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Abstract001

Deploying machine learning models in safety-002

critical applications necessitates both reliable out-003

of-distribution (OOD) detection and interpretable004

model behavior. While substantial progress has005

been made in OOD detection and explainable AI006

(XAI), the question of why a model classifies a data007

point as OOD remains underexplored. Counterfac-008

tual explanations are a widely used XAI approach,009

yet they often fail in OOD contexts, as the gener-010

ated examples may themselves be OOD. To address011

this limitation, we introduce the concept of OOD012

counterfactuals—perturbed inputs that transition013

between distinct OOD categories—to provide insight014

into the model’s OOD classification decisions. We015

propose a novel method for generating OOD coun-016

terfactuals and evaluate it on synthetic, tabular, and017

image datasets. Empirical results demonstrate that018

our approach offers both quantitatively and qualita-019

tively improved explanations compared to existing020

baselines.021

1 Introduction022

Machine learning (ML) models are increasingly023

deployed in predictive tasks, yet they often fail024

when encountering inputs from unfamiliar distri-025

butions. This vulnerability poses a major challenge026

for safety-critical applications such as healthcare027

and autonomous systems. Two key requirements028

for robust deployment are: (1) accurate detection029

of out-of-distribution (OOD) data—inputs drawn030

from distributions not seen during training—and (2)031

interpretability of the model’s decisions, particularly032

regarding OOD classifications.033

Although significant advances have been made in034

improving OOD detection performance [1], limited035

attention has been given to explaining why a model036

classifies a data point as OOD [2], despite growing037

ethical and regulatory demands for transparency038

[3]. OOD detection is typically framed as a binary039

classification problem, distinguishing in-distribution040

(ID) from OOD data. More nuanced formulations041

distinguish between near-OOD and far-OOD inputs042

[4, 5]. Far-OOD samples differ substantially from043

ID data, lacking both discriminative (class-specific)044

and non-discriminative (shared) features. In con-045

trast, near-OOD samples share non-discriminative046

features with ID data but lack discriminative ones.047

For example, in image classification, backgrounds 048

often represent non-discriminative features, while 049

foreground objects are discriminative. A far-OOD 050

image may differ in both, while a near-OOD image 051

may share the background but contain unfamiliar 052

objects. 053

This distinction is intuitive and can aid in ex- 054

plaining OOD classifications. Studying the tran- 055

sitions between in-distribution (ID), near-out-of- 056

distribution (near-OOD), and far-out-of-distribution 057

(far-OOD) regions offers valuable insight into a 058

model’s decision boundaries. Counterfactual expla- 059

nations—describing how inputs can be minimally 060

altered to change predictions—provide a natural 061

framework for such analysis [6, 7]. However, exist- 062

ing counterfactual generation methods often break 063

down in OOD scenarios, producing candidates that 064

remain outside the training distribution unless ex- 065

plicitly constrained. 066

Our goal is to explain why a model/classifier 067

trained on ID data identifies a given instance as 068

OOD. To this end, we introduce a framework 069

that distinguishes between discriminative and non- 070

discriminative features to guide OOD samples to- 071

ward more ID-like representations. By tracing how 072

an OOD point can be perturbed to move from far- 073

OOD to near-OOD and ultimately into the ID region, 074

we both clarify the basis of the model’s decision and 075

generate counterfactuals that are more faithful to 076

the ID distribution. 077

Importantly, our goal is not to provide a com- 078

prehensive solution to all aspects of counterfactual 079

explanation for OOD data. We do not incorporate 080

other feasibility constraints such as sparsity, though 081

these can be added into the objective function if 082

desired. Likewise, we are not claiming that this is 083

the optimal approach for generating counterfactuals 084

as other methods to generate features, partitions 085

the data and perturbing the data can be used. The 086

method can be further refined—for instance, by mod- 087

ifying the loss function to include additional terms 088

that improve feasibility, interpretability or disen- 089

tanglement. Rather, we introduce this framework 090

referred to as ‘OOD counterfactual’ (OOD CF) as 091

a novel direction for counterfactual generation by 092

systematically adjusting the non-discriminative and 093

discriminative features of an OOD data point to 094

bridge the gap between OOD and ID spaces. 095

The main contributions of this work are: 096

1. A novel method, OOD CF, for generating coun- 097
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terfactual explanations for OOD data which098

explains why a model/classifier cosiders a data099

point as OOD.100

2. Experiments demonstrating that our method101

produces counterfactuals that are more realistic102

and less likely to be identified as OOD compared103

to baseline approaches.104

2 Background and Related105

Work106

Throughout this paper, scalar mathematical quan-107

tities will be represented in lowercase, vectors will108

be in lowercase and bold, and matrix quantities109

will be capitalized and bold. The term ’class labels’110

will refer to the labels for the different classes of111

the ID dataset. The term ’OOD label’ will refer to112

whether the data point is ID or OOD. The terms113

counterfactual and counterfactual explanation will114

be interchangeably used.115

2.1 Counterfactual explanations116

A common approach to interpreting machine learn-117

ing (ML) model predictions is through counterfac-118

tual explanations, which articulate causal reason-119

ing such as: “If X had not occurred, Y would not120

have occurred.” This involves considering hypothet-121

ical scenarios that contradict the observed facts [6].122

Given an input vector x, we may ask why it was123

classified as class c, or why it was identified as OOD.124

Counterfactual explanations reframe this inquiry125

as: “What is the smallest change to x that would126

alter its classification?” Formally, a counterfactual127

explanation is an altered input vector x′ = x+ δ,128

where δ represents a perturbation applied to x. This129

perturbation typically moves the input across a deci-130

sion boundary, resulting in a different classification131

[8]. The desiderata for counterfactual explanations132

vary across models and application domains. A133

fundamental property is realism—ensuring that the134

resulting counterfactual reflects a plausible scenario135

for the user [9]. Another widely valued property is136

sparsity, which promotes interpretability by limiting137

the number of features that change. When many138

features shift simultaneously, it becomes harder to139

attribute the classification change to specific vari-140

ables. Block sparsity, where related features are141

modified together, can also enhance interpretability.142

Additional desirable attributes include feasibility143

(ensuring the counterfactual is attainable in prac-144

tice), proximity (minimizing the magnitude of the145

perturbation), and data manifold closeness (ensur-146

ing that x′ remains within the data distribution).147

These properties are often formulated as optimiza-148

tion objectives or constraints—for example, applying149

L1 and L2 regularization to δ, or constraining x′
150

to remain close to a representative member of the 151

target class. 152

One of the earliest and most influential approaches 153

to counterfactual generation is the Counterfactual 154

Instances (CFI) method proposed by Wachter et 155

al. [8]. This method perturbs data points in the 156

input space to change their predicted class, while en- 157

couraging sparse perturbations via L1 regularization. 158

Let x denote the original input instance and x′ the 159

corresponding counterfactual. Define P̂t(x
′) as the 160

predicted posterior probability of target class t given 161

x′, and Pt as the desired probability (typically set 162

to 1). The counterfactual is obtained by minimizing 163

the following loss function: 164

L(x′,x) = (P̂t(x
′)− Pt)

2 + λL1(x
′,x) (1) 165

where L1 is defined as: 166

L1(x
′,x) = |x′ − x|1 (2) 167

The first term incentivizes the counterfactual to 168

be confidently classified as the target class, while 169

the second term encourages sparsity in the pertur- 170

bation by minimizing the L1 norm of the change. 171

This balance facilitates counterfactuals that are both 172

effective and interpretable. 173

Following this, there have been many extensions 174

that can be used to enable the generation of coun- 175

terfactuals with particular properties of interest for 176

several different purposes. One property of inter- 177

est is that the generated counterfactuals lie close 178

to the data manifold. One approach that aims to 179

generate counterfactuals close to the data manifold 180

is the Contrastive Explanation Method (CEM) by 181

Dhurandhar et al [10]. This approach includes an 182

elastic net L1 +L2 regularizer which encourages the 183

solution to be both sparse and close to the original 184

instance. Additionally, Dhurandhar et al train an 185

auto-encoder to reconstruct instances of the training 186

set. They then include the reconstruction error of 187

the perturbed instance as an additional loss term in 188

the objective function. As a result, the perturbed 189

instance lies close to the training data manifold. 190

One approach to ensure counterfactuals are close 191

to the data manifold is to generate counterfactuals 192

close to a representative member of a class, which 193

was the aim of the Counterfactuals Guided by Proto- 194

types (Proto) approach by Van Looveren and Klaise 195

[11]. The Proto approach has a similar loss function 196

to CEM but includes an additional term in the loss 197

function that optimizes for the distance between 198

the latent features of a counterfactual explanation 199

instance and the latent features of the ’prototypical’ 200

instance of the target class protoi. In doing this, it 201

adds the additional requirement that the generated 202

counterfactual explanation is believably a member 203

of the target class. 204
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3 Method205

3.1 Overview206

To explain the classification of a data point, it is207

useful to examine the decision boundary between208

classes. Similarly, OOD detection can be treated209

as a classification problem, where a data point x210

belongs to the ID, near-OOD, or far-OOD class. To211

understand why a data point is classified as OOD,212

we propose investigating the decision boundaries213

between far-OOD, near-OOD, and ID points using214

counterfactual explanations.215

3.1.1 Counterfactual explanation generation216

The interpretability of a counterfactual explanation217

depends on how clearly the changes to inputs can218

be understood. Perturbing multiple latent features219

simultaneously can lead to “information overload”,220

causing confusion and reducing trust [12]. We ar-221

gue that counterfactual explanations are more inter-222

pretable when changes are:223

• Limited to individual latent features.224

• Focused on specific areas of interest, such as225

the background or foreground object.226

Therefore, we aim to restrict perturbations to one227

area of interest at a time, specifically targeting either228

non-discriminative or discriminative latent features229

in this work.230

3.1.2 Counterfactual explanation generation231

for OOD data232

We illustrate the distinction between traditional233

counterfactual explanations and our proposed234

method using a toy example in Fig. 1. Consider235

an ID dataset consisting of blue triangles and blue236

circles. A classifier with a horizontal decision bound-237

ary distinguishes between the data solely based on238

the shape. A pink hexagon represents a far-OOD239

data point, differing from ID data in both shape (dis-240

criminative feature) and color (non-discriminative241

feature).242

Traditional counterfactual methods, such as243

Watcher et al. [8], typically modify only the discrim-244

inative features to match a target ID class, assuming245

that non-discriminative features remain consistent246

across ID classes. As shown in Fig. 1(a), apply-247

ing this approach to the pink hexagon changes its248

shape to an oval, resulting in a pink oval. While249

this crosses the decision boundary, the counterfac-250

tual remains OOD due to the mismatched color—a251

non-discriminative feature not present in the ID252

dataset.253

In contrast, transforming an OOD data point254

into an ID one requires aligning both discrimina-255

tive and non-discriminative features. Our method256

achieves this through a two-stage process. First (Fig. 257

1(b)), the pink hexagon becomes a blue hexagon 258

by modifying its non-discriminative feature (color), 259

transitioning from far-OOD to near-OOD. Second 260

(Fig. 1(c)), the shape is adjusted to produce a blue 261

oval—an ID point with both features aligned with 262

the ID data. This staged approach ensures that 263

the generated counterfactual is more likely to be 264

considered ID, as it matches both feature types. It 265

also improves interpretability by isolating changes 266

to non-discriminative and discriminative features, 267

offering clearer insights into how each influences the 268

model’s OOD classification. 269

Definition In the context of explaining why a 270

data point is classified as OOD, we formulate coun- 271

terfactual explanation generation in terms of a per- 272

turbation δ which satisfies Eqn. 3: 273

DID(ϕz(x+ δ)) < DOOD(ϕz(x+ δ)) (3) 274

where DID and DOOD are metrics that represent 275

how far the input is from being ID and OOD re- 276

spectively, and ϕz is a latent feature extractor. The 277

intuition is that adding the perturbation should lead 278

to x being more ID and less OOD. However, as we 279

do not have access to the OOD dataset during train- 280

ing time, we instead aim to find δ which satisfies 281

Eqn. 4: 282

DID(ϕz(x+ δ)) < DID(ϕz(x)) (4) 283

We formalize an OOD counterfactual explanation 284

as a perturbed data point that is generated in a 285

two-stage procedure that involves changing the non- 286

discriminative followed by the discriminative latent 287

features. More formally, a latent vector z is sepa- 288

rated into a non-discriminative part, zn, and dis- 289

criminative part zd i.e., z = (zn; zd). Then we can 290

satisfy Eqn. 4 by breaking it down into two stages 291

given by Eqns. 5 and 6: 292

DID(ϕz(x+ δn)) < DID(ϕz(x)) (5) 293

DID(ϕz(x+ δd)) < DID(ϕz(x)) (6) 294

where δn and δd correspond to the perturbations 295

to the non-discriminative and discriminative feature 296

partitions, respectively. Eqn. 4 is satisfied by having 297

δ = δn+δd. The relationship between the far-OOD, 298

near-OOD and the ID class can be seen in Fig. 2. 299

3.2 General Process for generating 300

Counterfactual explanations for 301

OOD data 302

In order to generate the OOD counterfactual expla- 303

nation, three steps are required: 304

• Obtain latent features of the OOD data, z. 305
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(a) Traditional approach. (b) Our approach: first stage. (c) Our approach: second stage.

Figure 1. A toy example with colored shapes illustrates how the OOD counterfactual approach differs from
traditional methods. Traditional counterfactual approaches generate counterfactuals with shape (discriminative)
features similar to the ID dataset. In contrast, our approach modifies the OOD data in two stages: first, by
altering the color (non-discriminative) features, and second, by adjusting the shape (discriminative) features to
ensure the final counterfactual matches both the shape and color features of the ID dataset.

Far OOD Near OOD ID
Optimize zn Optimize zd

Figure 2. Relationship between Far OOD, Near OOD
and ID data

.

• Decompose z into two partitions, zd and zn306

using classifier of the ID dataset.307

• Perturb the OOD data, x, in a way that makes308

each latent partition more similar to those of309

the ID data using a density estimator.310

Obtain latent features of the OOD data, z.311

To explain why a model considers a data point as312

OOD, we extract its latent features, z. Our ap-313

proach is compatible with any model that produces314

latent features; such as a of a neural network classi-315

fier or dimensionality reduction techniques can be316

used such as UMAP (Uniform Manifold Approxi-317

mation and Projection for Dimension Reduction)318

[13, 14]. However different feature extractors may319

be more or less suitable with different types of data320

and different modalities and so the feature extractor321

chosen may be context specific. In the case where a322

unsupervised dimensionality reduction is used, a sep-323

arate classifier will need to be used in the next step.324

In this work, we use Principal Component Analysis325

(PCA) to obtain z, as PCA captures features that326

maximize data variance.327

Decompose z into two partitions, zd and zn.328

We explored several methods for partitioning the329

data and adopted a greedy approach to select a330

subset of features, zd, that maximize classification331

accuracy. This approach assumes that discrimina-332

tive features are those that improve classifier per-333

formance. Since greedy methods assume feature334

independence, it aligns well with PCA-derived fea- 335

tures. Specifically, we used a Quadratic Discriminant 336

Analysis (QDA) classifier and the sequential feature 337

selector class from scikit-learn to identify the top-k 338

features that maximize mean ID class label classi- 339

fication accuracy on the test data. These features 340

form the discriminative partition, while the remain- 341

ing n− k features constitute the non-discriminative 342

partition. In this case, we chose K to be half the 343

total number of features where we make the assump- 344

tion that there is an equal number of discriminative 345

and non-discriminative features. 346

Perturb the OOD data, x, in a way that makes 347

each latent partition more similar to those of 348

the ID data using a density estimator. Coun- 349

terfactual explanations are generated by perturbing 350

OOD data so that the zn and zd values of the 351

counterfactuals resemble those of ID data. Density 352

estimation based OOD detection methods, such as 353

the Mahalanobis Distance, perform well, suggesting 354

that log-likelihoods effectively differentiate ID from 355

OOD data. Building on this, we propose a loss func- 356

tion that minimizes the NLL of data points under 357

a density estimator. Similar to the feature extrac- 358

tor aspect, our approach is agnostic of the density 359

estimator used with several different options being 360

available such as energy-based model and normalz- 361

ing flows [15, 16]. In this case we chose a Gaussian 362

Mixture Model (GMM) for its simplicity and good 363

performance [17]. This involves modelling the fea- 364

ture space distribution using separate GMMs for zn 365

and zd where the number of modes for zd is equal 366

to the number of ID classes whilst we use a single 367

mode for zn. The generation process defined by 368

Eqns. 5 and 6 involves two stages: first, counterfac- 369

tuals are perturbed to minimize the NLL under the 370

GMM defined by the non-discriminative partition. 371

Then, they are further perturbed to minimize the 372
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x zn LCF,n

zn = ϕn(x) LCF,n(x) = − log pn(zd)

x′ = x − α · ∇xLCF,n(x)

x zd LCF,d

zd = ϕd(x) LCF,d(x) = − log pd(zd)

x′ = x − α · ∇xLCF,d(x)

Figure 3. Optimization process to perturb the data to
generate an OOD counterfactual explanation.

NLL under the GMM defined by the discriminative373

partition. Although it is equally feasible to opti-374

mize for the discriminative partition followed by the375

non-discriminative partition. The loss for the non-376

discriminative, LCF,n and discriminative partitions377

LCF,d are given by Eqs. 7 and 8 respectively:378

LCF,n(x) = − log pn(ϕn(x)) (7)379

380

LCF,d(x) = − log pd(ϕd(x)) (8)381

where ϕn(x) = zn, ϕd(x) = zd, pn and pd are the382

density under the non-discriminative and discrimina-383

tive GMM respectively. We refer to the loss for the384

non-discriminative and discriminative partitions as385

the Non-discriminative (Non-dis) and Discriminative386

(Dis) loss respectively. By using the Non-dis and387

Dis losses, we can generate the OOD counterfactual388

x′ in two stages using Eqns. 9 and 10 respectively.389

x′ = x− α · ∇xLCF,n(x) ≡ x+ δn (9)390

391

x′ = x− α · ∇xLCF,d(x) ≡ x+ δd (10)392

Where α is a weighing parameter which can be393

determined using cross-validation. The process of394

generating the counterfactual explanations can be395

seen in Algorithm 1. Additionally, a visual represen-396

tation of the generation of an OOD counterfactual397

can be seen in Fig. 3. Also, we focus on these398

terms to see the effect of the partitioning of the399

features, additional loss terms could be added to400

enforce properties such as actionability.401

4 2D Synthetic Experiment402

Task Examining the generation of an OOD coun-403

terfactual in a 2D synthetic dataset where we can404

see the optimization trajectory of a single OOD data405

point during the two-stage process.406

Dataset We consider a low dimensional (2D)407

dataset where we generate two Gaussian distribu-408

tions with means (3,0) and (-3,0) with a tied co-409

variance matrix Σ = 0.5I2. There is also an ad-410

ditional OOD distribution which has a mean (0,2)411

and covariance Σ = 0.3I2. PCA with two principal412

Algorithm 1 Counterfactual generation - Natural
language

Require: Test sample x, target class t, training
data Xtrain

Ensure: Counterfactual explanation x′

0: Extract latent features: Ztrain ←
FeatureExtractor(Xtrain)

0: Separate Ztrain into Zn,train (non-
discriminative) and Zd,train (discriminative)

0: Obtain discriminative features for class t:
Zt

d,train

0: Fit a GMM to Zn,train and Zt
d,train

0: x′ ← x
0: k ← 0
0: while k < max iter do
0: LCF,n ← − log pn(ϕn(x))
0: g ← ∇x(LCF,n)
0: x′ ← x′ − (α · g)
0: k ← k + 1
0: end while
0: k ← 0
0: while k < max iter do
0: LCF,d ← − log pd(ϕd(x))
0: g ← ∇x(LCF,d)
0: x′ ← x′ − (α · g)
0: k ← k + 1
0: end while
0: return x′ =0

components is then used to extract the latent fea- 413

tures that capture the most variance in the ID data. 414

The setup of the synthetic dataset and the principal 415

components can be seen in Fig. 4. 416

Results Using the principal components pc1 and 417

pc2, an OOD counterfactual explanation is gener- 418

ated via Eqns. 7 and 8. The optimization trajectory 419

of a single data point, shown in Fig. 4, starts at (0, 420

2). Initially, the point moves vertically along pc2, 421

which does not aid classification. In the second stage, 422

it shifts horizontally along pc1 toward the centroid 423

of Class 1. This two-stage process highlights the 424

significance of both non-discriminative and discrimi- 425

native latent features in determining whether a data 426

point is OOD. 427

5 Tabular Experiment 428

Task and Evaluation Metrics We evaluate the 429

effectiveness of our OOD CF approach by generating 430

OOD counterfactual explanations for OOD images. 431

The objective is for these counterfactual explana- 432

tions to resemble data in the ID dataset. To assess 433

performance, we measure the realism and minimal- 434

ity of the counterfactual explanations. Minimality is 435

quantified using the L1 distance between the original 436
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Figure 4. Optimization trajectory of a single OOD
data point.

data points x and counterfactual explanations x′.437

Realism, a less precisely defined concept, is inter-438

preted here as similarity to ID data in both discrim-439

inative and non-discriminative latent features. We440

quantify this by computing the AUROC between ID441

data (positive examples) and counterfactual expla-442

nations from OOD data (negative examples). Detec-443

tion scores for ID and OOD data points are derived444

using the Mahalanobis Distance, a simple yet ef-445

fective scoring function, which is competitive with446

state of the art OOD detection approaches which is447

used frequently for detecting OOD data points for448

datasets like MNIST, SVHN and CIFAR100. The449

AUROC, which represents the Area Under the Re-450

ceiver Operating Characteristic curve, reflects the451

probability that a positive example has a higher452

detection score than a negative example. In our453

case, lower AUROC values indicate counterfactual454

explanations that are less distinguishable from ID455

data and thus more realistic. Unlike traditional456

AUROC usage in OOD detection, lower values are457

desirable for this metric in our work. Additionally,458

we evaluate how well different approaches optimize459

the Non-Discriminative and Discriminative losses460

(Eqns. 7 and 8). Unless otherwise stated, metrics are461

averaged over four trials using unique random seeds,462

with a random subset of training data for each trial.463

For all reported metrics, lower values indicate better464

performance. In results tables, the best-performing465

method is bolded, and statistically significant im-466

provements (p < 0.05, Wilcoxon signed-rank test467

[18]) are marked with an asterisk (*).468

Datasets We perform our analysis on three tab-469

ular datasets: Wine, Pima Diabetes, and Thyroid470

dataset. We use tabular datasets as this type of data471

is frequently used in the interpretability literature.472

To be able to use the OOD counterfactual expla-473

nation generation approach, the datasets needed474

to be preprocessed in some manner to have differ- 475

ent classes and anomalous data points which can 476

be treated as OOD for counterfactual explanation 477

generation. Examples of this would be data points 478

which have feature values which are distinct from 479

the rest of the dataset, or belonging to a different 480

class and therefore will not have similar discrimina- 481

tive features to the other classes of the ID dataset 482

(mimiking a near-OOD data point). Explanations 483

of the datasets and the preprocessing can be seen 484

in Appendix A. 485

Dataset Method Non-dis Dis L1 AUROC

Wine

OOD CF 3.58* 5.36* 7.64 0.34*
Proto 8.57 7.09 7.01 0.99
CFI 123.18 72.88 9.42 1.00
CEM 24.34 14.54 7.80 1.00

Diabetes

OOD CF 4.28 3.66 2.67* 0.33*
Proto 4.32 3.15 4.76 0.50
CFI 291.01 150.88 6.26 0.65
CEM 8.24 5.47 5.68 0.61

Thyroid

OOD CF 3.22* 3.90* 4.73* 0.39*
Proto 3.47 4.14 9.01 0.82
CFI 17.36 95.87 10.30 0.90
CEM 11.73 55.15 9.66 0.95

Table 1. Counterfactual explanation results for the
Wine, Diabetes and Thyroid datasets

Results and Discussion We compared the OOD 486

Counterfactual Explanation (OOD CF) approach 487

with three state-of-the-art baselines commonly used 488

in counterfactual explanation literature: Counter- 489

factual Instances (CFI) [8], Counterfactuals Guided 490

by Prototypes (Proto) [11], and the Contrastive Ex- 491

planation Method (CEM) [10]. The baselines were 492

implemented using the Alibi package [19]. 493

For all baselines, we trained a neural network 494

classifier with two hidden layers matching the input 495

dimensionality and output classes corresponding to 496

the in-distribution (ID) classes. The classifiers were 497

trained for 500 epochs using the SGD optimizer, a 498

batch size of 128, and a learning rate of 0.01. 499

Table 1 shows that the OOD CF approach achieves 500

lower Dis and Non-Dis losses compared to the base- 501

lines, indicating superior optimization of these met- 502

rics. Notably, despite not explicitly minimizing the 503

L1 distance, OOD CF outperforms the baselines 504

in L1 distance across most datasets, except for the 505

Wine dataset where all methods perform similarly. 506

In contrast, the baselines explicitly regularize to 507

minimize L1 distance but achieve inferior results, 508

suggesting that it is easier to move the data from 509

OOD to ID than moving a data point to cross the 510

decision boundary of a particular ID class. 511

Additionally, the AUROC values for OOD CF are 512

consistently lower, indicating that its counterfactual 513

explanations are more similar to ID data than those 514

produced by the baselines. This highlights that 515

lower Non-Dis and Dis losses correspond to more 516

realistic and plausible counterfactual explanations 517

with reduced L1 distances. 518
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The realism of counterfactual explanations corre-519

lates with how well the method accounts for the den-520

sity of ID data points. The CFI approach performs521

the worst in generating realistic counterfactual ex-522

planations, as it disregards data density and focuses523

solely on crossing decision boundaries. Conversely,524

the Proto approach, which generates counterfactual525

explanations near class prototypes, implicitly im-526

proves realism by aligning with higher-likelihood527

regions. Our OOD CF approach explicitly maxi-528

mizes the likelihood of counterfactual explanations,529

leading to the most realistic and effective results530

among the evaluated methods.531

6 Image Experiments532

Task and Evaluation Metrics We evaluate the533

effectiveness of our OOD CF approach by gener-534

ating OOD counterfactual explanations for OOD535

images. This involves designating one dataset as536

the ID dataset and another as the OOD dataset.537

The goal is for OOD counterfactual explanations to538

resemble images in the ID dataset, assessed quantita-539

tively using the metrics from Section 5. Additionally,540

we qualitatively analyze counterfactual explanations541

from various ID-OOD dataset pairs to gain deeper542

insights into the approach.543

Datasets MNIST is a dataset of images of hand-544

written digits between 0 - 9 without any texture545

or color. Kuzushiji-MNIST (KMNIST) is an addi-546

tional replacement for the MNIST dataset (28x28547

grayscale, 70,000 images), provided in the original548

MNIST format [20]. ColoredMNISTRed is a varia-549

tion of the MNIST dataset where the blue and green550

channels are set to zero to make the MNIST digits551

red [21].552

Results and Discussion553

ID-OOD Datasets Method Non-dis Dis L1 AUROC

MNIST-KMNIST

OOD CF 18.51* 25.31* 43.35* 0.26*
Proto 26.01 34.53 58.95 0.40
CFI 30.22 37.44 58.80 0.41
CEM 29.00 37.45 59.09 0.41

MNIST-
ColoredMNISTRed

OOD CF 29.45* 40.39* 42.66* 0.52*
Proto 32.09 44.92 52.26 0.65
CFI 35.39 48.27 51.49 0.66
CEM 37.34 50.77 51.72 0.65

KMNIST-MNIST

OOD CF 23.66* 28.81* 33.83* 0.22*
Proto 25.55 31.17 57.46 0.28
CFI 28.15 34.50 57.11 0.36
CEM 26.55 34.87 57.56 0.30

Table 2. Counterfactual results of different approaches
for different ID-OOD pairs on various metrics .

Quantitative analysis Table 2 shows similar554

results to the tabular case, with OOD CF-generated555

counterfactual explanations being more realistic and556

less perturbed than the baselines. This is indicated557

by lower AUROC and L1 values for OOD CF com- 558

pared to the baselines. Additionally, lower Non-dis 559

and Dis values further support the hypothesis that 560

optimizing for these losses leads to more realistic 561

counterfactual explanations. These findings demon- 562

strate that the OOD CF approach is effective for 563

both lower-dimensional tabular datasets and higher- 564

dimensional image datasets. 565

Qualitative analysis Figures 5–7 illustrate 566

OOD counterfactual explanations across three tar- 567

get classes. Each row contains six images: the ini- 568

tial OOD input and its nearest ID neighbor, the 569

first-stage counterfactual and its neighbor, and the 570

final (second-stage) counterfactual with its neighbor. 571

Nearest neighbors are determined in PCA space. 572

By examining which features are added or removed 573

across stages, we gain insight into why the original in- 574

put is considered OOD. In Fig. 5, using MNIST as ID 575

and KMNIST as OOD, the first-stage transition (left 576

to third image) lightens the background—consistent 577

with MNIST’s brighter appearance. In the second 578

stage, class-specific features emerge, such as loops or 579

segment removal, transforming the characters into 580

shapes resembling a zero, six, or nine. This suggests 581

that the KMNIST samples are OOD due to darker 582

central regions and a lack of distinctive digit fea- 583

tures (e.g., class-specific loops) typically found in 584

MNIST. A similar trend is observed in Fig. 6, where

Figure 5. Each row contains six images: the initial
OOD input and its nearest ID neighbor, first-stage coun-
terfactual and its neighbor, and final (second-stage) coun-
terfactual with its neighbor for 3 different classes for the
MNIST(ID)-KMNIST(OOD) OOD CF.

585

ColoredMNIST (red digits) is the OOD set. In the 586

first stage, grey patterns appear in the background, 587

followed by class-specific structures in the second 588

stage. The original ColoredMNIST points appear 589

OOD due to the lack of white/grey central regions 590

and missing discriminative features associated with 591

specific MNIST digits. A limitation here is that the 592

colored digit itself remains largely unchanged—our 593

method focuses on adding plausible features rather 594

than modifying existing ones. However, the effec- 595

tiveness of OOD counterfactual explanations can 596

vary across ID-OOD dataset pairs. For instance, 597

when KMNIST is used as the ID dataset, the first 598

7
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Figure 6. Each row contains six images: the initial
OOD input and its nearest ID neighbor, first-stage coun-
terfactual and its neighbor, and final (second-stage) coun-
terfactual with its neighbor for 3 different classes for the
MNIST (ID)-ColoredMNIST (OOD) OOD CF.

stage of counterfactual generation introduces irregu-599

lar greying of the background, while the second stage600

further lightens it. This is likely due to the struc-601

tural complexity of Japanese characters, which often602

extend toward the image edges—unlike MNIST dig-603

its, which are typically centered. This suggests that604

MNIST digits are identified as OOD partly because605

they lack sufficient brightness in the outer regions.606

However, class-discriminative changes are less evi-607

dent in this setting. As shown in Fig. 7, second-stage608

counterfactuals (fifth column) optimized for different609

target classes are visually similar, making it difficult610

to interpret class-specific transformations.

Figure 7. Each row contains six images: the initial
OOD input and its nearest ID neighbor, first-stage coun-
terfactual and its neighbor, and final (second-stage) coun-
terfactual with its neighbor for 3 different classes for the
KMNIST (ID)-MNIST (OOD) OOD CF.

611

In this case, it could be beneficial to use a different612

feature extractor such as neural network rather than613

PCA. Additionally, we compare our counterfactual614

explanations (Fig. 8) with those from the Proto615

approach, which performed best in the quantitative616

analysis (Fig. 9). The Proto baseline shows four617

images: the initial OOD point, its nearest neighbor618

in the ID data, the final counterfactual explanation,619

and the final counterfactual explanation’s nearest620

neighbor. Although Proto removes part of the bot-621

tom loop to resemble a nine, it does not add the622

loop typical of a nine. In contrast, our approach623

successfully removes non-characteristic features (the624

top and bottom sections) and adds the loop, a key 625

feature of a nine.

Figure 8. Each row contains six images: the initial
OOD input and its nearest ID neighbor, first-stage coun-
terfactual and its neighbor, and final (second-stage) coun-
terfactual with its neighbor for a single class for the
MNIST (ID)-KMNIST (OOD) OOD CF.

626

Overall, the counterfactual explanations generated 627

by OOD CF better highlight the non-discriminative 628

and discriminative features of the ID dataset and 629

capture the ID class characteristics more accurately 630

than the baseline.

Figure 9. MNIST (ID)-KMNIST (OOD) counterfactual
explanation generated by the Proto baseline.

631

7 Conclusion 632

This work addresses the challenge of explaining 633

why data points are classified as OOD by intro- 634

ducing a novel framework for generating counter- 635

factual explanations based on discriminative and 636

non-discriminative latent features. We propose the 637

concept of OOD counterfactual explanations, which 638

transform OOD data points through a two-stage per- 639

turbation process: first aligning non-discriminative 640

features, then discriminative ones, to produce more 641

plausible ID data points. The method involves 642

extracting latent features and partitioning them 643

into non-discriminative (zn) and discriminative (zd) 644

components, guiding structured transitions through 645

far-OOD, near-OOD, and ID regions. Experimental 646

results on both tabular and image datasets show that 647

our approach outperforms baseline methods, yield- 648

ing counterfactuals that are more realistic and better 649

aligned with the ID distribution. This is reflected 650

in reduced discriminative and non-discriminative 651

losses, and lower AUROC scores when counterfac- 652

tuals are evaluated using OOD detectors. Future 653

work will explore improved techniques for feature 654

partitioning, aiming to separate features into more 655

interpretable categories. We hope our work will 656

inspire further exploration of OOD explanations 657

using non-discriminative and discriminative latent 658

features. 659
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A Tabular datasets773

Wine: These data points are the results of a chem-774

ical analysis of wines grown in the same region in775

Italy but derived from three different cultivars. The776

analysis determined the quantities of 13 constituents777

found in each of the three types of wines [22]. To778

define OOD data in this case, we make it so that all779

data points classified as class 2 are OOD.780

Diabetes: This dataset consists of several medi-781

cal predictor (independent) variables and one target782

(dependent) variable, Outcome. Independent vari-783

ables include the number of pregnancies the patient784

has had, their BMI, insulin level, age, and so on.785

The outcomes are diabetic or non-diabetic [23]. To786

define OOD data in this case, we make it so that all787

data points with the age attribute above the upper788

quartile are OOD.789

Thyroid: The problem is to determine whether a790

patient referred to the clinic is hypothyroid. There-791

fore three classes are built: normal (not hypothy-792

roid), hyperfunction, and subnormal functioning793

[24]. Moreover, we defined the subnormal function-794

ing class as the outlier class and the other two classes795

are inliers, because subnormal functioning has the796

lowest number of data points present in the dataset.797

B Histograms 798

To assess the effectiveness of the two-stage coun- 799

terfactual explanation approach in altering non- 800

discriminative and discriminative features, we an- 801

alyzed the log probability of data using different 802

GMMs. We used MNIST as the ID dataset and 803

KMNIST as the OOD dataset. We hypothesized 804

that a high log probability associated with a class- 805

agnostic GMM generated from the ID data would 806

indicate data points with feature values similar to 807

the non-discriminative features of the ID data. Sim- 808

ilarly, a high log probability from a class-conditional 809

GMM would suggest data points with feature val- 810

ues resembling the discriminative features of the ID 811

data. 812

We compared the log probabilities of the original 813

OOD data point, the counterfactual explanation gen- 814

erated after optimizing for the first partition (first 815

cf), and the two-stage counterfactual (cf), as shown 816

in Fig. B.1. The results show that after optimization, 817

both the first cf and cf have higher log-likelihoods 818

for both class-agnostic and class-conditional GMMs 819

compared to the initial OOD data point. Further- 820

more, optimizing both partitions results in a higher 821

log-likelihood than optimizing just one. 822

From the class-agnostic GMM (left side of Fig. 823

B.1), we see that the log-likelihood difference be- 824

tween the initial OOD data point and the first- 825

stage counterfactual is large, while the difference 826

between the first- and second-stage counterfactuals 827

is small. This suggests that optimizing the non- 828

discriminative partition leads to significant changes 829

in non-discriminative features, while the second 830

stage does not affect these features. 831

In the class-conditional log-likelihoods (right side 832

of Fig. B.1), the first- and second-stage counter- 833

factuals show higher log-likelihoods than the initial 834

OOD data points. The log-likelihood difference be- 835

tween the initial OOD data points and the first-stage 836

counterfactuals is small, whereas the difference be- 837

tween the first- and second-stage counterfactuals is 838

large, indicating that the second stage effectively 839

changes discriminative features while the first stage 840

has minimal effect on them. 841
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Figure B.1. Histograms of the log-likelihood for the counterfactual explanations generated for the MNIST-
KMNIST ID-OOD dataset pair for a class-conditional (left) and a class-agnostic GMM (right).
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