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Abstract

Deploying machine learning models in safety-
critical applications necessitates both reliable out-
of-distribution (OOD) detection and interpretable
model behavior. While substantial progress has
been made in OOD detection and explainable Al
(XAI), the question of why a model classifies a data
point as OOD remains underexplored. Counterfac-
tual explanations are a widely used XAI approach,
yet they often fail in OOD contexts, as the gener-
ated examples may themselves be OOD. To address
this limitation, we introduce the concept of OOD
counterfactuals—perturbed inputs that transition
between distinct OOD categories—to provide insight
into the model’s OOD classification decisions. We
propose a novel method for generating OOD coun-
terfactuals and evaluate it on synthetic, tabular, and
image datasets. Empirical results demonstrate that
our approach offers both quantitatively and qualita-
tively improved explanations compared to existing
baselines.

1 Introduction

Machine learning (ML) models are increasingly
deployed in predictive tasks, yet they often fail
when encountering inputs from unfamiliar distri-
butions. This vulnerability poses a major challenge
for safety-critical applications such as healthcare
and autonomous systems. Two key requirements
for robust deployment are: (1) accurate detection
of out-of-distribution (OOD) data—inputs drawn
from distributions not seen during training—and (2)
interpretability of the model’s decisions, particularly
regarding OOD classifications.

Although significant advances have been made in
improving OOD detection performance [1], limited
attention has been given to explaining why a model
classifies a data point as OOD [2], despite growing
ethical and regulatory demands for transparency
[3]. OOD detection is typically framed as a binary
classification problem, distinguishing in-distribution
(ID) from OOD data. More nuanced formulations
distinguish between near-OOD and far-OOD inputs
[4, 5]. Far-OOD samples differ substantially from
ID data, lacking both discriminative (class-specific)
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and non-discriminative (shared) features. In con-
trast, near-OOD samples share non-discriminative
features with ID data but lack discriminative ones.
For example, in image classification, backgrounds
often represent non-discriminative features, while
foreground objects are discriminative. A far-OOD
image may differ in both, while a near-OOD image
may share the background but contain unfamiliar
objects.

This distinction is intuitive and can aid in ex-
plaining OOD classifications. Studying the tran-
sitions between in-distribution (ID), near-out-of-
distribution (near-OOD), and far-out-of-distribution
(far-OOD) regions offers valuable insight into a
model’s decision boundaries. Counterfactual expla-
nations—describing how inputs can be minimally
altered to change predictions—provide a natural
framework for such analysis [6, 7]. However, exist-
ing counterfactual generation methods often break
down in OOD scenarios, producing candidates that
remain outside the training distribution unless ex-
plicitly constrained.

Our goal is to explain why a model/classifier
trained on ID data identifies a given instance as
OOD. To this end, we introduce a framework
that distinguishes between discriminative and non-
discriminative features to guide OOD samples to-
ward more ID-like representations. By tracing how
an OOD point can be perturbed to move from far-
OOD to near-OOD and ultimately into the ID region,
we both clarify the basis of the model’s decision and
generate counterfactuals that are more faithful to
the ID distribution.

Importantly, our goal is not to provide a com-
prehensive solution to all aspects of counterfactual
explanation for OOD data. We do not incorporate
other feasibility constraints such as sparsity, though
these can be added into the objective function if
desired. Likewise, we are not claiming that this is
the optimal approach for generating counterfactuals
as other methods to generate features, partitions
the data and perturbing the data can be used. The
method can be further refined—for instance, by mod-
ifying the loss function to include additional terms
that improve feasibility, interpretability or disen-
tanglement. Rather, we introduce this framework
referred to as ‘OOD counterfactual’ (OOD CF) as
a novel direction for counterfactual generation by
systematically adjusting the non-discriminative and
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discriminative features of an OOD data point to
bridge the gap between OOD and ID spaces.
The main contributions of this work are:

1. A novel method, OOD CF, for generating coun-
terfactual explanations for OOD data which
explains why a model/classifier cosiders a data
point as OOD.

2. Experiments demonstrating that our method
produces counterfactuals that are more realistic
and less likely to be identified as OOD compared
to baseline approaches.

2 Background and Related
Work

Throughout this paper, scalar mathematical quan-
tities will be represented in lowercase, vectors will
be in lowercase and bold, and matrix quantities
will be capitalized and bold. The term ’class labels’
will refer to the labels for the different classes of
the ID dataset. The term ’OOD label” will refer to
whether the data point is ID or OOD. The terms
counterfactual and counterfactual explanation will
be interchangeably used.

2.1 Counterfactual explanations

A common approach to interpreting machine learn-
ing (ML) model predictions is through counterfac-
tual explanations, which articulate causal reason-
ing such as: “If X had not occurred, Y would not
have occurred.” This involves considering hypothet-
ical scenarios that contradict the observed facts [6].
Given an input vector &, we may ask why it was
classified as class ¢, or why it was identified as OOD.
Counterfactual explanations reframe this inquiry
as: “What is the smallest change to « that would
alter its classification?” Formally, a counterfactual
explanation is an altered input vector =’ = x + 6,
where d represents a perturbation applied to . This
perturbation typically moves the input across a deci-
sion boundary, resulting in a different classification
[8]. The desiderata for counterfactual explanations
vary across models and application domains. A
fundamental property is realism—ensuring that the
resulting counterfactual reflects a plausible scenario
for the user [9]. Another widely valued property is
sparsity, which promotes interpretability by limiting
the number of features that change. When many
features shift simultaneously, it becomes harder to
attribute the classification change to specific vari-
ables. Block sparsity, where related features are
modified together, can also enhance interpretability.
Additional desirable attributes include feasibility
(ensuring the counterfactual is attainable in prac-
tice), proximity (minimizing the magnitude of the

perturbation), and data manifold closeness (ensur-
ing that @’ remains within the data distribution).
These properties are often formulated as optimiza-
tion objectives or constraints—for example, applying
Ly and Ls regularization to 8, or constraining a’
to remain close to a representative member of the
target class.

One of the earliest and most influential approaches
to counterfactual generation is the Counterfactual
Instances (CFI) method proposed by Wachter et
al. [8]. This method perturbs data points in the
input space to change their predicted class, while en-
couraging sparse perturbations via L regularization.
Let x denote the original input instance and x’ the
corresponding counterfactual. Define P, (x) as the
predicted posterior probability of target class t given
x’, and P; as the desired probability (typically set
to 1). The counterfactual is obtained by minimizing
the following loss function:

Lz’ x) = (P(x') — P)? + ALy (2", x) (1)

where L is defined as:

(2)

The first term incentivizes the counterfactual to
be confidently classified as the target class, while the
second term encourages sparsity in the perturbation
by minimizing the L; norm of the change. This
balance facilitates counterfactuals that are both ef-
fective and interpretable. Following this, there have
been many extensions that can be used to enable
the generation of counterfactuals with particular
properties of interest for several different purposes.
One property of interest is that the generated coun-
terfactuals lie close to the data manifold. One ap-
proach that aims to generate counterfactuals close
to the data manifold is the Contrastive Explanation
Method (CEM) by Dhurandhar et al [10]. This ap-
proach includes an elastic net L; + Lo regularizer
which encourages the solution to be both sparse and
close to the original instance. Additionally, Dhu-
randhar et al train an auto-encoder to reconstruct
instances of the training set. They then include the
reconstruction error of the perturbed instance as
an additional loss term in the objective function.
As a result, the perturbed instance lies close to the
training data manifold.

One approach to ensure counterfactuals are close
to the data manifold is to generate counterfactuals
close to a representative member of a class, which
was the aim of the Counterfactuals Guided by Proto-
types (Proto) approach by Van Looveren and Klaise
[11]. The Proto approach has a similar loss function
to CEM but includes an additional term in the loss
function that optimizes for the distance between
the latent features of a counterfactual explanation

Li(x’ ) = |2 — x|,



instance and the latent features of the 'prototypical’
instance of the target class proto;.

3 Method

3.1 Overview

To explain the classification of a data point, it is
useful to examine the decision boundary between
classes. Similarly, OOD detection can be treated
as a classification problem, where a data point x
belongs to the ID, near-OOD, or far-OOD class. To
understand why a data point is classified as OOD,
we propose investigating the decision boundaries
between far-OOD, near-OOD, and ID points using
counterfactual explanations.

3.1.1 Counterfactual explanation generation

The interpretability of a counterfactual explanation
depends on how clearly the changes to inputs can
be understood. Perturbing multiple latent features
simultaneously can lead to “information overload”,
causing confusion and reducing trust [12]. We ar-
gue that counterfactual explanations are more in-
terpretable when changes are limited to individual
latent features or focused on specific areas of inter-
est, such as the background or foreground object.
Therefore, we aim to restrict perturbations to one
area of interest at a time, specifically targeting either
non-discriminative or discriminative latent features
in this work.

3.1.2 Counterfactual explanation generation
for OOD data

We illustrate the distinction between traditional
counterfactual explanations and our proposed
method using a toy example in Fig. 1. Consider
an ID dataset consisting of blue triangles and blue
circles. A classifier with a horizontal decision bound-
ary distinguishes between the data solely based on
the shape. A pink hexagon represents a far-OOD
data point, differing from ID data in both shape (dis-
criminative feature) and color (non-discriminative
feature).Traditional counterfactual methods, such
as Watcher et al. [8], typically modify only the
discriminative features to match a target ID class,
assuming that non-discriminative features remain
consistent across ID classes. As shown in Fig. 1(a),
applying this approach to the pink hexagon changes
its shape to an oval, resulting in a pink oval. While
this crosses the decision boundary, the counterfac-
tual remains OOD due to the mismatched color—a
non-discriminative feature not present in the ID
dataset.

In contrast, transforming an OOD data point
into an ID one requires aligning both discrimina-
tive and non-discriminative features. Our method

achieves this through a two-stage process. First (Fig.
1(b)), the pink hexagon becomes a blue hexagon
by modifying its non-discriminative feature (color),
transitioning from far-OOD to near-OOD. Second
(Fig. 1(c)), the shape is adjusted to produce a blue
oval—an ID point with both features aligned with
the ID data. This staged approach ensures that
the generated counterfactual is more likely to be
considered ID, as it matches both feature types. It
also improves interpretability by isolating changes
to non-discriminative and discriminative features,
offering clearer insights into how each influences the
model’s OOD classification.

Definition In the context of explaining why a
data point is classified as OOD, we formulate coun-
terfactual explanation generation in terms of a per-
turbation d§ which satisfies Eqn. 3:

Dip(¢=(x +8)) < Doop(¢=(x+9))  (3)

where D;p and Doop are metrics that represent
how far the input is from being ID and OOD re-
spectively, and ¢, is a latent feature extractor. The
intuition is that adding the perturbation should lead
to x being more ID and less OOD. However, as we
do not have access to the OOD dataset during train-
ing time, we instead aim to find 4 which satisfies
Eqn. 4:

Dip(¢:(x +6)) < Drp(¢:(x)) (4)

We formalize an OOD counterfactual explanation
as a perturbed data point that is generated in a
two-stage procedure that involves changing the non-
discriminative followed by the discriminative latent
features. More formally, a latent vector z is sepa-
rated into a non-discriminative part, z,, and dis-
criminative part zq i.e., 2 = (2p; 2zq4). Then we can
satisfy Eqn. 4 by breaking it down into two stages
given by Eqns. 5 and 6:

Dip(¢:(x +6n)) < Dip(¢=()) ()

Dip(¢:(z +6a)) < Dip(¢:(z)) (6)

where d,, and 4 correspond to the perturbations
to the non-discriminative and discriminative feature
partitions, respectively. Eqn. 4 is satisfied by having
0 = 8, +04. The relationship between the far-OOD,
near-OOD and the ID class can be seen in Fig. 2.

3.2 General Process for generating
Counterfactual explanations for
OOD data

In order to generate the OOD counterfactual expla-
nation, three steps are required: 1) Obtain latent
features of the OOD data, z. 2) Decompose z into
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Figure 1. A toy example with colored shapes illustrates how the OOD counterfactual approach differs from
traditional methods. Traditional counterfactual approaches generate counterfactuals with shape (discriminative)
features similar to the ID dataset. In contrast, our approach modifies the OOD data in two stages: first, by
altering the color (non-discriminative) features, and second, by adjusting the shape (discriminative) features to
ensure the final counterfactual matches both the shape and color features of the ID dataset.
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Figure 2. Relationship between Far OOD, Near OOD
and ID data

two partitions, zg and z,, using classifier of the ID
dataset. 3) Perturb the OOD data, x, in a way that
makes each latent partition more similar to those of
the ID data using a density estimator.

Obtain latent features of the OOD data, =z.
To explain why a model considers a data point as
OOD, we extract its latent features, z. Our ap-
proach is compatible with any model that produces
latent features; such as a of a neural network classi-
fier or dimensionality reduction techniques can be
used such as UMAP (Uniform Manifold Approxi-
mation and Projection for Dimension Reduction)
[13, 14]. However different feature extractors may
be more or less suitable with different types of data
and different modalities and so the feature extrac-
tor chosen may be context specific. For example,
the latent features of an autoencodr may be effec-
tive for high-dimensional data where a non-linear
feature space is required. In the case where a unsu-
perviseddimensionality reduction is used, a separate
classifier will need to be used in the next step. In
this work, we use Principal Component Analysis
(PCA) to obtain z, as PCA captures features that
maximize data variance.

Decompose z into two partitions, z4 and z,.
We explored several methods for partitioning the
data and adopted a greedy approach to select a
subset of features, z4, that maximize classification
accuracy. This approach assumes that discrimina-

tive features are those that improve classifier per-
formance. Since greedy methods assume feature
independence, it aligns well with PCA-derived fea-
tures. Specifically, we used a Quadratic Discriminant
Analysis (QDA) classifier and the sequential feature
selector class from scikit-learn to identify the top-k
features that maximize mean ID class label classi-
fication accuracy on the test data. These features
form the discriminative partition, while the remain-
ing n — k features constitute the non-discriminative
partition. In this case, we chose K to be half the
total number of features where we make the assump-
tion that there is an equal number of discriminative
and non-discriminative features.

Perturb the OOD data, x, in a way that makes
each latent partition more similar to those of
the ID data using a density estimator. Coun-
terfactual explanations are generated by perturbing
OOD data so that the z, and zg4 values of the
counterfactuals resemble those of ID data. Density
estimation based OOD detection methods, such as
the Mahalanobis Distance, perform well, suggest-
ing that log-likelihoods effectively differentiate ID
from OOD data. Building on this, we propose a
loss function that minimizes the NLL of data points
under a density estimator. Similar to the feature
extractor aspect, our approach is agnostic of the
density estimator used with several different options
being available such as energy-based model and nor-
malzing flows [15, 16]. Different design choices can
be seen in Appendix A. In this case we chose a
Gaussian Mixture Model (GMM) for its simplicity
and good performance [17]. This involves modelling
the feature space distribution using separate GMMs
for z, and z4 where the number of modes for z4 is
equal to the number of ID classes whilst we use a sin-
gle mode for z,,. The generation process defined by
Eqgns. 5 and 6 involves two stages: first, counterfac-
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Figure 3. Optimization process to perturb the data to
generate an OOD counterfactual explanation.

zq = ¢q(z)
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tuals are perturbed to minimize the NLL under the
GMM defined by the non-discriminative partition.
Then, they are further perturbed to minimize the
NLL under the GMM defined by the discriminative
partition. Although it is equally feasible to opti-
mize for the discriminative partition followed by the
non-discriminative partition. The loss for the non-
discriminative, LcF,, and discriminative partitions
Lcr,q are given by Egs. 13 and 14 respectively:

Lorn(x) = —logpn(dn(z)) (7)

Lord(x) = —logpa(pa(z)) (8)

where ¢, () = zn, da(x) = 24, pn and py are the
density under the non-discriminative and discrimina-
tive GMM respectively. We refer to the loss for the
non-discriminative and discriminative partitions as
the Non-discriminative (Non-dis) and Discriminative
(Dis) loss respectively. By using the Non-dis and
Dis losses, we can generate the OOD counterfactual
Z' in two stages using Eqns. 9 and 10 respectively.

)

' =x—a Velopn(z)=x+ 8,

' =x—a Vyplopa(x) =+ 84 (10)
Where o is a weighing parameter which can be
determined using cross-validation. The process of
generating the counterfactual explanations can be
seen in Algorithm C.1 in Appendix C. Additionally,
a visual representation of the generation of an OOD
counterfactual can be seen in Fig. 3. Also, we focus
on these terms to see the effect of the partitioning
of the features, additional loss terms could be added
to enforce properties such as sparsity as seen in
Appendix B.

4 2D Synthetic Experiment

Task Examining the generation of an OOD coun-
terfactual in a 2D synthetic dataset where we can
see the optimization trajectory of a single OOD data
point during the two-stage process.

Dataset We consider a low dimensional (2D)
dataset where we generate two Gaussian distribu-
tions with means (3,0) and (-3,0) with a tied co-
variance matrix X = 0.5I5. There is also an ad-
ditional OOD distribution which has a mean (0,2)
and covariance 3 = 0.3I5. PCA with two principal
components is then used to extract the latent fea-
tures that capture the most variance in the ID data.
The setup of the synthetic dataset and the principal
components can be seen in Fig. 4.

Results Using the principal components pcl and
pc2, an OOD counterfactual explanation is gener-
ated via Eqns. 13 and 14. The optimization trajec-
tory of a single data point, shown in Fig. 4, starts
at (0, 2). Initially, the point moves vertically along
pc2, which does not aid classification. In the second
stage, it shifts horizontally along pcl toward the
centroid of Class 1. This two-stage process high-
lights the significance of both non-discriminative
and discriminative latent features in determining
whether a data point is OOD.

Non-dis - Dis Counterfactual generation trajectory

® O0OD data
® Class1l

® Class2

® Counterfactuals
® Start point

® End point

T T T T T
-4 -2 0 2 4

Figure 4. Optimization trajectory of a single OOD
data point.

5 Tabular Experiment

Task and Evaluation Metrics We evaluate the
effectiveness of our OOD CF approach by generating
OOD counterfactual explanations for OOD images.
The objective is for these counterfactual explana-
tions to resemble data in the ID dataset. To assess
performance, we measure the realism and minimal-
ity of the counterfactual explanations. Minimality is
quantified using the L; distance between the original
data points x and counterfactual explanations x’.
Realism, a less precisely defined concept, is inter-
preted here as similarity to ID data in both discrim-
inative and non-discriminative latent features. We
quantify this by computing the AUROC between 1D



data (positive examples) and counterfactual expla-
nations from OOD data (negative examples). Detec-
tion scores for ID and OOD data points are derived
using the Mahalanobis Distance, a simple yet ef-
fective scoring function, which is competitive with
state of the art OOD detection approaches which is
used frequently for detecting OOD data points for
datasets like MNIST, SVHN and CIFAR100. The
AUROC, which represents the Area Under the Re-
ceiver Operating Characteristic curve, reflects the
probability that a positive example has a higher
detection score than a negative example. In our
case, lower AUROC values indicate counterfactual
explanations that are less distinguishable from 1D
data and thus more realistic. Unlike traditional AU-
ROC usage in OOD detection, lower values are de-
sirable for this metric in our work. Additionally, we
evaluate how well different approaches optimize the
Non-Discriminative and Discriminative losses (Equs.
13 and 14). Unless otherwise stated, metrics are
averaged over four trials using unique random seeds,
with a random subset of training data for each trial.
For all reported metrics, lower values indicate better
performance. In results tables, the best-performing
method is bolded, and statistically significant im-
provements (p < 0.05, Wilcoxon signed-rank test
[18]) are marked with an asterisk (*).

Datasets We perform our analysis on three tab-
ular datasets: Wine, Pima Diabetes, and Thyroid
dataset. We use tabular datasets as this type of data
is frequently used in the interpretability literature.
To be able to use the OOD counterfactual expla-
nation generation approach, the datasets needed
to be preprocessed in some manner to have differ-
ent classes and anomalous data points which can
be treated as OOD for counterfactual explanation
generation. Examples of this would be data points
which have feature values which are distinct from
the rest of the dataset, or belonging to a different
class and therefore will not have similar discrimina-
tive features to the other classes of the ID dataset
(mimiking a near-OOD data point). Explanations
of the datasets and the preprocessing can be seen
in Appendix D.

Dataset Method Non-dis Dis L1 AUROC
00D CF 3.58%  5.36* 7.64 0.34%

Wine Proto 8.57 7.09 7.01 0.99
CFI 123.18 72.88 9.42 1.00

CEM 24.34 14.54 7.80 1.00

00D CF 4.28 3.66  2.67* 0.33*

Diabotes  Proto 4.32 3.15 4.76 0.50
CFI 201.01  150.88 6.26 0.65

CEM 8.24 5.47 5.68 0.61

00D CF 3.22*  3.90* 4.73* 0.39*

) Proto 3.47 4.14 9.01 0.82
Thyroid — opy 1736 95.87  10.30 0.90
CEM 11.73 55.15 9.66 0.95

Table 1. Counterfactual explanation results for the

Wine, Diabetes and Thyroid datasets

Results and Discussion We compared the OOD
Counterfactual Explanation (OOD CF) approach
with three state-of-the-art baselines commonly used
in counterfactual explanation literature: Counter-
factual Instances (CFI) [8], Counterfactuals Guided
by Prototypes (Proto) [11], and the Contrastive Ex-
planation Method (CEM) [10]. The baselines were
implemented using the Alibi package [19].

For all baselines, we trained a neural network
classifier with two hidden layers matching the input
dimensionality and output classes corresponding to
the in-distribution (ID) classes. The classifiers were
trained for 500 epochs using the SGD optimizer, a
batch size of 128, and a learning rate of 0.01.

Table 1 shows that the OOD CF approach achieves
lower Dis and Non-Dis losses compared to the base-
lines, indicating superior optimization of these met-
rics. Notably, despite not explicitly minimizing the
L, distance, OOD CF outperforms the baselines
in L distance across most datasets, except for the
Wine dataset where all methods perform similarly.
In contrast, the baselines explicitly regularize to
minimize L; distance but achieve inferior results,
suggesting that it is easier to move the data from
OOD to ID than moving a data point to cross the de-
cision boundary of a particular ID class.Additionally,
the AUROC values for OOD CF are consistently
lower, indicating that its counterfactual explanations
are more similar to ID data than those produced by
the baselines. This highlights that lower Non-Dis
and Dis losses correspond to more realistic and plau-
sible counterfactual explanations with reduced L,
distances.The realism of counterfactual explanations
correlates with how well the method accounts for
the density of ID data points. The CFI approach
performs the worst in generating realistic counter-
factual explanations, as it disregards data density
and focuses solely on crossing decision boundaries.
Conversely, the Proto approach, which generates
counterfactual explanations near class prototypes,
implicitly improves realism by aligning with higher-
likelihood regions. Our OOD CF approach explicitly
maximizes the likelihood of counterfactual explana-
tions, leading to the most realistic and effective
results among the evaluated methods.

6 Image Experiments

Task and Evaluation Metrics We evaluate the
effectiveness of our OOD CF approach by gener-
ating OOD counterfactual explanations for OOD
images. This involves designating one dataset as
the ID dataset and another as the OOD dataset.
The goal is for OOD counterfactual explanations to
resemble images in the ID dataset, assessed quantita-
tively using the metrics from Section 5. Additionally,
we qualitatively analyze counterfactual explanations
from various ID-OOD dataset pairs to gain deeper



insights into the approach.

Datasets MNIST is a dataset of images of hand-
written digits between 0 - 9 without any texture
or color. Kuzushiji-MNIST (KMNIST) is an addi-
tional replacement for the MNIST dataset (28x28
grayscale, 70,000 images), provided in the original
MNIST format [20]. ColoredMNISTRed is a varia-
tion of the MNIST dataset where the blue and green
channels are set to zero to make the MNIST digits
red [21].

Results and Discussion

Datasets Method Non-dis Dis L1 AUROC
OOD CF 18.51%* 25.31%* 43.35%* 0.26%*
MNIST(ID)- Proto 26.01 34.53 58.95 0.40
KMNIST(OOD) CFI 30.22 37.44 58.80 0.41
CEM 29.00 37.45 59.09 0.41
OOD CF 29.45% 40.39* 42.66* 0.52%
MNIST(ID)- Proto 32.09 44.92 52.26 0.65
CMNIST(OOD) CFI 35.39 48.27 51.49 0.66
CEM 37.34 50.77 51.72 0.65
OOD CF 23.66% 28.81%* 33.83* 0.22%
KMNIST(ID)- Proto 25.55 31.17 57.46 0.28
MNIST(OOD) CFI 28.15 34.50 57.11 0.36
CEM 26.55 34.87 57.56 0.30

Table 2. Counterfactual results of different approaches
for different ID-OOD pairs on various metrics .CMNIST
is short for Colored MNISTRed

Quantitative analysis Table 2 shows similar
results to the tabular case, with OOD CF-generated
counterfactual explanations being more realistic and
less perturbed than the baselines. This is indicated
by lower AUROC and L; values for OOD CF com-
pared to the baselines. Additionally, lower Non-dis
and Dis values further support the hypothesis that
optimizing for these losses leads to more realistic
counterfactual explanations. These findings demon-
strate that the OOD CF approach is effective for
both lower-dimensional tabular datasets and higher-
dimensional image datasets.

Qualitative analysis Figures 5-7 illustrate
OOD counterfactual explanations across three tar-
get classes. Each row contains six images: the ini-
tial OOD input and its nearest ID neighbor, the
first-stage counterfactual and its neighbor, and the
final (second-stage) counterfactual with its neighbor.
Nearest neighbors are determined in PCA space.
By examining which features are added or removed
across stages, we gain insight into why the original in-
put is considered OOD. In Fig. 5, using MNIST as ID
and KMNIST as OOD, the first-stage transition (left
to third image) lightens the background—consistent
with MNIST’s brighter appearance. In the second
stage, class-specific features emerge, such as loops or
segment removal, transforming the characters into
shapes resembling a zero, six, or nine. This suggests
that the KMNIST samples are OOD due to darker

central regions and a lack of distinctive digit fea-
tures (e.g., class-specific loops) typically found in
MNIST. A similar trend is observed in Fig. 6, where

First stage
counterfactual

Second stage
actual

00D data

Figure 5. Each row contains six images: the initial
OOD input and its nearest ID neighbor, first-stage coun-
terfactual and its neighbor, and final (second-stage) coun-
terfactual with its neighbor for 3 different classes for the
MNIST(ID)-KMNIST(OOD) OOD CF.

ColoredMNIST (red digits) is the OOD set. In the
first stage, grey patterns appear in the background,
followed by class-specific structures in the second
stage. The original ColoredMNIST points appear
OOD due to the lack of white/grey central regions
and missing discriminative features associated with
specific MNIST digits. A limitation here is that the
colored digit itself remains largely unchanged—our
method focuses on adding plausible features rather
than modifying existing ones. However, the effec-

First stage
counterfactual

Second stage
counterfactual

00D data

Figure 6. Each row contains six images: the initial
OOD input and its nearest ID neighbor, first-stage coun-
terfactual and its neighbor, and final (second-stage) coun-
terfactual with its neighbor for 3 different classes for the
MNIST (ID)-ColoredMNIST (OOD) OOD CF.

tiveness of OOD counterfactual explanations can
vary across ID-OOD dataset pairs. For instance,
when KMNIST is used as the ID dataset, the first
stage of counterfactual generation introduces irregu-
lar greying of the background, while the second stage
further lightens it. This is likely due to the struc-
tural complexity of Japanese characters, which often
extend toward the image edges—unlike MNIST dig-
its, which are typically centered. This suggests that
MNIST digits are identified as OOD partly because
they lack sufficient brightness in the outer regions.
However, class-discriminative changes are less evi-
dent in this setting. As shown in Fig. 7, second-stage
counterfactuals (fifth column) optimized for different



target classes are visually similar, making it difficult
to interpret class-specific transformations.

First stage
connterfactual

Second stage
counterfactual

00D data

Figure 7. Each row contains six images: the initial
OOD input and its nearest ID neighbor, first-stage coun-
terfactual and its neighbor, and final (second-stage) coun-
terfactual with its neighbor for 3 different classes for the
KMNIST (ID)-MNIST (OOD) OOD CF.

In this case, it could be beneficial to use a different
feature extractor such as neural network rather than
PCA. Additionally, we compare our counterfactual
explanations (Fig. 8) with those from the Proto
approach, which performed best in the quantitative
analysis (Fig. 9). The Proto baseline shows four
images: the initial OOD point, its nearest neighbor
in the ID data, the final counterfactual explanation,
and the final counterfactual explanation’s nearest
neighbor. Although Proto removes part of the bot-
tom loop to resemble a nine, it does not add the
loop typical of a nine. In contrast, our approach
successfully removes non-characteristic features (the
top and bottom sections) and adds the loop, a key
feature of a nine.

First step Second stage
counterfactual eounterfactual

Figure 8. Each row contains six images: the initial
OOD input and its nearest ID neighbor, first-stage coun-
terfactual and its neighbor, and final (second-stage) coun-
terfactual with its neighbor for a single class for the
MNIST (ID)-KMNIST (OOD) OOD CF.

00D data

Overall, the counterfactual explanations generated
by OOD CF better highlight the non-discriminative
and discriminative features of the ID dataset more
accurately than the baseline.

00D data Counterfactual

7% 9

Figure 9. MNIST (ID)-KMNIST (OOD) counterfactual
explanation generated by the Proto baseline.

7 Conclusion

This work addresses the challenge of explaining
why data points are classified as OOD by intro-
ducing a novel framework for generating counter-
factual explanations based on discriminative and
non-discriminative latent features. We propose the
concept of OOD counterfactual explanations, which
transform OOD data points through a two-stage per-
turbation process: first aligning non-discriminative
features, then discriminative ones, to produce more
plausible ID data points. The method involves
extracting latent features and partitioning them
into non-discriminative (z,,) and discriminative (zq)
components, guiding structured transitions through
far-OOD, near-OOD, and ID regions. Experimental
results on both tabular and image datasets show that
our approach outperforms baseline methods, yield-
ing counterfactuals that are more realistic and better
aligned with the ID distribution. This is reflected
in reduced discriminative and non-discriminative
losses, and lower AUROC scores when counterfac-
tuals are evaluated using OOD detectors. Future
work will explore improved techniques for feature
partitioning, aiming to separate features into more
interpretable categories. We hope our work will
inspire further exploration of OOD explanations
using non-discriminative and discriminative latent
features.
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A Alternative design choices

Different ways to obtain non-discriminative
and discriminative features Alternatively to the
method described in the main text, we can choose k
(the number of discriminative features) by tracking
how classification accuracy changes during sequen-
tial feature selection and selecting k at the point
where accuracy begins to plateau. Another way to
partition the data is to use the Independence cross-
entropy loss described by Jacobsen et al. [22]. In
their approach, k is set to the number of classes in
the task, and the non-discriminative features are
identified as those that maximize the cross-entropy
loss, i.e., the features that are least predictive of the
class label.

Different density estimators For Gaussian mix-
ture models, each class corresponds to one Gaus-
sian component, so the number of Gaussians equals
the number of classes. This leads to a simple and
generally stable optimization process, as gradients
typically point toward the appropriate class-specific
Gaussian. The likelihood also falls off away from
each mean, reducing the chance of assigning high
density to regions far from the training data.Energy-
based model and normalizing flows are more complex
and better fit the density of the data (potentially
enabling the optimization to go follow a path of high
density), however the optimization can be unstable
due to the non-linear behavior of the density estima-
tion and the models can incorrectly fit high density
to areas far from the data.

B Additional loss terms

Additional terms in the loss function could be to
add a L1 loss for the purpose of sparsity.where L
is given by Eqn. 11:

Li(z' z) = ||z’ — =, (11)

Lap(@) = ||z’ — AE(z")|, (12)

where an autoencoder reconstruction loss Lsg can
be an additional approach to capture the uncertainty
in the data where AE denotes the autoencoder func-
tion. This can lead to an updated loss of:

ECF,n(w/7w) = _Ingn((bn(w,)) + Ll(wlvw)

+ Lap(x) (13)

Lopa(x',x) = —logpa(da(x’)) + L1 (', )

+ Lag(x) (14)

Algorithm C.1 Counterfactual generation - Natu-
ral language

Require: Test sample x, target class ¢, training
data Xtv'ain
Ensure: Counterfactual explanation x’

1: Extract latent features: Zirain —
FeatureExtractor(Xirqin)
2: Separate  Zipgin  1t0  Zp train  (0OD-

discriminative) and Zg trqin (discriminative)

3: Obtain discriminative features for class ¢:
t
d,train

Fit a GMM to Zp, train and Zg,

T —x

k<0

while k£ < max_iter do
Lopn < —logpn(én(x))
g < vm (»CCF,n)

10: '~z —(a-g)

11: k—k+1

12: end while

13: k<0

14: while k£ < max_iter do

15: Lor,g < —logpa(da(z))

16: g+ Va(Lera)

17: ' —a' —(a-g)

18: k< k+1

19: end while

20: return x’

train

© 0Nk

C

Counterfactual Generation
Algorithm

D Tabular datasets

Wine: These data points are the results of a chem-
ical analysis of wines grown in the same region in
Italy but derived from three different cultivars. The
analysis determined the quantities of 13 constituents
found in each of the three types of wines [23]. To
define OOD data in this case, we make it so that all
data points classified as class 2 are OOD.

Diabetes: This dataset consists of several medi-
cal predictor (independent) variables and one target
(dependent) variable, Outcome. Independent vari-
ables include the number of pregnancies the patient
has had, their BMI, insulin level, age, and so on.
The outcomes are diabetic or non-diabetic [24]. To
define OOD data in this case, we make it so that all
data points with the age attribute above the upper
quartile are OOD.

Thyroid: The problem is to determine whether a
patient referred to the clinic is hypothyroid. There-
fore three classes are built: normal (not hypothy-
roid), hyperfunction, and subnormal functioning
[25]. Moreover, we defined the subnormal function-
ing class as the outlier class and the other two classes
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are inliers, because subnormal functioning has the
lowest number of data points present in the dataset.

E Histograms

To assess the effectiveness of the two-stage coun-
terfactual explanation approach in altering non-
discriminative and discriminative features, we an-
alyzed the log probability of data using different
GMMs. We used MNIST as the ID dataset and
KMNIST as the OOD dataset. We hypothesized
that a high log probability associated with a class-
agnostic GMM generated from the ID data would
indicate data points with feature values similar to
the non-discriminative features of the ID data. Sim-
ilarly, a high log probability from a class-conditional
GMM would suggest data points with feature val-
ues resembling the discriminative features of the ID
data.

We compared the log probabilities of the original
OOD data point, the counterfactual explanation gen-
erated after optimizing for the first partition (first
cf), and the two-stage counterfactual (cf), as shown
in Fig. E.1. The results show that after optimization,
both the first cf and cf have higher log-likelihoods
for both class-agnostic and class-conditional GMMs
compared to the initial OOD data point. Further-
more, optimizing both partitions results in a higher
log-likelihood than optimizing just one.

From the class-agnostic GMM (left side of Fig.
E.1), we see that the log-likelihood difference be-
tween the initial OOD data point and the first-
stage counterfactual is large, while the difference
between the first- and second-stage counterfactuals
is small. This suggests that optimizing the non-
discriminative partition leads to significant changes
in non-discriminative features, while the second
stage does not affect these features.

In the class-conditional log-likelihoods (right side
of Fig. E.1), the first- and second-stage counter-
factuals show higher log-likelihoods than the initial
OOD data points. The log-likelihood difference be-
tween the initial OOD data points and the first-stage
counterfactuals is small, whereas the difference be-
tween the first- and second-stage counterfactuals is
large, indicating that the second stage effectively
changes discriminative features while the first stage
has minimal effect on them.
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Figure E.1. Histograms of the log-likelihood for the counterfactual explanations generated for the MNIST-
KMNIST ID-OOD dataset pair for a class-conditional (left) and a class-agnostic GMM (right).
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