{D}_i$  for  $i = 1, \dots, S$ , and
      set a random order  $l = \text{permute}(\{1, \dots, S\})$ 
4:    $\tilde{\theta}_0 \leftarrow \theta_t$ 
5:   for  $j \leftarrow 1$  to  $S + 1$  do
6:     if  $j \leq S$  then
7:        $g_j \leftarrow \nabla \mathcal{L}_{B_{l_j}}(\tilde{\theta}_{j-1})$ 
8:        $\tilde{\theta}_j \leftarrow \tilde{\theta}_{j-1} + \rho \frac{g_j}{\|g_j\|}$ 
9:     else if  $j = S + 1$  then
10:       $g_{S+1} \leftarrow \nabla \mathcal{L}_{B_{l_1}}(\tilde{\theta}_S)$ 
11:    end if
12:   end for
13:    $\theta_{t+1} \leftarrow \theta_t - \gamma \left( \frac{S}{S+1} \right) \sum_{j=1}^{S+1} g_j$ 
14: end for

```

304 **Theorem 4.1** (ϵ -approximate stationary). *Let Assumptions B.4 hold. Then, for any $\epsilon > 0$, the iterates
 305 of DGSAM satisfy for $\rho \leq \bar{\rho}$, $\gamma \leq \bar{\gamma}$, $T \geq \bar{T}$*

$$\min_{t=0, \dots, T-1} \mathbb{E} \|\nabla \mathcal{L}_s(\theta_t)\| \leq \epsilon$$

310 where full expressions of $\bar{\rho}$, $\bar{\gamma}$, and \bar{T} are given in Theorem B.10. We refer to Appendix B.3 for the
 311 proof.
 312

313

314 4.2 How DGSAM CONTROLS PER-DOMAIN SHARPNESS

315 Recent studies (Ma et al., 2023; Zhuang et al., 2022) have pointed out that SAM’s first-order
 316 approximations may lead to suboptimal control of curvature. Luo et al. (2024) showed that aligning
 317 the perturbation direction with an eigenvector can control the corresponding eigenvalue. However,
 318 relying solely on the top eigenvectors is insufficient in multi-domain settings, where the directions may
 319 conflict across domains. In such cases, it is more desirable to incorporate a broader set of eigenvectors
 320 associated with large eigenvalues, capturing curvature shared across domains. Moreover, Wen et al.
 321 (2023) demonstrated that controlling the entire eigenvalue spectrum yields tighter generalization
 322 bounds than focusing solely on the top eigenvalue.
 323

In this regard, we analyze how DGSAM’s gradual perturbation mechanism implicitly controls the per-domain sharpness. At the j -th step of the ascent phase, the gradient g_j is computed as:

$$\begin{aligned} g_j &= \nabla \mathcal{L}_{B_{l_j}}(\tilde{\theta}_{j-1}) = \nabla \mathcal{L}_{B_{l_j}}\left(\tilde{\theta}_0 + \sum_{k=1}^{j-1} \rho \frac{g_k}{\|g_k\|}\right) \\ &\approx \nabla \mathcal{L}_{B_{l_j}}(\tilde{\theta}_0) + \rho \nabla^2 \mathcal{L}_{B_{l_j}}(\tilde{\theta}_0) \sum_{k=1}^{j-1} \frac{g_k}{\|g_k\|} + O(\rho^2). \end{aligned}$$

Since the Hessian $\nabla^2 \mathcal{L}_{B_{l_j}}$ is symmetric and hence diagonalizable, we decompose it as $\nabla^2 \mathcal{L}_{B_{l_j}}(\tilde{\theta}_0) = \sum_n \lambda_n v_n v_n^\top$, where $E_j = \{(\lambda_n, v_n)\}$ is the set of eigenpairs of $\nabla^2 \mathcal{L}_{B_{l_j}}(\theta_t)$. Then, the g_j can be approximated as

$$g_j \approx \nabla \mathcal{L}_{B_{l_j}}(\tilde{\theta}_0) + \rho \sum_{(\lambda, v) \in E_j} \lambda \left(\sum_{k=1}^{j-1} \frac{v^\top g_k}{\|v\| \|g_k\|} \right) v, \quad (5)$$

In this approximation, the first term represents the standard ascent direction for the j -th domain, while the second term is a curvature-aware correction term. This correction is a weighted sum of the Hessian’s eigenvectors, where the weights depend on both the eigenvalues λ and the alignment of eigenvectors with the perturbation directions from all previous domains (g_1, \dots, g_{j-1}) . Thus, DGSAM’s gradual perturbation strategy naturally integrates curvature information from the entire sequence of domains, ensuring that the per-domain sharpness is controlled in a balanced and robust manner. This theoretical insight is confirmed empirically. In Appendix C.2, we show that the curvature-aware correction term contributes significantly to the ascent direction. Furthermore, this mechanism’s effectiveness is demonstrated in our toy example (Section 3), where DGSAM consistently finds the truly flat minima and avoids the fake flat minima trap

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Evaluation protocols, Baselines and Datasets For all main experiments, we adhere to the DomainBed protocol (Gulrajani & Lopez-Paz, 2021), including model initialization, hyperparameter tuning, and validation methods, to ensure a fair comparison. Our experiments are conducted on five widely used DG benchmarks: PACS (Li et al., 2017b), VLCS (Fang et al., 2013), OfficeHome (Venkateswara et al., 2017), TerraIncognita (Beery et al., 2018), and DomainNet (Peng et al., 2019).

We adopt the standard leave-one-domain-out setup: one domain is held out for testing, while the model is trained on the remaining source domains (Gulrajani & Lopez-Paz, 2021). Model selection is based on validation accuracy computed over the source domains. In addition to the average test accuracy commonly reported in DG, we also report the standard deviation of per-domain performance across test domains. This metric captures robustness to domain shifts and highlights potential overfitting to domains that are similar to the training distribution. Each experiment is repeated three times, and standard errors are reported.

Implementation Details We use a ResNet-50 (He et al., 2016) backbone pretrained on ImageNet, and Adam (Kingma & Ba, 2015) as the base optimizer. We use the hyperparameter space, the total number of iterations, and checkpoint frequency based on Wang et al. (2023). The specific hyperparameter settings and search ranges are described in Appendix F.1.

5.2 ACCURACY AND DOMAIN-WISE VARIANCE ACROSS BENCHMARKS

Baselines on the DomainBed Protocol. We compare DGSAM with 18 baseline algorithms across five widely used benchmark datasets: PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet. The complete experimental setup and evaluation protocol follow DomainBed (Gulrajani & Lopez-Paz, 2021). Table 1 reports the average test accuracy and two types of standard deviation: (1) trial-based standard deviation across three random seeds, denoted by \pm , and (2) domain-wise standard deviation, measuring performance variance across held-out domains. Higher accuracy and lower

378
 379
 380
 381
 382
 383 Table 1: Performance comparison on five DomainBed benchmarks. We report both trial-based
 384 standard deviation (\pm) and test-domain standard deviation (SD). Bold and underlined entries indicate
 385 the **best** and **second-best** results, excluding combined methods. Baseline results are sourced from
 386 prior work (see Appendix G for references).

Algorithms	PACS		VLCS		OfficeHome		TerraInc		DomainNet		Avg		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	(s/iter)
ARM [†]	85.1 \pm 0.6	8.0	77.6 \pm 0.7	13.1	64.8 \pm 0.4	10.2	45.5 \pm 1.3	7.4	35.5 \pm 0.5	16.7	61.7	11.1	0.12
VREX [†]	84.9 \pm 1.1	7.6	78.3 \pm 0.8	12.4	66.4 \pm 0.6	9.9	46.4 \pm 2.4	6.9	33.6 \pm 3.0	15.0	61.9	10.4	0.12
RSC [†]	85.2 \pm 1.0	7.6	77.1 \pm 0.7	13.0	65.5 \pm 1.0	10.0	46.6 \pm 1.0	7.0	38.9 \pm 0.7	17.3	62.7	11.0	0.15
MTL [†]	84.0 \pm 1.0	8.0	77.2 \pm 0.8	12.5	66.4 \pm 0.5	10.0	45.6 \pm 2.4	7.3	40.6 \pm 0.3	18.4	62.9	11.2	0.14
ERM [†]	85.5 \pm 0.6	7.0	77.3 \pm 1.1	12.5	66.5 \pm 0.4	10.8	46.1 \pm 2.9	8.0	40.9 \pm 0.3	18.6	63.3	11.4	0.12
SagNet [†]	86.3 \pm 0.5	6.9	77.8 \pm 0.7	12.5	68.1 \pm 0.3	9.5	48.6 \pm 0.3	7.1	40.3 \pm 0.3	17.9	64.2	10.8	0.36
CORAL [†]	86.2 \pm 0.6	7.5	78.8 \pm 0.7	12.0	68.7 \pm 0.4	9.6	47.7 \pm 0.4	7.0	41.5 \pm 0.3	18.3	64.6	10.9	0.14
GGA	86.4 \pm 1.7	6.6	78.7 \pm 1.0	12.2	67.0 \pm 0.5	10.5	48.5 \pm 2.0	7.4	44.5 \pm 0.3	19.7	65.0	11.3	0.54
GGA-L	86.5 \pm 1.5	6.6	78.4 \pm 1.0	12.6	66.5 \pm 0.4	10.0	49.8 \pm 2.8	6.0	44.5 \pm 0.3	19.7	65.1	11.0	0.36
GENIE	87.8 \pm 0.6	6.8	80.7\pm0.7	11.7	69.7 \pm 0.5	10.0	52.0\pm2.1	5.5	44.1 \pm 0.5	19.4	66.9	10.7	0.10
SWAD	88.1 \pm 0.4	5.9	79.1 \pm 0.4	12.8	70.6 \pm 0.3	9.2	50.0 \pm 0.3	7.9	46.5\pm0.2	19.9	66.9	11.2	0.12
GAM [†]	86.1 \pm 1.3	7.4	78.5 \pm 1.2	12.5	68.2 \pm 0.8	12.8	45.2 \pm 1.7	9.1	43.8 \pm 0.3	20.0	64.4	12.4	0.49
SAM [†]	85.8 \pm 1.3	6.9	79.4 \pm 0.6	12.5	69.6 \pm 0.3	9.5	43.3 \pm 0.3	7.5	44.3 \pm 0.2	19.4	64.5	11.2	0.24
Lookbehind-SAM	86.0 \pm 0.4	7.2	78.9 \pm 0.8	12.4	69.2 \pm 0.6	11.2	44.5 \pm 1.0	8.2	44.2 \pm 0.3	19.6	64.7	11.8	0.54
GSAM [†]	85.9 \pm 0.3	7.4	79.1 \pm 0.3	12.3	69.3 \pm 0.1	9.9	47.0 \pm 0.1	8.8	44.6 \pm 0.3	19.8	65.2	11.6	0.25
FAD	88.2 \pm 0.6	6.3	78.9 \pm 0.9	12.1	69.2 \pm 0.7	13.4	45.7 \pm 1.6	9.6	44.4 \pm 0.3	19.5	65.3	12.2	0.42
DISAM	87.1 \pm 0.5	5.6	79.9 \pm 0.2	12.3	70.3 \pm 0.2	10.3	46.6 \pm 1.4	6.9	45.4 \pm 0.3	19.5	65.9	10.9	0.37
SAGM	86.6 \pm 0.3	7.2	80.0 \pm 0.4	12.3	70.1 \pm 0.3	9.4	48.8 \pm 0.3	7.5	45.0 \pm 0.2	19.8	66.1	11.2	0.24
DGSAM	88.5\pm0.4	5.2	81.4\pm0.5	11.5	70.8\pm0.3	8.5	50.4 \pm 0.7	6.9	45.5 \pm 0.3	19.4	67.3	10.3	0.19
DGSAM + CORAL	88.8 \pm 0.4	5.2	81.9 \pm 0.5	11.4	71.2 \pm 0.4	8.6	50.8 \pm 0.7	6.9	46.2 \pm 0.2	19.5	67.8	10.3	0.19
DGSAM + SWAD	88.7 \pm 0.4	5.4	80.9 \pm 0.5	11.6	71.4 \pm 0.4	8.7	51.1 \pm 0.8	6.8	47.1 \pm 0.3	19.6	67.8	10.4	0.19
DGSAM + Mixup	89.4 \pm 0.4	5.5	81.7 \pm 0.4	11.4	71.3 \pm 0.3	8.0	50.5 \pm 0.6	6.9	48.3 \pm 0.3	19.7	68.2	10.3	0.20
DGSAM + ERM++	90.1 \pm 0.5	5.3	81.0 \pm 0.3	11.5	74.9 \pm 0.2	8.6	52.1 \pm 0.9	6.4	51.0 \pm 0.3	20.9	69.8	10.5	0.29

402
 403 Table 2: DG performances on ViT-B/16 backbone.

Algorithms	PACS	VLCS	OfficeHome	TerraInc	DomainNet	Avg
CORAL	95.4	82.5	83.3	52.0	59.5	74.5
DISAM	96.8	82.2	84.2	51.4	59.9	74.9
ERM	96.6	80.9	84.1	55.5	59.2	75.3
SAM	96.1	83.5	86.5	61.2	60.5	76.3
DGSAM	97.3	84.5	87.3	62.2	78.5	77.8

411
 412 standard deviation indicate better and more robust generalization. DGSAM achieves the highest
 413 average accuracy 67.3% and the lowest domain-level variance 10.3 among all methods, outperforming
 414 baselines on PACS, VLCS, and OfficeHome, and ranking second on TerraIncognita and DomainNet.

415
 416 **Combination with Other DG Strategies.** Beyond its strong standalone performance, DGSAM
 417 also serves as a complementary component to other DG strategies. As shown in Table 1, integrating
 418 DGSAM with diverse and orthogonal methods, including SWAD, Mixup (Lopez-Paz et al., 2018),
 419 CORAL (Sun & Saenko, 2016), and ERM++ (Teterwak et al., 2025), consistently yields further
 420 performance gains. This demonstrates the broad applicability of DGSAM as a foundational optimizer
 421 that can enhance various DG frameworks. Detailed per-dataset results are provided in Appendix F.2.

422
 423 **Performance on a Large-Scale Backbone (ViT-B/16).** While the standard DomainBed proto-
 424 col provides a crucial benchmark, the ResNet-50 backbone is a relatively small-scale model. To
 425 demonstrate that DGSAM is effective and scalable for more realistic, large-scale architectures, we
 426 therefore conduct additional experiments using a Vision Transformer (ViT-B/16) backbone. As shown
 427 in Table 2, DGSAM again consistently outperforms strong baselines, underscoring its effectiveness
 428 across different architectures.

429 5.3 SHARPNESS ANALYSIS

430 To verify that DGSAM effectively induces flatter minima, we analyze the geometry of the loss
 431 landscape at the converged model parameters using a ResNet-50 backbone on the DomainNet dataset.
 432 We report three sharpness metrics: zeroth-order sharpness, the trace of the loss Hessian estimated

Table 3: Comparison of the three sharpness metrics across different methods. **Sep.** denotes the average per-domain sharpness across separate source domains, where the value in parentheses represents the **domain-wise standard deviation**, i.e., variance across domains.

Method	Zeroth-order Sharpness		Hessian Trace		Maximum Eigenvalue	
	Sep. Mean (SD)	Aggregated	Sep. Mean (SD)	Aggregated	Sep. Mean (SD)	Aggregated
ERM	17.90 (5.62)	34.06	940.52 (181.66)	1372.51	89.24 (17.02)	121.86
SAM	4.79 (2.17)	19.68	5.83 (2.38)	9.31	1.51 (0.77)	1.85
SAGM	4.52 (2.34)	12.38	2.49 (1.76)	4.84	0.73 (0.36)	1.23
DISAM	3.95 (1.83)	8.14	3.50 (2.63)	5.70	0.83 (0.29)	1.45
DGSAM	2.98 (1.40)	6.41	2.13 (1.52)	4.93	0.65 (0.27)	1.18

via Hutchinson’s method Ubaru et al. (2017); Avron & Toledo (2011), and its maximum eigenvalue (λ_{max}) computed using the Lanczos algorithm Ghorbani et al. (2019a); Lin et al. (2016). As shown in Table 3, DGSAM consistently outperforms the baselines. Notably, while SAGM exhibits a marginally lower aggregated Hessian trace, DGSAM achieves a lower mean and standard deviation in the per-domain Hessian trace. This empirically validates our theoretical analysis that minimizing per-domain sharpness is more critical for robust generalization than minimizing the aggregated average, as it ensures no specific domain remains sharp. This improved geometry is further corroborated by the Hessian spectrum density in Figure 3, where DGSAM effectively suppresses the spectral tail and controls the entire spectrum more effectively than SAM.

Figure 3: Hessian spectrum density at converged Minima: (a) SAM and (b) DGSAM.

5.4 COMPUTATIONAL COST

In addition to performance improvements, DGSAM significantly reduces the computational overhead commonly associated with SAM variants. Let S denote the number of source domains and c the unit cost of computing gradients for one mini-batch. Then, the per-iteration cost of ERM is $S \times c$, as it requires one gradient computation per domain. SAM performs two backpropagations for all domain, yielding a cost of $2S \times c$. In contrast, DGSAM requires only S cost of $(S + 1) \times c$. Further details are provided

To validate this, we measure the actual training time per iteration on the PACS dataset. With $S = 3$ source domains, ERM takes $S \times c = 0.11$ seconds per iteration. SAM incurs a cost of 0.217 seconds, nearly double that of ERM, while DGSAM achieves 0.169 seconds per iteration. Although slightly higher than its theoretical cost $(S + 1) \times c \approx 0.148$, the deviation is primarily due to additional overheads such as gradient aggregation. Moreover, this efficiency is not achieved at the expense of memory. As detailed in Appendix D.2, DGSAM requires less peak memory than both ERM and SAM. Full results of cost on all datasets are included in Appendix F.2.

Figure 4: Comparison of empirical computational cost measured by training time per iteration.

486 6 DISCUSSION AND FUTURE DIRECTIONS

488 This paper revisits the role of sharpness minimization in domain generalization. While prior approaches have naively applied SAM to the aggregated loss across source domains, we reveal that this
 489 strategy can converge to *fake flat minima*—solutions that appear flat on total loss but remain sharp in separate domains, leading to poor generalization. To better capture the structure of domain-specific
 490 risks, we introduced a new perspective based on the *average worst-case domain risk*, showing that
 491 minimizing per-domain sharpness offers more meaningful control over robustness to distribution
 492 shift than minimizing aggregated sharpness. This insight offers a fundamentally new direction for the
 493 DG community, shifting the sharpness-aware optimization paradigm from single-source modeling to
 494 domain-specific objectives. Based on this finding, we proposed DGSAM, an algorithm that gradually
 495 applies perturbations along domain-specific directions and reuses gradients to efficiently reduce
 496 per-domain sharpness. Experiments on five DG benchmarks showed that DGSAM not only improves
 497 average accuracy but also significantly reduces domain-wise variance, achieving flatter minima across
 498 respective domains and better generalization to unseen distributions.

500 Our findings open a new direction for sharpness-aware domain generalization, but leave several open
 501 questions. When all local minima correspond to fake flat minima, it remains unclear which solutions
 502 are truly optimal or how to guide the model toward them. Developing a more direct method for
 503 minimizing per-domain sharpness, beyond sequential perturbation, could further improve training
 504 stability and theoretical guarantees. Finally, because SAM is widely applied in multi-loss settings
 505 such as multi-task learning (Le et al., 2024; Phan et al., 2022) and federated learning (Lee & Yoon,
 506 2024; Qu et al., 2022; Caldarola et al., 2022), careful treatment of per-domain sharpness may likewise
 507 enhance generalization in these broader contexts.

509 REFERENCES

511 Kei Akuzawa, Yusuke Iwasawa, and Yutaka Matsuo. Adversarial Invariant Feature Learning with
 512 Accuracy Constraint for Domain Generalization. In *Machine Learning and Knowledge Discovery
 513 in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20,
 514 2019, Proceedings, Part II*, pp. 315–331. Springer, 2020.

515 Martin Arjovsky, Léon Bottou, Ishaaan Gulrajani, and David Lopez-Paz. Invariant Risk Minimization.
 516 *arXiv preprint arXiv:1907.02893*, 2019.

517 Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace of an implicit
 518 symmetric positive semi-definite matrix. *Journal of the ACM (JACM)*, 58(2):1–34, 2011.

520 Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. MetaReg: Towards Domain General-
 521 ization using Meta-Regularization. In *Advances in Neural Information Processing Systems*, pp.
 522 998–1008, 2018.

523 Aristotelis Ballas and Christos Diou. Gradient-guided annealing for domain generalization. In
 524 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 20558–20568, 2025.

526 Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in Terra Incognita. In *Proceedings of
 527 the European conference on computer vision (ECCV)*, pp. 456–473, 2018.

528 Gilles Blanchard, Aniket Anand Deshmukh, Urur Dogan, Gyemin Lee, and Clayton Scott. Domain
 529 Generalization by Marginal Transfer Learning. *Journal of Machine Learning Research*, 22(2):
 530 1–55, 2021.

532 Debora Caldarola, Barbara Caputo, and Marco Ciccone. Improving generalization in federated
 533 learning by seeking flat minima. In *European Conference on Computer Vision*, pp. 654–672.
 534 Springer, 2022.

535 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
 536 Sungrae Park. SWAD: Domain Generalization by Seeking Flat Minima. In *Proceedings of the 35th
 537 International Conference on Neural Information Processing Systems*, pp. 22405–22418, 2021.

538 Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
 539 Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biassing Gradient Descent

540 into Wide Valleys. *Journal of Statistical Mechanics: Theory and Experiment*, 2019(12):124018,
 541 2019.

542 Sumin Cho, Dongwon Kim, and Kwangsu Kim. One-step generalization ratio guided optimization
 543 for domain generalization. In *Forty-second International Conference on Machine Learning*, 2025.

544 Etienne David, Simon Madec, Pouria Sadeghi-Tehran, Helge Aasen, Bangyou Zheng, Shouyang Liu,
 545 Norbert Kirchgessner, Goro Ishikawa, Koichi Nagasawa, Minhajul A Badhon, et al. Global wheat
 546 head detection (gwhd) dataset: A large and diverse dataset of high-resolution rgb-labelled images
 547 to develop and benchmark wheat head detection methods. *Plant Phenomics*, 2020.

548 Mingrong Dong, Yixuan Yang, Kai Zeng, Qingwang Wang, and Tao Shen. Implicit sharpness-aware
 549 minimization for domain generalization. *Remote Sensing*, 16(16):2877, 2024.

550 Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
 551 Vincent Tan. Efficient Sharpness-Aware Minimization for Improved Training of Neural Networks.
 552 In *International Conference on Learning Representations (ICLR)*, 2022.

553 Hao Fang, Behjat Siddique, Yogesh Siddiqui, Amit K Roy-Chowdhury, and Larry S Davis. Unbiased
 554 Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias. In
 555 *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1657–1664, 2013.

556 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-Aware Minimization
 557 for Efficiently Improving Generalization. In *International Conference on Learning Representations
 558 (ICLR)*, 2021.

559 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 560 Laviolette, Mario March, and Victor Lempitsky. Domain-Adversarial Training of Neural Networks.
 561 *Journal of Machine Learning Research*, 17(59):1–35, 2016.

562 Muhammad Ghifary, David Balduzzi, W Bastiaan Kleijn, and Mengjie Zhang. Scatter Component
 563 Analysis: A Unified Framework for Domain Adaptation and Domain Generalization. *IEEE
 564 transactions on pattern analysis and machine intelligence*, 39(7):1414–1430, 2016.

565 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 566 via hessian eigenvalue density. In *International Conference on Machine Learning*, pp. 2232–2241.
 567 PMLR, 2019a.

568 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 569 via hessian eigenvalue density. In *International Conference on Machine Learning*, pp. 2232–2241.
 570 PMLR, 2019b.

571 Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
 572 Richtárik. SGD: General Analysis and Improved Rates. In *International conference on machine
 573 learning*, pp. 5200–5209. PMLR, 2019.

574 Ishaan Gulrajani and David Lopez-Paz. In Search of Lost Domain Generalization. In *International
 575 Conference on Learning Representations (ICLR)*, 2021.

576 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 577 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 578 pp. 770–778, 2016.

579 Sepp Hochreiter and Jürgen Schmidhuber. Simplifying Neural Nets by Discovering Flat Minima. In
 580 *Proceedings of the 7th International Conference on Neural Information Processing Systems*, pp.
 581 529–536, 1994.

582 Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-Challenging Improves Cross-
 583 Domain Generalization. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
 584 UK, August 23–28, 2020, Proceedings, Part II 16*, pp. 124–140. Springer, 2020.

585 Yunpei Jia, Jie Zhang, Shiguang Shan, and Xilin Chen. Single-Side Domain Generalization for Face
 586 Anti-Spoofing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 587 Recognition*, pp. 8484–8493, 2020.

594 Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in Deep Learning.
 595 *arXiv preprint arXiv:1710.05468*, 2017.

596

597 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
 598 Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv*
 599 *preprint arXiv:1609.04836*, 2016.

600 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
 601 Tang. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. In
 602 *International Conference on Learning Representations (ICLR)*, 2017.

603 Ahmed Khaled and Peter Richtárik. Better Theory for Sgd in the Nonconvex World. *Transactions on*
 604 *Machine Learning Research*, 2020.

605

606 Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A Efros, and Antonio Torralba. Undoing
 607 the Damage of Dataset Bias. In *Computer Vision–ECCV 2012: 12th European Conference on*
 608 *Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part I* 12, pp. 158–171.
 609 Springer, 2012.

610 Amir Khosravian, Abdollah Amirkhani, Hossein Kashiani, and Masoud Masih-Tehrani. Generalizing
 611 State-of-the-Art Object Detectors for Autonomous Vehicles in Unseen Environments. *Expert*
 612 *Systems with Applications*, 183:115417, 2021.

613

614 Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International*
 615 *Conference on Learning Representations (ICLR)*, 2015.

616 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 617 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. WILDS: A
 618 Benchmark of in-the-Wild Distribution Shifts. In *International conference on machine learning*,
 619 pp. 5637–5664, 2021.

620 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 621 Zhang, Remi Le Priol, and Aaron Courville. Out-of-Distribution Generalization via Risk Ex-
 622 trapulation (Rex). In *International conference on machine learning*, pp. 5815–5826. PMLR,
 623 2021.

624

625 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. ASAM: Adaptive Sharpness-
 626 Aware Minimization for Scale-Invariant Learning of Deep Neural Networks. In *International*
 627 *Conference on Machine Learning*, pp. 5905–5914. PMLR, 2021.

628 Thanh-Thien Le, Viet Dao, Linh Nguyen, Thi-Nhung Nguyen, Linh Ngo, and Thien Nguyen.
 629 Sharpseq: Empowering continual event detection through sharpness-aware sequential-task learning.
 630 In *Proceedings of the 2024 Conference of the North American Chapter of the Association for*
 631 *Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 3632–
 632 3644, 2024.

633

634 Taehwan Lee and Sung Whan Yoon. Rethinking the flat minima searching in federated learning. In
 635 *Forty-first International Conference on Machine Learning*, 2024.

636

637 Aodi Li, Liansheng Zhuang, Xiao Long, Minghong Yao, and Shafei Wang. Seeking consistent
 638 flat minima for better domain generalization via refining loss landscapes. In *Proceedings of the*
 639 *Computer Vision and Pattern Recognition Conference*, pp. 15349–15359, 2025.

640

641 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, Broader and Artier Domain
 642 Generalization. In *Proceedings of the IEEE International Conference on Computer Vision*, pp.
 643 5542–5550, 2017a.

644

645 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, Broader and Artier Domain
 646 Generalization. In *Proceedings of the IEEE international conference on computer vision*, pp.
 647 5542–5550, 2017b.

648

649 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to Generalize: Meta-Learning
 650 for Domain Generalization. In *Proceedings of the AAAI conference on artificial intelligence*,
 651 volume 32, 2018a.

648 Haoliang Li, YuFei Wang, Renjie Wan, Shiqi Wang, Tie-Qiang Li, and Alex Kot. Domain General-
 649 ization for Medical Imaging Classification with Linear-Dependency Regularization. *Advances in*
 650 *Neural Information Processing Systems*, 33:3118–3129, 2020.

651 Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain Generalization
 652 via Conditional Invariant Representations. In *Proceedings of the AAAI conference on artificial*
 653 *intelligence*, volume 32, 2018b.

654 Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
 655 Deep Domain Generalization via Conditional Invariant Adversarial Networks. In *Proceedings of*
 656 *the European conference on computer vision (ECCV)*, pp. 624–639, 2018c.

657 Yiyi Li, Yixin Yang, Wei Zhou, and Timothy Hospedales. Feature-Critic Networks for Heteroge-
 658 neous Domain Generalization. In *International Conference on Machine Learning*, pp. 3915–3924.
 659 PMLR, 2019.

660 Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large matrices. *SIAM*
 661 *review*, 58(1):34–65, 2016.

662 Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards Efficient and Scalable
 663 Sharpness-Aware Minimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 664 and *Pattern Recognition*, pp. 12360–12370, 2022.

665 Yann N Dauphin David Lopez-Paz, Hongyi Zhang, and Moustapha Cisse. mixup: Beyond empirical
 666 risk minimization. In *International Conference on Learning Representations*, volume 3, 2018.

667 Haocheng Luo, Tuan Truong, Tung Pham, Mehrtash Harandi, Dinh Phung, and Trung Le. Explicit
 668 eigenvalue regularization improves sharpness-aware minimization. *Advances in Neural Information*
 669 *Processing Systems*, 37:4424–4453, 2024.

670 Haiping Ma, Yajing Zhang, Shengyi Sun, Ting Liu, and Yu Shan. A comprehensive survey on
 671 nsga-ii for multi-objective optimization and applications. *Artificial Intelligence Review*, 56(12):
 672 15217–15270, 2023.

673 Goncalo Mordido, Pranshu Malviya, Aristide Baratin, and Sarath Chandar. Lookbehind-Sam: K
 674 steps Back, 1 step Forward. In *Forty-first International Conference on Machine Learning*, 2024.

675 Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto. Unified Deep Supervised
 676 Domain Adaptation and Generalization. In *Proceedings of the IEEE international conference on*
 677 *computer vision*, pp. 5715–5725, 2017.

678 Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain Generalization via Invariant
 679 Feature Representation. In *International conference on machine learning*, pp. 10–18, 2013.

680 Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing Domain
 681 Gap by Reducing Style Bias. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 682 and *Pattern Recognition*, pp. 8690–8699, 2021.

683 Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring Gen-
 684 eralization in Deep Learning. In *Proceedings of the 31st International Conference on Neural*
 685 *Information Processing Systems*, pp. 5949–5958, 2017.

686 Dimitris Oikonomou and Nicolas Loizou. Sharpness-Aware Minimization: General Analysis and
 687 Improved Rates. In *The Thirteenth International Conference on Learning Representations*, 2025.

688 Xingchao Peng, Ziwei Bai, Xiang Xia, Zhangzhi Huang, and Kate Saenko. Moment Matching for
 689 Multi-source Domain Adaptation. In *Proceedings of the IEEE/CVF International Conference on*
 690 *Computer Vision*, pp. 1406–1415, 2019.

691 Hoang Phan, Lam Tran, Ngoc N Tran, Nhat Ho, Dinh Phung, and Trung Le. Improving multi-task
 692 learning via seeking task-based flat regions. *arXiv preprint arXiv:2211.13723*, 2022.

693 Fengchun Qiao, Long Zhao, and Xi Peng. Learning to Learn Single Domain Generalization. In
 694 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 695 12556–12565, 2020.

702 Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
 703 sharpness aware minimization. In *International conference on machine learning*, pp. 18250–18280.
 704 PMLR, 2022.

705 Seonguk Seo, Yumin Suh, Dongwan Kim, Geeho Kim, Jongwoo Han, and Bohyung Han. Learning to
 706 Optimize Domain Specific Normalization for Domain Generalization. In *Computer Vision–ECCV*
 707 *2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16*,
 708 pp. 68–83. Springer, 2020.

709 Rui Shao, Xiangyuan Lan, Jiawei Li, and Pong C Yuen. Multi-Adversarial Discriminative Deep
 710 Domain Generalization for Face Presentation Attack Detection. In *Proceedings of the IEEE/CVF*
 711 *conference on computer vision and pattern recognition*, pp. 10023–10031, 2019.

712 Yichun Shi, Xiang Yu, Kihyuk Sohn, Manmohan Chandraker, and Anil K Jain. Towards Universal
 713 Representation Learning for Deep Face Recognition. In *Proceedings of the IEEE/CVF Conference*
 714 *on Computer Vision and Pattern Recognition*, pp. 6817–6826, 2020.

715 Seungjae Shin, HeeSun Bae, Byeonghu Na, Yoon-Yeong Kim, and Il-chul Moon. Unknown Domain
 716 Inconsistency Minimization for Domain Generalization. In *International Conference on Learning*
 717 *Representations (ICLR)*, 2024.

718 Baochen Sun and Kate Saenko. Deep CORAL: Correlation Alignment for Deep Domain Adaptation.
 719 In *Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and*
 720 *15-16, 2016, Proceedings, Part III 14*, pp. 443–450. Springer, 2016.

721 Piotr Teterwak, Kuniaki Saito, Theodoros Tsiligkaridis, Kate Saenko, and Bryan A Plummer. Erm++:
 722 An improved baseline for domain generalization. In *2025 IEEE/CVF Winter Conference on*
 723 *Applications of Computer Vision (WACV)*, pp. 8525–8535. IEEE, 2025.

724 Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of $\text{tr}(f(a))$ via stochastic lanczos
 725 quadrature. *SIAM Journal on Matrix Analysis and Applications*, 38(4):1075–1099, 2017.

726 Hemanth Venkateswara, Joao Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 727 Hashing Network for Unsupervised Domain Adaptation. In *Proceedings of the IEEE conference*
 728 *on computer vision and pattern recognition*, pp. 5018–5027, 2017.

729 Riccardo Volpi, Hongseok Namkoong, Aman Sinha, John C Duchi, and Vittorio Murino. Generalizing
 730 to Unseen Domains via Adversarial Data Augmentation. In *Advances in Neural Information*
 731 *Processing Systems*, pp. 5334–5344, 2018.

732 Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-Aware Gradient Matching for
 733 Domain Generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 734 *Pattern Recognition*, pp. 3769–3778, 2023.

735 Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes sharpness?
 736 In *The eleventh international conference on learning representations*, 2023.

737 Zheng Xu, Wen Li, Li Niu, and Dong Xu. Exploiting Low-Rank Structure from Latent Domains for
 738 Domain Generalization. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich,*
 739 *Switzerland, September 6–12, 2014, Proceedings, Part III 13*, pp. 628–643. Springer, 2014.

740 Zhenlin Xu, Deyi Liu, Junlin Yang, Colin Raffel, and Marc Niethammer. Robust and Generalizable
 741 Visual Representation Learning via Random Convolutions. In *International Conference on*
 742 *Learning Representations (ICLR)*, 2020.

743 Christopher Yeh, Anthony Perez, Anne Driscoll, George Azzari, Zhongyi Tang, David Lobell,
 744 Stefano Ermon, and Marshall Burke. Using publicly available satellite imagery and deep learning
 745 to understand economic well-being in africa. *Nature communications*, 11(1):2583, 2020.

746 Chris Yoon, Ghassan Hamarneh, and Rafeef Garbi. Generalizable Feature Learning in the Presence
 747 of Data Bias and Domain Class Imbalance with Application to Skin Lesion Classification. In
 748 *Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International*
 749 *Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV 22*, pp. 365–373.
 750 Springer, 2019.

751

756 Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea Finn.
 757 Adaptive Risk Minimization: Learning to Adapt to Domain Shift. *Advances in Neural Information*
 758 *Processing Systems*, 34:23664–23678, 2021.

759

760 Ruipeng Zhang, Ziqing Fan, Jiangchao Yao, Ya Zhang, and Yanfeng Wang. Domain-Inspired
 761 Sharpness-Aware Minimization Under Domain Shifts. In *International Conference on Learning*
 762 *Representations (ICLR)*, 2024.

763 Xingxuan Zhang, Renzhe Xu, Han Yu, Yancheng Dong, Pengfei Tian, and Peng Cui. Flatness-
 764 Aware Minimization for Domain Generalization. In *Proceedings of the IEEE/CVF International*
 765 *Conference on Computer Vision*, pp. 5189–5202, 2023a.

766

767 Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient Norm Aware Minimiza-
 768 tion Seeks First-Order Flatness and Improves Generalization. In *Proceedings of the IEEE/CVF*
 769 *Conference on Computer Vision and Pattern Recognition*, pp. 20247–20257, 2023b.

770 Zhiyuan Zhang, Ruixuan Luo, Qi Su, and Xu Sun. GA-SAM: Gradient-Strength based Adap-
 771 tive Sharpness-Aware Minimization for Improved Generalization. In *Proceedings of the 2022*
 772 *Conference on Empirical Methods in Natural Language Processing*, pp. 3888–3903, 2022.

773 Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain Generalization
 774 via Entropy Regularization. *Advances in neural information processing systems*, 33:16096–16107,
 775 2020.

776

777 Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel
 778 domains for domain generalization. In *Computer Vision–ECCV 2020: 16th European Conference,*
 779 *Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16*, pp. 561–578. Springer, 2020.

780 Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. In
 781 *International Conference on Learning Representations (ICLR)*, 2021.

782

783 Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek, James
 784 s Duncan, Ting Liu, et al. Surrogate Gap Minimization Improves Sharpness-Aware Training. In
 785 *International Conference on Learning Representations (ICLR)*, 2022.

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 Appendix Contents

811 **A Limitations of Total Gradient Perturbation**

812 **B Theoretical Analysis and Proofs**

813 B.1 Proof of Proposition 3.1

814 B.2 Proof of Theorem 3.2

815 B.3 Convergence Analysis

816 **C Additional Experiments**

817 C.1 Sensitivity Analysis of DGSAM with respect to ρ

818 C.2 Comparison of two terms in Eq 5

819 C.3 Robustness to Extreme Domain Imbalance

820 C.4 Scalability to a Large Number of Domains

821 C.5 Ablation Studies on Stochastic Ordering and Gradient Re-using

822 C.6 Details of the Experimental Verification of sharpness

823 **D Computation Efficiency**

824 D.1 Illustration of Computational Cost Comparison

825 D.2 Additional Analysis on Computational Resources

826 **E Visualization of Loss Landscapes**

827 **F Details of Main Experiments**

828 F.1 Implementation Details

829 F.2 Full Results

830 **G Baseline References**

831 **H Sharpness-Aware Minimization in Domain Generalization**

864 Appendix

867 A LIMITATIONS OF TOTAL GRADIENT PERTURBATION

869 In SAM, each iteration performs gradient ascent to identify sensitive directions in the loss landscape
870 by perturbing the parameters as

$$871 \tilde{\theta}_t = \theta_t + \epsilon_{\mathcal{D}_s}^* = \theta_t + \rho \frac{\nabla \mathcal{L}_s(\theta_t)}{\|\nabla \mathcal{L}_s(\theta_t)\|}, \quad (6)$$

874 where $\epsilon_{\mathcal{D}_s}^*$ is the perturbation computed from the total loss gradient. However, this update direction
875 may not increase losses uniformly across source domains, as the total loss gradient $\nabla \mathcal{L}_s(\theta_t)$ does not
876 generally align with the per-domain gradients $\nabla \mathcal{L}_i(\theta_t)$ for $i = 1, \dots, S$, as discussed in Section 3).

877 This misalignment between the total gradient and per-domain gradients leads to suboptimal pertur-
878 bations when applied uniformly across all domains. To empirically demonstrate this limitation, we
879 visualize in Figure 5 how different perturbation strategies affect the domain-wise loss increments
880 during training. Starting from θ_0 , we iteratively apply perturbations to compute the perturbed param-
881 eter $\tilde{\theta}_i = \theta_0 + \sum_{j=1}^i \epsilon_j$ on the DomainNet dataset (Peng et al., 2019) using ResNet-50 (He et al.,
882 2016). In Figure 5a, each ϵ_i is computed using the total loss gradient. In contrast, Figure 5b applies
883 perturbations sequentially using domain-specific gradients.

884 As shown in Figure 5a, total gradient perturbations often increase losses in an imbalanced manner
885 across domains. On the other hand, the domain-wise perturbation strategy in Figure 5b leads to a more
886 uniform increase in domain-wise losses. This observation suggests that applying domain-specific
887 gradients sequentially is more effective at capturing the structure of per-domain losses. As a result,
888 the resulting perturbations better reflect per-domain sharpness.

889 Figure 5: Domain-wise loss increments under different perturbation strategies.

901 B THEORETICAL ANALYSIS AND PROOFS

903 B.1 PROOF OF PROPOSITION 3.1

905 *Proof of Proposition 3.1.* Let θ be a strict local minimum such that $\nabla \mathcal{L}_s(\theta) = 0$ and $H(\theta) =$
906 $\nabla^2 \mathcal{L}_s(\theta) \succ 0$. Suppose ρ is sufficiently small. Then, the second-order Taylor expansion for \mathcal{L}_s and
907 \mathcal{L}_i gives:

$$908 \mathcal{L}_s(\theta + \epsilon) = \mathcal{L}_s(\theta) + \nabla \mathcal{L}_s(\theta)^\top \epsilon + \frac{1}{2} \epsilon^\top H(\theta) \epsilon + o(\|\epsilon\|^2)$$

910 and

$$911 \mathcal{L}_i(\theta + \epsilon) = \mathcal{L}_i(\theta) + \nabla \mathcal{L}_i(\theta)^\top \epsilon + \frac{1}{2} \epsilon^\top H_i(\theta) \epsilon + o(\|\epsilon\|^2), \quad i = 1, \dots, S$$

913 where H and H_i are the Hessian matrices for \mathcal{L}_s and \mathcal{L}_i , respectively, evaluated at θ .

914 Then, using $\nabla \mathcal{L}_s(\theta) = 0$ and $H(\theta) = \frac{1}{S} \sum_{i=1}^S H_i(\theta)$, we have

$$916 \mathcal{L}_s(\theta + \epsilon) - \mathcal{L}_s(\theta) = \frac{1}{2} \epsilon^\top \left(\frac{1}{S} \sum_{i=1}^S H_i(\theta) \right) \epsilon + o(\|\epsilon\|^2)$$

918 which yields the zeroth-order sharpness for \mathcal{L}_s :

$$920 \quad \mathcal{S}_{\text{agg}}(\theta; \rho) = \max_{\|\epsilon\| \leq \rho} (\mathcal{L}_s(\theta + \epsilon) - \mathcal{L}_s(\theta)) = \frac{1}{2S} \rho^2 \sigma_{\max} \left(\sum_{i=1}^S H_i(\theta) \right) + o(\|\rho\|^2)$$

923 where $\sigma_{\max}(A)$ denotes the largest eigenvalue of the matrix A .

924 To show that the statement does not hold in general, it suffices to provide a counterexample. First, we
925 consider the case where $\|\nabla \mathcal{L}_i(\theta)\| = 0$ for all $i = 1, 2, \dots, S$. Then, the zeroth-order sharpness of
926 the i -th domain loss function is given by

$$928 \quad \mathcal{S}_i(\theta; \rho) = \frac{1}{2} \rho^2 \sigma_{\max}(H_i(\theta)) + o(\|\rho\|^2).$$

930 This leads to the following expression of the average sharpness over all per-domain loss functions:

$$931 \quad \frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta; \rho) = \frac{1}{2S} \rho^2 \sum_{i=1}^S \sigma_{\max}(H_i(\theta)) + o(\|\rho\|^2).$$

935 Next, consider two different local minima θ_1 and θ_2 . For sufficiently small ρ , we can write:

$$936 \quad \mathcal{S}_{\text{agg}}(\theta_1; \theta) < \mathcal{S}_{\text{agg}}(\theta_2; \rho) \quad (7)$$

$$938 \quad \Leftrightarrow \quad 939 \quad \sigma_{\max} \left(\sum_{i=1}^S H_i(\theta_1) \right) < \sigma_{\max} \left(\sum_{i=1}^S H_i(\theta_2) \right). \quad (8)$$

942 Similarly, for sufficiently small ρ , we have the following relationship between the average per-domain
943 sharpnesses at θ_1 and θ_2 :

$$945 \quad \frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta; \rho) < \frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta; \rho) \quad (9)$$

$$949 \quad \Leftrightarrow \quad 950 \quad \sum_{i=1}^S \sigma_{\max}(H_i(\theta_1)) < \sum_{i=1}^S \sigma_{\max}(H_i(\theta_2)). \quad (10)$$

952 Consequently, we conclude that Equation 7 does not imply Equation 9 since the largest eigenvalue of
953 a sum of matrices, $\sigma_{\max} \left(\sum_{i=1}^S H_i(\theta) \right)$, is not generally equal to the sum of the largest eigenvalues
954 of the per-domain matrices, $\sum_{i=1}^S \sigma_{\max}(H_i(\theta))$.

956 Secondly, let us consider the case where $\nabla \mathcal{L}_s(\theta) = 0$, but there exists at least two elements such
957 that $\nabla \mathcal{L}_i(\theta) \neq 0$. For simplicity, let $S = 2$. Without loss of generality, assume $\nabla \mathcal{L}_1(\theta) > 0$ and
958 $\nabla \mathcal{L}_2(\theta) = -\nabla \mathcal{L}_1(\theta)$. Then, the sharpness for $\mathcal{L}_1(\theta)$ is given by

$$959 \quad \mathcal{S}_1(\theta; \rho) = \|\nabla \mathcal{L}_1(\theta)\| \rho + o(\|\rho\|).$$

961 Now, consider two local minima θ_1 and θ_2 satisfying the following inequality:

$$962 \quad \mathcal{S}_{\text{agg}}(\theta_1; \rho) < \mathcal{S}_{\text{agg}}(\theta_2; \rho).$$

964 A counterexample can be constructed such that for some $G > 0$ and $0 < c < 1$,

$$965 \quad \nabla \mathcal{L}_1(\theta_1) = G = -\nabla \mathcal{L}_2(\theta_1),$$

966 and

$$968 \quad \nabla \mathcal{L}_1(\theta_2) = cG = -\nabla \mathcal{L}_2(\theta_2).$$

969 In this example, we find that $\frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta_1; \rho) > \frac{1}{S} \sum_{i=1}^S \mathcal{S}_i(\theta_2; \rho)$. However, such a choice of
970 gradients does not affect the Hessian matrices, and thus the inequality for the sharpness of the total
971 loss remains unchanged. Therefore, the sharpness for the total loss does not generally follow the
same ordering as the average sharpness of the per-domain losses. \square

972 B.2 PROOF OF THEOREM 3.2
973974 We begin by imposing some standard conditions on the loss function.
975976 **Assumption B.1.** For each i , let \mathcal{D}_i be the i -th source domain distribution and $\mathcal{L}_{\mathcal{D}_i}(\theta) =$
977 $\mathbb{E}_{X \sim \mathcal{D}_i}[\ell(\theta, X)]$ where ℓ is a loss function. Assume that $\ell(\theta, x)$ is uniformly bounded for all θ
978 and x and Lipschitz continuous in θ . That is, there exist M and G such that
979

980 $|\ell(\theta, x)| \leq M, \quad |\ell(\theta, x) - \ell(\theta', x)| \leq G\|\theta - \theta'\| \quad \text{for all } \theta, \theta', x.$
981

982 Moreover, if $\text{Div} = W_1$ (the Wasserstein-1 distance), assume additionally that for each θ , the map
983 $x \mapsto \ell(\theta, x)$ is L_x -Lipschitz, i.e.
984

985 $|\ell(\theta, x) - \ell(\theta, x')| \leq L_x d(x, x') \quad \text{for all } \theta, \theta', x.$
986

987 Under Assumption B.1, the following lemma states the relationship between distribution shifts and
988 parameter perturbations.
989990 **Lemma B.2.** *Let Assumption B.1 hold, and let \mathcal{D}_i be the i th source distribution with*

991 $\mathcal{L}_i(\theta) = \mathbb{E}_{x \sim \mathcal{D}_i}[\ell(\theta; x)].$
992

993 Fix a divergence or distance Div and threshold $\delta > 0$, and set
994

995 $\mathcal{U}_i^\delta = \{D : \text{Div}(D\|\mathcal{D}_i) \leq \delta\}.$
996

997 Define the perturbation radius
998

999
$$\rho(\delta) = \begin{cases} \frac{M}{G} \sqrt{\frac{\delta}{2}}, & \text{if } \text{Div} = D_{\text{KL}}, \\ \frac{M}{G} \delta, & \text{if } \text{Div} = \|\cdot\|_{\text{TV}}, \\ \frac{L_x}{G} \delta, & \text{if } \text{Div} = W_1. \end{cases} \quad (11)$$

1000 Then for all θ and any $\rho \geq \rho(\delta)$,

1001
$$\sup_{D \in \mathcal{U}_i^\delta} \mathcal{L}_D(\theta) \leq \max_{\|\epsilon\| \leq \rho} \mathcal{L}_i(\theta + \epsilon).$$

1002

1003 *Proof.* Fix $\rho \geq \rho(\delta)$ where
1004

1005
$$\rho(\delta) = \begin{cases} \frac{M}{G} \sqrt{\frac{\delta}{2}}, & \text{Div} = D_{\text{KL}}, \\ \frac{M}{G} \delta, & \text{Div} = \|\cdot\|_{\text{TV}}, \\ \frac{L_x}{G} \delta, & \text{Div} = W_1. \end{cases}$$

1006

1007 We will show in each case that for all \mathcal{D} with $\text{Div}(\mathcal{D}\|\mathcal{D}_i) \leq \delta$,
1008

1009
$$|\mathcal{L}_D(\theta) - \mathcal{L}_i(\theta)| \leq G \rho(\delta).$$

1010

1011 **Case (i):** $\text{Div} = D_{\text{KL}}$ and $\rho(\delta) = \frac{M}{G} \sqrt{\delta/2}$. Pinsker's inequality gives
1012

1013
$$\|\mathcal{D} - \mathcal{D}_i\|_{\text{TV}} \leq \sqrt{\frac{1}{2} D_{\text{KL}}(\mathcal{D}\|\mathcal{D}_i)} \leq \sqrt{\frac{\delta}{2}},$$

1014

1015 which leads to
1016

1017
$$|\mathcal{L}_D(\theta) - \mathcal{L}_i(\theta)| \leq M \|\mathcal{D} - \mathcal{D}_i\|_{\text{TV}} \leq M \sqrt{\frac{\delta}{2}} = G \rho(\delta).$$

1018

1019 **Case (ii):** $\text{Div} = \|\cdot\|_{\text{TV}}$ and $\rho(\delta) = \frac{M}{G} \delta$. The definition of total variation directly yields
1020

1021
$$|\mathcal{L}_D(\theta) - \mathcal{L}_i(\theta)| \leq M \|\mathcal{D} - \mathcal{D}_i\|_{\text{TV}} \leq M \delta = G \rho(\delta).$$

1022

1023

1024

1025

1026 **Case (iii):** $\text{Div} = W_1$ and $\rho(\delta) = \frac{L_x}{G} \delta$. Assume in addition that $x \mapsto \ell(\theta; x)$ is L_x -Lipschitz. Then
 1027 by the Kantorovich–Rubinstein duality, we have
 1028

$$1029 \quad |\mathcal{L}_D(\theta) - \mathcal{L}_i(\theta)| \leq L_x W_1(\mathcal{D}, \mathcal{D}_i) \leq L_x \delta = G\rho(\delta).$$

1030 In each case, therefore, we obtain for all $\mathcal{D} \in \mathcal{U}_i^\delta$
 1031

$$1032 \quad \mathcal{L}_D(\theta) \leq \mathcal{L}_i(\theta) + G\rho \quad (12)$$

1034 On the other hand, for any perturbation ϵ with $\|\epsilon\| \leq \rho$, using the Lipschitz continuity of $\ell(\cdot, x)$, we
 1035 obtain
 1036

$$1037 \quad \mathcal{L}_i(\theta + \epsilon) - \mathcal{L}_i(\theta) = \mathbb{E}_{x \sim \mathcal{D}_i} [\ell(\theta + \epsilon, x) - \ell(\theta, x)] \leq G\|\epsilon\|$$

1038 which yields
 1039

$$1040 \quad \max_{\|\epsilon\| \leq \rho} \mathcal{L}_i(\theta + \epsilon) \leq \mathcal{L}_i(\theta) + G\rho. \quad (13)$$

1042 Combining equation 12 and equation 13 and then taking the supremum over $\mathcal{D} \in \mathcal{U}_i^\delta$ gives
 1043

$$1044 \quad \sup_{\mathcal{D} \in \mathcal{U}_i^\delta} \mathcal{L}_D(\theta) \leq \max_{\|\epsilon\| \leq \rho} \mathcal{L}_{\mathcal{D}_i}(\theta + \epsilon).$$

1047 \square
 1048

1049 Now, we are ready to prove Theorem 3.2.
 1050

1051 **Proof of Theorem 3.2.** Recall that
 1052

$$1053 \quad \mathcal{E}(\theta; \delta) = \frac{1}{S} \sum_{i=1}^S \sup_{\mathcal{D} \in \mathcal{U}_i^\delta} \mathcal{L}_D(\theta),$$

1056 and

$$1057 \quad \mathcal{L}_s(\theta) = \frac{1}{S} \sum_{i=1}^S \mathcal{L}_i(\theta).$$

1060 By Lemma B.2, for each i and $\rho \geq \rho(\delta)$, we have

$$1061 \quad \sup_{\mathcal{D} \in \mathcal{U}_i^\delta} \mathcal{L}_D(\theta) \leq \max_{\|\epsilon\| \leq \rho} \mathcal{L}_i(\theta + \epsilon) = \mathcal{L}_i(\theta) + S_i(\theta; \rho).$$

1063 where $S_i(\theta; \rho) = \max_{\|\epsilon\| \leq \rho} \mathcal{L}_i(\theta + \epsilon) - \mathcal{L}_i(\theta)$ is the per-domain sharpness for domain i . Averaging
 1064 over $i = 1, \dots, S$ directly gives
 1065

$$1066 \quad \begin{aligned} \mathcal{E}(\theta; \delta) &= \frac{1}{S} \sum_{i=1}^S \sup_{\mathcal{D} \in \mathcal{U}_i^\delta} \mathcal{L}_D(\theta) \\ 1067 &\leq \frac{1}{S} \sum_{i=1}^S [\mathcal{L}_i(\theta) + S_i(\theta; \rho)] \\ 1068 &= \mathcal{L}_s(\theta) + \frac{1}{S} \sum_{i=1}^S S_i(\theta; \rho). \end{aligned}$$

1075 It remains to show that no analogous bound in terms of the aggregated sharpness $\mathcal{S}_{\text{agg}}(\theta; \rho)$ can hold
 1076 uniformly. To this end, it is enough to find a counterexample. Let $S = 2$ and $\text{Div} = D_{\text{KL}}$. Fix the
 1077 source distributions $\mathcal{D}_1 = \mathcal{D}_2 = \text{Uni}\{-1, +1\}$ and define $\ell(\theta, x) = \theta x, \theta \in [0, 1]$. Then, one can
 1078 compute
 1079

$$\mathcal{L}_1(\theta) = \mathcal{L}_2(\theta) = \mathbb{E}_{X \sim \mathcal{D}_i} [\theta X] = 0, \quad \mathcal{L}_s(\theta) = \frac{\mathcal{L}_1(\theta) + \mathcal{L}_2(\theta)}{2} = 0.$$

1080 If we take $\delta = \ln 2$, the adversarial set \mathcal{U}_i^δ contains both point-masses δ_{+1} and δ_{-1} . Hence, we have
 1081
 1082
 1083

$$\sup_{D \in \mathcal{U}_i^\delta} \mathcal{L}_D(\theta) = \max_{x \in \{+1, -1\}} \theta x = \theta,$$

1084 and therefore $\mathcal{E}(\theta; \delta) = \theta$. On the other hand, the aggregated sharpness is trivially zero since
 1085 $\mathcal{L}_s(\theta) = 0$. Thus for any θ , we find
 1086

$$\mathcal{E}(\theta; \delta) = \theta > 0 = \mathcal{L}_s(\theta) + \mathcal{S}_{\text{agg}}(\theta; \rho),$$

1087 showing that no uniform bound of the form $\mathcal{E}(\theta; \delta) \leq \mathcal{L}_s(\theta) + \mathcal{S}_{\text{agg}}(\theta; \rho)$ can hold.
 1088

□

1090 B.3 CONVERGENCE ANALYSIS

1092 Our convergence analysis builds upon the techniques developed in Gower et al. (2019); Khaled &
 1093 Richtárik (2020); Oikonomou & Loizou (2025).

1095 B.3.1 PRELIMINARIES

1097 **Definition B.3** (Domain-wise Subsampling and Stochastic Gradient, (Gower et al., 2019; Khaled
 1098 & Richtárik, 2020)). Let $\mathcal{D}_1, \dots, \mathcal{D}_S$ be S source domains, and i -th data point is associated with
 1099 per-domain loss functions $\mathcal{L}^i(\theta)$, where $\theta \in \mathbb{R}^p$ denotes the model parameters. We define the total
 1100 loss function as:

$$\mathcal{L}_s(\theta) := \frac{1}{n} \sum_{i=1}^n \mathcal{L}^i(\theta),$$

1103 where n is the total number of training samples aggregated from all domains.

1104 We consider a two-level sampling process: First, a domain index $r \in \{1, \dots, S\}$ is selected uniformly
 1105 at random. Then, a minibatch $B_r \subset \mathcal{D}_r$ of fixed size τ is sampled uniformly from within the selected
 1106 domain. The domain-wise sampling vector $v^Q = (v_1^Q, \dots, v_n^Q)$ is drawn from a distribution Q
 1107 defined by this two-level process. For each sample i , the sampling weight is given by:
 1108

$$v_i^Q := \frac{S \cdot 1_{i \in B_r}}{\tau},$$

1111 where $1_{i \in B_r}$ is the indicator function that equals 1 if sample i is included in the minibatch and 0
 1112 otherwise. The resulting domain-wise stochastic gradient estimator is:

$$g^Q(\theta) := \sum_i v_i^Q \nabla \mathcal{L}^i(\theta).$$

1115 where \mathcal{L}^i is the loss evaluated on the i -th sample. According to the general arbitrary sampling
 1116 paradigm (Gower et al., 2019), since $v^Q \sim Q$ satisfies $\mathbb{E}[v_i^Q] = 1$ for all i , the estimator $g^Q(\theta)$ is
 1117 unbiased:

$$\mathbb{E}_Q[g^Q(\theta)] = \nabla \mathcal{L}_s(\theta).$$

1119 Furthermore, the second moment $\mathbb{E}[\|v_i^Q\|^2]$ is finite under this scheme.

1120 **Assumption B.4.** Let \mathcal{B} be a minibatch sampled from the domain-wise subsampling distribution
 1121 the domain-wise subsampling distribution Q defined in Definition B.3, and let $\mathcal{L}_{\mathcal{B}}$ denote the loss
 1122 evaluated on \mathcal{B} . We assume that $\mathcal{L}_{\mathcal{B}}$ is L -smooth. That is, there exists a constant $L > 0$ such that for
 1123 all θ, θ' and any \mathcal{B} ,

$$\|\nabla \mathcal{L}_{\mathcal{B}}(\theta) - \nabla \mathcal{L}_{\mathcal{B}}(\theta')\| \leq L \|\theta - \theta'\|. \quad (14)$$

1124 **Definition B.5** (Expected Residual Condition). Let $\theta^* = \arg \min_{\theta} \mathcal{L}_s(\theta)$. We say the Expected
 1125 Residual condition is satisfied if there exist nonnegative constants $M_1, M_2, M_3 \geq 0$ such that, for
 1126 any point θ , the following inequality holds for an unbiased estimator (stochastic gradient) $g(\theta)$ of the
 1127 true gradient $\nabla \mathcal{L}_s(\theta)$:

$$\mathbb{E}\|g(\theta)\|^2 \leq 2M_1[\mathcal{L}_s(\theta) - \mathcal{L}_s(\theta^*)] + M_2\|\nabla \mathcal{L}_s(\theta)\|^2 + M_3.$$

1128 **Corollary B.6.** Let Assumption B.4 holds and let the domain-wise stochastic gradient by $g^Q(\theta)$
 1129 which is an unbiased estimator of $\mathcal{L}_s(\theta)$ for all θ with $\mathbb{E}[\|v_i^Q\|^2] \leq \infty$. Then, it holds that
 1130

$$\mathbb{E}_Q\|g^Q(\theta)\|^2 \leq 2M_1[\mathcal{L}_s(\theta) - \mathcal{L}_s(\theta^*)] + M_2\|\nabla \mathcal{L}_s(\theta)\|^2 + M_3.$$

1134 *Proof.* In Proposition 2 of Khaled & Richtárik (2020), it is proved that L -smoothness and unbiased
 1135 stochastic gradient with $\mathbb{E}_{\mathcal{D}}[v_i^2] < \infty$ imply Expected Residual condition (Definition B.5). \square
 1136

1137 We collect a few basic inequalities that are frequently used throughout the proofs: For any $a, b \in \mathbb{R}^d$
 1138 and any $\beta > 0$, we have:
 1139

$$1140 \quad |\langle a, b \rangle| \leq \frac{1}{2\beta} \|a\|^2 + \frac{\beta}{2} \|b\|^2, \quad (15)$$

$$1143 \quad \|a + b\|^2 \leq (1 + \beta^{-1}) \|a\|^2 + (1 + \beta) \|b\|^2, \quad (16)$$

$$1145 \quad \|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2, \quad (17)$$

$$1148 \quad \left\| \sum_{i=1}^n x_i \right\|^2 \leq n \sum_{i=1}^n \|x_i\|^2. \quad (18)$$

1151 B.3.2 LEMMAS

1153 We use a uniformly random permutation $\{l_1, \dots, l_S\}$ over the domain indices. B_{l_j} means mini-
 1154 batch from j -th chosen domain and the choice of order is initialized at every step. Thus B_{l_j}
 1155 is the domain-wise subsampling with definition B.3. For notational simplicity, we will write

$$1156 \quad g_j^t = \nabla \mathcal{L}_{B_{l_j}} \left(\theta_t + \sum_{k=1}^{j-1} \rho \frac{g_k^t}{\|g_k^t\|} \right).$$

1158 **Lemma B.7.** *Let Assumption B.4 hold. Then the following inequality holds:*

$$1160 \quad \mathbb{E}_{\mathcal{Q}} \|g_j^t\|^2 \leq 2S^2 L^2 \rho^2 + 2\mathbb{E}_{\mathcal{Q}} \|g^{\mathcal{Q}}(\theta_t)\|^2,$$

1161 where S is the number of domains.
 1162

1163 *Proof.* It follows that
 1164

$$\begin{aligned} 1165 \quad \mathbb{E}_{\mathcal{Q}} \|g_j^t\|^2 &= \mathbb{E}_{\mathcal{Q}} \left\| \nabla \mathcal{L}_{B_{l_j}} \left(\theta_t + \sum_{k=1}^{j-1} \rho \frac{g_k^t}{\|g_k^t\|} \right) \right\|^2 \\ 1166 \\ 1167 &= \mathbb{E}_{\mathcal{Q}} \left\| \nabla \mathcal{L}_{B_{l_j}} \left(\theta_t + \sum_{k=1}^{j-1} \rho \frac{g_k^t}{\|g_k^t\|} \right) - \nabla \mathcal{L}_{B_{l_j}}(\theta_t) + \nabla \mathcal{L}_{B_{l_j}}(\theta_t) \right\|^2 \\ 1168 \\ 1169 &\stackrel{(17)}{\leq} 2\mathbb{E}_{\mathcal{Q}} \left\| \nabla \mathcal{L}_{B_{l_j}} \left(\theta_t + \sum_{k=1}^{j-1} \rho \frac{g_k^t}{\|g_k^t\|} \right) - \nabla \mathcal{L}_{B_{l_j}}(\theta_t) \right\|^2 + 2\mathbb{E}_{\mathcal{Q}} \left\| \nabla \mathcal{L}_{B_{l_j}}(\theta_t) \right\|^2 \\ 1170 \\ 1171 &\stackrel{(14)}{\leq} 2L^2 \rho^2 \mathbb{E}_{\mathcal{Q}} \left\| \sum_{k=1}^{j-1} \frac{g_k^t}{\|g_k^t\|} \right\|^2 + 2\mathbb{E}_{\mathcal{Q}} \|g^{\mathcal{Q}}(\theta_t)\|^2 \\ 1172 \\ 1173 &\stackrel{(18)}{\leq} 2L^2 \rho^2 (j-1) \sum_{k=1}^{j-1} \mathbb{E}_{\mathcal{Q}} \left\| \frac{g_k^t}{\|g_k^t\|} \right\|^2 + 2\mathbb{E}_{\mathcal{Q}} \|g^{\mathcal{Q}}(\theta_t)\|^2 \\ 1174 \\ 1175 &\leq 2S^2 L^2 \rho^2 + 2\mathbb{E}_{\mathcal{Q}} \|g^{\mathcal{Q}}(\theta_t)\|^2. \end{aligned}$$

1176 \square

1177 **Lemma B.8.** *Let Assumption B.4 hold. Then the following inequality holds:*

$$1178 \quad \mathbb{E}_{\mathcal{Q}} \langle g_j^t, \nabla \mathcal{L}_s(\theta_t) \rangle \geq -SL\rho + \left(1 - \frac{SL\rho}{4}\right) \|\nabla \mathcal{L}_s(\theta_t)\|^2,$$

1179 where S is the number of domains.
 1180

1188 *Proof.*

$$\begin{aligned}
 1190 \mathbb{E}_{\mathcal{Q}}\langle g_j^t, \nabla \mathcal{L}_s(\theta_t) \rangle &= \mathbb{E}_{\mathcal{Q}}\left\langle \nabla \mathcal{L}_{B_{l_j}}\left(\theta_t + \sum_{k=1}^{j-1} \rho \frac{g_k^t}{\|g_k^t\|}\right), \nabla \mathcal{L}_s(\theta_t) \right\rangle \\
 1191 &= \mathbb{E}_{\mathcal{Q}}\left\langle \nabla \mathcal{L}_{B_{l_j}}\left(\theta_t + \sum_{k=1}^{j-1} \rho \frac{g_k^t}{\|g_k^t\|}\right) - \nabla \mathcal{L}_{B_{l_j}}(\theta_t), \nabla \mathcal{L}_s(\theta_t) \right\rangle \\
 1192 &\quad + \mathbb{E}_{\mathcal{Q}}\left\langle \nabla \mathcal{L}_{B_{l_j}}(\theta_t), \nabla \mathcal{L}_s(\theta_t) \right\rangle.
 \end{aligned}$$

1197 We have

$$\begin{aligned}
 1199 \mathbb{E}_{\mathcal{Q}}\left\langle \nabla \mathcal{L}_{B_{l_j}}(\theta_t), \nabla \mathcal{L}_s(\theta_t) \right\rangle &= \left\langle \mathbb{E}_{\mathcal{Q}}[\nabla \mathcal{L}_{B_{l_j}}(\theta_t)], \nabla \mathcal{L}_s(\theta_t) \right\rangle \\
 1200 &= \left\langle \mathbb{E}_{\mathcal{Q}}[g^{\mathcal{Q}}(\theta_t)], \nabla \mathcal{L}_s(\theta_t) \right\rangle \\
 1201 &= \|\nabla \mathcal{L}_s(\theta_t)\|^2,
 \end{aligned}$$

1203 and for $\beta > 0$

$$\begin{aligned}
 1204 - \mathbb{E}_{\mathcal{Q}}\left\langle \nabla \mathcal{L}_{B_{l_j}}\left(\theta_t + \sum_{k=1}^{j-1} \rho \frac{g_k^t}{\|g_k^t\|}\right) - \nabla \mathcal{L}_{B_{l_j}}(\theta_t), \nabla \mathcal{L}_s(\theta_t) \right\rangle \\
 1205 &\stackrel{(15)}{\leq} \frac{1}{2\beta} \mathbb{E}_{\mathcal{Q}}\left\| \nabla \mathcal{L}_{B_{l_j}}\left(\theta_t + \sum_{k=1}^{j-1} \rho \frac{g_k^t}{\|g_k^t\|}\right) - \nabla \mathcal{L}_{B_{l_j}}(\theta_t) \right\|^2 + \frac{\beta}{2} \mathbb{E}_{\mathcal{Q}}\|\nabla \mathcal{L}_s(\theta_t)\|^2 \\
 1206 &\stackrel{(14)}{\leq} \frac{L^2 \rho^2}{2\beta} \mathbb{E}_{\mathcal{Q}}\left\| \sum_{k=1}^{j-1} \frac{g_k^t}{\|g_k^t\|} \right\|^2 + \frac{\beta}{2} \|\nabla \mathcal{L}_s(\theta_t)\|^2 \\
 1207 &\leq \frac{S^2 L^2 \rho^2}{2\beta} + \frac{\beta}{2} \|\nabla \mathcal{L}_s(\theta_t)\|^2.
 \end{aligned}$$

1216 In sum,

$$\begin{aligned}
 1217 \mathbb{E}_{\mathcal{Q}}\langle g_j^t, \nabla \mathcal{L}_s(\theta_t) \rangle &\geq -\frac{S^2 L^2 \rho^2}{2\beta} - \frac{\beta}{2} \|\nabla \mathcal{L}_s(\theta_t)\|^2 + \|\nabla \mathcal{L}_s(\theta_t)\|^2 \\
 1218 &= -\frac{S^2 L^2 \rho^2}{2\beta} + (1 - \frac{\beta}{2}) \|\nabla \mathcal{L}_s(\theta_t)\|^2 \\
 1219 &= -SL\rho + (1 - \frac{SL\rho}{4}) \|\nabla \mathcal{L}_s(\theta_t)\|^2
 \end{aligned}$$

1224 with $\beta = \frac{SL\rho}{2}$. □

1225 **Lemma B.9** (Lemma A.8, (Oikonomou & Loizou, 2025)). *Let $(r_t)_{t \geq 0}$ and $(\delta_t)_{t \geq 0}$ be sequences of non-negative real numbers and let $g > 1$ and $N \geq 0$. Assume that the following recursive relationship holds:*

$$1228 \quad r_t \leq g\delta_t - \delta_{t+1} + N \tag{19}$$

1229 *Then it holds*

$$1230 \quad \min_{0 \leq t \leq T-1} r_t \leq \frac{g^T}{T} \delta_0 + N.$$

1233 PROOF OF THEOREM

1234 **Theorem B.10** (ϵ -approximate stationary). *Let Assumption B.4 hold. Define*

$$\begin{aligned}
 1236 \quad T_{\min} &= \frac{12M_4}{\epsilon^2 S} \max\{1, \frac{24M_1 M_4 S L}{\epsilon^2}, 4M_2 L, 12M_3 S L\}, \\
 1237 \quad \bar{\rho} &= \frac{1}{SL} \min\{1, \frac{\epsilon^2}{12}, \frac{\epsilon}{2\sqrt{6L}}\}, \\
 1238 \quad \bar{\gamma} &= \min\{1, \frac{1}{S\sqrt{2M_1 L T}}, \frac{1}{4M_2 L}, \frac{\epsilon^2}{12M_3 S L}\}.
 \end{aligned}$$

1242 For all $\epsilon > 0$, if the DGSAM iteration(3) is employed, then for $\rho \leq \bar{\rho}$, $\gamma \leq \bar{\gamma}$, $T \geq T_{\min}$

$$1243 \min_{t=0, \dots, T-1} \mathbb{E} \|\nabla \mathcal{L}_s(\theta_t)\| \leq \epsilon$$

1244 where the initial optimality gap $M_4 = \mathcal{L}_s(\theta_0) - \mathcal{L}_s(\theta^*)$, S is the number of domains, M_1, M_2, M_3
1245 are the constants for the expected residual condition.

1246 *Proof.* For simplicity, we assume that the effect of the batch size is absorbed into the learning rate γ ,
1247 i.e., γ is defined as the product of the base learning rate and the batch size.

1248 From the L -smoothness of \mathcal{L}_s , we have

$$1249 \mathcal{L}_s(\theta_{t+1}) \leq \mathcal{L}_s(\theta_t) + \langle \nabla \mathcal{L}_s(\theta_t), \theta_{t+1} - \theta_t \rangle + \frac{L}{2} \|\theta_{t+1} - \theta_t\|^2$$

$$1250 = \mathcal{L}_s(\theta_t) - \gamma \frac{S}{S+1} \left\langle \nabla \mathcal{L}_s(\theta_t), \sum_{j=1}^{S+1} g_j^t \right\rangle + \frac{L\gamma^2}{2} \left(\frac{S}{S+1} \right)^2 \left\| \sum_{j=1}^{S+1} g_j^t \right\|^2,$$

1251 since the DGSAM update is defined as $\theta_{t+1} = \theta_t - \gamma \frac{S}{S+1} \sum_{j=1}^{S+1} g_j^t$.

1252 By taking the expectation,

$$1253 \mathbb{E}_{\mathcal{Q}} [\mathcal{L}_s(\theta_{t+1}) - \mathcal{L}_s(\theta^*) \mid \theta_t] - [\mathcal{L}_s(\theta_t) - \mathcal{L}_s(\theta^*)]$$

$$1254 \leq -\gamma \frac{S}{S+1} \sum_{j=1}^{S+1} \mathbb{E}_{\mathcal{Q}} \langle \nabla \mathcal{L}_s(\theta_t), g_j^t \rangle + \frac{L\gamma^2}{2} \left(\frac{S}{S+1} \right)^2 \mathbb{E}_{\mathcal{Q}} \left\| \sum_{j=1}^{S+1} g_j^t \right\|^2$$

$$1255 \stackrel{(18)}{\leq} -\gamma S \mathbb{E}_{\mathcal{Q}} \langle \nabla \mathcal{L}_s(\theta_t), g_j^t \rangle + \frac{L\gamma^2 S^2}{2} \mathbb{E}_{\mathcal{Q}} \|g_j^t\|^2$$

$$1256 \stackrel{\text{Lem. B.7, B.8}}{\leq} -\gamma S \left(-SL\rho + \left(1 - \frac{SL\rho}{4}\right) \|\nabla \mathcal{L}_s(\theta_t)\|^2 \right) + \frac{L\gamma^2 S^2}{2} (2S^2 L^2 \rho^2 + 2\mathbb{E}_{\mathcal{Q}} \|g^{\mathcal{Q}}(\theta_t)\|^2)$$

$$1257 = -S\gamma \left(1 - \frac{SL\rho}{4} \right) \|\nabla \mathcal{L}_s(\theta_t)\|^2 + LS^2 \gamma^2 \mathbb{E}_{\mathcal{Q}} \|g^{\mathcal{Q}}(\theta_t)\|^2 + S^2 L \gamma \rho (1 + S^2 L^2 \gamma \rho)$$

$$1258 \stackrel{\text{Cor. B.6}}{\leq} -S\gamma \left(1 - \frac{SL\rho}{4} \right) \|\nabla \mathcal{L}_s(\theta_t)\|^2 + 2M_1 LS^2 \gamma^2 [\mathcal{L}_s(\theta_t) - \mathcal{L}_s(\theta^*)] + M_2 LS \gamma^2 \|\nabla \mathcal{L}_s(\theta_t)\|^2$$

$$1259 + M_3 LS^2 \gamma^2 + S^2 L \gamma \rho (1 + S^2 L^2 \gamma \rho)$$

$$1260 = -S\gamma \left(1 - \frac{SL\rho}{4} - M_2 L \gamma \right) \|\nabla \mathcal{L}_s(\theta_t)\|^2 + 2M_1 LS^2 \gamma^2 [\mathcal{L}_s(\theta_t) - \mathcal{L}_s(\theta^*)] + S^2 L \gamma (\rho + S^2 L^2 \gamma \rho^2 + M_3 \gamma)$$

$$1261 \leq -\frac{S\gamma}{2} \|\nabla \mathcal{L}_s(\theta_t)\|^2 + 2M_1 LS^2 \gamma^2 [\mathcal{L}_s(\theta_t) - \mathcal{L}_s(\theta^*)] + S^2 L \gamma (\rho + S^2 L^2 \gamma \rho^2 + M_3 \gamma).$$

1262 The final inequality follows from the inequality $1 - \frac{SL\rho}{4} - M_2 L \gamma \geq \frac{1}{2}$, which is obtained from our
1263 assumptions $\rho \leq \frac{1}{SL}$ and $\gamma \leq \frac{1}{4M_2 L}$.

1264 In sum,

$$1265 \mathbb{E}_{\mathcal{D}} [\mathcal{L}_s(\theta_{t+1}) - \mathcal{L}_s(\theta^*)] - [\mathcal{L}_s(\theta_t) - \mathcal{L}_s(\theta^*)]$$

$$1266 \leq -\frac{S\gamma}{2} \|\nabla \mathcal{L}_s(\theta_t)\|^2 + 2M_1 LS^2 \gamma^2 [\mathcal{L}_s(\theta_t) - \mathcal{L}_s(\theta^*)] + S^2 L \gamma (\rho + S^2 L^2 \gamma \rho^2 + M_3 \gamma)$$

$$1267 \implies \frac{S\gamma}{2} \|\nabla \mathcal{L}_s(\theta_t)\|^2 \leq (1 + 2M_1 LS^2 \gamma^2) [\mathcal{L}_s(\theta_t) - \mathcal{L}_s(\theta^*)] - \mathbb{E}_{\mathcal{D}} [\mathcal{L}_s(\theta_{t+1}) - \mathcal{L}_s(\theta^*)]$$

$$1268 + S^2 L \gamma (\rho + S^2 L^2 \gamma \rho^2 + M_3 \gamma). \tag{20}$$

1269 By taking expectation and applying the tower property, we can conclude that

$$1270 \mathbb{E} \|\nabla \mathcal{L}_s(\theta_t)\|^2 \leq (1 + 2M_1 LS^2 \gamma^2) \frac{2}{S\gamma} \mathbb{E} [\mathcal{L}_s(\theta_t) - \mathcal{L}_s(\theta^*)] - \frac{2}{S\gamma} \mathbb{E} [\mathcal{L}_s(\theta_{t+1}) - \mathcal{L}_s(\theta^*)]$$

$$1271 + 2SL(\rho + S^2 L^2 \gamma \rho^2 + M_3 \gamma). \tag{21}$$

1296 We now define the following auxiliary quantities:
1297

$$\begin{aligned} r_t &:= \mathbb{E}\|\nabla \mathcal{L}_s(\theta_t)\|^2 \geq 0, \\ \delta_t &:= \frac{2}{S\gamma} \mathbb{E}[\mathcal{L}_s(\theta_t) - \mathcal{L}_s(\theta^*)] \geq 0, \\ g &:= (1 + 2M_1LS^2\gamma^2) > 1, \\ N &:= 2SL(\rho + S^2L^2\gamma\rho^2 + M_3\gamma). \end{aligned}$$

1304 With these definitions, inequality 21 becomes:
1305

$$r_t \leq g\delta_t - \delta_{t+1} + N.$$

1306 By applying Lemma B.9, we have
1307

$$\min_{t=0, \dots, T-1} \mathbb{E}\|\nabla \mathcal{L}_s(\theta_t)\|^2 \leq \frac{2(1 + 2M_1LS^2\gamma^2)^T}{TS\gamma} [\mathcal{L}_s(\theta_0) - \mathcal{L}_s(\theta^*)] + 2SL(\rho + S^2L^2\gamma\rho^2 + M_3\gamma).$$

1310 From $1 + x \leq e^x$, we can get
1311

$$(1 + 2M_1LS^2\gamma^2)^T \leq \exp(2TM_1LS^2\gamma^2) \leq \exp(1) \leq 3,$$

1312 since we have $\gamma \leq \frac{1}{S\sqrt{2M_1LT}}$ which imply $2TM_1LS^2\gamma^2 \leq 1$.
1313

1314 Therefore,

$$\min_{t=0, \dots, T-1} \mathbb{E}\|\nabla \mathcal{L}_s(\theta_t)\|^2 \leq \frac{6M_4}{TS\gamma} + 2SL(\rho + S^2L^2\gamma\rho^2 + M_3\gamma).$$

1317 The second term is less than $\frac{\epsilon^2}{2}$ with assumptions:
1318

$$\begin{aligned} 2SL\rho &\leq \frac{\epsilon^2}{6} \iff \rho \leq \frac{\epsilon^2}{12SL}, \\ \gamma &\leq 1, \\ 4S^2L^3\gamma\rho^2 &\leq \frac{\epsilon^2}{6} \iff \rho \leq \frac{\epsilon}{2SL\sqrt{6L}} \quad \text{with } \gamma \leq 1, \\ 2SLM_3\gamma &\leq \frac{\epsilon^2}{6} \iff \gamma \leq \frac{\epsilon^2}{12SLM_3}. \end{aligned}$$

1327 Likewise, we have the inequality for the first term:
1328

$$\frac{6M_4}{TS\gamma} \leq \frac{\epsilon^2}{2} \iff T \geq \frac{12M_4}{\epsilon^2S\gamma} \quad (22)$$

1330 We have so far imposed the following inequalities on γ :
1331

$$\gamma \leq \min \left\{ \frac{1}{4M_2L}, \frac{1}{S\sqrt{2M_1LT}}, 1, \frac{\epsilon^2}{12M_3SL} \right\}$$

1334 Consequently, T must satisfy the following conditions for (22).
1335

$$T \geq \max \left\{ \frac{48M_2M_4L}{\epsilon^2S}, \frac{288M_1M_4^2L}{\epsilon^4}, \frac{12M_4}{\epsilon^2S}, \frac{144M_3M_4L}{\epsilon^2} \right\}$$

1338 Finally, we have:
1339

$$\min_{t=0, \dots, T-1} \mathbb{E}\|\nabla \mathcal{L}_s(\theta_t)\|^2 \leq \epsilon^2.$$

1341 with these assumptions:
1342

$$T \geq \frac{12M_4}{\epsilon^2S} \max\{1, \frac{24M_1M_4SL}{\epsilon^2}, 4M_2L, 12M_3SL\},$$

$$\rho \leq \frac{1}{SL} \min\{1, \frac{\epsilon^2}{12}, \frac{\epsilon}{2\sqrt{6L}}\},$$

$$\gamma \leq \min\{1, \frac{1}{S\sqrt{2M_1LT}}, \frac{1}{4M_2L}, \frac{\epsilon^2}{12M_3SL}\}.$$

1349

□

1350
1351

C ADDITIONAL EXPERIMENTS

1352

C.1 SENSITIVITY ANALYSIS OF DGSAM WITH RESPECT TO ρ

1353
1354 To analyze the sensitivity of DGSAM to ρ , we evaluated the performance of SAM and DGSAM across
1355 different ρ values $\{0.001, 0.005, 0.01, 0.05, 0.1, 0.2\}$ on the PACS and TerraIncognita datasets. As
1356 shown in Figure 6, DGSAM consistently outperformed SAM and demonstrated superior performance
1357 over a wider range of ρ values.1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Figure 6: Sensitivity analysis

C.2 COMPARISON OF TWO TERMS IN EQ 5

Figure 7 shows that the second term tends to be slightly smaller than the first term, but the two are comparable in magnitude. This indicates that both terms contribute to the gradual perturbation.

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Figure 7: Comparison of magnitude of two terms in Eq 5 on the PACS

C.3 ROBUSTNESS TO EXTREME DOMAIN IMBALANCE

To further validate the robustness of our proposed DGSAM method against domain imbalance, we conducted additional stress-test experiments under more extreme imbalance scenarios. For this analysis, we utilized the TerraIncognita dataset and artificially increased the sample size imbalance ratio between the largest and smallest domains from the original approximate ratio of 2:1 to 3:1, 5:1, and 10:1.

The results are presented in Table 4. As the domain imbalance becomes more severe, the performance of all methods gradually decreases. However, DGSAM consistently and significantly outperforms

both ERM and SAM across all tested scenarios. Notably, even with a severe 10:1 imbalance ratio, DGSAM’s performance degrades gracefully while maintaining a substantial performance margin over the baselines. This result strongly demonstrates that DGSAM is inherently robust to domain heterogeneity and imbalance, owing to its mechanism of applying perturbations based on the normalized gradient for each domain.

Table 4: Performance comparison on TerraIncognita under varying degrees of domain imbalance.

Method \ Ratio	2:1 (Original)	3:1	4:1	5:1	10:1
ERM	35.7	35.3	35.2	34.9	32.1
SAM	34.5	34.7	34.2	34.1	31.9
DGSAM	41.8	41.6	41.4	41.1	38.3

C.4 SCALABILITY TO A LARGE NUMBER OF DOMAINS

The standard DGSAM implementation performs a sequential ascent over all S source domains, which can become computationally inefficient and potentially unstable as the number of domains S becomes very large. To address this scalability concern, we introduce a straightforward and practical modification: domain subsampling.

Instead of iterating through all S domains, we can fix the number of sequential ascent steps to k (where $k \ll S$, e.g., $k = 5$) by randomly subsampling a subset of k domains at each training iteration. The method presented in the main manuscript is a specific case of this more general framework where $k = S$.

To verify the effectiveness of this approach, we applied DGSAM with domain subsampling ($k = 5$) to datasets comprising several tens of domains: PovertyMap (Yeh et al., 2020) and GlobalWheat (David et al., 2020). As shown in Table 5, DGSAM with subsampling not only addresses the scalability issue but also maintains strong performance, outperforming both ERM and SAM. This refinement confirms that DGSAM can be effectively and practically applied to large-scale scenarios with numerous domains.

Table 5: Performance on datasets with a large number of domains using domain subsampling.

Method	PovertyMap (23 domains)	GlobalWheat (47 domains)
ERM	0.45	50.8
SAM	0.44	51.1
DGSAM ($k = 5$ subsampling)	0.50	51.9

C.5 ABLATION STUDIES ON STOCHASTIC ORDERING AND GRADIENT RE-USING

In this subsection, we empirically validate two critical design choices in the DGSAM algorithm: (1) the stochasticity in the sequential domain order, and (2) the gradient reuse strategy for computational efficiency. We conduct these ablation studies on the PACS and TerraIncognita datasets using the ResNet-50 backbone. The results are summarized in Table 6.

Table 6: Ablation analysis on PACS and TerraIncognita datasets.

Method Configuration	PACS Mean (SD)	TerraIncognita Mean (SD)	s/iter
Not re-using	88.9	0.5	51.3
Fixed Order	83.6	2.6	46.1
DGSAM	88.5	0.4	49.9

1458
 1459 **Impact of Random Domain Permutation.** DGSAM permutes the order of source domains at
 1460 each iteration before applying sequential perturbations. To assess the impact of this stochasticity, we
 1461 compare our default setting with a “Fixed Order” variant, where the domain sequence for the gradual
 1462 ascent remains constant throughout training. As presented in Table 6, fixing the domain order leads to
 1463 a consistent degradation in average accuracy across benchmarks compared to the random permutation
 1464 strategy. Furthermore, we observe a marked increase in performance variance, suggesting that a
 1465 fixed sequence induces training instability. These results indicate that randomizing the perturbation
 1466 order serves as an essential regularizer, preventing the optimization from biasing towards a specific
 1467 trajectory and ensuring robust flatness across all domains.

1468
 1469 **Effect of Gradient Re-using.** To minimize computational overhead, DGSAM approximates the
 1470 descent direction by aggregating the gradients computed during the gradual ascent steps, rather
 1471 than performing a fresh gradient computation at the final perturbed model parameter. We evaluate
 1472 the trade-off of this design by comparing it with a variant that performs an additional backward
 1473 pass at the final perturbed point to compute the exact gradient for the update. As shown in Table 6,
 1474 while the additional gradient computation yields marginal gains in accuracy, it incurs a substantial
 1475 computational penalty, leading to a considerable slowdown in training speed. Consequently, we adopt
 1476 the gradient reuse strategy as the default, as it maintains competitive performance while significantly
 1477 reducing the computational burden, offering a better balance for scalable domain generalization.

1477 C.6 DETAILS OF THE EXPERIMENTAL VERIFICATION OF SHARPNESS

1479 D COMPUTATION EFFICIENCY

1481 D.1 ILLUSTRATION OF COMPUTATIONAL COST COMPARISON

1502 Figure 8: Computational cost of SAM and DGSAM.
 1503

1504 In standard domain generalization tasks, a single update step operates on a batch that comprises
 1505 mini-batches from all source domains. While the number of data samples per domain-specific
 1506 mini-batch may vary, we follow the DomainBed protocol (Gulrajani & Lopez-Paz, 2021), where
 1507 each mini-batch contains an equal number of samples. Throughout this paper, we assume uniform
 1508 mini-batch sizes across domains.

1509 Let the computational cost of computing the loss and performing backpropagation on a single domain-
 1510 specific mini-batch from one domain be denoted as c . In the standard SAM algorithm, both an ascent
 1511 and a descent gradient must be computed for each of the S domain-specific mini-batches, resulting in
 a total gradient computation cost of $2S \times c$ per update theoretically.

1512 In contrast, as illustrated in the Figure 8, DGSAM computes gradients separately for each mini-batch,
 1513 using g_1, \dots, g_S not only as ascent gradients but also directly for the parameter update. Due to this
 1514 efficient reuse of gradients, DGSAM requires only $(S + 1) \times c$ in gradient computation cost per
 1515 update theoretically.

1517 D.2 ADDITIONAL ANALYSIS ON COMPUTATIONAL RESOURCES

1519 We provide a comprehensive analysis of computational resources, including both computational
 1520 complexity (GFLOPs) and memory usage. All measurements were conducted using a ResNet-50
 1521 backbone, and the results reported in Table 7 are averaged across the PACS and TerraIncognita
 1522 datasets. We report GFLOPs per update alongside mean and maximum memory allocation.

1524 **Computational Cost (GFLOPs).** We measure the GFLOPs required for a single model update. As
 1525 expected, SAM nearly doubles the cost of ERM due to its dual forward-backward passes. DGSAM
 1526 successfully reduces this overhead, validating our efficiency analysis.

1527 **Memory Efficiency.** Despite the moderate increase in GFLOPs compared to ERM, DGSAM achieves
 1528 the lowest memory consumption. While ERM and SAM typically perform the backward pass over a
 1529 full batch including data from all domains, DGSAM performs backward passes separately on each
 1530 domain-specific mini-batch, accumulating gradients before a single update. This approach prevents
 1531 memory cost from scaling linearly with the number of domains, resulting in significantly lower
 1532 memory usage compared to both ERM and SAM.

1533 Table 7: Comparison of computational cost (GFLOPs per sample) and memory consumption (GB).

1536 Method	1537 Computational Cost		1538 Memory Usage	
	1539 GFLOPs / sample	1540	1541 Mean (GB)	1542 Max (GB)
1543 ERM	1544 8.27	1545	8.0	8.1
1546 SAM	1547 15.99	1548	8.1	8.3
1549 DGSAM	1550 13.28	1551	5.8	6.0

1554 E VISUALIZATION OF LOSS LANDSCAPES

1555 Figure 9 shows the 3D loss landscapes of converged solutions obtained by SAM and our proposed
 1556 DGSAM on the PACS dataset using ResNet-50. Each subplot corresponds to a different domain or
 1557 the aggregated total loss. While SAM finds flat minima in the total loss, it fails to flatten the loss
 1558 surfaces in respective domains. In contrast, DGSAM successfully reduces per-domain sharpness as
 1559 well as the total sharpness, demonstrating its ability to achieve flatter minima at the domain level.

1560 Figure 10 illustrates how DGSAM sequentially applies domain-specific perturbations and aggregates
 1561 gradients to update the model.

1562 F DETAILS OF MAIN EXPERIMENTS

1563 F.1 IMPLEMENTATION DETAILS

1564 We searched hyperparameters in the following ranges: the learning rate was chosen from $\{10^{-5}, 2 \times$
 1565 $10^{-5}, 3 \times 10^{-5}, 5 \times 10^{-5}\}$, the dropout rate from $\{0.0, 0.2, 0.5\}$, the weight decay from $\{10^{-4}, 10^{-6}\}$,
 1566 and ρ from $\{0.03, 0.05, 0.1\}$. Each experiment was repeated three times, using 20 randomly initialized
 1567 models sampled from this space, following the DomainBed protocol (Gulrajani & Lopez-Paz, 2021).
 1568 The optimal hyperparameters selected based on DomainBed criteria for each dataset are provided in
 1569 Table 8 to ensure replicability. All our experiments were conducted on an NVIDIA A100 GPU, using
 1570 Python 3.11.5, PyTorch 2.0.0, Torchvision 0.15.1, and CUDA 11.7.

Figure 9: Comparison of loss landscapes of converged minima using SAM and DGSAM across different domains on the PACS dataset. We set the grid with two random direction. DGSAM performs better than SAM in reducing per-domain sharpness in all three respective domains, and total sharpness.

Figure 10: A visualization of DGSAM algorithm.

Table 8: Optimal hyperparameter settings for each dataset

Dataset	Learning Rate	Dropout Rate	Weight Decay	ρ
PACS	3×10^{-5}	0.5	10^{-4}	0.03
VLCS	10^{-5}	0.5	10^{-4}	0.03
OfficeHome	10^{-5}	0.5	10^{-6}	0.1
TerraIncognita	10^{-5}	0.2	10^{-6}	0.05
DomainNet	2×10^{-5}	0.5	10^{-4}	0.1

1620
1621

F.2 FULL RESULTS

1622
1623
1624
1625
1626

Here are the detailed results of the main experiment in Section 5.2 for each dataset. The outcomes are marked with \dagger if sourced from Wang et al. (2023), \ddagger if sourced from Zhang et al. (2023a), and are unlabeled if sourced from individual papers. We note that all results were conducted in the same experimental settings as described in their respective papers. The value shown next to the performance for each test domain represents the standard error across three trials.

1627
1628

Table 9: The performance of DGSAM with 18 baseline algorithms on PACS.

1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647

Algorithm	A	C	P	S	Avg	SD	(s/iter)
MTL † (Blanchard et al., 2021)	87.5 \pm 0.8	77.1 \pm 0.5	96.4 \pm 0.8	77.3 \pm 1.8	84.6	8.0	0.12
VREx † (Krueger et al., 2021)	86.0 \pm 1.6	79.1 \pm 0.6	96.9 \pm 0.5	77.7 \pm 1.7	84.9	7.6	0.11
ARM † (Zhang et al., 2021)	86.8 \pm 0.6	76.8 \pm 0.5	97.4 \pm 0.3	79.3 \pm 1.2	85.1	8.0	0.11
RSC † (Huang et al., 2020)	85.4 \pm 0.8	79.7 \pm 1.8	97.6 \pm 0.3	78.2 \pm 1.2	85.2	7.6	0.14
ERM †	84.7 \pm 0.4	80.8 \pm 0.6	97.2 \pm 0.3	79.3 \pm 1.0	85.5	7.0	0.11
CORAL † (Sun & Saenko, 2016)	88.3 \pm 0.2	80.0 \pm 0.5	97.5 \pm 0.3	78.8 \pm 1.3	86.2	7.5	0.12
SagNet † (Nam et al., 2021)	87.4 \pm 1.0	80.7 \pm 0.6	97.1 \pm 0.1	80.0 \pm 0.4	86.3	6.9	0.32
GGA (Ballas & Diou, 2025)	86.5 \pm 1.8	81.2 \pm 3.0	97.1 \pm 0.9	80.8 \pm 0.9	86.4	6.6	0.49
GGA-L (Ballas & Diou, 2025)	88.0 \pm 1.0	81.2 \pm 2.0	97.1 \pm 0.3	80.8 \pm 2.5	86.5	6.6	0.33
GENIE (Cho et al., 2025)	88.7 \pm 0.7	82.8 \pm 1.3	98.5 \pm 0.1	81.3 \pm 0.4	87.8	6.8	0.09
SWAD (Cha et al., 2021)	89.3 \pm 0.2	83.4 \pm 0.6	97.3 \pm 0.3	82.5 \pm 0.5	88.1	5.9	0.11
SAM † (Foret et al., 2021)	85.6 \pm 2.1	80.9 \pm 1.2	97.0 \pm 0.4	79.6 \pm 1.6	85.8	6.9	0.22
GSAM † (Zhuang et al., 2022)	86.9 \pm 0.1	80.4 \pm 0.2	97.5 \pm 0.0	78.7 \pm 0.8	85.9	7.4	0.22
Lookbehind-SAM (Mordido et al., 2024)	86.8 \pm 0.2	80.2 \pm 0.3	97.4 \pm 0.8	79.7 \pm 0.2	86.0	7.2	0.50
GAM ‡ (Zhang et al., 2023b)	85.9 \pm 0.9	81.3 \pm 1.6	98.2 \pm 0.4	79.0 \pm 2.1	86.1	7.4	0.43
SAGM (Wang et al., 2023)	87.4 \pm 0.2	80.2 \pm 0.3	98.0 \pm 0.2	80.8 \pm 0.6	86.6	7.2	0.22
DISAM (Zhang et al., 2024)	87.1 \pm 0.4	81.9 \pm 0.5	96.2 \pm 0.3	83.1 \pm 0.7	87.1	5.6	0.33
FAD (Zhang et al., 2023a)	88.5 \pm 0.5	83.0 \pm 0.8	98.4 \pm 0.2	82.8 \pm 0.9	88.2	6.3	0.38
DGSAM	88.9 \pm 0.2	84.8 \pm 0.7	96.9 \pm 0.2	83.5 \pm 0.3	88.5	5.2	0.17
DGSAM + SWAD	89.1 \pm 0.5	84.6 \pm 0.4	97.3 \pm 0.1	83.6 \pm 0.4	88.7	5.4	0.17
DGSAM + CORAL	89.5 \pm 0.3	84.9 \pm 0.3	97.0 \pm 0.2	83.7 \pm 0.7	88.8	5.2	0.18
DGSAM + Mixup	90.1 \pm 0.4	84.8 \pm 0.4	98.2 \pm 0.3	84.5 \pm 0.5	89.4	5.5	0.17
DGSAM + ERM++	90.6 \pm 0.5	85.2 \pm 0.6	98.5 \pm 0.3	86.0 \pm 0.4	90.1	5.3	0.25

1648
1649

Table 10: The performance of DGSAM with 18 baseline algorithms on VLCS

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Algorithm	C	L	S	V	Avg	SD	(s/iter)
RSC † (Huang et al., 2020)	97.9 \pm 0.1	62.5 \pm 0.7	72.3 \pm 1.2	75.6 \pm 0.8	77.1	13.0	0.13
MTL † (Blanchard et al., 2021)	97.8 \pm 0.4	64.3 \pm 0.3	71.5 \pm 0.7	75.3 \pm 1.7	77.2	12.5	0.12
ERM †	98.0 \pm 0.3	64.7 \pm 1.2	71.4 \pm 1.2	75.2 \pm 1.6	77.3	12.5	0.11
ARM † (Zhang et al., 2021)	98.7 \pm 0.2	63.6 \pm 0.7	71.3 \pm 1.2	76.7 \pm 0.6	77.6	13.1	0.11
SagNet † (Nam et al., 2021)	97.9 \pm 0.4	64.5 \pm 0.5	71.4 \pm 1.3	77.5 \pm 0.5	77.8	12.5	0.32
VREx † (Krueger et al., 2021)	98.4 \pm 0.3	64.4 \pm 1.4	74.1 \pm 0.4	76.2 \pm 1.3	78.3	12.4	0.11
GGA-L (Ballas & Diou, 2025)	98.9 \pm 0.4	66.5 \pm 0.3	70.0 \pm 2.0	78.1 \pm 1.1	78.4	12.6	0.33
GGA (Ballas & Diou, 2025)	98.4 \pm 0.2	65.4 \pm 0.1	73.8 \pm 1.6	77.4 \pm 1.9	78.7	12.2	0.49
CORAL † (Sun & Saenko, 2016)	98.3 \pm 0.1	66.1 \pm 1.2	73.4 \pm 0.3	77.5 \pm 1.2	78.8	12.0	0.12
SWAD (Cha et al., 2021)	98.8 \pm 0.1	63.3 \pm 0.3	75.3 \pm 0.5	79.2 \pm 0.6	79.1	12.8	0.11
GENIE (Cho et al., 2025)	99.3 \pm 0.3	67.2 \pm 1.5	76.6 \pm 0.3	79.7 \pm 0.8	80.7	11.7	0.09
GAM ‡ (Zhang et al., 2023b)	98.8 \pm 0.6	65.1 \pm 1.2	72.9 \pm 1.0	77.2 \pm 1.9	78.5	12.5	0.43
Lookbehind-SAM (Mordido et al., 2024)	98.7 \pm 0.6	65.1 \pm 1.1	73.1 \pm 0.4	78.7 \pm 0.9	78.9	12.4	0.50
FAD (Zhang et al., 2023a)	99.1 \pm 0.5	66.8 \pm 0.9	73.6 \pm 1.0	76.1 \pm 1.3	78.9	12.1	0.38
GSAM † (Zhuang et al., 2022)	98.7 \pm 0.3	64.9 \pm 0.2	74.3 \pm 0.0	78.5 \pm 0.8	79.1	12.3	0.22
SAM † (Foret et al., 2021)	99.1 \pm 0.2	65.0 \pm 1.0	73.7 \pm 1.0	79.8 \pm 0.1	79.4	12.5	0.22
DISAM (Zhang et al., 2024)	99.3 \pm 0.0	66.3 \pm 0.5	81.0 \pm 0.1	73.2 \pm 0.1	79.9	12.3	0.33
SAGM (Wang et al., 2023)	99.0 \pm 0.2	65.2 \pm 0.4	75.1 \pm 0.3	80.7 \pm 0.8	80.0	12.3	0.22
DGSAM + SWAD	99.3 \pm 0.7	67.2 \pm 0.3	77.7 \pm 0.6	79.2 \pm 0.5	80.9	11.6	0.17
DGSAM + ERM++	99.2 \pm 0.3	67.4 \pm 0.2	77.8 \pm 0.1	79.5 \pm 0.4	81.0	11.5	0.25
DGSAM	99.0 \pm 0.5	67.0 \pm 0.5	77.9 \pm 0.5	81.8 \pm 0.4	81.4	11.5	0.17
DGSAM + Mixup	99.1 \pm 0.4	67.3 \pm 0.5	78.1 \pm 0.2	82.1 \pm 0.5	81.7	11.4	0.17
DGSAM + CORAL	99.3 \pm 0.8	67.4 \pm 0.7	79.5 \pm 0.5	81.5 \pm 0.1	81.9	11.4	0.18

1674

1675

1676

1677

1678

Table 11: The performance of DGSAM with 18 baseline algorithms on OfficeHome

Algorithm	A	C	P	R	Avg	SD	(s/iter)
ARM [†] (Zhang et al., 2021)	58.9±0.8	51.0±0.5	74.1±0.1	75.2±0.3	64.8	10.2	0.11
RSC [†] (Huang et al., 2020)	60.7±1.4	51.4±0.3	74.8±1.1	75.1±1.3	65.5	10.0	0.14
MTL [†] (Blanchard et al., 2021)	61.5±0.7	52.4±0.6	74.9±0.4	76.8±0.4	66.4	10.0	0.12
VREx [†] (Krueger et al., 2021)	60.7±0.9	53.0±0.9	75.3±0.1	76.6±0.5	66.4	9.9	0.11
GGA-L (Ballas & Diou, 2025)	59.7±0.2	53.8±0.5	75.3±0.8	77.1±0.1	66.5	10.0	0.33
GGA (Ballas & Diou, 2025)	61.7±0.1	52.5±0.5	77.1±1.3	77.0±0.1	67.0	10.5	0.49
ERM [†]	63.1±0.3	51.9±0.4	77.2±0.5	78.1±0.2	67.6	10.8	0.11
SagNet [†] (Nam et al., 2021)	63.4±0.2	54.8±0.4	75.8±0.4	78.3±0.3	68.1	9.5	0.32
CORAL [†] (Sun & Saenko, 2016)	65.3±0.4	54.4±0.5	76.5±0.1	78.4±0.5	68.7	9.6	0.12
GENIE (Cho et al., 2025)	66.2±0.5	55.0±0.4	77.5±0.4	80.0±0.5	69.7	10.0	0.09
SWAD (Cha et al., 2021)	66.1±0.4	57.7±0.4	78.4±0.1	80.2±0.2	70.6	9.2	0.11
GAM [‡] (Zhang et al., 2023b)	63.0±1.2	49.8±0.5	77.6±0.6	82.4±1.0	68.2	12.8	0.43
FAD (Zhang et al., 2023a)	63.5±1.0	50.3±0.8	78.0±0.4	85.0±0.6	69.2	13.4	0.40
Lookbehind-SAM (Mordido et al., 2024)	64.7±0.3	53.1±0.8	77.4±0.5	81.7±0.7	69.2	11.2	0.50
GSAM [†] (Zhuang et al., 2022)	64.9±0.1	55.2±0.2	77.8±0.0	79.2±0.0	69.3	9.9	0.22
SAM [†] (Foret et al., 2021)	64.5±0.3	56.5±0.2	77.4±0.1	79.8±0.4	69.6	9.5	0.22
SAGM (Wang et al., 2023)	65.4±0.4	57.0±0.3	78.0±0.3	80.0±0.2	70.1	9.4	0.22
DISAM (Zhang et al., 2024)	65.8±0.2	55.6±0.2	79.2±0.2	80.6±0.1	70.3	10.3	0.33
DGSAM	65.6±0.4	59.7±0.2	78.0±0.2	80.1±0.4	70.8	8.5	0.17
DGSAM + CORAL	66.4±0.5	59.6±0.2	78.3±0.3	80.5±0.5	71.2	8.6	0.18
DGSAM + Mixup	67.3±0.3	60.2±0.4	77.4±0.3	80.3±0.3	71.3	8.0	0.17
DGSAM + SWAD	66.2±0.6	59.9±0.1	78.1±0.4	81.2±0.5	71.4	8.7	0.17
DGSAM + ERM++	70.9±0.5	62.7±0.1	82.3±0.2	83.8±0.1	74.9	8.6	0.25

1697

1698

1699

1700

1701

1702

1703

1704

Table 12: The performance of DGSAM with 18 baseline algorithms on TerraIncognita

Algorithm	L100	L38	L43	L46	Avg	SD	(s/iter)
ARM [†] (Zhang et al., 2021)	49.3±0.7	38.3±2.4	55.8±0.8	38.7±1.3	45.5	7.4	0.11
MTL [†] (Blanchard et al., 2021)	49.3±1.2	39.6±6.3	55.6±1.1	37.8±0.8	45.6	7.3	0.12
ERM [†]	49.8±4.4	42.1±1.4	56.9±1.8	35.7±3.9	46.1	8.0	0.11
VREx [†] (Krueger et al., 2021)	48.2±4.3	41.7±1.3	56.8±0.8	38.7±3.1	46.4	6.9	0.11
RSC [†] (Huang et al., 2020)	50.2±2.2	39.2±1.4	56.3±1.4	40.8±0.6	46.6	7.0	0.13
CORAL [†] (Sun & Saenko, 2016)	51.6±2.4	42.2±1.0	57.0±1.0	39.8±2.9	47.7	7.0	0.12
GGA (Ballas & Diou, 2025)	50.9±2.2	42.5±1.0	59.7±1.4	41.5±3.5	48.5	7.4	0.49
SagNet [†] (Nam et al., 2021)	53.0±2.9	43.0±2.5	57.9±0.6	40.4±1.3	48.6	7.1	0.32
GGA-L (Ballas & Diou, 2025)	57.2±5.2	45.1±1.0	56.4±1.4	44.5±3.5	49.8	6.0	0.33
SWAD (Cha et al., 2021)	55.4±0.0	44.9±1.1	59.7±0.4	39.9±0.2	50.0	7.9	0.11
GENIE (Cho et al., 2025)	55.2±4.8	47.5±2.1	59.2±0.4	45.9±1.0	52.0	5.5	0.09
SAM [†] (Foret et al., 2021)	46.3±1.0	38.4±2.4	54.0±1.0	34.5±0.8	43.3	7.5	0.22
Lookbehind-SAM (Mordido et al., 2024)	44.6±0.8	41.1±1.4	57.4±1.2	34.9±0.6	44.5	8.2	0.50
GAM [‡] (Zhang et al., 2023b)	42.2±2.6	42.9±1.7	60.2±1.8	35.5±0.7	45.2	9.1	0.43
FAD (Zhang et al., 2023a)	44.3±2.2	43.5±1.7	60.9±2.0	34.1±0.5	45.7	9.6	0.38
DISAM (Zhang et al., 2024)	46.2±2.9	41.6±0.1	58.0±0.5	40.5±2.2	46.6	6.9	0.33
GSAM [†] (Zhuang et al., 2022)	50.8±0.1	39.3±0.2	59.6±0.0	38.2±0.8	47.0	8.8	0.22
SAGM (Wang et al., 2023)	54.8±1.3	41.4±0.8	57.7±0.6	41.3±0.4	48.8	7.5	0.22
DGSAM	54.5±0.6	45.3±0.7	59.4±0.4	42.3±1.0	50.4	6.9	0.17
DGSAM + Mixup	54.7±0.9	45.2±0.4	59.5±0.4	42.5±0.8	50.5	6.9	0.17
DGSAM + CORAL	55.8±0.5	45.4±0.8	59.2±0.2	42.7±1.1	50.8	6.9	0.19
DGSAM + SWAD	55.6±1.2	45.9±0.5	59.6±0.5	43.1±0.9	51.1	6.8	0.17
DGSAM + ERM++	56.2±0.9	49.3±1.3	59.8±0.5	43.2±0.7	52.1	6.4	0.25

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

Table 13: The performance of DGSAM with 18 baseline algorithms on DomainNet

Algorithm	C	I	P	Q	R	S	Avg	SD	(s/iter)
VREx [†] (Krueger et al., 2021)	47.3 \pm 3.5	16.0 \pm 1.5	35.8 \pm 4.6	10.9 \pm 0.3	49.6 \pm 4.9	42.0 \pm 3.0	33.6	15.0	0.18
ARM [†] (Zhang et al., 2021)	49.7 \pm 0.3	16.3 \pm 0.5	40.9 \pm 1.1	9.4 \pm 0.1	53.4 \pm 0.4	43.5 \pm 0.4	35.5	16.7	0.18
RSC [†] (Huang et al., 2020)	55.0 \pm 1.2	18.3 \pm 0.5	44.4 \pm 0.6	12.2 \pm 0.2	55.7 \pm 0.7	47.8 \pm 0.9	38.9	17.3	0.20
SagNet [†] (Nam et al., 2021)	57.7 \pm 0.3	19.0 \pm 0.2	45.3 \pm 0.3	12.7 \pm 0.5	58.1 \pm 0.5	48.8 \pm 0.2	40.3	17.9	0.53
MTL [†] (Blanchard et al., 2021)	57.9 \pm 0.5	18.5 \pm 0.4	46.0 \pm 0.1	12.5 \pm 0.1	59.5 \pm 0.3	49.2 \pm 0.1	40.6	18.4	0.20
ERM [†]	58.1 \pm 0.3	18.8 \pm 0.3	46.7 \pm 0.3	12.2 \pm 0.4	59.6 \pm 0.1	49.8 \pm 0.4	40.9	18.6	0.18
CORAL [†] (Sun & Saenko, 2016)	59.2 \pm 0.1	19.7 \pm 0.2	46.6 \pm 0.3	13.4 \pm 0.4	59.8 \pm 0.2	50.1 \pm 0.6	41.5	18.3	0.20
GENIE (Cho et al., 2025)	62.5 \pm 0.5	21.3 \pm 0.4	50.0 \pm 0.4	14.0 \pm 0.4	64.0 \pm 0.7	52.6 \pm 0.8	44.1	19.4	0.14
GGA (Ballas & Diou, 2025)	63.7 \pm 0.2	21.3 \pm 0.3	50.4 \pm 0.1	14.1 \pm 0.4	63.8 \pm 0.2	53.5 \pm 0.3	44.4	19.7	0.75
GGA-L (Ballas & Diou, 2025)	63.2 \pm 0.2	21.0 \pm 0.3	49.5 \pm 0.1	13.8 \pm 0.2	64.1 \pm 0.4	53.6 \pm 0.3	44.5	19.7	0.50
SWAD (Cha et al., 2021)	66.0 \pm 0.1	22.4 \pm 0.3	53.5 \pm 0.1	16.1 \pm 0.2	65.8 \pm 0.4	55.5 \pm 0.3	46.5	19.9	0.18
GAM [‡] (Zhang et al., 2023b)	63.0 \pm 0.5	20.2 \pm 0.2	50.3 \pm 0.1	13.2 \pm 0.3	64.5 \pm 0.2	51.6 \pm 0.5	43.8	20.0	0.71
Lookbehind-SAM (Mordido et al., 2024)	64.3 \pm 0.3	20.8 \pm 0.1	50.4 \pm 0.1	15.0 \pm 0.4	63.1 \pm 0.3	51.4 \pm 0.3	44.1	19.4	0.71
SAM [†] (Foret et al., 2021)	64.5 \pm 0.3	20.7 \pm 0.2	50.2 \pm 0.1	15.1 \pm 0.3	62.6 \pm 0.2	52.7 \pm 0.3	44.3	19.4	0.34
FAD (Zhang et al., 2023a)	64.1 \pm 0.3	21.9 \pm 0.2	50.6 \pm 0.3	14.2 \pm 0.4	63.6 \pm 0.1	52.2 \pm 0.2	44.4	19.5	0.56
GSAM [†] (Zhuang et al., 2022)	64.2 \pm 0.3	20.8 \pm 0.2	50.9 \pm 0.0	14.4 \pm 0.8	63.5 \pm 0.2	53.9 \pm 0.2	44.6	19.8	0.36
SAGM (Wang et al., 2023)	64.9 \pm 0.2	21.1 \pm 0.3	51.5 \pm 0.2	14.8 \pm 0.2	64.1 \pm 0.2	53.6 \pm 0.2	45.0	19.8	0.34
DISAM (Zhang et al., 2024)	65.9 \pm 0.2	20.7 \pm 0.2	51.7 \pm 0.3	16.6 \pm 0.3	62.8 \pm 0.5	54.8 \pm 0.4	45.4	19.5	0.53
DGSAM	63.6 \pm 0.4	22.2 \pm 0.1	51.9 \pm 0.3	15.8 \pm 0.2	64.7 \pm 0.3	54.7 \pm 0.4	45.5	19.4	0.26
DGSAM + CORAL	64.3 \pm 0.2	22.5 \pm 0.2	54.2 \pm 0.3	16.2 \pm 0.2	64.9 \pm 0.1	55.2 \pm 0.2	46.2	19.5	0.28
DGSAM + SWAD	67.2 \pm 0.2	23.2 \pm 0.3	53.4 \pm 0.3	17.3 \pm 0.4	65.4 \pm 0.2	55.8 \pm 0.3	47.1	19.6	0.26
DGSAM + Mixup	67.4 \pm 0.3	25.4 \pm 0.1	54.8 \pm 0.2	17.6 \pm 0.3	67.5 \pm 0.4	57.3 \pm 0.3	48.3	19.7	0.26
DGSAM + ERM++	71.3 \pm 0.3	26.9 \pm 0.2	58.6 \pm 0.2	17.9 \pm 0.5	70.5 \pm 0.2	60.8 \pm 0.5	51.0	20.9	0.43

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782 **G BASELINE REFERENCES**
17831784 Table 1 compares our proposed method with several baseline algorithms for domain generalization.
1785 For a fair and consistent comparison, we report the performance metrics as presented in prior works.
17861787 Most results are sourced directly from the original papers introducing each algorithm. For certain
1788 baselines, results are quoted from recent state-of-the-art papers to ensure the experimental settings
1789 are as consistent as possible. Specifically, results marked with \dagger are sourced from SAGM (Wang
1790 et al., 2023), and the result for GAM (\ddagger) is from FAD (Zhang et al., 2023a).
17911792 The references for each baseline algorithm and combined methodology are as follows:
17931794

- ARM (Zhang et al., 2021)
- VREx (Krueger et al., 2021)
- RSC (Huang et al., 2020)
- MTL (Blanchard et al., 2021)
- SagNet (Nam et al., 2021)
- CORAL (Sun & Saenko, 2016)
- GGA & GGA-L (Ballas & Diou, 2025)
- GENIE (Cho et al., 2025)
- SWAD (Cha et al., 2021)
- GAM (Zhang et al., 2023b)
- SAM (Foret et al., 2021)
- Lookbehind-SAM (Mordido et al., 2024)
- GSAM (Zhuang et al., 2022)
- FAD (Zhang et al., 2023a)
- DISAM (Zhang et al., 2024)
- SAGM (Wang et al., 2023)
- SFT (Li et al., 2025)
- MixUp (Lopez-Paz et al., 2018)
- ERM++ (Teterwak et al., 2025)

1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
18171818 **H RELATED WORKS AND DISCUSSION**
18191820 In this section, we complement the discussion in Section 2.2 by providing a more detailed categorization
1821 of SAM variants that have been applied to domain generalization. Our goal is to clarify how
1822 existing approaches interpret and optimize flatness in the multi-domain setting, and how this differs
1823 from the per-domain sharpness perspective underlying DGSAM.
18241825 **Domain-Agnostic Sharpness Minimization.** This line of work adapts SAM or its extensions to
1826 DG by directly optimizing the aggregated sharpness. These algorithms do not utilize per-domain
1827 information and simply focus on reducing the sharpness of the aggregated loss, such as zero-th order
1828 sharpness or first-order sharpness.
18291830 For example, SAM and GAM, which were not originally designed for DG but are commonly used
1831 as baselines, reduce the zero-th order and first-order sharpness of the aggregated loss, respectively.
1832 FAM further aims to simultaneously reduce both zero-th order and first-order sharpness. On the other
1833 hand, GSAM, SAGM, and ISAM (Dong et al., 2024) are variants of SAM that reduce aggregated
1834 sharpness by mitigating gradient conflicts between the aggregated loss gradient and the surrogate
1835 gap, thereby achieving better reduction of aggregated sharpness. UDIM (Shin et al., 2024) introduces
perturbations in both parameter space and data space for domain generalization. It reduces the loss
landscape inconsistency between source domains and unknown domains, where unknown domains
are emulated by perturbing instances from the source domain dataset. Although UDIM explores data
1836
1837

1836 space perturbations, it does not utilize domain labels and ultimately optimizes for the consistency of
 1837 aggregated loss landscapes.
 1838

1839 **Domain-Aware Sharpness Minimization.** Another line of work explicitly incorporates domain
 1840 labels into the sharpness optimization process, yet differs from our per-domain sharpness minimization
 1841 approach.

1842 DISAM (Zhang et al., 2024) introduces a domain loss variance regularization to achieve elastic
 1843 gradient calibration: domains with higher losses receive weaker perturbations, while domains
 1844 with lower losses receive stronger perturbations. This balancing mechanism promotes consistent
 1845 convergence across domains, but the optimization still targets aggregated sharpness. Self-Feedback
 1846 Training (SFT) (Li et al., 2025) seeks consistent flat minima across domains by iteratively measuring
 1847 and refining loss landscape inconsistency. While it implicitly encourages per-domain flatness through
 1848 consistency, it lacks a formal per-domain sharpness minimization formulation.
 1849

1850 **Distinction and Novelty of DGSAM.** These two lines of work demonstrate that better control of
 1851 aggregated sharpness and mitigation of domain inconsistency can improve DG performance. However,
 1852 they still operate within the same objective: they ultimately seek to flatten the loss landscape of
 1853 the aggregated source risk, sometimes with regularizers that indirectly promote consistency across
 1854 domains.

1855 By contrast, DGSAM starts from a DG-specific worst-case risk formulation and first asks a different
 1856 question: “Is aggregated sharpness an appropriate surrogate for the average worst-case domain risk?”
 1857 Our theoretical analysis shows that aggregated sharpness can be small even when some domains
 1858 remain sharp, which gives rise to the fake flat minima phenomenon. We then prove that the average
 1859 per-domain sharpness does provide a valid surrogate for the average worst-case domain risk.

1860 This analysis yields an explicit per-domain sharpness objective whose minimizer is provably aligned
 1861 with the DG goal, and DGSAM is designed as an algorithm that directly optimizes this objective
 1862 while keeping the computational overhead practical. From a theoretical perspective, this provides
 1863 a new way to think about sharpness in DG. Prior SAM-based DG approaches typically follow the
 1864 original SAM line of analysis and study PAC-Bayes style bounds or regularization effects based
 1865 on aggregated sharpness. In contrast, our work offers a new perspective on sharpness in DG by
 1866 introducing a per-domain sharpness minimization framework that directly targets robustness to worst-
 1867 case domains. We view this shift in objective as the main novelty of DGSAM and as a foundation for
 1868 future sharpness-based methods in domain generalization.
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889