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Abstract

We study a novel problem to automatically generate video background that tailors
to foreground subject motion. It is an important problem for the movie industry
and visual effects community, which traditionally requires tedious manual efforts
to solve. To this end, we propose ActAnywhere, a video diffusion model that takes
as input a sequence of foreground subject segmentation together with an image
of a novel background, and generates a video of the subject interacting in this
background. We train our model on a large-scale dataset of 2.4M videos of human-
scene interactions. Through extensive evaluation, we show that our model produces
videos with realistic foreground-background interaction while strictly following
the guidance of the condition image. Our model generalizes to diverse scenarios
including non-human subjects, gaming and animation clips, as well as videos
with multiple moving subjects. Both quantitative and qualitative comparisons
demonstrate that our model significantly outperforms existing methods, which
fail to accomplish the studied task. Please visit our project webpage at https:
//actanywhere.github.io.

1 Introduction

Compositing an acting video of a subject onto a novel background is central for creative story-telling
in filmmaking and visual effects. The key requirement is seamlessly integrating the foreground
subject with the background in terms of camera motions, interactions, lighting and shadows, so that
the composition looks realistic and vivid as if the subject acts physically in the scene. In movie
industry, this process is often conducted by virtual production [1] that requires artists to first create
a 3D scene and then to film the acting video in an LED-walled studio or to render the video in 3D
engines. This process is not only tedious and expensive, but most importantly, prevents artists from
quickly iterating their ideas.

Inspired by this artistic workflow, we study the novel problem of automated subject-aware video
background generation. As shown in fig. 1, given a foreground segmentation sequence that provides
the subject motion, as well as a condition frame that describes a scene, we aim to generate a video
that adapts the subject to this scene with realistically synthesized foreground-background interaction.
This condition frame can be either a background-only image, or a composite frame consisting of both
background and foreground created via photo editing tools [3] or generative image model [32].

This problem, at its core, requires retaining part of the input video while generating the rest to adapt
to it. To the best of our knowledge, the closest works to this setting are those on video editing and
inpainting / outpainting. Video editing methods assume a source video as input and make edits
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Figure 1: Given a sequence of foreground segmentation as input (top), and one frame that describes
the background as the condition (left), ActAnywhere generates coherent video background that adapts
to the subject motion. We show two subjects here, each with two generated samples. ActAnywhere
is able to generate videos consistent with the condition frame with highly realistic details such
as splatting water, moving smoke and flame, shadows, duck feet, etc. It generalizes to a diverse
distribution of subjects and backgrounds, including non-human subjects. Our method works with
both composited frames and background-only images as the condition.

based on condition signals, such as natural language or image. In comparison, our task poses unique
challenges that these methods cannot solve. First, the foreground of the video needs to be retained
and sometimes refined on the boundary (as shown in fig. 8 in appendix), while prior works generally
perform holistic changes to the entire video [5, 8, 13, 16, 22, 24, 42]. Second, existing methods most
commonly condition the editing process on a short text prompt [5, 8, 13, 16, 22, 24, 42], which only
poses loose constraints that are not enough for artists’ creative intentions. Those that can condition on
an image [13] are not able to generate contents that strictly follow the guidance. We demonstrate such
comparisons in fig. 4. On the other hand, video inpainting / outpainting methods [14, 43, 46, 49] aim
to perform context-aware removal / expanding for a video. However, these methods focus on pixel
harmonization, while our emphasis is on taking additional control signal that indicates the desired
background, and synthesizing large and dynamic background region with reasonable interaction with
the given foreground.

To this end, we propose a video diffusion model that explicitly controls the foreground motion with
the foreground segmentation sequence, and additionally, conditions the generation on an image that
describes the desired background. We train the model with a designed self-supervised learning
procedure that takes the foreground segmentation sequence of the input video to predict the original
video, conditioned on a randomly sampled frame. This training procedure enables the model to
1) retain the foreground subject; 2) hallucinate missing details from imperfect segmentation; and
3) adhere to the guidance of the condition frame while being robust to the subject’s pose in it.
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Moreover, we propose to express the condition signal as the CLIP features of the image, which we
show empirically outperforms its alternatives. We also concatenate a background mask with the
segmentation as the input to better indicate the region to be generated.

We train our model on a large-scale dataset [26] that consists of 2.4M videos of human-scene
interactions and evaluate both on a held-out set as well as on videos from DAVIS [30]. ActAnywhere
is able to generate highly realistic videos that follow the condition frame, and at the same time
synthesizes video background that conforms to the foreground motion. Notably, despite being trained
solely on videos of humans, ActAnywhere generalizes to non-human subjects, such as animals and
man-made objects, in a zero-shot manner.

In summary, our contributions are:

1. We introduce a novel problem of automated subject-aware video background generation.
2. We propose ActAnywhere, a video diffusion model to solve this task, and train it on a

large-scale human-scene interaction video dataset in a self-supervised manner.
3. Extensive evaluations demonstrate that our model generates coherent videos with realistic

subject-scene interactions, camera motions, lighting and shadows, and generalizes to out-
of-distribution data including non-human subjects, gaming and animation clips, and videos
with multiple moving subjects.

2 Related Work

Video generation. There have been a long thread of works on video generation. The core architecture
has evolved from GANs [11, 38, 41] to more recent transformers [15, 40, 46, 49] and diffusion
models [6, 9, 17, 19, 20, 24, 47]. Below we review the most related diffusion-based works. Most of
these works leverage temporal self-attention blocks inside the denoising U-Net in order to acquire
temporal awareness. On top of that, Text2Video-Zero [24] introduces additional noise scheduling to
correlate the latents in a video. LVDM [19] and Align Your Latents [6] both design a hierarchical
approach to generate longer-term videos. Align Your Latents additionally fine-tunes a spatial
super-resolution model for high-resolution video generation. AnimateDiff [17] proposes to train
the temporal attention blocks on a large-scale video dataset, which can then be inserted into any
text-to-image diffusion models (given that the architecture fits) to turn that into a text-to-video
model, in a zero-shot manner. VideoCrafter1 [9] further uses dual attention to enable joint text and
image-conditioned generation. These works focus on unconditional generation or with text or image
conditioning, but are not able to follow the guidance of additional foreground motion.

Video editing. Another thread studies the problem of video editing, where a source video is given as
input, and edits are performed according to some condition signals. Text2Live [5] uses pre-trained
video atlases of the input video, and performs text-guided edits on the foreground or background.
Gen1 [13] leverages depth maps estimated by a pre-trained network [33] as an additional condition to
improve the structural consistency. Tune-A-Video [42] proposes to finetune only part of the spatial-
attention blocks and all of the temporal-attention blocks on a single input video. TokenFlow [16] uses
latent nearest neighbor fields computed from the input video to propagate edited features across all
frames. Both VideoControlNet [22] and Control-A-Video [10] adopt a ControlNet [48]-like approach
to condition the video diffusion process with additional signals such as depth maps or Canny edges
extracted from the input video. As stated above, these works apply holistic changes to the entire
video and are not able to retain the subject. Moreover, they either take only loose constraints from
text conditioning, or are not able to strictly follow the image guidance.

One major downside of these works is hence that the generated videos tend to keep the spatial
structure from the source video, which limits the edits that the model can perform to stylistic changes.
In our work, we propose to condition on the foreground segmentation for the motion, while extract the
background information only from one condition frame. In particular, using the masked foreground
as input endows a nice separation as in what to preserve and what to generate.

Image and video inpainting. Image / video inpainting aims to fill a missing region, often expressed
as a mask. Image inpainting methods either take condition signals such as natural language and
image [34, 44, 45], or rely solely on the context outside the masked region [14, 36, 46, 49]. Recent
diffusion-based image inpainting methods use a combination of masked image and the mask itself,
and condition the diffusion process either on natural language [34, 44] or an image of the condition
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object [45], or perform unconditional diffusion [36]. For video inpainting, MAGVIT [46] proposes a
generative video transformer trained through masked token prediction, and is able to inpaint small
masked regions afterwards. ProPainter [49] designs a flow-based method by propagating pixels and
features through completed flows. M3DDM [14] leverages a video diffusion model, and conditions
the diffusion process on global video features extracted by a video encoder. Different from these
works, we aim to generate large background regions that strictly follow the condition frame. Moreover,
the generated background needs to adapt to the foreground subject motion in a coherent way. This
poses significant challenges that previous inpainting methods cannot tackle.

3 Method

We first provide essential preliminary background on latent diffusion in section 3.1. We then formally
define our problem in section 3.2 and delve into our model design in section 3.3. Finally, we specify
the training details in section 3.4.

3.1 Preliminaries on Latent Diffusion Models

Diffusion models such as DDPM [21], encapsulate a forward process of adding noise and a backward
process of denoising. Given a diffusion time step τ , the forward process incrementally introduces
Gaussian noises into the data distribution x0 ∼ q(x0) via a Markov chain, following a predefined
variance schedule denoted as β:

q(xτ |xτ−1) = N (xτ ;
√
1− βτxτ−1, βτI) (1)

For the backward process, a U-Net [35] ϵθ is trained to denoise xτ and recover the original data
distribution:

pθ(xτ−1|xτ ) = N (xτ−1;µθ(xτ , τ),Σθ(xτ , τ)) (2)

µθ and Σθ are parametrized by ϵθ. The discrepancy between the predicted noise and the ground-truth
noise is minimized as the training objective.

Stable Diffusion [34] further proposes to train the diffusion model in the latent space of a VAE [25].
Specifically, an encoder E learns to compress an input image x into latent representations z = E(x),
and a decoder D learns to reconstruct the latents back to pixel space, such that x = D(E(x)). In this
way, the diffusion is performed in the latent space of the VAE.

3.2 Problem Formulation

Given an input video X ∈ RT×H×W×3 featuring a foreground subject, we first deploy a segmentation
algorithm, such as Mask R-CNN [18], to obtain a subject segmentation sequence, S ∈ RT×H×W×3,
along with the corresponding masks, M ∈ RT×H×W×1. Both S and M serve as input to our model.
S contains the segmentation of the foreground subject, with background pixels set to 127 (grey). M
has the foreground pixels set to 0 and background to 1. Across all our experiments, H = W = 256
and T = 16.

Additionally, we also incorporate a single condition frame c ∈ RH×W×3 describing the background
that we want to generate. As shown in fig. 2, c is a randomly sampled frame from X at training
time, while can be either a frame showing foreground-background composition or a background-only
image at inference time. The goal is thus to generate an output video V with the subject dynamically
interacting with the synthesized background. The motivation of using an image not language as the
condition is that image is a more straightforward media to carry detailed and specific information of
the intended background, especially when users already have a pre-defined target scene image.

3.3 Subject-Aware Latent Video Diffusion

We build our model based on latent video diffusion models [17]. In our architecture design, we
address two main questions: 1) providing the foreground subject sequence to the network to enable
proper motion guidance, and 2) injecting the condition signal from the background frame to make the
generated video adhere to the condition.
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Figure 2: Architecture overview. During training, we take a randomly sampled frame from
the training video to condition the denoising process. At test time, the condition can be either a
composited frame of the subject with a novel background, or a background-only image.

We present our pipeline in fig. 2. For the foreground segmentation sequence S , we use the pre-trained
VAE [34] encoder E to encode the foreground segmentation into latent features Ŝ ∈ R16×32×32×4.
We downsample the foreground mask sequence M 8 times to obtain the resized mask sequence
M̂ ∈ R16×32×32×1 to align with the latent features Ŝ . To train the denoising network ϵθ, we encode
the original frames X with the same VAE encoder into latent representation Z ∈ R16×32×32×4, and
add noises at diffusion time step τ with the forward diffusion process denoted in eq. (1) to get noisy
latent feature Zτ . We subsequently concatenate Ŝ , M̂ and Zτ along the feature dimension, forming
a 9-channel input feature Fi

τ ∈ R16×9×32×32 to the U-Net. During inference, Z0 is initialized as
Gaussian noises, and gets auto-regressively denoised for multiple time steps to sample a final result,
according to the backward diffusion process described in eq. (2). The denoised latents are then
decoded to a video via the VAE decoder D.

We build our 3D denoising U-Net based on AnimateDiff [17]. AnimateDiff works by inserting a series
of motion modules in between the spatial attention layers in the denoising U-Net of a pre-trained T2I
diffusion model. These motion modules consist of a few feature projection layers followed by 1D
temporal self-attention blocks.

For the condition image c, we encode it with the CLIP image encoder [31] and take the features
from the last hidden layer as its encoding Fc. These features are then injected into the UNet ϵθ
through its cross-attention layers, similar to [26, 34]. We empirically find that this method achieves
better temporal consistency compared to other alternatives, such as using VAE features for either
cross-attention or concatenation with other input features. We ablate on this in table 3.

3.4 Training

Training is supervised by a simplified diffusion objective, namely predicting the added noise [21]:

L = ||ϵ− ϵθ(F
i
τ , τ,F

c)||22 (3)

where ϵ is the ground-truth noise added.

Dataset. We train on the large-scale dataset compiled and processed by [26], which we refer to
as HiC+. The resulting dataset contains 2.4M videos of human-scene interactions. It also provides
foreground segmentation and masks. We refer the reader to the original paper for more details.
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Pre-trained weights. We initialize the weights of our denoising network ϵθ with the pre-trained
weights from the Stable Diffusion image inpainting model [34]†, which is fine-tuned on top of the
original Stable Diffusion on the text-conditioned image inpainting task. We initialize the weights of
the inserted motion modules with AnimateDiff v2‡.

For the CLIP image encoder, we use the “clip-vit-large-patch14” variant§ provided by OpenAI, whose
features from the last hidden layer have a dimension of 1024, while the pre-trained U-Net takes in
features of dimension 768 as the condition, which are also in the text feature space. To account for
this, we train an additional two-layer MLP to project the features into the desired space.

During training, we freeze the shared VAE and the CLIP encoder, and fine-tune the entire U-Net.

Data processing and augmentation. Obtaining perfect segmentation masks from videos is chal-
lenging. The masks may be incomplete, missing some parts of the foreground, or be excessive
such that they include leaked background near the boundary. To deal with incomplete segmentation,
during training, we apply random rectangular cut-outs to the foreground segmentation and masks.
We provide more information on this in section 7.2 of the appendix. To reduce information leak from
excessive segmentation, we perform image erosion to the segmentation and masks with a uniform
kernel of size 5 × 5, both during training and inference.

Random condition dropping. In order to enable classifier-free guidance at test time, we randomly
drop the segmentation and the mask, the condition frame, or all of them at 10% probability each
during training. In these cases we set them to zeros before passing into the respective encoders.

Other details. We use the AdamW [27] optimizer with a constant learning rate of 3e-5. We train on
8 NVIDIA A100-80GB GPUs with batch size 4, which takes approximately a week to fully converge.

4 Experiments

We start by describing the data used for evaluation. We then show diverse samples generated from our
method in section 4.1, both using an inpainted frame and a background-only frame as the condition.
In section 4.2 and section 4.3, we compare with baselines through qualitative and quantitative
evaluations, including a user study. In section 4.4, we provide ablation study results on key design
choices. In the appendix, we include additional results on general video inpainting / outpainting,
generalization to videos from diverse domains, and robustness to inaccurate segmentation, along with
further implementation details and a discussion on limitations and potential ethical impacts.

We strongly encourage the reader to check our webpage, where we show extensive videos on video
background generation with diverse generated contents and camera motions, and under various
condition scenarios. It also contains the video version of the comparison with baselines.

Evaluation data. Following prior works [5, 10, 13, 16, 42], we compare with previous works on
videos sampled from the DAVIS [30] dataset. We select videos with both human and non-human
subjects. We also evaluate qualitatively and perform ablation study on held-out samples from the
HiC+ dataset following the original data splits [26]. Samples with our method are generated with 50
denoising steps, with a guidance scale [34] of 5.

4.1 Diverse Generation with ActAnywhere

In fig. 3, we show results on the held-out segmentation sequences from the HiC+ dataset, using an
inpainted frame or a background-only frame as condition. ActAnywhere generates highly realistic
foreground-background interactions both at coarse and fine levels. At a coarse level, our model
synthesizes road structure, pumpkin field, city views, waves, etc. that align with the subject’s motion.
While at a fine level, our method also generates small moving objects that are in close interaction with
the subject, such as the buckets, bed sheets, horses and dune buggies, as well as the dog. Moreover,
these generation stay consistent across frames, and tightly follow the guidance in the condition frame.
The synthesized backgrounds also exhibit coherent scale, lighting, and shadows (also see fig. 1).

†https://huggingface.co/runwayml/stable-diffusion-inpainting
‡https://github.com/guoyww/animatediff/
§https://huggingface.co/openai/clip-vit-large-patch14
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Figure 3: Diverse results from our method. The top part shows examples using inpainted frames
as condition, while bottom contains examples with background-only conditioning. Foreground
sequences are from the held-out set of HiC+.
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Figure 4: Comparison with baselines. We provide results on two videos sampled from the
DAVIS [30] dataset. For each example, we show three representative frames (top) and their corre-
sponding condition signal (left). Note that different methods assume different input, conditioning or
pre-trained models, as specified in section 4.2.

4.2 Qualitative Comparison

Baselines. We first clarify that since we study a novel problem, and there is no prior work operating
under the exact same setting to the best of our knowledge. We hence compare to closest works and
adapt some, i.e. AnimateDiff [17], if necessary. Nonetheless, we emphasize that the formulation and
pipeline are the core contribution of this work.

We compare ActAnywhere to a number of baselines, which we classify based on whether they do
(fig. 4 middle) or do not (fig. 4 bottom) take a video as input. For the methods taking a video as input,
Gen1 [13] takes an additional image as condition, and also leverages a pre-trained depth-estimation
network [33]. Given pre-trained neural atlases [23], Text2LIVE [5] assumes a text prompt as condition
to synthesize the edited video. TokenFlow [16] also uses text conditioning. Control-A-Video [10]
first extracts Canny edges from the input video, then synthesizes the output video conditioned jointly
on the edges and text.
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Method CLIP_cond ↑ CLIP_temp ↑ FVD ↓
Control-A-Video [7] 0.643 0.942 381.8
TokenFlow [12] 0.762 0.943 323.0
Gen1 [9] 0.827 0.943 337.2
Ours 0.862 0.945 313.4

Table 1: Quantitative comparison against baselines.

Condition Visual Temporal
97.47% 72.13% 64.36%

Table 2: User study

For baselines that do not take a video as input, the original AnimateDiff [17] only uses text condi-
tioning. We use the strategy contributed by a public pull request¶ to make it take additional image
conditioning. Specifically, at test time, latent features are first extracted from the condition image with
the pre-trained SD VAE encoder [34], which are then merged with the original per-frame Gaussian
noises through linear blending. The diffusion process is later conditioned on a text prompt too.
VideoCrafter1 [9] provides both a text-to-video and an image-to-video model. We use the latter for a
closer comparison setting.

Results. The qualitative comparison on two examples from the DAVIS [30] dataset is shown in
fig. 4. Our method generates temporally coherent videos that follow the foreground motion with
highly realistic details, e.g. falling snow and snow on the car windshield, while strictly following
the guidance and constraints given by the condition frame. Baseline methods in the first category
generally inherit the structure present in the input video, e.g. road direction, horse, etc., and hence
they completely fail when fine-grained edits are desired, e.g. horse changes to motorcycle in the
second case. Methods in the second category generate unconstrained motion due to lack of guidance
(VideoCrafter1 in the second example generates backward motion, which is more evident in the video
on our webpage).

4.3 Quantitative Comparison

Baselines. We compare with Control-A-Video [10], TokenFlow [16] and Gen1 [13]. We also conduct
a user study for preferences in comparison to Gen1.

Metrics. We evaluate the consistency to the condition image, the temporal consistency of the
generated videos, as well as the general generation quality. Specifically, we report the average cosine
similarity between the CLIP [31] image embeddings of all generated frames and that of the condition
image (CLIP_cond), between all pairs of generated frames (CLIP_temp), and the FVD score [39]
against a set of real videos.

For the user study, we ask the participants if they prefer results from our model vs. those from Gen1
on: 1) consistency to condition image; 2) visual quality; and 3) temporal consistency. The results are
presented as the percentage of our model being preferred over Gen1.

Results. Results on 30 videos from DAVIS are reported in table 1. Our model outperforms baselines
across all metrics, particularly by a big margin on CLIP_cond, suggesting that our model is able
to generate videos that tightly follow the guidance of the condition frame. For the user study, we
randomly select 20 videos and ask 16 participants for their preference over Gen1 [13]. Results are
shown in table 2. Our method is strongly preferred on these key aspects.

4.4 Ablation Study

We study different choices of conditioning by experimenting with three variants. VAE Concat uses
the same VAE encoder E to extract features for the condition frame c, and concatenates with the
input Fi

τ along the feature dimension. VAE Cross-Attn leverages the VAE features E(c) through
cross-attention instead of concatenation. No Mask does not concatenate the masks M with the
foreground segmentation S and noise Zτ for the input.

The results on the held-out set of HiC+ are shown in table 3. Providing the condition in the CLIP
feature space through cross-attention provides global semantic guidance to the entire diffusion
process, while VAE features pose stricter spatial constraints, especially through concatenation, hence
making it harder to produce coherent videos that conform to the condition. Providing the mask as

¶https://github.com/guoyww/AnimateDiff/pull/8
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Variant CLIP_cond ↑ CLIP_temp ↑ FVD ↓
VAE Concat 0.743 0.939 335.2
VAE Cross-Attn 0.823 0.942 326.6
No Mask 0.850 0.943 321.7
Full Model (Ours) 0.857 0.944 315.2

Table 3: Ablation study on key design choices.

additional input further indicates the region that the model should generate thus also improves the
overall generation performance.

5 Conclusion

We present ActAnywhere, a video diffusion-based model that generates videos with coherent and
vivid foreground-background interactions, given an input foreground segmentation sequence and
a condition frame describing the background. Our model synthesizes highly realistic details such
as moving or interacting objects and shadows. The generated videos also exhibit consistent camera
scales and lighting effects. We believe our work contributes a useful tool for the movie and visual
effects community, as well as for the general public to realize novel ideas of situating an acting
subject in diverse scenes, in a simple and efficient way that is not previously possible.

10



6 Acknowledgment

We thank the authors of [26] for compiling and processing the dataset HiC+, especially Sumith Kulal
for the code and instructions on accessing the data. We also thank Jiahui (Gabriel) Huang from Adobe
Research for helping set up the Adobe Firefly GenFill API. Boxiao Pan and Leonidas J. Guibas are
supported by a grant from the Stanford Human-Centered AI Institute (HAI) and a Vannevar Bush
Faculty Fellowship.

References
[1] Virtual Production. https://en.wikipedia.org/wiki/On-set_virtual_production

[2] Adobe: Firefly (2023), https://www.adobe.com/sensei/generative-ai/firefly.html

[3] Adobe: Photoshop, version (2023), https://www.adobe.com/products/photoshop.html

[4] Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: A joint video and image encoder for
end-to-end retrieval. In: ICCV (2021)

[5] Bar-Tal, O., Ofri-Amar, D., Fridman, R., Kasten, Y., Dekel, T.: Text2live: Text-driven layered image and
video editing. In: ECCV (2022)

[6] Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S.W., Fidler, S., Kreis, K.: Align your latents:
High-resolution video synthesis with latent diffusion models. In: CVPR (2023)

[7] Brooks, T., Efros, A.A.: Hallucinating pose-compatible scenes. In: ECCV (2022)

[8] Ceylan, D., Huang, C.H.P., Mitra, N.J.: Pix2video: Video editing using image diffusion. In: ICCV (2023)

[9] Chen, H., Xia, M., He, Y., Zhang, Y., Cun, X., Yang, S., Xing, J., Liu, Y., Chen, Q., Wang, X., et al.:
Videocrafter1: Open diffusion models for high-quality video generation. arXiv preprint arXiv:2310.19512
(2023)

[10] Chen, W., Wu, J., Xie, P., Wu, H., Li, J., Xia, X., Xiao, X., Lin, L.: Control-a-video: Controllable
text-to-video generation with diffusion models. arXiv preprint arXiv:2305.13840 (2023)

[11] Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex datasets. arXiv preprint
arXiv:1907.06571 (2019)

[12] Diba, A., Fayyaz, M., Sharma, V., Paluri, M., Gall, J., Stiefelhagen, R., Van Gool, L.: Large scale holistic
video understanding. In: ECCV (2020)

[13] Esser, P., Chiu, J., Atighehchian, P., Granskog, J., Germanidis, A.: Structure and content-guided video
synthesis with diffusion models. In: ICCV (2023)

[14] Fan, F., Guo, C., Gong, L., Wang, B., Ge, T., Jiang, Y., Luo, C., Zhan, J.: Hierarchical masked 3d diffusion
model for video outpainting. In: ACM MM (2023)

[15] Ge, S., Hayes, T., Yang, H., Yin, X., Pang, G., Jacobs, D., Huang, J.B., Parikh, D.: Long video generation
with time-agnostic vqgan and time-sensitive transformer. In: ECCV (2022)

[16] Geyer, M., Bar-Tal, O., Bagon, S., Dekel, T.: Tokenflow: Consistent diffusion features for consistent video
editing. arXiv preprint arXiv:2307.10373 (2023)

[17] Guo, Y., Yang, C., Rao, A., Wang, Y., Qiao, Y., Lin, D., Dai, B.: Animatediff: Animate your personalized
text-to-image diffusion models without specific tuning. arXiv preprint arXiv:2307.04725 (2023)

[18] He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV (2017)

[19] He, Y., Yang, T., Zhang, Y., Shan, Y., Chen, Q.: Latent video diffusion models for high-fidelity long video
generation. arXiv preprint arXiv:2211.13221 (2023)

[20] Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D.P., Poole, B., Norouzi, M.,
Fleet, D.J., et al.: Imagen video: High definition video generation with diffusion models. arXiv preprint
arXiv:2210.02303 (2022)

[21] Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)

11



[22] Hu, Z., Xu, D.: Videocontrolnet: A motion-guided video-to-video translation framework by using diffusion
model with controlnet. arXiv preprint arXiv:2307.14073 (2023)

[23] Kasten, Y., Ofri, D., Wang, O., Dekel, T.: Layered neural atlases for consistent video editing. ACM TOG
40(6) (2021)

[24] Khachatryan, L., Movsisyan, A., Tadevosyan, V., Henschel, R., Wang, Z., Navasardyan, S., Shi,
H.: Text2video-zero: Text-to-image diffusion models are zero-shot video generators. arXiv preprint
arXiv:2303.13439 (2023)

[25] Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

[26] Kulal, S., Brooks, T., Aiken, A., Wu, J., Yang, J., Lu, J., Efros, A.A., Singh, K.K.: Putting people in their
place: Affordance-aware human insertion into scenes. In: CVPR (2023)

[27] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

[28] Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S.A., Yan, T., Brown, L., Fan, Q.,
Gutfreund, D., Vondrick, C., et al.: Moments in time dataset: one million videos for event understanding.
IEEE TPAMI 42(2) (2019)

[29] OpenAI: ChatGPT (2023), https://chat.openai.com/

[30] Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 davis
challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)

[31] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

[32] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation
with clip latents. arXiv preprint arXiv:2204.06125 (2022)

[33] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation:
Mixing datasets for zero-shot cross-dataset transfer. IEEE TPAMI 44(3) (2020)

[34] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with
latent diffusion models. In: CVPR (2022)

[35] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation.
In: MICCAI (2015)

[36] Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., Fleet, D., Norouzi, M.: Palette: Image-to-
image diffusion models. In: ACM SIGGRAPH (2022)

[37] Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hollywood in homes: Crowd-
sourcing data collection for activity understanding. In: ECCV (2016)

[38] Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: Decomposing motion and content for video
generation. In: CVPR (2018)

[39] Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R., Michalski, M., Gelly, S.: Fvd: A new metric
for video generation (2019)

[40] Villegas, R., Babaeizadeh, M., Kindermans, P.J., Moraldo, H., Zhang, H., Saffar, M.T., Castro, S., Kunze,
J., Erhan, D.: Phenaki: Variable length video generation from open domain textual description. arXiv
preprint arXiv:2210.02399 (2022)

[41] Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: NeurIPS (2016)

[42] Wu, J.Z., Ge, Y., Wang, X., Lei, S.W., Gu, Y., Shi, Y., Hsu, W., Shan, Y., Qie, X., Shou, M.Z.: Tune-a-video:
One-shot tuning of image diffusion models for text-to-video generation. In: ICCV (2023)

[43] Wu, J., Li, X., Si, C., Zhou, S., Yang, J., Zhang, J., Li, L., Chen, K., Tong, Y., Liu, Z., Loy, C.C.: Towards
language-driven video inpainting via multimodal large language models. arXiv pre-print (2023)

[44] Xie, S., Zhang, Z., Lin, Z., Hinz, T., Zhang, K.: Smartbrush: Text and shape guided object inpainting with
diffusion model. In: CVPR (2023)

[45] Yang, B., Gu, S., Zhang, B., Zhang, T., Chen, X., Sun, X., Chen, D., Wen, F.: Paint by example:
Exemplar-based image editing with diffusion models. In: CVPR (2023)

12



[46] Yu, L., Cheng, Y., Sohn, K., Lezama, J., Zhang, H., Chang, H., Hauptmann, A.G., Yang, M.H., Hao, Y.,
Essa, I., et al.: Magvit: Masked generative video transformer. In: CVPR (2023)

[47] Yu, S., Sohn, K., Kim, S., Shin, J.: Video probabilistic diffusion models in projected latent space. In:
CVPR (2023)

[48] Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: CVPR
(2023)

[49] Zhou, S., Li, C., Chan, K.C., Loy, C.C.: Propainter: Improving propagation and transformer for video
inpainting. In: ICCV (2023)

13



Figure 5: Zero-shot video inpainting. We show two cases from DAVIS, each with four sampled
frames. The yellow regions denote the masked areas to be inpainted.

Figure 6: Zero-shot video outpainting. Both examples are from DAVIS.

7 Appendix

In this appendix, we first provide additional results and analysis in section 7.1, including inpainting /
outpainting capability emerging from our model, generalization to domains different from the training
data, robustness to inaccurate foreground segmentation, and inference runtime. We then describe
essential processing steps for training and evaluation data in section 7.2. Next, we show failure cases
and discuss limitations of our model in section 7.3. Lastly, we conclude by discussing the ethical
impact of this work in section 7.4.

7.1 Additional Results and Analysis

General video inpainting / outpainting. Interestingly, once trained, certain general video inpainting
/ outpainting capability emerges from our model. We perform preliminary experiments by manually
creating a mask sequence, and pass those with the foreground sequence as the input to our model.
Two cases are shown in fig. 5, where our model is able to inpaint the missing regions, despite not
explicitly trained so. Similarly, our model can also be applied to general video outpainting, whose
results are shown in fig. 6. Specifically, we resize the original sequence of frames by 0.75, and pad
them with gray boundaries. Associated masks are also created to indicate the missing regions. We
then randomly select one frame and use Adobe Firefly [2] to outpaint it, with which as condition we
outpaint the entire sequence.

These results may suggest that our model learns to approximate the underlying data distribution to a
certain degree, possibly benefiting from the random condition dropping during training (section 3.4).
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Figure 7: Videos from various domains. Gaming video from GTA.

Figure 8: Our model is robust to inaccurate masks. We show one video sequence from HiC+ with
two different condition frames, followed by six generated frames for each.

Videos from various domains. Our model generalizes to various domains such as gaming and
animation clips, as well as videos with multiple moving subjects. In fig. 7, we show the condition
frame with its segmentation, along with three generated frames for one example in each domain.

Robust to inaccurate masks. As stated in section 3.4, masks created or extracted in practice are
often imperfect, being either incomplete or excessive. Here we show that our model trained in our
designed procedure is robust to imperfect masks. In fig. 8 we showcase an example of this. Despite
a large region of the guitar missing, our model is able to hallucinate them in a reasonable way by
taking the global context into account.

Runtime. Generating one video on an NVIDIA A100 GPU takes about 8.5 seconds, enabling much
faster idea iteration compared to traditional workflows.

7.2 Data Processing

Training. In Sec. 3.4 of the main manuscript, we described our data processing and augmentation
strategies for training data. Specifically, to deal with incomplete segmentation, we apply random
rectangular cut-outs to the segmentation and masks. We show two examples in fig. 9.

Evaluation. As mentioned in Sec. 1 of the main manuscript, at test time, the composited foreground-
background frames used as condition can be created with various methods, such as photo editing
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Figure 9: Data augmentation. We apply random cut-outs to the person segmentation during training.
Here we show two examples of cut-outs with their corresponding original frames.

Figure 10: Failure cases. Foreground sequences from DAVIS.

tools (e.g. Adobe Photoshop [3]) or automated image outpainting methods (e.g. Dall-E [32]). In
our experiments, we adopt ChatGPT 4 [29] and Adobe Firefly [2] to automatically synthesize these
composited frames for use at test time. Specifically, we first sample the 0-th, 8-th, and 15-th frames
from the input video, and ask ChatGPT the following question “Based on these three images, can
you give me a description as prompt, less than 10 words, about one contextual scenario we can put
this human in?”. We then use Firefly to synthesize the outpainted frames, given the foreground
segmentation and the text prompt. We use the “gpt4-vision-preview” version of ChatGPT 4 ||, and the
official Firefly GenFill **.

7.3 Limitations

We show two failure cases of our method in fig. 10. In the first example, the grass-like texture
on the dress is excluded from the segmentation, hence the model mistakenly perceives it to be an
independent object growing outside the dress. While in the second example, the Firefly-inpainted
frame has the broomstick facing towards the wrong direction. Although the model tries to generate
something reasonable, it fails to correct this mistake to produce a coherent video. Despite certain fault
tolerance from our model, providing proper input segmentation and condition signal helps ensure
high-quality generation results.

7.4 Data Ethics

The HiC+ dataset [26] includes public datasets HVU [12], Charades [37], Moments [28], and
WebVid10M [4]. Readers are encouraged to refer to Section A.1 in the supplementary material of [7]
for the license of these datasets. Moreover, same as [26], more internal videos are incorporated during
training and evaluation. We have conducted the necessary legal review process, and can provide more
details of this data upon request.

We present a method that can synthesize highly realistic videos that place human and non-human
subjects into diverse background scenes. While our work has implications and values for a wide range
of fields, we note that our model can be misused to generate malicious content. Similar to Firefly
GenFill [2] and Gen1 [13], the generated content can be watermarked to prevent misuse. Moreover,
our model inherits the demographic biases presented in the training data. We make our best effort to
demonstrate impartiality in all the results shown.

||https://platform.openai.com/docs/overview
**https://firefly.adobe.com/generate/inpaint
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope of the paper have been truthfully described
throughout the abstract and the introduction, and concisely summarized at the end of the
introduction. Each of the listed contributions is backed up by experimental results or
literature review throughout the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We included a separate section 7.3 to discuss the limitations of the work,
including discussions on potential data bias in section 7.4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results, while essential theoretical
background with formulas is provided in section 3.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We included detailed descriptions of our model architecture in section 3.3,
references to publicly available pre-trained weights, data processing procedures, and other
training details in section 3.4 and further in section 7.2. We will also opensource our code
and model checkpoints upon paper acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: As stated in the response above, we provided detailed instructions on how to
replicate our experiment results in the paper. We will release our code and models upon
paper acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided detailed instructions on replicating the training and evaluation
procedures in section 3.4, section 4, and section 7.2. We did not perform delicate tuning for
the hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

19



Justification: We did not compute error bars due to the lack of adequate computational
resources. However, we tried our best to provide faithful and reliable quantitative evaluation
results, including a user study.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We described our compute setup as well as the training time and inference
runtime in section 3.4 and section 7.1, respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We included a separate section 7.4 to discuss the ethics-related concerns,
including licensing and legal information of the dataset used, and potential societal impacts
of our work with possible measures to combat them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We included a separate section 7.4 that discussed potential societal impacts of
our work with possible measures to combat them.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
We mentioned in section 7.4 that the generated content from our model can be watermarked
to prevent potential misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: As noted in section 7.4, the licenses for the datasets used in this work can be
found in the supplement of [7]. All the pre-trained models and tools we used are specified
in the paper in section 3.4 and section 7.2 with URLs.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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