
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RAPID GRASSMANNIAN AVERAGING
WITH CHEBYSHEV POLYNOMIALS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose new algorithms to efficiently average a collection of points on a Grass-
mannian manifold in both the centralized and decentralized settings. Grassman-
nian points are used ubiquitously in machine learning, computer vision, and signal
processing to represent data through (often low-dimensional) subspaces. While
averaging these points is crucial to many tasks (especially in the decentralized
setting), existing methods unfortunately remain computationally expensive due to
the non-Euclidean geometry of the manifold. Our proposed algorithms, Rapid
Grassmannian Averaging (RGrAv) and Decentralized Rapid Grassmannian Aver-
aging (DRGrAv), overcome this challenge by leveraging the spectral structure of
the problem to rapidly compute an average using only small matrix multiplica-
tions and QR factorizations. We provide a theoretical guarantee of optimality and
present numerical experiments which demonstrate that our algorithms outperform
state-of-the-art methods in providing high accuracy solutions in minimal time.
Additional experiments showcase the versatility of our algorithms to tasks such as
K-means clustering on video motion data, establishing RGrAv and DRGrAv as
powerful tools for generic Grassmannian averaging.

1 INTRODUCTION

Grassmannian manifolds, which represent sets of K-dimensional linear subspaces of N -dimensional
spaces (Edelman et al., 1998), have been used extensively in machine learning (Huang et al., 2018;
Zhang et al., 2018; Slama et al., 2015), computer vision (Harandi et al., 2013; Lui & Beveridge,
2008; Turaga et al., 2011), and signal processing (Gallivan et al., 2003; Mondal et al., 2007; Xu
& Hassibi, 2008). Applications include Principal Component Analysis (PCA) (Jolliffe & Cadima,
2016), low-rank matrix completion (Keshavan et al., 2010), multi-task feature learning (Mishra et al.,
2019), clustering (Gruber & Theis, 2006), array processing (Love et al., 2003; DeLude et al., 2022),
and distance metric learning (Meyer et al., 2009).

An essential primitive operation is finding an average of a collection of points on the manifold. There
are several distinct yet reasonable definitions for an average of points on a Grassmannian (Marrinan
et al., 2014). Arguably the most natural analog of the Euclidean mean for points on a Riemannian
manifold (such as a Grassmannian) is the Fréchet (or Karcher) mean, defined as the point which
minimizes the sum of squared distances to all sample points (Fréchet, 1948). Unfortunately, the
Fréchet mean rarely admits a closed form solution, instead necessitating approximation via iterative
algorithms (Jeuris et al., 2012). Such algorithms are often computationally expensive, scale poorly
with dimension, and are not easily decentralized.

The induced arithmetic mean (IAM) is an alternative manifold average computed by first determin-
ing the Euclidean mean of the manifold sample points once embedded “naturally” in some Euclidean
space and subsequently projecting this Euclidean mean “naturally” back onto the manifold. For
Grassmannian manifolds, the standard embedding is the set of projection matrices and the standard
projection operation is simply the closest matrix by Frobenius distance (Sarlette & Sepulchre, 2009).
This manifold average may be computed much more efficiently in practice and lends itself well to
decentralization as the Euclidean mean may be computed by average consensus (Nedic & Ozdaglar,
2009). In such a decentralized setting, computing this Euclidean mean would be the only operation
that requires communication in order to compute the IAM.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

As the dimensionality of data grows, it becomes increasingly important to consider decentralized
algorithms (Nedić et al., 2018) as data might be spread across many machines and only be accessible
for processing via distributed algorithms (Beltrán et al., 2023). Distributed computation might be
required as well for situations where the data associated to each agent must be treated with privacy
protections, where aggregation of all data onto a single node may be prohibited (Han et al., 2017).
While a central server is sometimes employed in this regime, it is similarly common for the use of
such a server to be infeasible or simply inefficient when compared to fully decentralized approaches
(Sun et al., 2021; Feller et al., 2012).

We propose a novel method to efficiently compute the IAM of a collection of points on a Grass-
mannian manifold. Our method is highly amenable to decentralization, meaning it can be readily
deployed to multi-agent systems or used in data centers operating on big data. Our algorithms op-
erate similarly to the famous power method, with the distinction that Chebyshev polynomials are
employed to leverage a “dual-banded” property of the problem in order to achieve never-before-
seen efficiency in computation and communication. We demonstrate merit through a theoretical
guarantee on the optimality of our approach among a class of polynomial-based algorithms, syn-
thetic numerical experiments comparing our algorithms against state-of-the-art, and experiments on
real-world problems showcasing the versatility of our algorithms.

2 RELATED WORK

The problem of computing an appropriate average on specific manifolds has been investigated for
many different manifolds, e.g., spheres SN , special orthogonal matrices SO(N), Stiefel matrices
St(N,K), even Grassmannian points Gr(N,K) (Downs, 1972; Buss & Fillmore, 2001; Galperin,
1993; Hueper & Manton, 2004; Absil et al., 2004; Moakher, 2002; Fiori et al., 2014; Yun, 2018;
Hauberg et al., 2014). Focus is often given to the Fréchet mean (Chakraborty et al., 2020; Cheng
et al., 2016; Le, 2001), however alternatives are becoming increasingly more popular (Fletcher et al.,
2008; 2009; Arnaudon et al., 2012; Marrinan et al., 2014; Chakraborty & Vemuri, 2015; Lee & Jung,
2024). Similarly, the problem of consensus on a manifold in a multi-agent setting has been explored
in works such as Sepulchre (2011); Tron et al. (2012).

There have been several algorithms proposed for decentralized optimization on manifolds such as
Grassmannians. Sarlette & Sepulchre (2009) proposes a decentralized gradient-based algorithm
to solve the problem of computing the IAM for connected compact homogeneous manifolds, e.g.
SO(N) and Gr(N,K). Deng & Hu (2023) proposes two decentralized gradient-based algorithms
for general optimization problems on Riemannian manifolds. Mishra et al. (2019) proposes a de-
centralized gradient-based gossip algorithm for general optimization problems on a Grassmannian
manifold. Similar works include Chen et al. (2021; 2023); Zhang & Sun (2017).

A problem which is closely related to Grassmannian averaging is that of PCA. Ye & Zhang (2021)
proposes the DeEPCA algorithm to solve the decentralized PCA problem. While computing a Grass-
mannian average is not the intended application of DeEPCA, it may be adapted to this task fairly
naturally. Gang et al. (2021); Gang & Bajwa (2022); Froelicher et al. (2023) similarly propose
distributed algorithms for PCA; for a more comprehensive review of this field, see Wu et al. (2018).

As we will see later in this paper, the problem of Grassmannian averaging is related to the problem
of spectral estimation (see Section 3.1). There exist many tailored algorithms in this field, varying
based on factors such as eigenvalue vs. eigenvector estimation, matrix rank, symmetry, estimation
of leading vs trailing quantities, size of eigengap, etc (Liesen & Strakos, 2013; Lanczos, 1950;
Knyazev, 2001; Sleijpen & Van der Vorst, 2000; Zhou & Saad, 2007; Ghanem & Ghosh, 2007;
Martinsson & Tropp, 2020). Many such algorithms optimize for centralized computation, using
iterative and sometimes stochastic approaches. One of the most elegant solutions in this space is the
power method, from which we take inspiration (see Section 3.3).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 BACKGROUND

3.1 AVERAGING SUBSPACES

Given a collection of M subspaces, our goal is to determine the average subspace as effi-
ciently as possible. We choose to use the standard IAM definition of “average” (Sarlette &
Sepulchre, 2009) as it leads to what we believe is the most efficient algorithm. Formally, let
St(N,K) :=

{
U ∈ RN×K | UTU = IK

}
be the set of N × K Stiefel matrices where N ≥

K and let Gr(N,K) := {[U] | U ∈ St(N,K)} (where the equivalence is defined as [U] :=
{UQ |Q ∈ St(K,K)}) be the Grassmannian representing the set of all K-dimensional subspaces
of RN . The average of our collection {[Um]}Mm=1 is then denoted

[
Ū
]

and defined by the following
optimization problem

[
Ū
]
:= argmin

[U]∈Gr(N,K)

∥∥∥∥∥
(

1

M

M∑
m=1

UmUT
m

)
−UUT

∥∥∥∥∥
2

F

(1)

Equation (1) may be manipulated algebraically to be interpreted equivalently in terms of the eigen-
vectors of P̄ := 1

M

∑M
m=1 UmUT

m. Let

P̄ = Ṽ Λ̃Ṽ
T
= [V V ⊥]

[
Λ 0
0 Λ⊥

] [
V T

V T
⊥

]
denote an eigendecomposition where V ∈ St(N,K) and the entries of Λ̃ are non-increasing. As-
suming λK > λK+1 (where λk denotes the kth largest eigenvalue of P̄), it can be shown that the
solution to eq. (1) is precisely

[
Ū
]
= [V] (see Appendix B.2 for a proof). Consequently, deter-

mining the span of the leading K eigenvectors of P̄ is tantamount to solving eq. (1), which is the
perspective we will later use to motivate our algorithms.

As we continue to discuss this problem, it is informative to keep in mind the following properties.
The eigenvalues of P̄ are conveniently bounded by 0 ⪯ Λ̃ ⪯ IN and satisfy tr

(
Λ̃
)
= K, which

may be determined by inspection. As a result, λK , λK+1 are bounded as 1
N−K+1 ≤ λK ≤ 1

and 0 ≤ λK+1 ≤ K
K+1 . For convenience, we occasionally abuse notation to let [X] denote the

Grassmannian equivalence class for the span of the columns of arbitrary (not necessarily Stiefel)
matrix X ∈ RN×K .

3.2 AVERAGING SUBSPACES IN A DECENTRALIZED NETWORK

Decentralized or distributed optimization problems arise in numerous real-world scenarios where
centralized approaches are impractical or undesirable. These problems are characterized by using
information spread across multiple agents or nodes in a network. Motivating reasons include privacy,
communication constraints, data storage limitations, scalability, etc.

In the context of this paper, consider the setting where there are M agents, each holding a sub-
space [Um], connected by a some undirected communication graph G. We then want each agent to
learn the solution

[
Ū
]

to eq. (1) under the restriction that each agent only communicate with their
neighbors in G.

Average consensus (AC) is a useful primitive in decentralized optimization to quickly approximate
the average of real numbers in a decentralized manner (Nedic & Ozdaglar, 2009). If the mth agent
in a decentralized network holds a matrix Am, AC allows each agent to approximate 1

M

∑M
m=1 Am

with minimal rounds of neighbor-only communication. Unfortunately, the non-convex manifold
structure of Gr(N,K) precludes us from efficiently applying AC directly to solve eq. (1), as the Eu-
clidean mean of elements from a non-convex set in general does not lay in said set. While we could
have each agent compute the matrices UmUT

m and then use AC to approximate P̄ , this would incur
a communication cost ofO

(
N2
)

(the size of P̄) which may be much larger thanO(NK). We could
instead use AC to average the matrices Um with preferable communication cost O(NK), however

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the arbitrary choice of representative Stiefel matrix Um from the Grassmannian equivalence class
[Um] makes this approach ill-posed.

In order to achieve theO(NK) communication cost without being ill-posed, one can have all agents
compute UmUT

mX and then use AC to approximate P̄X , where X ∈ RN×K is some matrix
agreed upon by all agents a priori. Section 3.3 elaborates on how quantities of the form P̄X can
be used to estimate the desired leading eigenvectors. In practice, the requirement that all agents
agree upon X might be overly strict; in many scenarios, it often suffices to have each agent m have
instance Xm which are all approximately equal (i.e. there exists some X for which Xm ≈ X for
all m ∈ [M]).

After one iteration of an algorithm, each agent will have some local approximation of the quantity
P̄X . If the matrix X is retained in memory for each agent, then AC may be applied to a linear
combination of the P̄X approximations and X to approximate some quantity P̄

(
aP̄X + bX

)
=(

aP̄
2
+ bP̄

)
X . Applying this logic recursively reveals that such an algorithm can approximate

ft
(
P̄
)
X after t iterations, where ft ∈ Pt is a tth order polynomial; in Section 4 we will consider

more thoroughly these polynomials and how they can translate to desirable algorithms.

Gradient tracking is a famous technique in decentralized optimization that improves upon the con-
vergence rate of AC-based methods (Shi et al., 2015; Xu et al., 2015; Qu & Li, 2017; Deng & Hu,
2023; Ye & Zhang, 2021). In essence, it sets up a recursion using standard AC whose fixed point
satisfies both a consensus condition (meaning all agents agree) and a stationarity condition (meaning
the solution is locally optimal). We will later employ a form of gradient tracking over quantities of
the form ft

(
P̄
)
X for our decentralized algorithms.

3.3 THE POWER METHOD

The power method is a classical algorithm to estimate the leading eigenspace of a positive semidef-
inite matrix A ∈ RN×N . A single power iteration applies the matrix A and orthonormalizes (for
numerical stability) the result, e.g.

U (t) = QR
(
AU (t−1)

)
,

where QR(·) computes the Q ∈ RN×K matrix from a QR factorization of the argument. The power
method loop may be unrolled (thanks to the property QR(XQR(Y)) = QR(XY)) to reveal the
following form

U (t) = QR

(
AA · · ·AA︸ ︷︷ ︸

t times

U (0)

)
= QR

(
AtU (0)

)
Let V ⋆ ∈ St(N,K) be a basis for the leading K eigenvectors of A. For random initialization
U (0) ∈ RN×K , the span of U (t) converges to the span of the V ⋆ provided rank

(
V T

⋆U
(0)
)
= K

(Golub & Van Loan, 2013, Chapter 8.2).

At iteration t, the power method effectively applies the function ft(λ) = λt to each eigenvalue of A.
Consider for example the case where λK(A) = 1 and λK(A)− λK+1(A) > 0. As t increases, the
ratio between trailing and leading eigenvalues of At shrinks exponentially; formally, for 1 ≤ k ≤ K
and K + 1 ≤ ℓ ≤ N we have the following

λℓ

(
At
)

λk

(
At
) ≤ λK+1

(
At
)

λK

(
At
) =

(
λK+1(A)

λK(A)

)t

< 1

While the power method works well, large values of λK+1 can slow convergence. We will later show
how polynomials other than λt can overcome this shortcoming and use them in our algorithms.

4 METHODS

4.1 MOTIVATION

The goal of the RGrAv algorithms is to solve eq. (1) as efficiently as possible. Recall from Section 3
that determining the span of the K leading eigenvectors of P̄ is tantamount to solving eq. (1). Mo-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tivated by the decentralized setting and the power method, we restrict our consideration to iterative
algorithms which after t iterations compute ft

(
P̄
)
Ū

(0) for some tth-order polynomial ft and initial

estimate Ū
(0) (see Section 3.2). If we can choose ft such that ft

(
P̄
)

has its trailing N −K eigen-
values significantly reduced compared to its leading K eigenvalues (relative to initial P̄), then the
span of the matrix product ft

(
P̄
)
Ū

(0) will be approximately our desired solution [V] for arbitrary

initial Ū (0). We then focus on choosing such a so-called “noise-canceling” polynomial ft, in the
sense that the trailing eigenvalues get “canceled”.

We consider the case where the spectrum of P̄ is dual-banded, i.e. there exists some 0 < α < β < 1
such that Λ⊥ ⪯ αIN−K , βIK ⪯ Λ, and β − α ≫ 0 (e.g. β − α = 1

3). These values α, β are
unknown, but may be estimated heuristically from domain knowledge. This situation can arise, for
instance, when points are normally distributed on the manifold (see Section 5.1), where the heuristic
estimation of α, β comes from estimation of the variance of the dataset. For simplicity, we refer
to the intervals [0, α] and [β, 1] as the “stop-band” and “pass-band”, respectively. Similar to the
power method, we would like our polynomial ft to decrease the ratio between eigenvalues in the
stop-band relative to eigenvalues in the pass-band. However, unlike the power method, knowledge
of this dual-banded structure (even heuristically) allows us to choose polynomials which optimize
the worst case value of this ratio criteria. Leveraging this spectral structure is how we will choose
our optimal polynomials f⋆

t (see Theorem 1).

There is, however, an important consideration for high-dimensional data. In the case where N ≫
MK we are guaranteed that the nullspace of P̄ is (at least N −MK) high-dimensional by rank
subadditivity, meaning there will be a cluster of eigenvalues at 0. For this reason, we will constrain
our polynomials ft to always satisfy ft(0) = 0. Since the ratio criteria of Theorem 1 is invariant
to scaling of ft, we provide one final constraint of ft(1) = 1 simply for uniqueness of solution and
numerical stability.
Theorem 1. For t ≥ 1, the minimization problem

minimize
ft∈P′

t

maxλ∈[0,α]|ft(λ)|
minλ∈[β,1]|ft(λ)|

, (2)

where P ′
t is the set of tth order polynomials such that ft(0) = 0 and ft(1) = 1, is solved by

f⋆
t (λ) =

t−1∏
s=0

λ− rs,t
1− rs,t

, rs,t := α
cos
(

π(s+1/2)
t

)
+ cos

(
π
2t

)
1 + cos

(
π
2t

)
which is a modification of a Chebyshev polynomial of the first kind.1

Figure 1: A visual comparison between the power method and our method. Each method’s corresponding tth-
order polynomial is applied to the eigenvalues λ in the domain [0, 1]. The Chebyshev recursion with threshold
parameter α = 0.5 results in the polynomial oscillations being reduced and flattened in the range [0, α].

1A proof may be found in Appendix B.1

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 RGRAV ALGORITHMS

The polynomial f⋆
t may be exactly implemented by iteratively multiplying each factor in the product

given in Theorem 1; the “finite” variants of the RGrAv algorithms (Algorithms 5 and 6) do precisely
this. While this approach may be acceptable when the number of iterations t is known in advance,
intermediate solutions can be quite sub-optimal.

Ideally, one would be able to describe f⋆
t in terms of only a constant number of previous f⋆

s , e.g.
f⋆
t−1, f

⋆
t−2. This would yield an efficient algorithm with optimal intermediate solutions whose mem-

ory/compute costs do not grow as t → ∞. Unfortunately, this is not the case; fortunately, empiri-
cally, f⋆

t is well-approximated in terms of f⋆
t−1, f

⋆
t−2 (see Figure 1). For t ≥ 2, coefficients at, bt, ct

are chosen such that
f̃⋆
t (λ) = at((λ+ bt)ft−1(λ) + ctft−2(λ))

matches f⋆
t (λ) in its leading three terms, i.e. f⋆

t (λ)− f̃⋆
t (λ) ∈ Pt−3 (see Algorithm 7); the “asymp-

totic” variants of the RGrAv algorithms (Algorithms 1 and 4) use this f̃⋆
t .

As discussed in Section 3.3, orthonormalization must occur periodically for numerical stability.
To minimize the frequency of the orthonormalization schedule, our algorithms effectively cache the
operation of the most recent exact orthonormalization to a matrix S and then efficiently approximate
the orthonormalization procedure for iterations between the schedule by left-application of S. We
choose the QR factorization for our orthonormalization method, however alternative methods would
be acceptable.

In the centralized setting, the RGrAv algorithms need not worry about inaccuracy from average con-
sensus and so the order of operations focuses on minimizing the number of computations performed.
In the decentralized setting, the order of operations focuses on minimizing the error in the gradient
tracking procedure. Additionally, in the decentralized setting one must take care to use a “stable”
orthonormalization method which will not change drastically with small perturbations in the input.
We omit the nuances of numerical linear algebra that lead to this problem (see Golub & Van Loan
(2013, Chapter 5) for more information) and simply present Algorithm 2, which is a stable wrapper
for any implementation of a possibly unstable QR factorization.

Algorithm 1 Asymptotic DRGrAv (Decentralized Rapid Grassmannian Averaging)

Input: α ∈ [0, 1),
{
Ū

(0)
m

}M

m=1
, {Um}Mm=1

Output: Ū (T)

Sm ← IK
for t = 1, 2, 3, . . . do

A(t)
m ← UmUT

mŪ
(t−1)

▷ Local Power Iteration
if t = 1 then

Y (1)
m ← A(1)

m ▷
[
Y (1)

]
≈
[
P̄ Ū

(0)
]

Z(1)
m ← Y (1)

m ▷ Gradient Tracking
else

at, bt, ct ← ChebyshevCoefficients(t, α) ▷ See Algorithm 7
Y (t)

m ← at

(
A(t)

m + btŪ
(t−1)
m + ctŪ

(t−2)
m

)
▷
[
Y (t)

]
≈
[
f̃⋆
t

(
P̄
)
Ū

(0)
]

Z(t)
m ← Ẑ

(t−1)

m + Y (t)
m − Y (t−1)

m ▷ Gradient Tracking
end if
Ẑ

(t)

m = AverageConsensus
(
Z(t)

m

)
if t is on the orthonormalization schedule then

Ū
(t)
m ,Sm ← StableQR

(
Ẑ

(t)

m

)
▷ (Numerical Stability)

else
Ū

(t)
m ← Ẑ

(t)

m Sm ▷ (Numerical Stability)
end if
Ū

(t−1)
m ← Ū

(t−1)
m Sm ▷ (Numerical Stability)

end for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 StableQR

Input: Ẑ ∈ RN×K

Output: U ∈ St(N,K),S ∈ RK×K

Q,R← QR
(
Ẑ
)

▷ Arbitrary QR implementation
D ← sgn(Diag(R))
U ← QD
S ← R−1D ▷ Upper triangular inverse

5 EXPERIMENTS

5.1 DECENTRALIZED GRASSMANNIAN AVERAGING

In these experiments, we consider the problem where a network of M connected agents each has a
local instance of a Grassmannian basis Um ∈ St(N,K) and we would like for all agents to learn
an average Grassmannian basis of all Um in a strictly decentralized manner (i.e. there is no central
server, all communication is neighbor-to-neighbor). Our experiments had parameters M = 64,
N = 150, K = 30. To demonstrate the practicality of DRGrAv in both well-connected and sparse
communication graphs, we performed experiments for two communication graphs: the hypercube
graph and the cycle graph.

We compared DRGrAv to several alternative methods for Grassmannian averaging. Given below are
the algorithms, their sources, and considerations for their tuning such that the comparison would be
fair.

DRGrAv (this paper): Contrary to the following algorithms for which hyperparameters were cho-
sen over large ranges to be empirically optimal, the hyperparameter α is chosen here heuristically
as 0.15. We also choose to use the approximate asymptotic variant of DRGrAv, and set the or-
thonormalization schedule to orthonormalize at every iteration (to match DeEPCA). We believe it is
unrealistic in practice to exactly know the optimal choice of α, so by comparing our heuristically-
tuned algorithm against optimally-tuned competitors (detailed below) we hope to demonstrate that
our algorithm is competitive against alternatives, regardless of however optimal their hyperparame-
ter tuning.

DeEPCA (Ye & Zhang, 2021): While this algorithm is not intended for decentralized Grassmannian
averaging, we found that it could be easily adapted to this setting and gave competitive results: one
simply substitutes UmUT

m for the paper’s Aj . Also, for numerical stability, the paper’s QR +
SignAdjust procedure is replaced with the StableQR procedure. At a high level, these are all that’s
needed to adapt the method; see the deepca.py for a comprehensive algorithm description.

DPRGD/DPRGT (Deng & Hu, 2023): These algorithms are adapted to the decentralized Grass-

mannian averaging problem by using − 1
2

∥∥∥UT
mŪ

(t)
m

∥∥∥2
F

for the paper’s fi. These algorithms each
have a single hyperparameter for step size (referred to as α in Deng & Hu (2023)), which was
chosen for each algorithm (up to precision of 2 significant figures) by searching for the value in[
10−4, 103

]
which approximately minimized the MSE; the solutions were on the order of 100.

COM (Consensus Optimization on Manifolds) (Sarlette & Sepulchre, 2009): This algorithm is
the discrete-time variant of the continuous-time dynamics presented in Equation 20 of Sarlette &
Sepulchre (2009). There is a single hyperparameter for step size (referred to as α in Sarlette &
Sepulchre (2009)), which was chosen (up to precision of 2 significant figures) by searching for the
value in

[
10−4, 103

]
which approximately minimized the MSE; the solutions were on the order of

10−1.

Gossip (Mishra et al., 2019): This is Algorithm 1 of Mishra et al. (2019) where
1
4

∑M
m=1

∑
n∈N (m) d

2
([

Ū
(t)
m

]
,
[
Ū

(t)
n

])
is used as the paper’s g (where N (m) is the set of neigh-

bors of m). This algorithm is a gossip algorithm, not an average-consensus-based algorithm. As
a result, to keep the comparison fair we let each agent perform a gradient step in parallel for each
round of consensus the other algorithms perform. In precise terms, during each round of con-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

sensus this algorithm will select edges from the graph uniformly at random until there no longer
remain any 2 neighboring agents who both have not yet been selected; each of these agents then
performs a gradient step and the process repeats. There are 2 hyperparameters2 for step size a
and b, which were chosen (up to precision of 2 significant figures) by searching for values in
a ∈

[
10−4, 103

]
, b ∈

[
10−8, 100

]
which approximately minimized the MSD; the solutions were

a on the order of 100 and b on the order of 10−4.

0 10 20 30 40 50 60
Communication Rounds

10 15

10 12

10 9

10 6

10 3

100

103

M
SE

Hypercube Graph

DRGrAv
DeEPCA
DPRGD
DPRGT
COM
Gossip

(a) (Hypercube) Mean Squared Error

0 100 200 300 400
Communication Rounds

10 10

10 8

10 6

10 4

10 2

100

102

M
SE

Cycle Graph

DRGrAv
DeEPCA
DPRGD
DPRGT
COM
Gossip

(b) (Cycle) Mean Squared Error

0 10 20 30 40 50 60
Communication Rounds

10 15

10 12

10 9

10 6

10 3

100

103

M
SD

Hypercube Graph

DRGrAv
DeEPCA
DPRGD
DPRGT
COM
Gossip

(c) (Hypercube) Mean Squared Disagreement

0 100 200 300 400
Communication Rounds

10 10

10 8

10 6

10 4

10 2

100

102
M

SD
Cycle Graph

DRGrAv
DeEPCA
DPRGD
DPRGT
COM
Gossip

(d) (Cycle) Mean Squared Disagreement

Figure 2: Plots of Mean Squared Error/Disagreement for the example decentralized Grassmannian averaging
problem. DRGrAv is our proposed algorithm, DeEPCA is from Ye & Zhang (2021), DPRGD and DPRGT are
from Deng & Hu (2023), COM is from Sarlette & Sepulchre (2009), and Gossip is from Mishra et al. (2019).
The units of the x axes are communication rounds, not algorithm iterations.

Table 1: Comparison of runtimes for various algorithms (using the hypercube graph). The first five data
columns display time (in milliseconds) until the MSE across agents goes below the given tolerance. COM
and Gossip do not in general converge to any specific point, so their metric for tolerance is instead MSD. The
minimal quantity in each column is bolded. The final column represents time per algorithm iteration. These
decentralized algorithms are not truly run on separate devices, only simulated as such, so these runtimes should
be interpreted broadly as general evidence that DRGrAv would perform well in a true decentralized setting.

Time (ms) until tolerance... 1e-3 1e-6 1e-9 1e-12 1e-15 Per Iter.
DRGrAv (This Paper) 35.4 47.4 47.4 56.7 66.1 11.8

DeEPCA Ye & Zhang (2021) 35.8 45.7 53.0 61.1 80.6 9.13
DPRGD Deng & Hu (2023) 1860 61200 >100000 >100000 >100000 9.24
DPRGT Deng & Hu (2023) 2270 2910 3470 4200 4780 14.5

COM* Sarlette & Sepulchre (2009) 5050 7290 9260 11000 13200 16.3
Gossip* Mishra et al. (2019) 1280 1730 2150 2590 3390 427

In order to have a fair comparison, all average-consensus-based algorithms mentioned above used
the same consensus protocol. Both graphs used the optimal Laplacian-based communication matrix
(i.e. W = I − 1

7L for the hypercube graph, W ≈ I − 1
2L for the cycle graph, where L is the

2Technically, Mishra et al. (2019) has a third hyperparameter, denoted ρ. However, their algorithm only
ever uses the quantity ρa, so w.l.o.g. we let ρ = 1 and control only a.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

corresponding graph Laplacian matrix) for 10 rounds of communication in the hypercube graph
case and 50 rounds of communication in the cycle graph case.

A single synthetic dataset {Um}Mm=1 of “normally distributed points with standard deviation π
4 ” was

used for all experiments. In precise terms, said dataset was generated by sampling a center point UC

uniformly at random on Gr(N,K) and then computing Um := expUC
(Tm) for all m ∈ [M], where

Tm := ŨmΣ̃mṼ
T

m is a random tangent vector at UC such that Ũm, Ṽ m are sampled uniformly at
random from sets

{
Ũ | Ũ ∈ St(N,K),UT

CŨ = 0
}
,St(K,K) respectively and Σ̃ := Diag

(
π
4 z
)

where z ∼ N (0K , IK) is a vector draw of K i.i.d. standard normal random variables.

The Mean Squared Error quantity at time t was computed as 1
M

∑M
m=1 d

2
([

Ū
(t)
m

]
,
[
Ū
])

where
d is the extrinsic (or chordal) distance on the Grassmannian defined as d([U1], [U2]) :=

2−1/2
∥∥∥U1U

T
1 −U2U

T
2

∥∥∥
F

and Ū is the true IAM average (see Section 3), computed using the

torch.linalg.eigh function on P̄ directly (runtime of 161 milliseconds). Similarly, the Mean
Squared Disagreement quantity represents the amount to which the agents’ estimates vary at time t

and was computed as 2
M(M−1)

∑M
m=1

∑M
n=m+1 d

2
([

Ū
(t)
m

]
,
[
Ū

(t)
n

])
.

The results of these experiments are shown in Figure 2 and Table 1. Six iterations were chosen
for the hypercube graph case because at this point DRGrAv reaches floating point tolerance (FP-
tol), demonstrating that such precision is achievable by an algorithm in such time; Nine iterations
were chosen for the cycle graph in order to demonstrate the effective consensus-permitted tolerance
(ECPtol) of around 10−10. DRGrAv performs the best out of all algorithms, converging in the hy-
percube graph case to FPtol in only 6 iterations and converging in the cycle graph case to ECPtol
in only 5 iterations. The adapted DeEPCA method performs most closely to DRGrAv, however still
lags behind several orders of magnitude in MSE. In the cycle graph, DeEPCA manages to barely
beat DRGrAv in at the end, however given both are more or less at ECPtol we do not think this
provides strong evidence to prefer DeEPCA to DRGrAv. Since both COM and Gossip begin with
Ū

(0)
m ← Um instead of some pre-agreed upon starting U (0), they are able to have superior perfor-

mance to DRGrAv in the short term; however after only 2 iterations this short term behavior ends.
DPRGD and DPRGT, being generic algorithms for use on any compact submanifold, do not lever-
age any of the structure specific to the Grassmannian problem and consequently are not empirically
competitive to algorithms which do, e.g. DRGrAv. All algorithms presented have their specific ideal
use cases, and we claim that the problem of decentralized Grassmannian averaging is the ideal use
case of DRGrAv.

5.2 K-MEANS FOR VIDEO MOTION CLUSTERING

We consider the application of the RGrAv algorithm to the problem of video motion analysis, extend-
ing the work of Marrinan et al. (2014). Their study applied centralized subspace averaging methods
to multiple tasks on the DARPA Mind’s Eye video dataset. In our work, we focus specifically on the
(centralized) task of K-means clustering and compare against the best algorithm presented in their
work.

The Mind’s Eye dataset consists of a set of “tracklets” — short grayscale videos sequences of moving
objects, primarily people. Each tracklet consists of 48 frames of size 32 × 32 pixels. To prepare
these tracklets for subspace analysis, they are flattened into matrices Xt ∈ R1024×48, where each
column represents a vectorized frame. The subspaces U t = span(Xt) spanned by these columns
are treated as points on the Grassmannian, effectively encoding the essential motion patterns in the
video.

Each tracklet is annotated with a label describing the type of motion it contains, such as “walk” or
“ride-bike.” These labels provide ground truth for evaluating the effectiveness of clustering algo-
rithms; clusters are considered high-quality if most tracklets in the cluster share the same label. In
Marrinan et al. (2014), the authors find that the choice of averaging algorithm does not significantly
affect cluster quality as the number of clusters increases, whereas runtime can differ significantly.
As a result, we compare to the fastest averaging algorithm from their work – the flag mean – and
show that applying RGrAv can reduce runtime for the clustering task.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: A comparison of runtime for K-means with various averaging algorithms and numbers of clusters K.
The four colors represent the averaging algorithm as RGrAv (green), flag mean (orange), Fréchet mean (blue),
and power method (pink). The four algorithms produce clusters with similar quality (excluded for brevity), but
the RGrAv algorithm is significantly faster, showing 2×-10× speedup over the other averaging algorithms.

The standard K-means algorithm can be extended to cluster points on the Grassmannian by defining
two primitives: a distance metric and an averaging operation. The standard K-means algorithm with
these operations is shown in Algorithm 3. The centers Ū c are initialized randomly. At each iteration,
the points U t in the dataset are each assigned to their closest mean using the metric to form clusters.
The means are then updated to the average of their respective clusters, and the steps are repeated
until the means converge.

Algorithm 3 Grassmannian K-Means
Input: Subspaces {U t}Tt=1; Averaging algorithm: Ave(U1, · · · ,Un); Metric: d(U1,U2)
Output: Means {Ū c}Cc=1

{Ū (0)
c }Cc=1 ← {rand(St(N,K)}Cc=1 ▷ Initialize

while not converged do
{it}Tt=1 = {i : d(U t, Ū

(k)
i) ≤ d(U t, Ū

(k)
j) ∀j}Tt=1 ▷ Assign clusters

Ū
(k+1)
c = Ave({U t : it = c}) ▷ Compute new means

converged = maxc d(Ū
(k)
c , Ū

(k+1)
c) < tol ▷ Check termination

k = k + 1
end while

For our clustering experiments, we test on the first 200 tracklets in the Mind’s eye dataset, which
have a total of 24 unique labels. Given the success of DeEPCA (Ye & Zhang, 2021) in our bench-
marks as a runner-up, we use the centralized version (the block power method) in these experiments
as well. We test the performance of K-means with four different averaging algorithms, namely
RGrAv, the power method, the Fréchet mean, and the flag mean. The distance operation for cluster
assignment is chosen to be the chordal distance for computational efficiency. The Fréchet mean
is computed via iterated gradient descent on the sum of squared distances cost function. Similar
to Marrinan et al. (2014), we find that the four averaging algorithms produce clusters with similar
quality across various values for K (these results are not shown for brevity). However as can be
seen in Figure 3, the runtime varies significantly between algorithms. The Fréchet mean has the
slowest runtime regardless of number of clusters, while RGrAv offers a 2×-10× speedup over the
other averaging algorithms for all K values.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY STATEMENT

Section 5.1 is intended to be a comprehensive description sufficient for reproducibility; how-
ever, in addition all experiments from this section may be reproduced by running the
scripts/decentralized grassmannian averaging.py script in the supplemental
code; precise instructions and data formatting are described in the header of this file.
The K-means experiment can be reproduced in three steps. First is by downloading the
SUMMET dataset and putting it in the right subdirectory. Simply follow instructions in
data sources/video separation.py. Next to run the experiment, return to the base di-
rectory and run the command python -m scripts.tracklet clustering to run it as a
module. Finally once this completes, there should be a .pkl file with the results. To create the
visualization seen in this paper, run python -m vis.visualize tracklet and look in the
new plots/ subdirectory for the results.

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Riemannian geometry of grassmann manifolds
with a view on algorithmic computation. Acta Applicandae Mathematica, 80:199–220, 2004.

Marc Arnaudon, Frédéric Barbaresco, and Le Yang. Medians and means in riemannian geometry:
existence, uniqueness and computation. In Matrix Information Geometry, pp. 169–197. Springer,
2012.

Enrique Tomás Martı́nez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez Sánchez, Sergio López
Bernal, Gérôme Bovet, Manuel Gil Pérez, Gregorio Martı́nez Pérez, and Alberto Huertas Celdrán.
Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and chal-
lenges. IEEE Communications Surveys & Tutorials, 2023.

Samuel R Buss and Jay P Fillmore. Spherical averages and applications to spherical splines and
interpolation. ACM Transactions on Graphics (TOG), 20(2):95–126, 2001.

Rudrasis Chakraborty and Baba C. Vemuri. Recursive Fréchet Mean Computation on the Grass-
mannian and Its Applications to Computer Vision. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 4229–4237, Santiago, Chile, December 2015. IEEE. ISBN 978-
1-4673-8391-2. doi: 10.1109/ICCV.2015.481. URL http://ieeexplore.ieee.org/
document/7410838/.

Rudrasis Chakraborty, Liu Yang, Søren Hauberg, and Baba C Vemuri. Intrinsic grassmann averages
for online linear, robust and nonlinear subspace learning. IEEE transactions on pattern analysis
and machine intelligence, 43(11):3904–3917, 2020.

Jun Chen, Haishan Ye, Mengmeng Wang, Tianxin Huang, Guang Dai, Ivor W Tsang, and Yong
Liu. Decentralized riemannian conjugate gradient method on the stiefel manifold. arXiv preprint
arXiv:2308.10547, 2023.

Shixiang Chen, Alfredo Garcia, Mingyi Hong, and Shahin Shahrampour. Decentralized riemannian
gradient descent on the stiefel manifold. In International Conference on Machine Learning, pp.
1594–1605. PMLR, 2021.

Guang Cheng, Jeffrey Ho, Hesamoddin Salehian, and Baba C Vemuri. Recursive computation of the
fréchet mean on non-positively curved riemannian manifolds with applications. In Riemannian
Computing in Computer Vision, pp. 21–43. Springer, 2016.

Coleman DeLude, Santhosh Karnik, Mark Davenport, and Justin Romberg. Broadband beamform-
ing via linear embedding, 2022. URL https://arxiv.org/abs/2206.07143.

Kangkang Deng and Jiang Hu. Decentralized projected riemannian gradient method for smooth
optimization on compact submanifolds. arXiv preprint arXiv:2304.08241, 2023.

Thomas D Downs. Orientation statistics. Biometrika, 59(3):665–676, 1972.

Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality
constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

11

http://ieeexplore.ieee.org/document/7410838/
http://ieeexplore.ieee.org/document/7410838/
https://arxiv.org/abs/2206.07143

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eugen Feller, C. Morin, and A. Esnault. A case for fully decentralized dynamic vm consolidation
in clouds. 4th IEEE International Conference on Cloud Computing Technology and Science
Proceedings, pp. 26–33, 2012. doi: 10.1109/CloudCom.2012.6427585.

Simone Fiori, Tetsuya Kaneko, and Toshihisa Tanaka. Tangent-bundle maps on the grassmann man-
ifold: Application to empirical arithmetic averaging. IEEE Transactions on Signal Processing,
63(1):155–168, 2014.

P Thomas Fletcher, Suresh Venkatasubramanian, and Sarang Joshi. Robust statistics on riemannian
manifolds via the geometric median. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8. IEEE, 2008.

P Thomas Fletcher, Suresh Venkatasubramanian, and Sarang Joshi. The geometric median on rie-
mannian manifolds with application to robust atlas estimation. NeuroImage, 45(1):S143–S152,
2009.

Maurice Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. In Annales
de l’institut Henri Poincaré, volume 10, pp. 215–310, 1948.

David Froelicher, Hyunghoon Cho, Manaswitha Edupalli, Joao Sa Sousa, Jean-Philippe Bossuat,
Apostolos Pyrgelis, Juan R Troncoso-Pastoriza, Bonnie Berger, and Jean-Pierre Hubaux. Scalable
and privacy-preserving federated principal component analysis. In 2023 IEEE Symposium on
Security and Privacy (SP), pp. 1908–1925. IEEE, 2023.

Kyle A Gallivan, Anuj Srivastava, Xiuwen Liu, and Paul Van Dooren. Efficient algorithms for
inferences on grassmann manifolds. In IEEE Workshop on Statistical Signal Processing, 2003,
pp. 315–318. IEEE, 2003.

GA Galperin. A concept of the mass center of a system of material points in the constant curvature
spaces. Communications in Mathematical Physics, 154:63–84, 1993.

Arpita Gang and Waheed U Bajwa. A linearly convergent algorithm for distributed principal com-
ponent analysis. Signal Processing, 193:108408, 2022.

Arpita Gang, Bingqing Xiang, and Waheed U Bajwa. Distributed principal subspace analysis for
partitioned big data: Algorithms, analysis, and implementation. IEEE Transactions on Signal and
Information Processing over Networks, 7:699–715, 2021.

Roger Ghanem and Debraj Ghosh. Efficient characterization of the random eigenvalue problem in a
polynomial chaos decomposition. International Journal for Numerical Methods in Engineering,
72(4):486–504, 2007.

Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins studies in the
mathematical sciences. The Johns Hopkins University Press, Baltimore, fourth edition edition,
2013. ISBN 978-1-4214-0794-4.

Peter Gruber and Fabian J Theis. Grassmann clustering. In 2006 14th European Signal Processing
Conference, pp. 1–5. IEEE, 2006.

Shuo Han, Ufuk Topcu, and George J. Pappas. Differentially private distributed constrained opti-
mization. IEEE Transactions on Automatic Control, 62(1):50–64, 2017. doi: 10.1109/TAC.2016.
2541298.

Mehrtash Harandi, Conrad Sanderson, Chunhua Shen, and Brian C Lovell. Dictionary learning
and sparse coding on grassmann manifolds: An extrinsic solution. In Proceedings of the IEEE
international conference on computer vision, pp. 3120–3127, 2013.

Soren Hauberg, Aasa Feragen, and Michael J. Black. Grassmann averages for scalable robust pca.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2014.

Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building deep networks on grassmann manifolds. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

K Hueper and J Manton. The karcher mean of points on so (n). Talk at Cesame (UCL, Belgium),
2004.

Ben Jeuris, Raf Vandebril, and Bart Vandereycken. A survey and comparison of contemporary
algorithms for computing the matrix geometric mean. Electronic Transactions on Numerical
Analysis, 39:379–402, 2012.

Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sci-
ences, 374(2065):20150202, 2016.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a few
entries. IEEE transactions on information theory, 56(6):2980–2998, 2010.

Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block
preconditioned conjugate gradient method. SIAM Journal on Scientific Computing, 23(2):
517–541, 2001. doi: 10.1137/S1064827500366124. URL https://doi.org/10.1137/
S1064827500366124.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. 1950.

Huiling Le. Locating fréchet means with application to shape spaces. Advances in Applied Proba-
bility, 33(2):324–338, 2001.

Jongmin Lee and Sungkyu Jung. Huber means on riemannian manifolds. arXiv preprint
arXiv:2407.15764, 2024.

Jörg Liesen and Zdenek Strakos. Krylov subspace methods: principles and analysis. Numerical
Mathematics and Scie, 2013.

David J Love, Robert W Heath, and Thomas Strohmer. Grassmannian beamforming for multiple-
input multiple-output wireless systems. IEEE transactions on information theory, 49(10):2735–
2747, 2003.

Yui Man Lui and J Ross Beveridge. Grassmann registration manifolds for face recognition. In
European conference on computer vision, pp. 44–57. Springer, 2008.

Tim Marrinan, Bruce Draper, J. Ross Beveridge, Michael Kirby, and Chris Peterson. Finding the
Subspace Mean or Median to Fit Your Need. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1082–1089, Columbus, OH, USA, June 2014. IEEE. ISBN 978-
1-4799-5118-5. doi: 10.1109/CVPR.2014.142. URL https://ieeexplore.ieee.org/
document/6909538.

Per-Gunnar Martinsson and Joel A Tropp. Randomized numerical linear algebra: Foundations and
algorithms. Acta Numerica, 29:403–572, 2020.

Gilles Meyer, Michel Journée, Silvere Bonnabel, and Rodolphe Sepulchre. From subspace learning
to distance learning: a geometrical optimization approach. In 2009 IEEE/SP 15th Workshop on
Statistical Signal Processing, pp. 385–388. IEEE, 2009.

Bamdev Mishra, Hiroyuki Kasai, Pratik Jawanpuria, and Atul Saroop. A riemannian gossip ap-
proach to subspace learning on grassmann manifold. Machine Learning, 108:1783–1803, 2019.

Maher Moakher. Means and averaging in the group of rotations. SIAM journal on matrix analysis
and applications, 24(1):1–16, 2002.

Bishwarup Mondal, Satyaki Dutta, and Robert W Heath. Quantization on the grassmann manifold.
IEEE Transactions on Signal Processing, 55(8):4208–4216, 2007.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

13

https://doi.org/10.1137/S1064827500366124
https://doi.org/10.1137/S1064827500366124
https://ieeexplore.ieee.org/document/6909538
https://ieeexplore.ieee.org/document/6909538

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Angelia Nedić, Alex Olshevsky, and Michael G. Rabbat. Network topology and communication-
computation tradeoffs in decentralized optimization. Proceedings of the IEEE, 106(5):953–976,
2018. doi: 10.1109/JPROC.2018.2817461.

Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization. IEEE Trans-
actions on Control of Network Systems, 5(3):1245–1260, 2017.

Alain Sarlette and Rodolphe Sepulchre. Consensus optimization on manifolds. SIAM journal on
Control and Optimization, 48(1):56–76, 2009.

Rodolphe Sepulchre. Consensus on nonlinear spaces. Annual reviews in control, 35(1):56–64, 2011.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentral-
ized consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

Rim Slama, Hazem Wannous, Mohamed Daoudi, and Anuj Srivastava. Accurate 3d action recogni-
tion using learning on the grassmann manifold. Pattern Recognition, 48(2):556–567, 2015.

Gerard LG Sleijpen and Henk A Van der Vorst. A jacobi–davidson iteration method for linear
eigenvalue problems. SIAM review, 42(2):267–293, 2000.

Tao Sun, Dongsheng Li, and Bao Wang. Decentralized federated averaging. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45:4289–4301, 2021. doi: 10.1109/TPAMI.2022.
3196503.

Roberto Tron, Bijan Afsari, and René Vidal. Riemannian consensus for manifolds with bounded
curvature. IEEE Transactions on Automatic Control, 58(4):921–934, 2012.

Pavan Turaga, Ashok Veeraraghavan, Anuj Srivastava, and Rama Chellappa. Statistical computa-
tions on grassmann and stiefel manifolds for image and video-based recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 33(11):2273–2286, 2011.

Sissi Xiaoxiao Wu, Hoi-To Wai, Lin Li, and Anna Scaglione. A review of distributed algorithms for
principal component analysis. Proceedings of the IEEE, 106(8):1321–1340, 2018.

Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient meth-
ods for multi-agent optimization under uncoordinated constant stepsizes. In 2015 54th IEEE
Conference on Decision and Control (CDC), pp. 2055–2060. IEEE, 2015.

Weiyu Xu and Babak Hassibi. Compressed sensing over the grassmann manifold: A unified ana-
lytical framework. In 2008 46th Annual Allerton Conference on Communication, Control, and
Computing, pp. 562–567. IEEE, 2008.

Haishan Ye and Tong Zhang. Deepca: Decentralized exact pca with linear convergence rate. Journal
of Machine Learning Research, 22(238):1–27, 2021.

Se-Young Yun. Noisy Power Method with Grassmann Average. In 2018 IEEE International
Conference on Big Data and Smart Computing (BigComp), pp. 709–712, Shanghai, January
2018. IEEE. ISBN 978-1-5386-3649-7. doi: 10.1109/BigComp.2018.00132. URL https:
//ieeexplore.ieee.org/document/8367212/.

Jiayao Zhang, Guangxu Zhu, Robert W Heath Jr, and Kaibin Huang. Grassmannian learning: Em-
bedding geometry awareness in shallow and deep learning. arXiv preprint arXiv:1808.02229,
2018.

Peng Zhang and Sumei Sun. Decentralized network anomaly detection via a riemannian cluster
approach. In GLOBECOM 2017-2017 IEEE Global Communications Conference, pp. 1–6. IEEE,
2017.

Yunkai Zhou and Yousef Saad. A chebyshev–davidson algorithm for large symmetric eigenprob-
lems. SIAM Journal on Matrix Analysis and Applications, 29(3):954–971, 2007.

14

https://ieeexplore.ieee.org/document/8367212/
https://ieeexplore.ieee.org/document/8367212/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL ALGORITHMS

Algorithm 4 Asymptotic RGrAv (Rapid Grassmannian Averaging)

Input: α ∈ [0, 1), Ū (0), {Um}Mm=1

Output: Ū (T)

S = IK
for t = 1, 2, 3, . . . do

A(t)
m ← UmUT

mŪ
(t−1)

Â
(t)
← 1

M

∑M
m=1 A

(t)
m ▷ Power Iteration

if t = 1 then
Ẑ

(1)
← Â

(1)
▷
[
Ẑ

(1)
]
=
[
P̄ Ū

(0)
]

else
at, bt, ct ← ChebyshevCoefficients(t, α) ▷ See Algorithm 7

Ẑ
(t)
← at

(
Â

(t)
+ btŪ

(t−1) + ctŪ
(t−2)

)
▷
[
Ẑ

(t)
]
=
[
f̃⋆
t

(
P̄
)
Ū

(0)
]

end if
if t is on the orthonormalization schedule then

Ū
(t)
,S ← StableQR

(
Ẑ

(t)
)

▷ (Numerical Stability)
else

Ū
(t) ← Ẑ

(t)
S ▷ (Numerical Stability)

end if
Ū

(t−1) ← Ū
(t−1)

S ▷ (Numerical Stability)
end for

Algorithm 5 Finite RGrAv (Rapid Grassmannian Averaging)

Inputs: α ∈ [0, 1), T ∈ N, Ū (0), {Um}Mm=1

Output: Ū (T)

S ← IK
for t = 1, 2, 3, . . . , T do

A(t)
m ← UmUT

mŪ
(t−1)

Â
(t)
← 1

M

∑M
m=1 A

(t)
m ▷ Power Iteration

rt ← ChebyshevRoot(t, T, α) ▷ See Algorithm 8

Ẑ
(t)
← 1

1−rt

(
Â

(t)
− rtŪ

(t−1)
)

if t is on the orthonormalization schedule then
Ū

(t)
,S ← StableQR

(
Ẑ

(t)
)

▷ (Numerical Stability)
else

Ū
(t) ← Ẑ

(t)
S ▷ (Numerical Stability)

end if
end for

B AUXILIARY THEOREMS

Lemma 2. Suppose f⋆ ∈ P ′
t is a solution to eq. (2). Then the f⋆ has no roots in [α, 1].

Proof. If f⋆ had a root in [β, 1], then minλ∈[β,1]|f⋆(λ)| = 0 and the objective function is
unbounded, so f⋆ cannot have any roots in [β, 1]. This also allows us to conclude f⋆ is not the 0
polynomial, which is used in what follows.

Now, we show that if f⋆ has a root in (α, β), moving this root to α strictly decreases the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 6 Finite DRGrAv (Decentralized Rapid Grassmannian Averaging)

Input: α ∈ [0, 1), T ∈ N,
{
Ū

(0)
m

}M

m=1
, {Um}Mm=1

Output: Ū (T)

Sm ← IK
for t = 1, 2, 3, . . . , T do

A(t)
m ← UmUT

mŪ
(t−1)

▷ Local Power Iteration
rt ← ChebyshevRoot(t, T, α) ▷ See Algorithm 8
Y (t)

m ← 1
1−rt

(
A(t)

m − rtŪ
(t−1)
m

)
if t = 1 then

Z(1)
m ← Y (1)

m ▷ Gradient Tracking
else

Z(t)
m ← Ẑ

(t−1)

m + Y (t)
m − Y (t−1)

m ▷ Gradient Tracking
end if
Ẑ

(t)

m = AverageConsensus
(
Z(t)

m

)
if t is on the orthonormalization schedule then

Ū
(t)
m ,Sm ← StableQR

(
Ẑ

(t)

m

)
▷ (Numerical Stability)

else
Ū

(t)
m ← Ẑ

(t)

m Sm ▷ (Numerical Stability)
end if

end for

Algorithm 7 ChebyshevCoefficients
Input: t ≥ 2, α ∈ [0, 1)
Output: at, bt, ct

for s = t− 2, t− 1, t do
if s = 0 then

g0 ← 1
else

rs ← cos
(

π
2s

)
zs ← 1+rs

α
τs ← Ts(zs − rs) ▷ Ts is the sth-order Chebyshev polynomial of the first kind
gs ← τs

zs
s

end if
end for
for s = t− 1, t do

as ← 2 gs−1

gs
qs ← − rs

zs
end for
bt ← tqt − (t− 1)qt−1

if t = 2 then
ct ← 0

else
ct ← 1

4at−1

(
2t(t− 1)(qt − qt−1)

2 − t
z2
t
+ t−1

z2
t−1

)
end if

Algorithm 8 ChebyshevRoot
Input: t ∈ N, T ∈ N, α ∈ [0, 1)
Output: rt,T

rt,T ← α
cos(π(t+1/2)

T)+cos(π
2T)

1+cos(π
2T)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

objective function’s value showing that f⋆ could not have been a solution to the minization
problem.
If f⋆ had a root in (α, β), then we can write f⋆(λ) = (λ − λ1)g(λ) for some λ1 ∈ (α, β) and
g ∈ P ′

t−1 where g is not the 0 polynomial. It follows that

maxλ∈[0,α]|f⋆(λ)|
minλ∈[β,1]|f⋆(λ)|

=
maxλ∈[0,α]|(λ− λ1)g(λ)|
minλ∈[β,1]|(λ− λ1)g(λ)|

=
supλ∈[0,α)|(λ− α)g(λ)|

∣∣∣λ−λ1

λ−α

∣∣∣
minλ∈[β,1]|(λ− α)g(λ)|

∣∣∣λ−λ1

λ−α

∣∣∣
>

maxλ∈[0,α]|(λ− α)g(λ)|
minλ∈[β,1]|(λ− α)g(λ)|

where the final line results from the fact that
∣∣∣λ−λ1

λ−α

∣∣∣ < 1 for λ ∈ [β, 1] and
∣∣∣λ−λ1

λ−α

∣∣∣ > 1 for
λ ∈ [0, α). Now we observe that the function h(λ) := (λ − α)g(λ) ∈ P ′

t achieves a strictly lower
value for the objective function via moving the root λ1 ∈ (α, β) to λ = α. Thus, f⋆ would not be a
solution to eq. (2) and therefore f⋆ cannot have roots in (α, β).

Now we show that if f⋆ had a root at λ = α, we could slightly move the root to some point
to the left of α and decrease the objective function’s value.
Suppose f⋆ has a root at λ = α. We can write f⋆(λ) = (λ − α)g(λ) for some g ∈ P ′

t−1, where g
is not the 0 polynomial. Let δ > 0 be such that

max
λ∈[α− δ

2 ,α]
|f⋆(λ)| < min

ϵ∈[0,α]
max

λ∈[0,α]
|(λ− ϵ)g(λ)|

which exists since minϵ∈[0,α] maxλ∈[0,α]|(λ − ϵ)g(λ)| > 0 (as g ̸≡ 0 from the beginning of the
proof) and f⋆ is continuous. It follows that

maxλ∈[0,α]|f⋆(λ)|
minλ∈[β,1]|f⋆(λ)|

=
maxλ∈[0,α]|(λ− α)g(λ)|
minλ∈[β,1]|(λ− α)g(λ)|

=
supλ∈[0,α]\{α−δ}|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣
minλ∈[β,1]|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣
=

max{supλ∈[0,α− δ
2)\{α−δ}|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣,Φ}
minλ∈[β,1]|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣
>

maxλ∈[0,α]|(λ− (α− δ))g(λ)|
minλ∈[β,1]|(λ− (α− δ))g(λ)|

with Φ = maxλ∈[α− δ
2 ,α]
|(λ− (α− δ))g(λ)|

∣∣∣ λ−α
λ−(α−δ)

∣∣∣. The final line results from the fact that∣∣∣ λ−α
λ−(α−δ)

∣∣∣ < 1 for λ ∈ [β, 1],
∣∣∣ λ−α
λ−(α−δ)

∣∣∣ ≥ 1 for λ ∈ [0, α − δ
2), and since

∣∣∣ λ−α
λ−(α−δ)

∣∣∣ ≤ 1 for

λ ∈ [α− δ
2 , α],

max
λ∈[α− δ

2 ,α]
|(λ− (α− δ))g(λ)|

∣∣∣∣ λ− α

λ− (α− δ)

∣∣∣∣ < min
ϵ∈[0,α]

max
λ∈[0,α]

|(λ− ϵ)g(λ)| ∗ 1

≤ max
λ∈[0,α]

|(λ− (α− δ))g(λ)|

Now we observe that the function h(λ) := (λ − (α − δ))g(λ) ∈ P ′
t achieves a strictly lower value

for the objective function via moving the root from α to λ = α−δ. Thus, f⋆ would not be a solution
to eq. (2) and therefore f⋆ cannot have a root at λ = α.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Definition 1. A polynomial f is t-equioscillatory on an interval [a, b] if there exists some a ≤
γ0 < γ1 < · · · < γt−1 ≤ b such that |f(γs)| = maxλ∈[a,b]|f(λ)| for all 0 ≤ s ≤ t − 1 and
f(γ0) = −f(γ1) = f(γ2) = −f(γ3) =
Lemma 3. A solution to the minimization problem

minimize
ft∈P′

t

maxλ∈[0,α]|ft(λ)|
minλ∈[β,1]|ft(λ)|

must be t-equioscillatory.

Proof. Suppose f⋆ is a minimizer in to eq. (2) that is not t-equioscillatory. First, we assume that
without loss of generality, f⋆(α) > 0 since if f⋆(α) < 0, we could replace f⋆ with −f⋆ and it
would still be a minimizer to the eq. (2), and we cannot have f⋆(α) = 0 by Lemma 2.
Let {λ1 = 0, λ2, · · · , λm} ∈ [0, α] for some m ≤ t denote the distinct roots of f⋆ in increasing
order that lie in [0, α]. We have m-intervals, I = {Ii}mi=1 where Ii = [λi, λi+1] and λm+1 = α. We
have that for any i ∈ [m], sgn(f⋆(λ)) = c for every λ ∈ int(Ii) where c ∈ {−1, 1}. In other words,
in the interior of any intervals from I, f⋆ takes strictly all positive values or strictly all negative
values. Define, for any interval I ⊆ R and function g

sgn(g|I) = c

where c ∈ {−1, 1} is the value such that sgn(f⋆(λ)) = c for every λ ∈ int(I). If such a value does
not exist, sgn(g|I) is left undefined.
We also define for any compact A ⊆ R and g ∈ C(R),

∥g∥A := max
x∈A
|g(x)|

Let

L = {I ∈ I : max
λ∈I
|f⋆(λ)| < ∥f⋆∥[0,α]}

M = {I ∈ I : max
λ∈I
|f⋆(λ)| = ∥f⋆∥[0,α]} = I \ L

J =
⋃
I∈L

I

Define g(λ) = |f⋆(λ)| − ∥f⋆∥[0,α] and denote ϵ = minλ∈J |g(λ)|, i.e the minimum distance by
which any point in J misses one of ±∥f⋆∥[0,α].
Let k = |{λ ∈ [0, α] : f⋆(λ) = ∥f∥[0,α]}|. Note that k < t by assumption. Let
M = {M1, · · · ,Mk} be intervals listed from left to right where ij ∈ [m] are indices such that
Mj = Iij = [λij , λij+1] for j ∈ [k] and λij < λim for 1 ≤ j < m ≤ k.
Now define

R = {λij : sgn
(
f⋆|Mj

)
̸= sgn

(
f⋆|Mj−1

)
for some 2 ≤ j ≤ k}

We have that since k ≤ t− 1 by assumption, then |R| ≤ k − 1 ≤ t− 2.

With R = {r1, · · · , rq} for some q ≤ t − 2, we define a polynomial r : R → R based on the sign
of f⋆ on Mk.
Case A: If sgn(f⋆|Mk

) = 1, we define

r(λ) := crλ(λ− β)Πq
i=1(λ− ri)

Case B: Otherwise (when sgn(f⋆|Mk
) = −1), define

r(λ) := crλ(λ− 1)Πq
i=1(λ− ri)

In either case, r be a polynomial of degree at most t. We now select cr ∈ R so that ∥r(λ)∥[0,α] < ϵ

and set the sgn(cr) so that sgn(r|M1
) = − sgn(f⋆|M1

). We now show sgn
(
r|Mj

)
= − sgn

(
f⋆|Mj

)
for every j ∈ [k] via induction. Our base case holds via how we set cr above.
Suppose inductively that sgn

(
r|Mj−1

)
= − sgn

(
f⋆|Mj−1

)
for some j ≤ k. Then, if sgn

(
f⋆|Mj

)
=

sgn
(
f⋆|Mj−1

)
, we have that as no root was added to r between these intervals and so

sgn
(
r|Mj

)
= sgn

(
r|Mj−1

)
= − sgn

(
f⋆|Mj−1

)
18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

with the last equality by the induction hypothesis. Otherwise, if sgn
(
f⋆|Mj

)
̸= sgn

(
f⋆|Mj−1

)
, then

since a root is added between them

sgn
(
r|Mj

)
= − sgn

(
r|Mj−1

)
= sgn

(
f⋆|Mj−1

)
= − sgn

(
f⋆|Mj

)
So in both cases, we have sgn

(
r|Mj

)
= − sgn

(
f⋆|Mj

)
which closes the induction.

Now we obtain that for any j ∈ [k],

∥f⋆ + r∥Mj < ∥f⋆∥[0,α]
as, for Mj ̸= [λm, α], the maximum ∥f⋆∥[0,α] is achieved by |f⋆| in the interior of Mj where |r| > 0

as r has no roots in this interior and sgn
(
r|Mj

)
= − sgn

(
f⋆|Mj

)
. Additionally, one recognizes that

if Mj = [λm, α], then r(λ) < 0 for x ∈ (λm, α] and so the above bound still holds even when the
maximum is attained on the boundary of the interval, i.e whenf⋆(α) = ∥f⋆∥[0,α]. Furthermore, we
have that

∥f⋆ + r∥J ≤ max
λ∈J
|f⋆(λ)|+ ∥r∥[0,α]

< max
λ∈J
|f⋆(λ)|+ ϵ = ∥f⋆∥[0,α]

by ϵ’s definition. Now we have obtained

∥f⋆ + r∥[0,α] < ∥f⋆∥[0,α] (3)

Now we turn to bounding the denominator of the objective function using f⋆ from above.
Note that sgn

(
f⋆|[α,1]

)
= 1 as f⋆(α) > 0 and f⋆ has no roots in [α, 1] by Lemma 2. We will now

show that in either case,

min
λ∈[β,1]

|(f⋆ + r)(λ)| ≥ min
λ∈[β,1]

|f⋆(λ)| (4)

Case A: Since sgn(f⋆|Mk
) = 1, sgn(r|Mk

) = −1 which gives sgn
(
r|[λik

,β]

)
= −1 as r has no

roots in (λik , β). Since r has a simple root at λ = β with no other roots greater than λ = β, we have
that sgn

(
r|[β,1]

)
= 1. It immediately follows that

min
λ∈[β,1]

|(f⋆ + r)(λ)| ≥ min
λ∈[β,1]

|f⋆(λ)|

Case B: Since sgn(f⋆|Mk
) = −1, sgn(r|Mk

) = 1 which gives sgn
(
r|[λik

,1]

)
= 1 as r has no roots

in (λik , 1). So sgn
(
r|[β,1]

)
= 1 and it follows that

min
λ∈[β,1]

|(f⋆ + r)(λ)| ≥ min
λ∈[β,1]

|f⋆(λ)|

Combining eq. (3) and eq. (4) gives
∥f⋆∥[0,α]

minλ∈[β,1]|f⋆(λ)|
≥

∥f⋆ + r∥[0,α]
minλ∈[β,1]|(f⋆ + r)(λ)|

We note that (f⋆ + r)(0) = 0 and f⋆ + r is an at most t-degree polynomial and therefore f⋆ + r
is a feasible function for the minimization problem eq. (2). Thus, f⋆ is not a solution to eq. (2) as
f⋆ + r is feasible and achieves a strictly smaller value for the objective function, which proves the
lemma.

Lemma 4. DefineP ′′
t := {ft ∈ Pt | ft(0) = 0, ft is t-equioscillatory on [0, α], ft(β) = 1} for β >

α. The problem
minimize

ft∈P′′
t

max
λ∈[0,α]

|ft(λ)|

is solved by

f⋆
t (λ) =

t−1∏
s=0

λ− rs,t
β − rs,t

rs,t := α
cos
(

π(s+1/2)
t

)
+ cos

(
π
2t

)
1 + cos

(
π
2t

)
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. First note that f⋆
t is indeed feasible; from inspection one realizes f⋆

t (β) = 1 and rt−1,t = 0
(consequently f⋆

t (0) = 0) and as a variant of a Chebyshev polynomial (of the first kind), f⋆
t is

t-equioscillatory on [0, α] with extremal points

γs = α
cos
(
πs
t

)
+ cos

(
π
2t

)
1 + cos

(
π
2t

) , 0 ≤ s ≤ t− 1

Assume for the sake of contradiction that there exists some g ∈ P ′′
t such that maxλ∈[0,α]|g(λ)| <

maxλ∈[0,α]|f⋆
t (λ)|. This would then imply that the difference polynomial h(λ) := f⋆

t (λ) − g(λ)
satisfies the following

∀s = 0, 2, . . . : h(γs) = f⋆
t (γs)− g(γs)

> f⋆
t (γs)− max

λ∈[0,α]
|f⋆

t (λ)|

= 0

∀s = 1, 3, . . . : h(γs) = f⋆
t (γs)− g(γs)

< f⋆
t (γs) + max

λ∈[0,α]
|f⋆

t (λ)|

= 0

h(0) = f⋆
t (0)− g(0)

= 0

h(β) = f⋆
t (β)− g(β)

= 0

Since h changes sign on every γs, it must have at least one root in each of the t−1 intervals between
consecutive γs. By construction, h also has a 2 more roots at 0 and β, meaning h has at minimum
t+ 1 distinct roots. However, h is a tth order polynomial, leading to a contradiction.

B.1 PROOF OF THEOREM 1

Proof. First, by Lemma 3, since any minimizer f⋆ of eq. (2) is t-equiosciallatory, all t of f⋆’s roots
lie in [0, α]. This implies that f⋆ is increasing in [β, 1] and therefore we have

min
λ∈[β,1]

|f⋆(λ)| = f⋆(β)

which is assumed to be positive without loss of generality also as in Lemma 3. Now we can scale
f⋆ so that f(β) = 1 without changing the value of the objective function, i.e

maxλ∈[0,α]|f⋆(λ)|
f⋆(β)

=
maxλ∈[0,α]|Cf⋆(λ)|

Cf⋆(β)
= max

λ∈[0,α]
|Cf⋆(λ)|

where C = 1
f⋆(β) . We have now transformed the problem into

minimize
ft∈P′′

t

max
λ∈[0,α]

|ft(λ)|

as in Lemma 4 which is solved by

f⋆
t (λ) =

t−1∏
s=0

λ− rs,t
β − rs,t

rs,t := α
cos
(

π(s+1/2)
t

)
+ cos

(
π
2t

)
1 + cos

(
π
2t

)
as desired.

B.2 SIMPLIFICATION OF EQUATION (1)

We begin by simplifying the original optimization problem[
Ū
]
= argmin

[U]∈Gr(N,K)

∥∥∥P̄ −UUT
∥∥∥2
F

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

= argmin
[U]∈Gr(N,K)

−2
〈
P̄ ,UUT

〉
+
∥∥P̄∥∥2

F
+
∥∥∥UUT

∥∥∥2
F

= argmin
[U]∈Gr(N,K)

−
〈
P̄ ,UUT

〉
= argmin

[U]∈Gr(N,K)

−
〈
Ṽ Λ̃Ṽ

T
,UUT

〉
= argmin

[U]∈Gr(N,K)

−
〈
Λ̃, Ṽ

T
UUTṼ

〉
=

[
Ṽ argmin

W∈St(N,K)

−
〈
Λ̃,WW T

〉]

=

[
[V V ⊥] argmin

W∈St(N,K)

−
〈[

Λ 0
0 Λ⊥

]
,WW T

〉]

Since W ∈ St(N,K), it follows that tr
(
WW T

)
= K and all diagonal elements of WW T lay in

the range [−1, 1]. Consequently, minW∈St(N,K)−
〈
Λ̃,WW T

〉
≥ − tr(Λ). Since W =

[
Q
0

]
for

arbitrary Q ∈ St(K,K) satisfies this inequality with equality, it may be substituted as the solution
and a final simplification completes the proof.

[
Ū
]
=

[
[V V ⊥] argmin

W∈St(N,K)

−
〈[

Λ 0
0 Λ⊥

]
,WW T

〉]

=

[
[V V ⊥]

[
Q
0

]]
= [V Q]

= [V]

21

	Introduction
	Related Work
	Background
	Averaging Subspaces
	Averaging Subspaces in a Decentralized Network
	The Power Method

	Methods
	Motivation
	RGrAv Algorithms

	Experiments
	Decentralized Grassmannian Averaging
	K-Means for Video Motion Clustering

	Reproducibility Statement
	Additional Algorithms
	Auxiliary Theorems
	Proof of thm:main
	Simplification of eq:iam

