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ABSTRACT

In this paper, we study offline preference-based reinforcement learning (PbRL),
where learning is based on pre-collected preference feedback over pairs of trajec-
tories. While offline PbRL has demonstrated remarkable empirical success, exist-
ing theoretical approaches face challenges in ensuring conservatism under uncer-
tainty, requiring computationally intractable confidence set constructions. We ad-
dress this limitation by proposing Adversarial Preference-based Policy Optimiza-
tion (APPO), a computationally efficient algorithm for offline PbRL that guarantees
sample complexity bounds without relying on explicit confidence sets. By framing
PbRL as a two-player game between a policy and a model, our approach enforces
conservatism in a tractable manner. Using standard assumptions on function ap-
proximation and bounded trajectory concentrability, we derive sample complexity
bound. To our knowledge, APPO is the first offline PbRL algorithm to offer both
statistical efficiency and practical applicability. Experimental results on continu-
ous control tasks demonstrate that APPO effectively learns from complex datasets,
showing comparable performance with existing state-of-the-art methods.

1 INTRODUCTION

While Reinforcement learning (RL) has achieved remarkable success in real-world applica-
tions (Mnih, 2013; |Silver et al.,|2017; Kalashnikov et al.,|2018};|Brohan et al.,[2022)), its performance
heavily depends on the design of the reward function (Wirth et al.,|2017)), which can be challenging
in practice. To address this issue, preference-based reinforcement learning (PbRL), also known as
reinforcement learning with human feedback, has gained increasing attention as an alternative to
manually designed rewards. In PbRL, a reward model is learned from preference feedback provided
by human experts, who compare pairs of trajectories (Christiano et al.,2017). This approach enables
the learning process to better align with human intentions. PbRL has demonstrated its effectiveness
in various domains, including gaming (MacGlashan et al., [2017} |Christiano et al., [2017}; |Warnell
et al.l 2018)), natural language processing (Ziegler et al.,|2019; [Stiennon et al., |2020; Nakano et al.,
20215 Ouyang et al., 20225 Bai et al.,|2022)), and robotics (Brown et al., [2019; [Shin et al., [2023)).

However, collecting preference feedback can be costly, especially when real-time feedback from
human experts is required. In such cases, learning from pre-collected data is preferred over on-
line learning. This approach is referred to as offline PbRL, where the learning process relies solely
on pre-collected trajectories and preference feedback. Empirical studies have shown the effective-
ness of offline PbRL (Kim et al., 2023 |An et al., [2023}; |Shin et al., 2023} [Hejna & Sadigh, [2024),
leveraging techniques from deep RL literature. On the theoretical side, prior works prove the tra-
jectory concentrability with respect to the data-collecting distribution leads to sample complexity
bound (Zhu et al., 2023} [Zhan et al.| [2024a}; [Pace et al.| |2024). However, they rely on the explicit
construction of confidence sets to achieve conservatism (pessimism). Dealing with such confidence
sets in the genreal function approximation setting requires intractable optimizations: Zhan et al.
(2024a) involve tri-level constrained optimization with respect to the confidence sets of rewards and
transitions, |Pace et al.| (2024)) use uncertainty penalty defined as the width of confidence sets, and
the analysis of [Zhu et al.|(2023)) is restricted to linear models. Despite provable sample complexity
bounds, existing offline PbRL algorithms become computationally intractable with general function
approximation.
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In this work, we propose a computationally and statistically efficient offline PbRL algorithm, Ad-
versarial Preference-based Policy Optimization (APPO). Our analysis is based on general function
approximation for both the model and value function classes. Moreover, standard assumptions on
function classes and bounded trajectory concentrability (Zhan et al.,|2024a) are sufficient to estab-
lish our sample complexity bound. Beyond its strong statistical guarantees, our algorithm is simple
to implement using standard optimization techniques. The core idea behind our algorithm is the
two-player game formulation of model-based PbRL, which has been used in other areas of RL (Ra-
jeswaran et al., [2020; Rigter et al., [2022} |Cheng et al., 2022; Shen et al., 2024} |Bhardwaj et al.,
2024). By framing PbRL as a game between a policy and a model, we ensure conservatism with-
out explicitly constructing intractable confidence sets. Furthermore, our novel reparameterization
technique allows us to find a near-optimal policy efficiently via adversarial training. To our best
knowledge, APPO is the first offline PbRL algorithm with both statistical performance guarantees
and practical implementation. Our contributions can be summarized as follows:

* We propose APPO, a simple algorithm for offline PbRL with general function approxima-
tion. Based on the two-player game formulation of PbRL in conjunction with our reparam-
eterization technique for the reward model, our algorithm ensures provable conservatism
without explicit construction of confidence sets. To our best knowledge, our APPO is the first
computationally efficient offline PbRL algorithm providing a sample complexity bound.

* We prove the sample complexity of our proposed algorithm under standard assumptions on
the function classes and concentrability. The result is rooted in our novel sub-optimality
decomposition, which shows that adversarial training leads to model conservatism.

* We present a practical implementation of APPO that can learn with large datasets using
neural networks. Experiments on continuous control tasks demonstrate that APPO shows
comparable performance with existing state-of-the-art algorithms.

1.1 RELATED WORK

Provable Online PbRL. In the tabular setting, Novoseller et al.| (2020) developed an algorithm
grounded in posterior sampling and the dueling bandit framework (Yue et al., 2012), demonstrat-
ing an asymptotic rate for Bayesian regret. | Xu et al.| (2020) proposed an algorithm leveraging an
exploration bonus for previously unseen states, providing a sample complexity bound. [Saha et al.
(2023)) and |Zhan et al.| (2024b) focused on the linear preference model with a known linear feature
map, each offering regret and sample complexity bounds. However, their algorithms require solv-
ing an optimization arg max, . [|E-wr[¢(7)] — Erur [6(7)]|l; for some positive definite matrix
3, which is computationally intractable. To address this challenge in the linear model, [Wu & Sun
(2024) devised a randomized algorithm with a provable regret bound and further proposed a model-
based posterior sampling algorithm under the bounded Eluder dimension (Russo & Van Roy, 2013)
assumption, ensuring bounded Bayesian regret. Recent works have also explored provably efficient
algorithms under the general function approximation setting (Chen et al., 2022; |Wu & Sun, 2024;
Chen et al.,[2023)). (Chen et al.|(2022) introduced an exploration-bonus-based algorithm that provides
bounded regret in both pairwise and n-wise comparison settings. Additionally, |(Chen et al.| (2023))
leveraged the Conditional Value-at-Risk (CVaR) operator (Artzner, [1997) to devise an algorithm
with a regret guarantee. Du et al.|(2024) took a different approach, studying neural function approx-
imation in the context of reward models. In another notable work, |Swamy et al.| (2024) reframed
PbRL as a zero-sum game between two policies, encompassing general reward models.

Provable Offline PbRL. While there has been a growing number of research on online PbRL,
the theoretical understanding of offline PbRL remains relatively limited. A primary challenge
in offline PbRL, much like in offline standard RL, is ensuring sufficient conservatism in the
model. Zhu et al| (2023) addressed this challenge by proposing a pessimistic maximum like-
lihood estimation (MLE) algorithm for the linear model with known transitions. |Zhan et al.
(20244a) extended this idea to general function approximation, highlighting the importance of tra-
jectory concentrability in establishing a lower bound for sample complexity. Despite the prov-
able sample complexity bound of their proposed algorithm, FREEHAND-transition, it relies on
solving arg max, arg min, . arg min s {Erwp[r(7)] — Erwps «[r(7)]} where R is the con-
fidence set of rewards and P is the confidence set of transitions, which is intractable in prac-
tice. |Pace et al.| (2024) introduced an algorithm achieving conservatism through explicit un-
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certainty penalties defined as up(7) = sup, . cp |r1(7) — r2(7)| (reward uncertainty) and
up(s,a) = supp, p cp |[P1(-|s,a) — Po(- | s,a)||; (transition uncertainty). Even evaluating this
function is intractable with general function approximation, but Pace et al.| (2024) requires optimiz-
ing argmax, E__ 5 [F(T) — ur(7) — up(7)]. Chang et al| (2024) explored a slightly different
scenario where the data collection policy is known and online interaction is allowed. They demon-
strated that a simple natural policy gradient combined with MLE reward is provably efficient, but
their sample complexity bound is affected by an additional concentrability coefficient relative to
KL-regularized policies.

Adversarial Training in RL. Adversarial training is a widely used approach in RL literature (Ra-
jeswaran et al., 2020; Pasztor et al., [2024)), especially offline (standard) RL (Rigter et al., 2022
Cheng et al., 2022} Bhardwaj et al., 2024)). The basic idea is leveraging adversarial training to im-
plement conservative policy optimization. Recently, adversarial training has also been applied in
human preference alignment (Makar-Limanov et al., [2024} |Cheng et al., 2024; |Shen et al., [2024)).
The most closely related work to ours is [Shen et al.| (2024), which also formulated PbRL as a two-
player game. However, their focus is on online PbRL, and while they provide proof of convergence
for the optimization objective, this does not necessarily translate into a sample complexity guarantee.

2 PRELIMINARIES

Markov Decision Processes. We consider an episodic MDP (S, A, H, { P} HL | {r;}L ), where
S and A are the state space and the action space respectively, H is the length of each episode,
P* = {P;}L  is the collection of transition probability distributions, and 7* = {r}}/L | is the
collection of reward functions. Each episode starts at some initial state s; without loss of generalit
and the episode ends after H steps. For each step h € [H], the agent observes state sy, then takes
action aj,. The environment generates reward 7 (sp, ap) (note that, in preference-based learning
setting, rewards at each step are unobservable to the agent) and next state sp41 according to the
transition probability P (- | si, an).

The agent takes actions based on its policy m = {7, } ne[z], Where 7y, (- | s) is a probability distri-
bution over A. The state-value function and the action-value function of policy 7 with respect to
reward 7 = {r, }/L, are the expected sum of rewards up to termination, starting from s, = s and
(sn,an) = (s, a) respectively, following the policy 7. Formally, they are defined as

H
Vi () :=Bx | > ralsn,an) | sn = 51 , Qb =Ex

h'=h

H

Z rh(sh/,ah/) | Sp = S,ap = a
h'=h

To simplify the notation, for g : S — R, we use Pg(s, a) to denote Ey/p(.|5,0)[g(s’)]. For any
policy 7 and reward r, the Bellman equation relates Q™ to V'™ as

Qz,r(sa a) = Th(sv CL) + P*V}Zr-&-l,r(sa Cl), Vi:r(s) = EaNTrh(-\S) [Q‘}n;,r(sv Cl)], V§+1(S) =0.

Given a policy m = {7, } (], We define the state visitation distribution as d; (s) := P (s, = s)
where P is the probability distribution of trajectories (s1,a1,...,Sy,an) when the agent uses
policy m. We overload the notation to denote the state-action visitation distribution, df (s, a) :=
P.(sp, = s,a, = a). In addition, we denote the distribution of trajectories under 7 by d™ (7).

Offline Preference-based Reinforcement Learning. We consider the offline PbRL problem, where
the agent cannot observe true reward r* but binary preference feedback over trajectory pairs. Specif-
ically, we are given a preference dataset Dper = { (70, 7™ y™)}M_ | that consists of i.i.d. tra-
jectory pairs 7™ = {s;"", a;""}_| (i = 0,1) sampled by some reference policy x. For a mono-
tonically increasing link function ® : R — [0, 1], we assume the preference feedback y™ € {0,1}

is generated by the following preference model:
Py =1|7°71') = P(r! is preferred over 7°) = ®(r* (1) — r*(79)) (D)

where we denote r*(7) = Zthl r}(Sn, ap) for given trajectory 7 = (s1,a1,...,5H,0H). Ad-
ditonally, we assume that = 1/(inf,c[_ g r) ®’(x)), where R is a bound on trajectory returns,

'Our result easily extends to the general case with an initial distribution p(-). We can modify the MDP by
setting a fixed initial state s; and P1 (- | s1,a) = p(-) forall a € A.
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is bounded. When ® is set to be the sigmoid funciton o(x) = 1/(1 + exp(—=x)), we obtain the
widely used Bradely-Terry-Luce (BTL) model (Bradley & Terry, [1952). In addition to the prefer-
ence dataset, we have an unlabeled trajectory dataset Dy, = {(7%", 75™)}2_ | where the trajectory
pairs are sampled i.i.d. by executing the reference policy p. The goal of the agent is to find an
e-optimal policy 7 with respect to target policy 7*, which satisfies Vfr:* (s1) — Vf:rr* (s1) <e.

General Function Approximation. We consider general function approximation for rewards and
transitions: the function class of rewards R and the function class of transitions P. We do not
impose any specific structure on them, so R and P can contain expressive functions such as neural
networks. Based on the function classes, we construct a reward model by maximum likelihood
estimation 7 € arg min, o £z (r) where

ﬁR(r) = — E []1 {y=1}-log O(r(th) —r(r) + 1 {y =0} - log d(r(rY) — 7"(7'1))} .

(7-017-1 sy>""Dprcf
Similarly, we learn a transition model P, € argminp_p L7 (P;h) for all h € [H], where

Z:T(P; h) = E(Sh»ah,»sh+1)NDt|-uj [1Og P(Sh+1 | Sh7ah)}

Additional Notations. We denote [n] := {1,2,...,n} forn € N. For z,y € R%, (x,y) denotes
the inner product of x and y. Given a function f : S X A — R and a policy 7, we write f o 7(s) :=
Eq~r(.s)[f (s, a)]. For given dataset D, we use E,p[f()] to denote ﬁ Y owen f(2).

3 ALGORITHM

3.1 PBRL AS A TWO-PLAYER GAME

The previous study on model-based PbRL by |Zhan et al.|(2024a) proves that the following optimiza-
tion problem yields a near-optimal policy 7, for an appropriately chosen constant (:

7 € argmaxmin (V] (s1) — V{*.(s1)) where R = {rer": Lr(r) < Lp(?) + . @
T reR

The minimization with respect to reward model r € R ensures conservatism, which is essential for
a provable guarantee. However, the constrained optimization is intractable with general function
approximation. To address this challenge, we formulate the model-based PbRL problem as a two-
player Stackelberg game (Von Stackelberg, 2010) between the policy and the reward:

7 € argmax (V{7,x (1) — V{.x (51))

subject to ™ € argmin (V{7 (s1) — V{*.(s1) + E(r; 7)) . (3)
reRH

Here, £(r; 7) is a loss function penalizes r if it deviates from 7. In the Stackelberg game formulation,
the reward minimizes V7, (s1) — V{fr (s1), while the policy maximizes it. We can interpret this com-
petition by viewing V77, (s1) — V{',.(s1) as the relative performance of 7 compared to . with respect
to reward 7. Intuitively, 7 maximizes cumulative reward 7, as in the standard RL setup. However,
7™ minimizes the cumulative reward when playing 7. This competition facilitates conservatism and
makes 7 robust to model error.

Then, what loss function € leads to a provable bound? A naive choice might be £z (r) — Lz (#) as
it leads to the Lagrangian dual form of the optimization problem in (2)), disregarding the Lagrangian
multiplier. However, the loss £(r; #) = Lg(r)—Lr(7) does not ensure statistical efficiency, because
the Stackelberg game in (3)) does not include the Lagrangian multiplier for the likelihood constraint.
Instead, we propose the trajectory-pair ¢; loss:

E(r;7) = Ero riny [{r(r?) —r(r)} = {#(r°) = 2(r1)}]] |
which leads to a provable guarantee (Theorem[d.T)). Intuitively, this loss measures the deviation of r

from 7 by evaluating the difference in total reward (return) between the two trajectories. Given the
unlabeled trajectory dataset D, we can approximate £ (r; 7) with its finite-sample version:

Epy (1:7) = Ero ryamyy [[{r(r%) = r(r)} = {#(r%) = #(r)}]] - )
In the following two sections, we discuss how to implement the optimization in (3)) in a sample-
efficient manner.
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Algorithm 1 Adversarial Preference-based Policy Optimization with Rollout (APPO-rollout)

Input: Number of rollouts K7, Ko, KL regularization n, 7}, = Unif(A) for all h € [H]
Estimate 7 € arg min,.cou Lr(7)
fort=1,---,T do

Execute 7t to collect K trajectories D!

rollout
Optimize r* € argmin, cpu (IETND:;’“‘)“l [7(7)] = Ernpy[r(7)] + )\épmj (r; f))

Compute Q! via PE(u, e, 7, K3) in Algorithm

Update policy 7} (a | s) oc 7 (a | s) exp(n@? (s,a)) forall h € [H]
end for
Return 7 = & 327 7,

VRN N RN

Algorithm 2 Adversarial Preference-based Policy Optimization (APPO)

1: Input: KL regularization 7, Initial policy 7}, = Unif(.A) for all h € [H]
2: Estimate 7 € argmin,.cu Lg(r), Py € argminpep L7 (P;h) forall h € [H]
3: fort=1,---,T do
4 ftearg min (Zthl E(sp.an)~Dug [Fn 0 T}, (8) = fr(sns an)] + Ap,, (f; P, f))
fer
Update policy i (a | s) oc 7} (a | s) exp(nf} (s, a)) for h € [H]
end for
: Return 7 = % 327wt

Neaw

3.2 ADVERSARIAL OPTIMIZATION FOR PBRL

In this section, we present an algorithm, APPO-rollout, that serves as a building block of our main
algorithm. For APPO-rollout, we consider the setting where transition P* is known or online
interaction (without preference feedback) is possible. This is a temporary assumption, and our main
algorithm (Algorithm [2)) works with unknown transition.

Algorithm [T|describes the pseudo-code of APPO-rollout, which is based on the Stackelberg game
formulation of PbRL we discussed. Inspired by the adversarial training methods in offline RL in
the standard setting (Cheng et al., 2022; Rigter et al.| [2022; Bhardwaj et al.| |2024])), we alternately
optimize the policy and the reward to solve the optimization problem in (3).

Reward Model Update for Provable Conservatism. The reward model update aims to solve the
following optimization problem approximately:

arg min ( E [r(r)] - TIEM[T(T)] + AE(r; f)) = arg min <V1’T;(31) — V{fr(sl) + AE(r; f)) , (5)

reRH AT~T! reRH

which is the inner optimization in (3). The expectations E,,[r(7)] and £(r; ) are approximated
using offline data Dy,;. Also, we collect trajectories by executing 7", to compute the finite-sample
version of E. .+ [r(7)]. Note that the trajectory rollout (Line 4) is possible since we assume known
transition P* or access to online interaction.

Policy Update. After optimizing ¢, we estimate the action-value function of 7* with respect to r®
by invoking a policy evaluation subroutine PE, whose pseudo-code is provided in Algorithm 3] This
subroutine computes an approximate value function Q! using Monte Carlo estimation, providing an
error bound relative to the true value function QZI: . The theoretical analysis of PE is presented in
Appendix [B| With the estimated value function Q*, we then proceed to update the policy using trust
region policy optimization (TRPO) (Schulman et al.,|2015) update.

3.3 APPO: REPARAMETERIZED ALGORITHM FOR UNKNOWN TRANSITION

In this section, we consider the setting where the transition P* is unknown. In Algorithm [I] the
information from transition P* is utilized in Line 4, where we collect on-policy trajectories to ap-
proximate E, . .¢[r(7)]. Moreover, the policy evaluation step by Algorithm [3| performs trajectory
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rollouts. To bypass such on-policy rollouts, we make the following observation:

Byt [F(7)] = Erpu[r(7)] = Vi (51) — VI (51)
H
= Eopan)mdt [(Qﬁfr oh)(sn) — QF 1 (sh, an) (6)
h=1

which is due to the performance difference lemma (LemmalE.T). Since the expectation on the right
is taken with respect to d/, which is the data generating distribution of Dyryj, we may use Dy to
approximate the expectation. Furthermore, given the policy 7, the Bellman equation implies a
mapping between reward models and action-value functions. Specifically, for given reward model
r = {r,}HL |, we have the action-value function {QZfr}thl. Conversely, suppose that we have a

function class F, which contains every action-value function. For f = { fh}hH:1 € FH, we can
construct the corresponding reward model satisfying the Bellman equation f, = rj, + P (fp41 ©
7r,t1 +1). Formally, we define the induced reward models:

Definition 1 (Induced reward model). Given f = {fy}L, € FH, and a policy {m)}L |, we define
the induced reward model 15, ; = {r} p. ;}1_, where 7 p. o = fn — P (fni1 © Thy1) for
h € [H] (we set fr+1 = 0 by convention).

Therefore, given reward model r and action-value function f, we have that

Qhr =7h+ PQhy1r 0 Thtr), fo =77 pe & B (fay1 0mp) forall h € [H].

We remark that the mapping does not have to be bijective to proceed with our theoretical analysis,
as long as the Bellman equation holds. Utilizing this mapping in conjunction with our observation
in (6), we reparameterize the optimization problem in () as:

H
arg min (Z E(opan)~at [(frnom)(s0) = falsn, an)] +AE(f; P, f)) (7
h=1

feFH

where £(f; P*,7) = E(ry.r, ) H{r;;i,f(TO) — 1 (1)) = (R0 — f(Tl)}H . ®

The offline dataset Dy, is sufficient to approximate the optimization objective in (/) with
E(s.an)~Dug [(Fn 0 73)(51) = fr(5n,an)] = E(s, apymar [(fn 0 ™) (s0) = fulsn, an)]
Epuy (13 P, 7) 1= Brymiyoas || 175, (7°) = 1 (7)) = 17(7°) = 77O} | ~ £F: P77,

where we use the estimated transition model P in place of P*. Moreover, since we directly optimize
for action-value function, a policy evaluation oracle is not required to update the policy. Therefore,
the reparameterization enables us to solve the optimization problem in (3) without access to the true
transition P* or policy evaluation oracles. The complete pseudo-code is presented in Algorithm 2]

Remark on Computational Complexity. The computational complexity of APPO is primarily de-
termined by the value function optimization (Line 4) and the policy update (Line 5). Although the
computation of f? is generally a non-convex optimization, it is efficiently implemented when F is
a class of neural networks using gradient-based methods. For the policy update, it is known that
it (a | ) o< 7t (a | s) exp(nfi(s,a)) is derived from the TRPO objective (Schulman et al., 2015}
Neu et al., 2017):
7TZ+1 € argmaXEshngf, [f}tL om(sy) — n 'Dgr, (7r( | sp)llmh (- sh))} ,

which is widely used in deep RL. As a result, the policy update is efficient within the deep learning
framework. In practice, other policy optimization techniques (Schulman et al.| | 2017; |Fujimoto et al.,
2018} [Haarnoja et al.l [2018)) can also be applied. Overall, APPO relies on solving two standard
non-convex optimizations to compute f* and 7%, both of which are practical to implement with
neural function approximation. This computational efficiency contrasts with existing offline PbRL
algorithms that involve intractable optimization over confidence sets, as discussed in Section
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4 THEORETICAL ANALYSIS

In this section, we present theoretical analyses of our proposed algorithm, APPO. We note that
APPO-rollout also guarantees sample complexity bound, which is presented in Appendix [C]

We assume the reward class /R and the transition class P are realizable and rewards are bounded.
These are standard assumptions (Chen et al.} 2023} [Zhan et al.| 2024aj [Pace et al., [2024).
Assumption 1 (Reward realizability). We have r} € R for all h € [H). In addition, every r € RY
satisfies 0 < r(7) < R for any trajectory T.

Assumption 2 (Transition realizability). We have Py} € P for all h € [H].

Additionally, we introduce the value function class and assume its boundedness. Note that every
Q7 . satisfies the condition [ f|| ,, < R due to Assumption

Assumption 3 (Value function class). Forany h € [H], r € R*¥, and policy m, we have QZJ, e F.
In addition, every f € F satisfies 0 < f(s,a) < Rjforall (s,a) € S x A.

The following assumption defines the trajectory concentrability coefficient with respect to the target
policy 7* and the reference policy .

Assumption 4 (Trajectory concentrability). There exists a finite constant Crg such that the behavior

policy 1 and the optimal policy * satisfies sup., ddwﬂi((:)) < Crg.

The bounded Cirg ensures that the support of d* sufficiently covers the support of d™ (similar to
the concentrability condition in|Zhan et al.| (2024a)). Consequently, we expect Dy, to include high-
quality trajectories. The lower bound in|Zhan et al.|(2024a) shows that the trajectory concentrability
is essential in offline PbRL, thus offline PbRL is strictly harder than offline standard RL where step-
wise concentrability is sufficient to achieve performance guarantee (Uehara & Sun, |2022)). Now we
present the sample complexity bound.

Theorem 4.1. Suppose Assumptions and@] hold. With probability at least 1 — 6, Algorithm[2]
with A = O(Crg), A > Crr,m = 1/ 21§§‘TA| achieves

T 7
‘/l,r* - ‘/lq,r*

°H 1 H H 1
<0 <OTR "Wlog@ +RH\/NmaX{HTlog5}—|,logLP|} + RH OgTM') .

Setting T = © (R2H2€}20g|A\)’ N =60 (maX{R4H5 10g|A\4log(H|]~'|/6)7 R?H? 10g§H|7’|/5) }) and

€ €

2 .2 * _
M=6 (M), Algorithmachieves e-optimal policy, i.e. Vi, — V" <.

Discussion on Theorem [4.1, Our analysis can be easily extended to infinite function classes us-
ing the standard covering number argument, replacing cardinality |R|, |P|, and |F| with covering
numbers. To our best knowledge, FREEHAND-transition in Zhan et al.|(2024a)) and Sim-OPRL in
Pace et al.| (2024) are the only statistically efficient algorithms for offline PbRL in stochastic MDP.

Our sample complexity bound matches them for labeled data, and both algorithms in [Zhan et al.

2 p2 52
(2024a); [Pace et al.| (2024) require © w
trajectory concentrability for transition” Despite their bound being tighter in R, H, €, our bound
for N does not depend on C'p which may grow exponentially (Proposition 2 in|Zhan et al.| (2024a).
Moreover, our algorithm APPO is computationally efficient while FREEHAND-transition and Sim-
OPRL are not: FREEHAND-transition solves a nearly intractable nested optimization problem, and
Sim-OPRL relies on the uncertainty penalty defined by the width of confidence sets. Therefore,
our APPO is the first offline PbRL algorithm with provable statistical efficiency and computational
efficiency.

) unlabeled trajectories where Cp is the

2Zhan et al. (2024a) consider reward functions defined on trajectories, thus their reward class G, is compa-
rable with our R". |Pace et al.| (2024) assume homogeneous reward, so their presented bound is tighter by H.
They use bracketing numbers in their bound, but we write here |P| for simplicity.
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Proof Sketch. We outline the proof of Theorem where the detailed proof is deferred to Ap-
pendix [D] The key observation is our novel sub-optimality decomposition:

* ﬂ_t
VLT* - VLT*

_yr B m* B mt o mt B * wt
= Vl-,r*_f’ - ‘/1,7"*—'f' + V17,;._,’.t - Vl,f‘—’r‘t - Vl’,,,* + Vl,T* + V177.t - VLT‘t + ‘/‘1,7.t - V17,,.t 3
(I) : MLE error (II) : Optimization error (III) : Policy update regret

where rt = r}i_’ oo and the initial state s; is omitted here for readability. The term (I) is bounded by
a standard MLE guarantee (Lemma [E.2)), and the policy update rule ensures the summation of terms
(IIT) over T steps is bounded (Lemma|D.3). For (II), Assumption[dand A > Crg implies that

Vi e = Vi =Brosme piy [r(70) = #(70) = r'(71) + #(r1)]
< COrRE o riy [|r(70) = #(70) = 8 (rh) + #(T1)[] < AE(f PX, 7).

Observe that APPO approximately solves the optimization problem in (7) (Lemma [D.T)), which is

; ; ¢ _ YK . px A2 : ¢ it t _
equivalent to arg mlnfej_—H{foT;,,*‘f Vl,r;i‘f +AE(f; P*,7)}. Since rp., 4 = 7' and o gnt =
r*, it follows that

Vi = VI 4+ AE(F5 PR L) < Vi — Vi + AE(QT 3 P*,7) + e

where € is some approximation error. Therefore, (I)< ¢ is guaranteed. Combining the results into
fo:* — Vf:rr* =41 ZtT:l (V{f:* - fo;*), we complete the proof.

5 PRACTICAL IMPLEMENTATION OF APPO

While providing strong statistical guarantees, APPO enables practical implementation using neural
networks, leveraging advanced training techniques from deep learning literature. In this section,
we present a practical version of APPO tailored for deep PbRL. The pseudo-code is outlined in
Algorithm For practical implementation, we assume the standard discounted MDP setting in
deep PbRL (Christiano et al.,[2017), where trajectory segments of length L are given and preference
labels are assigned to segment pairs.

Reward Learning. While our theoretical analysis is based on the maximum likelihood estimator,
any reward learning strategy can be employed. This flexibility allows APPO to benefit from state-
of-arts preference learning methods, such as data augmentation (Park et al., [2022)) and active query
techniques (Shin et al.;2023; Hwang et al.| 2024; |Choi et al., 2024)).

Training Value Functions. Given a parameterized policy 7 and an action-value function @4, the
optimization objective in (7)) can be adapted to the discounted setting as follows:

arg min Es.ay~ar [(Qo 0 0)(5) = Qu(5,0)] + AB(rg iy [| (G = 7)(77) = (g = 7)(71)]

where Tg(T) = Zlel (Qo(s1,a1) —v(Qp 0 mg)(si41)) for the segment 7 = (s1,4a1,...,SL,aL).
We empoly the approximation P*(Q o ) (s, a1) = (Q4 © mg)(si1+1) to avoid the need for a tran-
sition model. Additionally, to stabilize training, we apply the clipped double Q-learning trick (Fu-
jimoto et al.l 2018 [Haarnoja et al.} 2018)) and maintain a separate value-function V. Given mini-
batch of trajectory pairs By,; and transition tuples By, each action-value function Q: is trained

by minimizing L’q’\,i = /\dei" + Egi (wWhere A is moved to the first term, without loss of generality),
defined as follows:

‘Czdiv(Btup) = IE(s,a)mlfj’m]D [Q(ﬁl (57 WQ(S)) - Q(bl (S, CL)] ’
and Eys (Buy) = Ero 1)yt 115 (7°) = (7)) = (") = 77} | ©)

Here, we use the notation Ti" (1) = 21L=1 (Qgi(s1,a1) — YVip(sn+1))), and mg(s) denotes an action

sampled from g (- | s). Given target Q-networks {¢' };c (1 2}, Vi is trained by minimizing

[’1/) (Btup) = EsNBlup

2
(Vw(S)— min Q¢i(8h+1,ﬂe(8h+1))) ] (10)

ie{1,2}
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Ez?fgéﬁ‘)ack Oracle MR PT DPPO IPL  APPO (ours)
BPT-500 88.33+4.76 | 10.08+7.57  22.87+9.06 3.9344.3¢ 34.73+13.9 53.52+13.9
box-close-500 93.40+3.10 | 29.12+13.2 0.33+1.16  10.20+11.5 5.93+5.81 18.24+15.6
dial-turn-500 75.40+5.47 | 61.4446.08 68.67+12.4 26.67+22.2 31.53+12.5 80.96+4.49
sweep-500 98.33+1.87 | 86.96+6.93 43.07+24.6 10.47+15.8  27.20+23.8  26.80+5.32
BPT-wall-500 56.27+6.32 0.3240.30 0.87+1.43 0.80+1.51 8.9349.84 64.32+21.0
sweep-into-500 78.80+7.96 | 28.40+5.47  20.53+8.26  23.07+7.02 32.20+7.35 24.08+5.91
drawer-open-500 | 100.00+0.00 | 98.00+2.32  88.73+11.6 35.93+11.2 19.00+13.6  87.68+10.0
lever-pull-500 98.47+1.77 | 79.28+2.95 82.40+22.7 10.13+12.2  31.20+15.8 75.76+7.17
BPT-1000 88.33+4.76 8.48+5.80 18.27+10.6 3.2043.04  36.67+17.4 59.04+19.0
box-close-1000 93.40+3.10 | 27.04+14.5 2.27+2.86 9.33+9.60 6.73+8.41 34.24+185
dial-turn-1000 75.40+5.47 | 69.4444.70 68.80+5.50 36.40+21.9 43.93+13.4 81.44+6.73
sweep-1000 98.33+1.87 | 87.52+7.87  29.13+14.6 8.73+16.4  38.33+24.9 17.36+12.4
BPT-wall-1000 56.27+6.32 0.48+0.47 2.13+2.96 0.27+0.85 14.07+11.5 62.96+18.4
sweep-into-1000 78.80+7.96 | 26.00+5.53  20.27+7.84 23.33+7.80 30.40+7.74 18.16+11.1
drawer-open-1000 | 100.00+0.00 | 98.40+2.82 95.40+7.27 36.47+7.30 28.53+18.4 98.56+2.68
lever-pull-1000 98.47+1.77 | 88.96+3.94  72.93+10.2 8.53+9.96  40.40+17.4  76.96+4.40
Average Rank | - 2.316 3.125 4.375 3.063 2.125

Table 1: Success rates on Meta-world medium-replay dataset with 500 and 1000 preference feed-
back, averaged over 5 random seeds. The results of baselines, Oracle, PT, DPPO, and IPL, are taken
from |Choi et al.| (2024), where Oracle refers to the policy trained using IQL with ground-truth re-
wards. The abbreviation BPT stands for button-press-topdown.

Intuitively, the term Eif" ensures conservatism by regularizing () to have lower values near d™¢,and
higher values near d*. Additional insight can be gained by rearranging the integrand of £y:

L
r(m) = #(7) = 3 (Que sty ar) — sty ar) — WViplsi1)
=1

This expression represents the sum of TD errors evaluated on the segment 7. Thus, the loss £4 aims

to minimize the difference in trajectory TD errors between the two trajectories 79, 7.

Training Policy. The policy is directly optimized using the loss function in (IT). The entropy reg-
ularization term is similar to that in SAC (Haarnoja et al., |2018)), though we use randomly sampled
Q)4 instead of the clipped value min;¢c [y o) Q4. The policy loss is given by:

Lo(Bup) = Esnn,, [Qqi (s, m9(s)) — amg(s,mo(s))] , i ~ Unif{1,2} (11)

6 EXPERIMENTS

Datasets and Evaluation. We evaluate our proposed algorithm in Meta-world (Yu et al., [2020)
medium-replay and medium-expert datasets from (Choi et al. (2024). Our main experiments in
this section use medium-replay dataset, and the experiments with medium-expert dataset are
presented in Appendix [ The datasets has a favorable property in that it is not learnable with wrong
rewards (random or constant). Such property is crucial for the evaluation of offline RL algorithms
since the survival instinct of offline RL algorithms can make them perform well with totally wrong
reward signals (Li et al.,[2024)). See|Choi et al.|(2024])) for more information on the dataset. Following
the experiment protocol of (Choi et al.| (2024), the preference dataset consists of pairs of randomly
sampled trajectory segments of length 25. The preference label is generated based on the ground
truth reward, where a (0, 1) label is assigned if the trajectory rewards differ by more than a threshold
of 12.5, and a (0.5,0.5) label is assigned otherwise. We measure the performance of algorithms
with the success rate for each task, which indicates whether the agent succeeds in the task.

Algorithms. We consider four offline PbRL algorithms as baselines: Markovian Reward (MR),
Preference Transformer (PT) (Kim et al.l [2023), Direct Preference-based Policy Optimization
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Figure 2: Success rates of APPO and MR, with varying number of preference feedback.

(DPPO) (An et al., [2023), and Inverse Preference Learning (IPL) (Hejna & Sadighl 2024). MR
is an instance of IQL (Kostrikov et al., [2022) trained with a Markovian reward model, while PT
assumes a general sequential reward model implemented with transformer (Vaswanil [2017) archi-
tecture. DPPO directly optimizes policy without any reward model, and other baseline methods
are based on IQL (Kostrikov et al.| 2022). We experiment with the practical version of APPO in
Algorithm[d] with the same reward model as MR and A =3e-2. More details are in Appendix [G}

6.1 EVALUATION RESULTS

Table [I] shows the performances of algorithms on Meta-world control tasks. APPO outperforms
or shows comparable performances in almost every dataset. It is noteworthy that APPO performs
better than the policy trained with ground truth rewards, in dial-turn and button-press-topdown-wall
datasets. Also, we observe that MR is a strong baseline, as reported in previous works (Hejna &
Sadigh| [2024; (Choi et al.}2024). From this result, we can conclude that APPO performs comparably
to the state-of-the-art baselines, even in the presence of the provable statistical guarantee.

Effect of Conservatism Regularizer. We investigate the effect of conservatism regularizer )\, the
coefficient to balance the adversarial loss £':‘de and the trajectory-pair ¢; loss £4. In Figure|l}, APPO
successfully learns with a wide range of A, but properly tuned A leads to better performance and
stability. We note that APPO has only one algorithmic hyperparameter J, in contrast to IQL-based
algorithms (MR, PT, DPPO), which have at least two hyperparameters (expectile parameter and

temperature), and DPPO, which specifically has two hyperparameters (conservative regularizer and
smoothness regularizer).

Effect of Preference Dataset Size. In PbRL, learning from small preference datasets is desired for
cost-efficient learning. We evaluate the effect of preference dataset size on the performance of APPO
varying the number of feedback from 100 to 2000. Figure [2]shows that APPO is robust to the size of
preference data, displaying comparable variance with MR, a strong baseline as evidenced in Table/[T}

Note that APPO outperforms a policy trained with ground truth rewards, using only 100 preference
feedback.

10
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REPRODUCIBILITY

We describe the details of the experiments in Section [6] and Section [G| including training protocol
and neural network architecture. Our code can be found inhttps://github.com/oh-1ab/APPO.
git. As explained in Section @ we use the Meta-world medium-replay dataset from |Choi et al.
(2024). The dataset is available in the official repository of |Choi et al.| (2024), with download
instructions provided therein.
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A ADDITIONAL RELATED WORK

Empirical PbRL. Incorporating preference feedback into reinforcement learning has been explored
through several different approaches. One common method involves training a reward model from
preferences, which is then used to train a standard RL algorithm (Christiano et al.| 2017} [Ibarz et al.,
2018). A variety of techniques have emerged in this area, including unsupervised pre-training (Lee
et al., [2021), exploration driven by uncertainty (Liang et al.| 2022)), data augmentation (Park et al.,
2022), and meta-learning approach (Hejna III & Sadigh||[2023), to list a few. Another prominent line
of research focuses on preference learning via active query methods (Shin et al.,2023; Hwang et al.}
2024;|Choi et al.} 2024)), where benchmarks have demonstrated strong empirical results.

Beyond the conventional Markov reward model, some studies have proposed alternative reward
structures. For example, Kim et al.|(2023)) employed transformer architectures for reward modeling,
while [Liu et al.| (2022) and |[Hejna & Sadigh|(2024) explored learning action-value functions rather
than directly modeling rewards. Several approaches also bypass explicit reward models entirely,
instead optimizing policies directly (An et al.,|2023; Kang et al.| [2023; [Hejna et al., 2024).

B DETAILS ON PoLICY EVALUATION SUBROUTINE

We present a simple policy evaluation subroutine in Algorithm It requires online rollout and
access to the reference policy. The idea of policy evaluation using online rollout is adopted from
Chang et al.[(2024), while the analysis is standard.

Algorithm 3 PE: Monte Carlo Policy Evaluation

1: Input: Reference policy p, Current policy 7, Estimated reward #, Number of rollout &

2: for h € [H] do

3 Collect K i.i.d. trajectories {(s¥,a¥,... sk ak)}E |

4 where a¥ ~ pu;(- | s¥) for j < h,af ~ 5(un +7},)(- | s), and af ~ 7t(- | s) for j > h
H

5 Compute q,’j = Zj:h 7( f,a?), then set D}, = (s’fb,az, qﬁ)}i{zl

6 Least square value function estimation Q, = argmin ez 7 > (5 4.9) ept (f(s,a) — )’

7: end for

: Return {Q¢ }H_,

(o]

We have the following guarantee.
Lemma B.1. With probability at least 1 — 6, Algorithm[3| guarantees that, for every (t, h) € [T x
[H],

~ ot 2 csR?*log(TH|F|/6)
By and (uh+f) {(QZ(SW‘) - Qh,rt<3>a)) ] < Ky = bp

where c3 is an absolute constant.

Proof. Since HQZ”

leads to

< R for any policy 7 and r € R, Lemmawith B=Rand K = Ky
- ot 2 czR?log(|.F|/6)
By and (uh4f) [(QZ(&@) - Qh,r"(87a)) } < K,

for any fixed (¢, h) € [T]x[H]. The union bound over all (¢, h) € [T] x [H] concludes the proof. [
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C THEORETICAL ANALYSIS OF APPO-ROLLOUT

In this section, we provide theoretical analyses of APPO-rollout, a naive algorithm to find the
solution to the optimization problem (3)). The ideas presented in this section are relevant to the proof
of Theorem .1} and the result itself is valuable for comparison with related works.

Before the theorem statement, we define step-wise concentrability, which is always bounded by Crr.
Definition 2 (Step-wise concentrability). Csr = maxpc(m] SUP (s 0)esx.A ;, ((jaa))
Lemma C.1. It always holds that Csy < Crg.

Proof. For a fixed pair (s, a), consider the set of trajectories 7 (s, a) := {7 = (s1,a1,...,8H,aH) :
sp = 8,ap, = a}. Then we have that

dy (s,a) = / d™(r)dr.

T (s,a)
for any fixed policy 7. Therefore, for every (s,a) € S x A, we have that
d}{*(s,a) B fT(s,a) - (T)dr < dar” (1)

= < sup
dj, (s, a) Jr(s.ay dH(T)dT r dH(T)
Taking supremum on both sides, we conclude the proof. O

= Crr.

Theorem C.2. Suppose Assumptions|[l|and[|hold. With probability at least 1 — 6, Algorithm[I|with
A=0(Crr), > Crg,n =1/ %‘TA achieves

* 7
‘/1,7"* - ‘/1,7"*

<0 log7§|<CTf/l{+\/R7 \F>+RH\/W+RH CST TH|]-'\

Setting T = © <7R2H26120g‘“4|) N=K =6 (71%2 log( lRW)) M =0 (—CTRHZHLOg(lRW)) and
Ky = O (RQHzcsrlog(THl]-'\/é))

, Algorithmachieves e-optimal policy, i.e. for* — Vf}* <e

Discussion on Theorem [C.2] We compare this bound with PbRL algorithms with known transi-
tion (or online rollout). In comparison to FREEHAND (Zhan et al., |2024a), APPO-rollout has
a nearly identical rate for labeled data, but FREEHAND does not require extra unlabeled trajecto-
ries. However, this is a trade-off between statistical and computational complexity. Another com-

parable algorithm is DR-PO (Chang et all, 2024), which establishes © <(CTR+CS”):; log(IR1/9)

sample complexity for labeled data. Note that they assume homogeneous rewards, thus the H de-
pendence is missing. Their bound is tighter in Crtr at the cost of dependence on additional factor

Csrr = SUp,ep SUpP, Z:—gg where D is a set of policies close to p in terms of KL divergence. This

is because DR-PO does not ensure conservatism.

For 51mp11c1ty, we introduce some notations regarding optimization objectives in Algorithm[I] For
r,7 € RY, we define

‘Copt(r; /F) = ]ETNDmlloul [T(T)] - ETNDIraj [T(T” + )\(C:‘Dlmj (T; {F)
and its population version as
£f)pt(7“; 7) = Errt [1(T)] = Erp [1(7)] + AE(r; 7).

C.1 OPTIMIZATION ERROR

In this section, we prove that the (finite-sample) optlmlzatlon objective Copt(r; 7) is close to its

population version, Eopt( 7). The result ensures that 7! is a good approximation of the solution to
the optimization program Wlth infinite samples, i.e.
r' &~ arg min [,Opt(r; 7).
reRH
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Lemma C.3. With probability at least 1 — §/2, for all t € [T, we have
Lopi(r's7) < Lopt(r*s 7) + 2€approx

where Eapproq is defined in Lemma|C.4|

Proof. We have the following decomposition:

ﬁtt)pl(’rt; ’ﬁ) - £f)pt(r*; 72)
= Lop (') = Lop(r'57) + Lo (13 7) = Lopg(r*57) + Lo (13 7) = Lopy(r*37)
@ D (11D

Conditioned on the event defined by Lemma @, (I) and (III) are bounded by €,,:. Moreover, the
optimality of r* implies (I[)< 0. O

Lemma C.4. With probability at least 1 — §/2, for every t € [T] and v € R, it holds that

t —
ﬁ 72[(1 + 2R N = Eapprom

opt

<R

(’I"; f') - ‘CAfipt(T; f')

Proof. Fix r € R, and note that

[’(t)pt<r; f) - ‘é(t)pt<r; TA)

< Bt ()] = Ernmt (0] + [Erny [1(7)] = Ern (7]

+ [Ero 71y [(r =) (1) = (r = P)(TH)] = E(ro r1ywp [(r = P)(70) = (r = #)(7H)] |-

Since |r(7)| < Rand |(r —7)(7)| < R for any trajectory 7, each term can be bounded by Hoeffding
inequality. Specifically, each of these three events occurs with probability at least 1 — 6/6:

B Dt [r(7)] = Erornt [T‘(T)]’ <R 10%&?{5)’
’}ETNDW [T(T)] — ETNM[T(T)H <R 10g2(](i[/5))
’E(TU,Tl)ND[raj [(T — 'ﬁ) (TO) - (7“ — 72)(7'1)] - E(TU’Tl)NM [(7- _ 72)(7_0) _ (7" - ’Iq)(Tl)] ‘ S 9R log;](if/é)

Taking union bound over these events and all » € R, with probability at least 1 — §/2, it holds that

<R llog(26|[§|/5) 4R /log(f25|]7V€|/5) LoR 10g(f;\]7\]3|/5)
<R llog(gll?ll/& L 9R /210g(?\\[73|/5)

for every r € R, O

Eépt(“ 72) - ﬁzpt(T; f)

C.2 PoLicy UPDATE

We present the guarantee regarding the policy update steps. The proofs in this section are based on
the standard analysis of the natural policy gradient (also referred to as trust region policy optimiza-
tion) (Cai et al., [2020; |Chang et al., 2024).

Lemma C.5. With probability at least 1 — § /4, it holds that

T

1 * t 10 .A

2 (ij,t(sl) — VT (31)) < riy /A ope,, a0y
t=1

2T
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Proof of Lemma|[C.3] The performance difference lemma (Lemma [E.T)) implies that

B

(Vir(s1) = Vioga(s))

o~
Il

H
Er- lZ(QZ;t(Sh»-)ﬂTZ(- | 5n) = mh (| Sh)>]

h=1

M= 10

H
D EBogr [(@1(s,),mh(- | 8) = mh(- | )]

t=1 h=1

@

T H
DN B (@Rl = @150, mil- | sn) = mh(- | sn)

t=1 h=1

an

Bounding (I). Decompose the inner product inside the expectation:

Q% (sn, ). (- | 8) = Th(- | 5))

QY (sn. ) (- | 8) = 7 | 8)) + (@ (sn, ), (- | 8) — wh(- | 5)

< (@} (sny )y (- | 8) = Tt 1 9)) + 0 ]|@h(sn. | |7 1 s) = w2 | 8)])

< Qh(sny ) mi (- | 8) =7 L 9) + R ||wi (- | s) = 7t | 9], (12)

where we use Holder’s inequality with the fact that HQt || < R. Now recall that the policy update
step (Line 7) in Algorithm [I]leads to

7T2+1(- | s) = Z,tll(s)ﬂltl( | s)exp (77@2(5, ))

where Z},(s) =3 e mh(a | s) exp (nQ}, (s, a)). Using the relationship nQ}, (s, a) = log Z} (s) +

log 7rt+1(a | s) —log 7} (a | s), it holds that
Qb (sn. ). ) = (| 5)
= (log Z{ () +lognt (- 5) ~log (- 8).wi(- | ) = (- | )
= (logm (-] 5) ~logmh(- | 9).7"(-| 5) L1 | )
= (lognt1 (-] 5) —log k(- | 2).7°(- | ) = Dics, (£ | )i | 9)
fog 2 C L) 4 10g THCLD) ) — Dy (a1 )l | )
w1 e w7 :
= Dict (=i | (- | )) = D (- | 1| 8)) = D, (2 )l )
< Dyer (mi- | (-1 ) = D (w3 | )| ) = 5 [l | ) = w1 5)

where the second equality holds since Z/(s) is a constant given s, and the last inequality holds due
to Pinsker’s inequality. Combining this bound with (T2), we obtain
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Qh(sn, ), m (- [ ) = mh (- | 5))

M=

~
Il

M=

=2 (Dxr (m(- [ $)llmh (- | 5)) = Drr (i (- | 8)llm (- | 9)))

t

T
3 (nRllmic 19 - i |s>!|1—§||wz<-|s>—w2“< s)H?)

1

T_1 T
< Z (D (75 1 s)mh(- | 8)) = Drr (w5 (- | 8)|| 7 (- Z

= 2R2 o
= Dgp (mh(- | 9)lmh(- | s)) — D (mh(- | 8)|lmp 71 (- | 8)) + 5
<loglAl + TET

2

where the first inequality holds since Vo € Raz — 22/2 < a?/2, and the second inequality holds

due to the fact that 7} = Unif(A). Finally, setting n = 1/ 2 loé‘TAl , (I) is bounded by

H T
M= E, gz [Z (-|s)—a'(: |s)>]
h=1

t=1

H
log |A|  nR?T T log | A|
< BLANR— Z
< E + 5 RH 5

Bounding (I). We condition on the event defined by Lemma|B.1] Then we have

By (@Rl = @1)(s )3
= By [QFe(s.0) = Qh(s,a)] |

t Nt 2
< B | (@ 50) - Qi)
dr’ (s,a) , _ 2
< 2 -~ - |E " t - —Qt
< (}{2%} - Slelng (s, a) ) s~dl a~ (h +un) {(Qhﬂ. (s,a) Qh(s,a))
< 1/2Cstegg

where the first inequality holds due to Jensen’s inequality, the second inequality uses importance
sampling, and the last inequality uses Lemma

20



Published as a conference paper at ICLR 2025

Eosp [((@QFe — Q)05 ). 71|
= (B o [Qm (5.0) = G s.0)]

_ 2

< \/Eswd;:* ,a~vh |:(Qh rt( ) - Q%L(S’ a)) :|
dr” (s) i _ 2
- V 2 (s Gy ) Bt [ (000 Qe

dﬂ-* (5) t = 2
< m “ t (;277 + — ( ?t
— \/2 (hEaI?I(] ilelg dlL( ) ) ]Eswdh,awé(ﬂh+uh) |:( h,r (s,a) h(s7a)> :|

S A/ QCSTEI%E.

Therefore, we obtain the bound

T H
W <33 [E e [(@F = QR i sa)]|

t=1 h=1

T H
30D By [(Q7 = Qi) (s, 50|

t=1 h=1

S 2THEPE\/ 2CST-

We conclude the proof by combining the bounds on (I) and (II). O]
Now we prove Theorem|[C.2] based on the lemmas.

Proof of Theorem|[C.2] We condition on the event defined by Lemma (with &' = §/4),
Lemma[C.3] and Lemma [C.5] which hold simultaneously with probability at least 1 — 6. Consider
the following sub-optimality decomposition at step ¢:

* t oyt * * * T wt ot 7t
Vvl.,r* - ‘/1,7"* - Vl,r* - Vl,f + Vl,f - Vvl,rt + Vl,rt - Vvl,r* + Vvl,rt - Vl,r"
_ T M

- Vl,r*—f’ - ‘/1,7"*—7*

(I) : MLE estimation error

T m
+ Vl,f—’!‘f‘ - Vl 7_ 7,_t ‘/1 T‘* + Vl ’l“* + Vl ,,.f - Vl,?"t
(II) : Optimization error
* t
+ Ve = Vi (13)
N————

(IIT) : Policy update regret
where we omit the initial state s; for simplicity.
Bounding (I). Since we condition on the event defined by Lemma|[E.2] we have
=V = V. .
=E omrs r1p [T*(TO) — () = (1Y) + 72(7'1)}
< VB e [I(70) = 72(71) = #(70) + (7)) 2]
< \JOmE o 1. [[(70) — 7 (71) = #(70) + #(7)[2]
CTR67-(5/4).
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Bounding (II). We can relate the terms V1 ot — Ve, .t E(rt; P, 7). By Assumption we
have that
VY:%—rt - Vll,tf—v"t

=Eronne sty [72(7'0) — () = (%) + ’I“t(Tl)]
< CrrEqo p1n W(TO 1 1
= CTRg(T ’I’) < )\5(

where the last inequality holds since £(r?;7) is non-negative and A > Ctg. Further, Lemma
implies

AE(rh ) < Vi = Vi = Vit + VI o+ AE(r*37) + 2€appros
< VlT.,r;* -V Vl e+ VY e+ A6 (6/4) + 2€approx
where the last inequality holds due to Lemmal|E.2}
E(r*7) = Epo iy [IF(7°) = (1) = 1*(7°) + 17 ()]
< \/JEToﬁlw (17(70) = #(71) = r*(r°) + (71| < €r(6/4).

Therefore, we have

(I) < Xer(8/4) + 2€appron-

Bounding Sub-optimality. Putting the bounds on (I) and (II) into (T3)), we have
T* ﬂ_t
‘/l,r* - ‘/1,7"*
Crrer (6/4) + e (8/4) + 2eappron + Vi — Vi (14)

Since Algorithmreturns the mixture policy 7 = % ZtT:l wt, the sub-optimality is fo:.* — V{f,.* =
+ ZZ;I (fo;* - fo;). Using the bound in (T4) and Lemma it holds that

Vi = Vi

1 T

T Z (VvlT,rr* - VlT:-'r‘*)
t=1

T
1 . .
@ET(6/4) + Xer(8/4) + 2€appros + T E (Vf:—rt _ VlT:-'r't)
t=1

IA

log | A
Crrer(5/4) + Ay (3/4) + 2appros + RH Og | | 2 H e /Cor

1 JTH
<0 | /log ‘?' <CT‘:/’{+\/JL \ﬁ>+RH\/ gl Al | pp CST \fl
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D DETAILED PROOF OF THEOREM [4.1]
For simplicity, we introduce some notations regarding optimization objectives in Algorithm 2} For
f e FH, we define

H

Opt(f P T) Z E(smah)Nij [fh o W;z(sh) - fh(Sh, ah)] + )\ngruj(f; Pv 7Z)
h=1

and its population version as

H
op[ f P T Z s;“ah)wr]' fh © WZ(Sh) - fh(shaah)] + )\S(f,Pf)

D.1 OPTIMIZATION ERROR

In this section, we prove that the (finite-sample) optimization objective Eopt( f; If’, 7) is close to its

population version Eopt( f; P, 7). The result ensures that f? is a good approximation for the solutions
to the optimization program with infinite samples, i.e.

[t~ arg mln/jopl(f; P*. 7).
fert

Remark. For this section, we assume that the maximum likelihood transition estimator P is com-
puted using half of Dy.,;j, and the losses Ef,pt( f; P, ) are computed from the other half. This in-
creases the sample complexity only by a constant factor but helps avoid union bound over P in the
proof of Lemma|D.2]

Lemma D.1. With probability at least 1 — 6/2, for all t € [T'], we have that

A t A
opt(ft ) < ‘Cf)pz(Qﬂ— ;T) + 26approz
where €approx is defined in Lemma|D.2}

Proof. Consider this decomposition:

L (f557) = Lo Q™ 3 7)
= ‘Cf)pl(ft; ) — 0pt(ft P )+ [':opt(ft; P7 ) — Opt(Qﬂ- p )+ ‘Copt(Qﬂ- ,T) — Eépt(Qﬁt ;7).
(@) (I (111)

Conditioned on the event defined by Lemma |D.2] m (I) and (III) are bounded by €40, Moreover,
the optimality of f! implies (IN< 0. O

Lemma D.2. With probability at least 1 — §/2, for everyt € [T] and f € FH, it holds that

3
£ (Fi Py — L8 (Fi7)] < 8R\/H T10g5\8]H|}'\/5)

+2RHep(0/8) := €approz-

Proof. Due to the policy update in Line 7 of Algonthml the policies {wh}(t h)e[T]x[H] belongs to
the following function class:

exp (X1, nfi(s.a))

=qmlals) = > areA €XP (25:1 Wfi(s’a/)>

. fi € Fforalli € [T]

It is clear that |TI| < |F|7.

23



Published as a conference paper at ICLR 2025

Step1. Fixh € [H], f € F,and 7 € IL Since |f o w(s)| < R forall s € S, Hoeffding inequality
implies that

log(8/4)

2N

Eay ety [f 0 T(5m)] = Eapt [f 0 7(sn)]| < R
with probability at least 1 — ¢/8. Similarly, since | f(s,a)| < R forall (s,a) € S x A, it holds that

log(8/9)

’E(S}“(L}L)Npuaj [f(5h7ah)] - E(sh,ah)fvdz [f($h7 ah)}‘ § R IN

with probability at least 1 — 6/8. Thus, with probability at least 1 — ¢/4, we have

‘]E(sh,ah)wamj [fom(sn) = f(snan)] — E(s, ap)~ar [f 0 7(sn) — f(8h7ah)]’

<

Esnan)~Dig L © T(50)] = Egay apyma [ 0 (50|

+ 'E(S}L7Q}L)NDtraj [f(Sh, a’h)] - E(sh,ah)wd’}t [f(shvah)]‘
21og(8/0)
< _—
<R N

Consider union bound over all h € [H],f € F, and = € IL. Since 7}, € II for every (t,h) €
[T] x [H], with probability at least 1 — §/4, we have

ZE(sh,ah)Nij [fn o) (sn) — fa(sn,an)] — ZE(sh,ah)w; [fnomh(sn) — fa(sn,an)]

h=1 h=1

H H ’

H
< Z ‘E(Sh,,ah,)"‘Dlmj [fh o 71-Z(Sh) - fh(S}“ ah)} - E(sh,ah)wdﬁ [fh © 77;;<5h) - fh(sha ah)] ‘
h=1

SRH\/zlog<81fnr]|vf||H|/6> < 9RH w

for every f € F.

Step 2. We have that

Epyy (f5 P.7) = E(f; P, 7)| < [Epyy (f3 P 7)) = E(f5 PoF)| + |E(f; P,7) — E(f; P, 7)[. (15)

Again, we use Hoeffding inequality to bound the first term. Fix f € F# and 7 = {m,}}L, € 117
and consider the function 7%, (Recall that r} . f(s7 a) = fn(s,a) — P(fn+1 0 mhe1)(s, a) for all

P.f
h € [H] and (s,a) € S x A). Since |(r}, ;T 7)(7)| < 2RH for any trajectory 7, we have that
E(r0 1 O =) (Y) = (= A (D] — Eron (% =) (1) — (%, — ) ()
(79,71)~Diy P.f p,f (r0,7H)~p P,f P.f
21log(8/0)
<2RH\| ————=
- N

with probability at least 1 —d /8. Applying union bound over all f € F and 7 € 11, since mh eIl
for every (t,h) € [T] x [H], it holds that

(Epoy (F P, 7) — E(F; P,7)| < 2RH\/ 20 1°g(i'v“r /o) 4Rﬂﬂ/w (16)

for every f € F, with probability at least 1 — §/8.
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On the other hand, the second term in (T3) is bounded by

H H
SEqoryep Z(P*— P)(fnom},)(sh, ap) Z fhoﬂh)(shyah)]
h= h=
H 1 1 H .
<oy [Z (P = P)(fu o mf)(s0 af)| | +Exiny > (P = P)(fuo wi)(s,ﬁ,ai)”
= =
- ‘I'N[L Z ‘ fhoﬂ—h)(sh’a’h)"|
h=1
H

< 2RE,.,

3 [ o - 26 v

= QRZE(S;“ah)Nd’; [HP*(' | sn,an) — P(- | Shaah)HJ
h=1

where the first inequality holds since we have |la| — |b]| < |a — D for all a,b € R, and the
third inequality holds due to Holder’s inequality with the fact that || f, o 7}, || . < R. Furthermore,
Lemma[E3|implies

U Pr) — E(5 P9 < 2R By o [P 1 snsan) = P Lsnyan)| |
h=1

H . 2
<2RY B, an)mdt {HP*(' | sn.an) — P(- | Shaah)Hl:|
h=1

< 2RHep(4/8) an
with probability at least 1 — /8. Taking union bound of the two event (T6) and (I7)), with probability
at least 1 — §/4, it holds that

HT log(8].F|/9)
N

Epyy (f3 P.7) — E(f; P*,7)| < 2RH +2RHep(6/8)

forevery f € F.

Finally, we conclude the proof by combining the bounds in Step 1 and Step 2. With probability at
least 1 — §/2, for every f € F, it hols that

Eépt(f? P7 72) - ‘C(t:vpt(f; 72)

"
< ZE(sh,ah)NDm [fnomh(sn) = falsnran)] =Y Boyanymar [Fn o Th(sn) = fulsn, an)]
h=1

h=1

+ |Ep (F: P.7) = E(f5 P71 7)

< 4RH w +2RH w +2RHep(5/8)
H3T log(SH|F|/0
< SR\/ Oggv FI/9) 4 oprep(s)/s).

D.2 PoLicy UPDATE

The analysis of the policy update step in Algorithm 2] follows the same argument in Lemma [C.3]
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Lemma D.3. For any sequence of functions {f'}L_,, the policy update (Line 7) in Algorithm IZ|
guarantees that

« . e A
%Z (Vf:rt(&) — ijrt(sl)) < RH ogj\ﬂ |

t=1

where 1t = r}t*yft, ie 1 (s,a) = fi(s,a) — P*(f} o) 1)(s,a) forall h € [H] and (s,a) €
Sx A

Proof. Since we have the Bellman equation f} = r} + P} (f} ., o, ) forall h € [H], we can
apply the performance difference lemma (LemmalE.I) to obtain

> (Vi) = Vitels1)) = 30 " B [Uhlsns ) mi- | sn) = wh (- sn))]

t=1 t=1 h=1

Rearranging the inner product term, we see that

(s ), mi (- 8) = h(- | 5)

(nfn(sn ), mh( [ 8) = m L s)) + (fi(sns ) m, (| s) = (- [ )

< (fnsns )y (| 8) = m L))+l £ (sns )| o (177 G 1 s) = w1 )],

< (fi(sn, ), mh( 1 s) = m (| s) + R || mi (- [ s) = m (sl (18)

where we use Holder’s inequality with the fact that || f} || . < R. Now recall that the policy update
step in Algorithm [3]leads to

w1 8) = e | s exp (nfi(s, )

where Z] (s) = Y ,c a7 (a | s)exp (nff(s,a)). Using the relationship 7ff (s, a) = log Z},(s) +
log 7rt+1(a | s) —log 7}, (a | s), it holds that

(nfh(sns ), mh (| ) = m (- | )

= (log Z},(s) +log ;" (- | 5) —logmj (- | 8), w4 (- | 5) = m, " (- | 8))
| |
| |

= (logm, "' (- | s) = log (- | 8),7*(- | ) = w1 (- | 8))
= (logm, ' (- | s) = log (- | 8),7*(- | 8)) = Drr (m, ™ (- | 8)llmh (- | )
_ 7Tltz+1(' | 5) (s . _ t+1
= (log +log == mh (- | 8)) = Dicr (m, " (- | s)Imh (- | )
(s (- | 8)
= Dicr (mh(- | s)llmh (- | 9)) = D (i (- | $)llm ™ (- [ 5)) = D (w7 (- [ 9)Imh (- | 5)
< Dier (wh(- | liwh(- | 9) = Dice (wh( | ) (1)) = 5 1wk 5) = i1 )]

where the second equality holds since Z/(s) is a constant given s, and the last inequality holds due
to Pinsker’s inequality. Combining this bound with (T8)), we obtain
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[M]=

(3 (s ), mi (- [ 8) =i (- | 5)

o~
Il

M=

(D (7 (- | s)llmi (- | 9) = D (wi (- | ) w7 (- 1 s)))

T
+3 (nRlmiC 8) = w19l - g I o) = =i 1ol

Il
-

<N (Drer (w5 [ limh(- 1 8) = Drcr (mi (- | )lImi L 19)) + 3 2R
t=1 t=1

= Dicr, (mi (- | 9)lImh (- | 5)) = Drce, (wh(- | $)llmd (- | ) + 1; :

< log |A[ + TIQ};QT

where the first inequality holds since Vo € Raz — x2/2 < a?/2, and the second inequality holds
due to the fact that 7} = Unif(A). Finally, setting n = 1/ = 1;% ‘TAl , we have

[M]=

T at
E Vi = Ve =

t=1

E,.

(fn(sns )i (- [ sn) = mh(- | Sh)>]

~
Il
-

I
M=
7 TS

E,-

(fa(sn ). mn (- [ sn) = mh( | 5h)>‘|

>
Il

1 t

2
<log|A| n 77R2 T) _ RH Tlog | Al
n

I
—

M=

2

>
I
—

Finally, we prove Theorem 4.1}

Proof of Theorem[_1| For simplicity, we write r* = r};i’ft, ie. ry(s,a) = fi(s,a) — Py(ff 40
7 1)(s,a) forall (s,a) € S x Aand h € [H]. The condition r* € R is not required; we only
rely on the boundedness ||7},|| . < R for all h, which Assumption 3| guarantees.

Condition on the events in Lemma|[E.2](with §' = §/2) and Lemma|D.1] which hold simultaneously
with probability at least 1 — §. Consider the following sub-optimality decomposition at step ¢:

* ﬂ_t o * * * * * ﬂ_t ﬂ_t ﬂ_t
Vl,T* - ‘/1,,,‘* — Vlvr* - Vl,f‘ + Vl,f - Vl,,,.t + VL,,.t - ‘/1,,,‘* + ‘/Plﬂ.t - V17,,.t
—_yr Iz

- Vl,?"*—f‘ - ‘/177‘*—f

(I) : MLE estimation error

* t t
Ve =V = Ve AV VT =V

1,p—rt 1,7t

(II) : Optimization error

* t
+ Ve =V (19)
—_———
(III) : Policy update regret

where we omit the initial state s; for simplicity.
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Bounding (I). Using Lemma|E.2] the MLE estimation error is bounded by:
M=V =V .
= Eqonns pinp [7(7) = 1*(r1) = #(1°) + #(7")]
<V Eromne iy [ () = (7)) = 7(50) + #(r) 7]
< CIRE o 1.0y [l (70) = 14 (1) = #(7°) + F(7) 7]

CTRET(5/2)

—V{';_ .« to the trajectory-pair (1 loss E(f*; P*, 7).

Bounding (II). We can relate the terms V1
By Assumption[d] we have that

JP—rt

‘/1‘”7:7rt ‘/lur rt

=Eroun= Tl [TA( ) (7-1) ( ) (Tl)]

< ORE o sy |7 [| (7 0) (7'1) (T ) r(r!

= CTRETO,le;L |:|7“$* ft( ) - TP* ft( )

= CRE(fY P*,7) < NE(fY Pr,7)
where the last inequality holds since £(f?; P*,#) is non-negative and A > Ctg. Further, Lemma
and Lemma [E-T|implies

H
N PY) S 3 B | QR 0 7h(s1) = Q7 (snsan) | + AEQ™: P, 7)
h=1

= E(pany~d [k o mh(sn) = fi(sh, an)] + 2€approa
h=1
= (‘/17;;* — VllL,Lr*) + )\g(Qﬂ-t; P*, f) — (‘Gﬂ;t — V1 ,,.t) + 2€approa:

On the other hand, note that

Qi (snyan) = P*(QFr © Thia)(snsan) )

<
T,
f)
3
Il
()=
/

Q7 (snyan) = PV (ssan))

I
/Djm

h=1
H
* *
= ri(snran) = (1)
h=1
forany 7 = (s1,a1,...,8u,aH), i.e. rP* ot = = r*. Thus, we have

AE(Q 3 PH#) = AB e ([ () = (7)) = (7(7°) = ()} ]
<A By [ 59) 1)) = (5(0) — 770} ] < 2 572)

where the inequality follows from Lemma[E.2] Combining the results, we obtain

* n 7!‘1' ﬂ_t
) = (Vi = Vi) = (Vi = i) + (Vi = V)
< Ag(QWt;P*; 'f) + 2€approx < )\57(5/2) + 2€appro:c
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Bounding Sub-optimality. Finally, we bound the sub-optimality Vl’f;* - Vf:rr* . Putting the bounds
on (I) and (II) into (T9), we have

Vi = Vi
Crrer(6/2) + Aer(8/2) + 2€appron + Vi — Vi (20)

Since Algorithmreturns the mixture policy 7 = % ZtT:1 wt, the sub-optimality is Vfr;* - Vf:rr* =
% Zthl (fo;* — fo;). Using the bounds we derived and Lemma it holds that

T 7
‘/1,7"* - Vl,'r‘*

1 & ,
= =3 (v v
t=1

T
< V/Orrer(6/2) + Aep(8/2) + 2€appron + Z (viv = vim)
Crrer(8/2) + Nep(8/2) + 2€appros + RH 1°§|TA |

x2H log(|R|/6) \/ H3T log(H|F|/6) log(H|P|/6) log | Al
< PR = e Vs = S e o
<0 <CTR\/ Vi + R N + RH N + RH T

2

<0 <CTR /K Hlo]i(\RVé) +RH\/max{HT10g(H|.7;V/§),log(H|P|/5)} S\ RH 10gj|:4|> .

O

E SUPPORTING LEMMAS

Lemma E.1 (Performance Difference Lemma (Kakade & Langford} [2002)). Let P be any transition

probability, and denote the corresponding value function by V. Let 7, pi be any policies. For any
reward r, we have that

Vi (s1) = Vil (s1) ZEShNd” (@R r(sn, )y (- | sn) =7 (- | sn))]

h=1

Proof. Recursively applying the Bellman equation, we obtain

Vi (s1) = Vi (1) = Ba[r(s1, 1) + Vol (s2)] = Ex [V, (s1)]
Q7 +(s1,a1) — Vi (s2) + Vi (s2)] — Ex[V{,.(s1)]
Q7 (51,01) = Vi (51)] + Ex [V5, (s2) — V3, (52)]

)

QT (s1,7), (- | s1) = 7(- | 51))] + Ex[V5(52) — Vg (52)]

H
= Z sp~dp [<Qh T‘(Sh’ '),7T(' | Sh) - ﬁ-( | Sh)ﬂ .

h=1
O
Lemma E.2 (Lemma 2 in|Zhan et al.|(20244)). With probability at least 1 — &', we have
2Hlog(|R|/d
Boo i [1607) = 7)) = (%) = () < BRI . ey oy
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Lemma E.3 (Lemma 3 in Zhan et al.| (2024a)). With probability at least 1 — &', for all h € [H], it
holds that

E (s an)~d [

where co is an absolute constant.
Lemma E.4 (Lemma 15 in|Song et al.| (2023)). Fix any B > 0, § € (0,1) and assume we have a
class of real-valued functions H : X — [—B, B]. Suppose we have K i.i.d. samples {(zy,yi)}H<

where zj, ~ p and yi, = h*(z1,) +ex, where h* € H and {e}, }1<_, are independent random variables
such that Eley, | xx] = 0. Additionally, suppose that maxy, |yk| < R and supmex |h*(z)| < B.

A 2 log(H|P|/d’
Bl Laman) = (s < 2B g0y oo

Then, with probability at least 1—36, the least square estimator h € arg ming, ¢4 Zk L(h(zg) —yk)?
satisfies:

Eonp {(fz( ) — h*(x))Q] < w

where co is an absolute constant.

Algorithm 4 APPO (Practical version)

1: Input: Batch size B, Learning rates vy, vy, g, constants A > 0, 7 € (0,1)

2: Train reward model 7 based on Dyer > Utilize any reward learning method
3: for step=1,2,... do

Sample mini- batch of transition tuples Bmp and trajectory pairs Bij from Dyg;

5 Train Q functions ¢* < ¢* — a¢V¢LL¢1 (Bup, Buaj) for i € {1, 2} @)

6: Update target Q function ¢ = (1 — 7)¢" + 7¢' fori € {1,2}

7 Train V function ¢ < ¢ — o,V Ly (Bup) (10)
8.

9:

Nk

: Train actor 6 < 6 + oyVgLy(Buwp) (II)
end for
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F ADDITIONAL EXPERIMENTS

F.1 EVALUATION ON META-WORLD MEDIUM-EXPERT DATASET

To further demonstrate the generalization capability of APPO, we collected the Meta-world
medium-expert dataset following the data collection procedures outlined in prior works (Hejna
& Sadighl 2024} (Choi et al., [2024). Detailed information regarding the dataset is provided in Sec-
tion [g For comparison, we use MR, the most effective baseline method identified in Table E} The

hyperparameters are presented in Table ] The results, shown in Table 2] indicate that APPO consis-
tently outperforms or performs on par with MR.

# of feedback | 500 \ 1000
Dataset | dial-turn  sweep-into | dial-turn  sweep-into
MR 15.80+12.73  14.32+3.30 | 26.08+18.78  8.48+1.92
APPO 32.40+1356  12.80+5.35 | 39.20+15.60 14.56+6.25

Table 2: Success rates on Meta-world medium-expert dataset with 500, 1000 preference feedback,
averaged over 5 random seeds.

F.2 EFFECT OF DATASET SIZE

dial-turn sweep-into
100 100

80 - 80 A
T 60 3 60
- Bl
© ©
o o
B 40 0B 40
[ [
|9 |9
1) 1)
=] =]
0 204¥ ¥ 204 ///////r/

0 0

0.5 1.0 2.0 3.0 0.5 1.0 1.5 2.0
Dataset Size (x1e5) Dataset Size (x1e5)

—e— APPO MR ’

Figure 3: Success rates of APPO and MR evaluated in Meta-world medium-replay datasets, with
varying dataset sizes. The number of preference feedback is fixed at 1000.

To examine the impact of dataset size |Dy,j|, we conducted experiments with varying sizes of the
Meta-world medium-replay datasets. As shown in Figure[3] the performance of MR fluctuates with

changes in dataset size, whereas the performance of APPO exhibits a more consistent and gradual
response to dataset size variations.

F.3 LEARNING CURVES FROM EXPERIMENTS.

Figure [4] and Figure [5] show the learning curves of the experiments in Table [T] and Table 2] Each
algorithm is trained for 250, 000 gradient steps, with evaluations conducted every 5, 000 steps. The
success rates of the last five evaluation points are averaged and then reported in Table[T]and Table[2]
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Dataset | BPT box-close dial-turn sweep BPT-wall sweep-into drawer-open lever-pull
Size (x10%) | 1.0 8.0 3.0 7.0 1.5 1.0 1.0 3.0

Table 3: The sizes of Meta-world medium-replay datasets (Choi et al., 2024). The abbreviation
BPT indicates button-press-topdown.

G EXPERIMENTAL DETAILS

G.1 DATASETS

The Meta-World medium-replay dataset from (Choi et al.|(2024) consists of replay buffers gener-
ated by SAC (Haarnoja et al.| 2018)) agents achieving approximately 50% success rate. The dataset
sizes are detailed in Table 3|

The Meta-world medium-expert dataset was collected following the procedures described in prior
works (Hejna & Sadighl [2024} |Choi et al., 2024). Each dataset contains trajectories from five
sources: (1) the expert policy, (2) expert policies for randomized variants and goals of the task,
(3) expert policies for different tasks, (4) a random policy, and (5) an e-greedy expert policy that
takes greedy actions with a 50% probability. These trajectories are included in the dataset in pro-
portionsof 1 : 1 : 2 : 4 : 4, respectively. Additionally, standard Gaussian noise was added to the
actions of each policy. The dataset sizes match those of the medium-replay dataset.

G.2 IMPLEMENTATION AND HYPERPARAMETERS.

For a fair comparison with baseline methods, we train the reward model and MR following the offi-
cial implementation of |Choi et al.| (2024)). The reward model is implemented by an ensemble model
of 3 fully connected neural networks with three hidden layers, each containing 128 neurons. For
critics (Q and V) and policies, we use fully connected neural networks with three hidden layers,
each containing 256 neurons. Other values are listed in Table[d] We find that using a lower learning
rate for 7 and softer target network updates further stabilizes the training process of APPO. Experi-
ments were run on Intel Xeon Gold 6226R CPU and Nvidia GeForce RTX 3090 GPU, each training
session consists of 250, 000 gradient steps, which take 3 — 4 hours to complete. Our code can be
found in https://github.com/oh-1lab/APPO.git.

32


https://github.com/oh-lab/APPO.git

Published as a conference paper at ICLR 2025

Algorithm Component Value

Neural networks 3-layers, hidden dimension 128

Activaton ReLU for hidden activations, Tanh for final activation

Optimizer Adam (Kingma & Bal|2015) with learning rate le-3
Reward model .

Batch size 512

Epochs 300

Ensembles 3

Neural networks (Q, V, 7) 3-layers, hidden dimension 256

Activaton ReLU for hidden activations
Q, V, 7 optimizer Adam with learning rate 3e-4
MR Batch size 256
Target network soft update ~ 0.005
B (IQL advantage weight) 3.0
7 (IQL expectile parameter) 0.7
discount factor 0.99
Neural networks (Q, V, 7) 3-layers, hidden dimension 256
Activaton LeakyReL.U for hidden activations
Q,V, a optimizer Adam with learning rate 3e-4
APPO 7 optimizer Adam with learning rate 3e-5
Batch size 256 transitions and 16 trajectory pairs
Target network soft update ~ 0.001
discount factor 0.99

Table 4: Implementation details and hyperparameters. For the reward model and MR algorithm, we
follow the official implementation of |Choi et al.| (2024)).
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Figure 4: Learning Curves from the experiments in Table
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Figure 5: Learning Curves from the experiments in Table
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