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Abstract

We present a multilingual bag-of-entities001
model that effectively boosts the performance002
of zero-shot cross-lingual text classification by003
extending a multilingual pre-trained language004
model (e.g., M-BERT). It leverages the multi-005
lingual nature of Wikidata: entities in multi-006
ple languages representing the same concept007
are defined with a unique identifier. This en-008
ables entities described in multiple languages009
to be represented using shared embeddings. A010
model trained on entity features in a resource-011
rich language can thus be directly applied to012
other languages. Our experimental results013
on cross-lingual topic classification (using the014
MLDoc and TED-CLDC datasets) and entity015
typing (using the SHINRA2020-ML dataset)016
show that the proposed model consistently out-017
performs state-of-the-art models.018

1 Introduction019

In the zero-shot approach to cross-lingual transfer020

learning, models are trained on annotated data in a021

resource-rich language (the source language) and022

then applied to another language (the target lan-023

guage) without any training. Substantial progress024

in cross-lingual transfer learning has been made025

using multilingual pre-trained language models026

(PLMs), such as multilingual BERT (M-BERT),027

jointly trained on massive corpora in multiple lan-028

guages (Devlin et al., 2019; Conneau and Lample,029

2019; Conneau et al., 2020a). However, recent em-030

pirical studies have found that cross-lingual trans-031

fer learning with PLMs does not work well for032

languages with insufficient pre-training data or be-033

tween distant languages (Conneau et al., 2020b;034

Lauscher et al., 2020), which suggests the difficulty035

of cross-lingual transfer based solely on textual in-036

formation.037

We propose a multilingual bag-of-entities (M-038

BoE) model that boosts the performance of zero-039

shot cross-lingual text classification by injecting040

features of language-agnostic knowledge base (KB) 041

entities into PLMs. KB entities, unlike words, can 042

capture unambiguous semantics in documents and 043

be effectively used to address text classification 044

tasks (Gabrilovich and Markovitch, 2006; Chang 045

et al., 2008; Negi and Rosner, 2013; Song et al., 046

2016; Yamada and Shindo, 2019). In particular, our 047

model extends PLMs by using Wikidata entities as 048

input features (see Figure 1). A key idea behind 049

our model is to leverage the multilingual nature of 050

Wikidata: entities in multiple languages represent- 051

ing the same concept (e.g., Apple Inc.,애플,アッ 052

プル) are assigned a unique identifier across lan- 053

guages (e.g., Q312). Given a document to be classi- 054

fied, our model extracts Wikipedia entities from the 055

document, converts them into the corresponding 056

Wikidata entities, and computes the entity-based 057

document representation as the weighted average of 058

the embeddings of the extracted entities. Inspired 059

by previous work (Yamada and Shindo, 2019; Pe- 060

ters et al., 2019), we compute the weights using 061

an attention mechanism that selects the entities rel- 062

evant to the given document. We then compute 063

the sum of the entity-based document representa- 064

tion and the text-based document representation 065

computed using the PLM and feed it into a linear 066

classifier. Since the entity vocabulary and entity 067

embedding are shared across languages, a model 068

trained on entity features in the source language can 069

be directly transferred to multiple target languages. 070

We evaluated the performance of the M-BoE 071

model on three cross-lingual text classification 072

tasks: topic classification on the MLDoc (Schwenk 073

and Li, 2018) and TED-CLDC (Hermann and 074

Blunsom, 2014) datasets and entity typing on the 075

SHINRA2020-ML (Sekine et al., 2020) dataset. 076

We trained the model using training data in the 077

source language (English) and then evaluated it 078

on the target languages. It outperformed our base 079

PLMs (i.e., M-BERT (Devlin et al., 2019) and the 080

XLM-R model (Conneau et al., 2020a)) for all tar- 081
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Figure 1: Architecture of M-BoE. Given a document, the model extracts Wikipedia entities, converts them into
corresponding Wikidata entities, and calculates the entity-based document representation by using the weighted
average of the embeddings of the entities selected by an attention mechanism. The sum of the entity-based repre-
sentation and the representation computed using a multilingual PLM is used to perform linear classification for the
task.

get languages on all three tasks, thereby demon-082

strating the effectiveness of the entity-based rep-083

resentation. Furthermore, our model performed084

better than state-of-the-art models on the MLDoc085

dataset.086

Our contributions are as follows:087

• We present a method for boosting the per-088

formance of cross-lingual text classification089

by extending multilingual PLMs to leverage090

the multilingual nature of Wikidata entities.091

Our method successfully improves the per-092

formance on multiple target languages simul-093

taneously without expensive pre-training or094

additional text data in the target languages.095

• Inspired by previous work (Yamada and096

Shindo, 2019; Peters et al., 2019), we in-097

troduce an attention mechanism that enables098

entity-based representations to be effectively099

transferred from the source language to the tar-100

get languages. The mechanism selects entities101

that are relevant to address the task.102

• We present experimental results for three103

cross-lingual text classification tasks demon-104

strating that our method outperformed our105

base PLMs (i.e., M-BERT and XLM-R) for106

all languages on the three tasks and outper-107

formed state-of-the-art methods on the ML-108

Doc dataset.109

2 Related Work 110

Cross-lingual PLMs Zero-shot cross-lingual 111

transfer learning approaches have relied on par- 112

allel corpora (Xu and Wan, 2017) or multilingual 113

word representation (Duong et al., 2017). Con- 114

siderable progress has been made on PLMs for 115

various cross-lingual transfer tasks. The representa- 116

tive models are M-BERT (Devlin et al., 2019) and 117

XLM-R (Conneau et al., 2020a), which are multi- 118

lingual extensions of BERT (Devlin et al., 2019) 119

and RoBERTa (Liu et al., 2019), respectively. Both 120

models are pre-trained on massive corpora of ap- 121

proximately 100 languages. LASER (Artetxe and 122

Schwenk, 2019) is a PLM trained on a parallel 123

corpus of 93 languages by using a sequence-to- 124

sequence architecture. 125

Improving cross-lingual transfer learning 126

Several studies have attempted to improve 127

cross-lingual transfer learning by using additional 128

text data in the target language. Lai et al. (2019) 129

proposed using an unlabeled corpus in the target 130

language to bridge the gap between the language 131

and the domain. Dong et al. (2020) and Keung 132

et al. (2019) incorporated adversarial training 133

using unlabeled target language examples. Dong 134

and de Melo (2019) and Eisenschlos et al. (2019) 135

presented methods for data augmentation in which 136

pseudo-labels are assigned to an unlabeled corpus 137

in the target language. Conneau and Lample (2019) 138

additionally pre-trained BERT-based models using 139

a parallel corpus. However, these methods require 140

extra training on additional text data for each 141
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target language, and their resulting models work142

well only on a single target language. Unlike143

these methods, our method does not require extra144

training and improves performance simultaneously145

for all target languages with only a single PLM.146

Furthermore, our method can be easily applied to147

these models since it is a simple extension of a148

PLM and does not modify its internal architecture.149

Enhancing monolingual PLMs using entities150

Several methods have been proposed for improv-151

ing the performance of PLMs through pre-training152

using entities. ERNIE (Zhang et al., 2019) and153

KnowBert (Peters et al., 2019) enrich PLMs by154

using pre-trained entity embeddings. LUKE (Ya-155

mada et al., 2020b) and EaE (Févry et al., 2020)156

train entity embeddings from scratch during pre-157

training. However, all of these methods are aimed158

at improving the performance of monolingual tasks159

and require pre-training with a large corpus, which160

is computationally expensive. Our method dynami-161

cally injects entity information into PLMs during162

fine-tuning without expensive pre-training.163

Several studies have attempted to incorporate164

entity information into PLMs after pre-training to165

enhance the performance of monolingual tasks. Os-166

tendorff et al. (2019) concatenated contextualized167

representations with knowledge graph embeddings168

to represent author entities and used them as fea-169

tures for the book classification task. E-BERT170

(Poerner et al., 2020) inserts KB entities next to171

the entity names in the input sequence to improve172

BERT’s performance for entity-centric tasks. Ver-173

linden et al. (2021) introduced a mechanism for174

combining span representations and KB entity rep-175

resentations within a BiLSTM-based end-to-end in-176

formation extraction model. Unlike these methods,177

our method aims to improve the cross-lingual text178

classification by combining PLMs with language-179

agnostic entity embeddings.180

Text classification models using entities Sev-181

eral methods have been commonly used to address182

text classification using entities. Explicit seman-183

tic analysis (ESA) is a representative example; it184

represents a document as a bag of entities, which185

is a sparse vector in which each dimension is a186

score reflecting the relevance of the text to each187

entity (Gabrilovich and Markovitch, 2006; Chang188

et al., 2008; Negi and Rosner, 2013). More re-189

cently, Song et al. (2016) proposed cross-lingual190

explicit semantic analysis (CLESA), an extension191

of ESA, to address cross-lingual text classification. 192

CLESA computes sparse vectors from the intersec- 193

tion of Wikipedia entities in the source and target 194

languages using Wikipedia language links. Unlike 195

CLESA’s approach, we address cross-lingual text 196

classification by extending state-of-the-art PLMs 197

with a language-agnostic entity-based document 198

representation based on Wikidata. 199

The most relevant to our proposed approach is 200

the neural attentive bag-of-entities (NABoE) model 201

proposed by Yamada and Shindo (2019). It ad- 202

dresses monolingual text classification using enti- 203

ties as inputs and uses an attention mechanism to 204

detect relevant entities in the input document. Our 205

model can be regarded as an extension of NABoE 206

by (1) representing documents using a shared entity 207

embedding across languages and (2) combining an 208

entity-based representation and attention mecha- 209

nism with state-of-the-art PLMs. 210

211

3 Proposed Method 212

Figure 1 shows the architecture of our model. The 213

model extracts Wikipedia entities, converts them 214

into Wikidata entities, and computes the entity- 215

based document representation using an attention 216

mechanism. The sum of the entity-based document 217

representation and the text-based document repre- 218

sentation computed using the PLM is fed into a 219

linear classifier to perform classification tasks. 220

221

3.1 Entity detection 222

To detect entities in the input document, we use two 223

dictionaries that can be easily constructed from the 224

KB: (1) a mention-entity dictionary, which binds 225

an entity name (e.g., “Apple”) to possible referent 226

KB entities (e.g., Apple Inc. and Apple (food)) 227

by using the internal anchor links in Wikipedia 228

(Guo et al., 2013), and (2) an inter-language entity 229

dictionary, which links multilingual entities (e.g., 230

Tokyo, 도쿄, 東京) to a corresponding identifier 231

(e.g., Q7473516) of Wikidata. 232

All words and phrases are extracted from the 233

given document in accordance with the mention- 234

entity dictionary, and all possible referent entities 235

are detected if they are included as entity names in 236

the dictionary. Note that all possible referent enti- 237

ties are detected for each entity name rather than 238

a single resolved entity. For example, we detect 239

both Apple Inc. and Apple (food) for entity name 240
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“Apple”. Next, the detected entities are converted241

into Wikidata entities if they are included in the242

inter-language entity dictionary.243

244

3.2 Model245

Each Wikidata entity is assigned a representation246

vei ∈ Rd. Since our method extracts all possible247

referent entities rather than a single resolved entity,248

it often extracts entities that are not related to the249

document. Therefore, we introduce an attention250

mechanism inspired by previous work (Yamada251

and Shindo, 2019; Peters et al., 2019) to prioritize252

entities related to the document. Given a document253

with K detected entities, our method computes the254

entity-based document representation z ∈ Rd as255

the weighted average of the entity embeddings:256

z =

K∑
i=1

aeivei , (1)257

where aei ∈ R is the attention weight correspond-258

ing to entity ei and calculated using259

a = softmax(W>
a φ), (2)260

φ(ei, d) =

[
cosine(h,vei)

pei

]
(3)261

where a = [ae1 , ae2 , · · · , aeK ] are the attention262

weights; W a ∈ R2 is a weight vector; φ =263

[φ(e1, d), φ(e2, d), · · · , φ(eK , d)] ∈ R2×K repre-264

sents the degree to which each entity ei is related to265

document d; and φ(ei, d) is calculated by concate-266

nating commonness1 pei with the cosine similarity267

between the document representation computed us-268

ing the PLM, h ∈ Rd (e.g., the final hidden state269

of the [CLS] token), and entity embedding, vei .270

The sum of this entity-based document represen-271

tation z and text-based document representation h272

is fed into a linear classifier2 to predict the proba-273

bility of label c:274

p(c | h, z) = Classifier(h+ z). (4)275

276

1Commonness (Mihalcea and Csomai, 2007) is the proba-
bility that an entity name refers to an entity in Wikipedia.

2In preliminary experiments, we also tested concatenation,
but observed worse overall results than with summation.

Dataset Language Train Dev. Test
MLDoc 8 1,000 1,000 4,000

TED-CLDC 12 936 105 51–106
SHINRA 30 417,387 21,967 30k–920k

Table 1: Number of examples in MLDoc, TED-CLDC,
and SHINRA2020-ML datasets.

4 Experimental Setup 277

In this section, we describe the experimental setup 278

we used for the three cross-lingual text classifica- 279

tion tasks. 280

281

4.1 Data 282

We evaluated our model using three datasets: ML- 283

Doc (Schwenk and Li, 2018), TED-CLDC (Her- 284

mann and Blunsom, 2014), and SHINRA2020-ML 285

(Sekine et al., 2020). 286

287

MLDoc is a dataset for multi-class text classifi- 288

cation, i.e., classifying news articles into four cat- 289

egories. We used the english.train.1000 and en- 290

glish.dev datasets, which contain 1000 documents 291

for training and validation data. As in the previous 292

work (Schwenk and Li, 2018; Keung et al., 2020), 293

we used accuracy as the metric. 294

TED-CLDC is a multi-label classification 295

dataset covering 15 topics. This topic classification 296

dataset is exactly like the MLDoc dataset except 297

that the classification task is more difficult because 298

of its colloquial nature and because the amount 299

of training data is small. Following the previous 300

work (Hermann and Blunsom, 2014), we used 301

micro-average F1 as the metric. 302

SHINRA2020-ML is an entity typing dataset 303

that assigns fine-grained entity labels (e.g., Per- 304

son, Country, Government) to a Wikipedia page. 305

We used this dataset for multi-label classification 306

tasks; we used all datasets in 30 languages except 307

English for the test data. Following the original 308

work (Sekine et al., 2020), we used micro-average 309

F1 as the metric. 310

We created a validation set by randomly select- 311

ing 5% of the training data in TED-CLDC and 5% 312

of the training data in SHINRA2020-ML. We used 313

English as the source language in all experiments. 314

A summary of the datasets is shown in Table 1. 315
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Model MLDoc TED-CLDC SHINRA2020-ML
M-BERT 32 / 2e-05 16 / 2e-05 128 / 5e-05
XLM-R 32 / 2e-05 16 / 5e-05 64 / 2e-05
M-BoE (M-BERT) 32 / 2e-05 16 / 2e-05 128 / 5e-05
M-BoE (XLM-R) 32 / 2e-05 16 / 5e-05 64 / 2e-05

Table 2: Hyper-parameters used for experiments. In each cell, the left value indicates batch size, and the right
value indicates learning rate.

Model en fr de ja zh it ru es target avg.
MultiCCA (Schwenk and Li, 2018) 92.2 72.4 81.2 67.6 74.7 69.4 60.8 72.5 71.2
LASER (Artetxe and Schwenk, 2019) 89.9 78.0 84.8 60.3 71.9 69.4 67.8 77.3 72.8
M-BERT 94.0 79.4 75.1 69.3 68.0 67.1 65.3 75.2 71.4 ± 1.4
XLM-R 94.4 84.9 86.7 78.5 85.2 73.4 71.3 81.5 80.2 ± 0.5
M-BoE (M-BERT) 94.1 84.0 76.9 71.1 72.2 70.0 68.9 75.5 74.1 ± 0.7
M-BoE (XLM-R) 94.6 86.4 88.9 80.0 87.4 75.6 73.7 83.2 82.2 ± 0.6

Table 3: Classification accuracy for topic classification on MLDoc dataset; “target avg.” indicates average scores
for target languages.

4.2 Entity preprocessing316

We constructed a mention-entity dictionary from317

the January 2019 version of Wikipedia dump3 and318

an inter-language entity dictionary from the March319

2020 version in the Wikidata dump,4 which con-320

tains 45,412,720 Wikidata entities (e.g., Q312). We321

computed the commonness values from the same322

versions of Wikipedia dumps in the correspond-323

ing language, following the work of Yamada and324

Shindo (2019).325

We initialized Wikidata entity embeddings using326

pre-trained English entity embeddings trained on327

the KB. To train these embeddings, we used the328

open-source Wikipedia2Vec tool (Yamada et al.,329

2020a). We used the January 2019 English330

Wikipedia dump mentioned above and set the di-331

mension to 768 and the other parameters to the332

default values. We initialized an entity embedding333

using a random vector if the entity did not exist in334

the Wikipedia2Vec embeddings. Note that we used335

only English Wikipedia to train the entity embed-336

dings.337

4.3 Models338

We used M-BERT (Devlin et al., 2019) and XLM-339

Rbase (Conneau et al., 2020a) as the baseline multi-340

lingual PLMs to evaluate the proposed method. We341

added a single fully-connected layer on top of the342

PLMs and used the final hidden state h of the first343

[CLS] token as the text-based document representa-344

3https://dumps.wikimedia.org/
4https://dumps.wikimedia.org/

wikidatawiki/entities/

tion. For the MLDoc dataset, we trained the model 345

by minimizing the cross-entropy loss with softmax 346

activation. For the TED-CLDC and SHINRA2020- 347

ML datasets, we trained the model by minimizing 348

the binary cross-entropy loss with sigmoid activa- 349

tion. For these two tasks, we regarded each label as 350

positive if its corresponding predicted probability 351

was greater than 0.5 during inference. 352

For topic classification using MLDoc, we com- 353

pared the performance of the proposed model with 354

those of two state-of-the-art cross-lingual models: 355

LASER (Artetxe and Schwenk, 2019) (see Section 356

2), and MultiCCA (Schwenk and Li, 2018), which 357

is based on a convolutional neural network with 358

multilingual word embeddings. To ensure a fair 359

comparison, we did not include models that use 360

additional unlabeled text data or a parallel corpus 361

to train models for each target language. 362

For entity typing, we tested a model that uses or- 363

acle entity annotations (i.e., hyperlinks) contained 364

in the Wikipedia page to be classified instead of 365

entities detected using the entity detection method 366

described in Section 3.1. Note that this model also 367

uses attention mechanisms and pre-trained entity 368

embeddings. 369

4.4 Detailed settings 370

The hyper-parameters used in our experiments are 371

shown in Table 2. We tuned them on the basis of the 372

English validation set. We trained the model using 373

the AdamW optimizer with a gradient clipping of 374

1.0. 375

In all experiments, we trained the models until 376

the performance on the English validation set con- 377
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Model en fr de it ru es ar tr nl pt pl ro target avg.
M-BERT 51.6 47.7 43.9 50.6 47.9 53.1 41.3 44.2 49.4 46.2 45.1 45.4 47.1 ± 1.4
XLM-R 51.5 49.5 49.7 48.7 48.3 51.2 45.6 51.3 48.8 46.3 48.3 48.4 49.1 ± 1.8
M-BoE (M-BERT) 52.9 49.5 46.2 53.3 49.2 54.7 44.7 49.1 51.0 47.6 47.7 48.2 49.6 ± 1.1
M-BoE (XLM-R) 51.7 50.0 53.8 51.3 52.3 52.9 50.5 53.1 52.0 49.3 50.5 49.6 51.8 ± 0.9

Table 4: F1 score for topic classification on TED-CLDC dataset.

fr de ja zh it ru es ar tr nl pt pl ro hi no
M-BERT 68.5 84.2 81.3 80.7 85.2 81.4 85.6 57.4 50.7 55.6 80.4 77.7 76.9 81.8 83.6
XLM-R 73.0 82.6 77.4 75.1 84.2 81.0 85.3 58.9 69.1 63.7 79.8 80.0 76.9 83.3 82.4
M-BoE (M-BERT) 69.3 85.1 82.5 82.2 86.4 83.2 86.6 61.9 54.0 59.0 81.7 79.4 80.5 82.9 84.8
M-BoE (XLM-R) 77.4 84.5 79.0 77.0 85.6 83.2 85.8 63.3 72.3 65.5 80.7 81.8 77.8 84.8 84.0
Oracle M-BoE (M-BERT) 75.4 85.2 81.9 81.8 86.5 83.0 86.5 61.9 53.7 61.7 81.8 79.7 79.9 83.0 84.8
Oracle M-BoE (XLM-R) 76.5 84.8 79.6 77.2 85.5 83.4 86.2 63.0 71.8 67.6 80.4 81.5 78.8 84.8 83.2

th ca da fa id sv vi bg cs fi he hu ko uk target avg.
M-BERT 84.0 81.5 80.1 80.2 72.4 79.4 79.3 74.0 74.6 75.7 74.0 77.1 81.3 78.0 76.6 ± 0.7
XLM-R 81.4 79.0 81.0 82.4 75.5 75.5 80.7 76.0 77.9 74.7 70.5 73.1 82.6 74.3 77.1 ± 1.2
M-BoE (M-BERT) 85.1 83.2 81.4 82.1 75.4 82.4 81.2 76.1 76.8 77.6 78.1 79.2 82.9 80.0 78.7 ± 0.5
M-BoE (XLM-R) 82.1 80.9 83.3 84.1 78.2 78.7 81.9 79.1 79.6 76.9 71.9 75.5 84.0 77.0 79.2 ± 0.9
Oracle M-BoE (M-BERT) 85.3 83.2 82.3 82.4 75.5 82.0 81.6 76.6 77.4 77.4 77.8 78.7 83.3 79.9 79.0 ± 0.5
Oracle M-BoE (XLM-R) 81.8 81.2 82.9 83.9 78.3 78.2 82.5 79.1 79.9 77.1 71.8 75.8 83.92 76.9 79.2 ± 0.9

Table 5: F1 score for entity typing on SHINRA2020-ML dataset.

Setting
M-BoE M-BoE

(M-BERT) (XLM-R)
target avg. target avg.

Full model 74.1 82.2
Attention mechanism:

without attention 70.5 81.1
commonness only 72.4 81.8
cosine only 72.8 81.8

Entity embeddings:
random vectors 73.0 80.9
KG embedding 73.2 81.4

Entity detection method:
entity linking 71.7 80.5
entity linking + att 73.0 81.9

Table 6: Results of analysis of our model on MLDoc.

verged. We conducted all experiments ten times378

with different random seeds, and recorded the aver-379

age scores and 95% confidence intervals.380

5 Results381

Tables 3, 4, and 5 show the results of our experi-382

ments. Overall, the M-BoE models outperformed383

their baselines (i.e., M-BERT and XLM-R) for384

all target languages on all three datasets. Further-385

more, there was a significant difference in the mean386

scores for the target languages for those models in387

a paired t-test (p < 0.05). In particular, the perfor-388

mance of our model clearly exceeded that of the389

M-BERT baseline by 2.7% in accuracy, 2.5% in390

F1, and 2.1% in F1, on the MLDoc, TED-CLDC,391

and SHINRA2020-ML datasets, respectively.392

For entity typing, using the entities detected with 393

our simple dictionary-based approach achieved 394

comparable performance to using gold entity 395

annotations (Table 5: Oracle M-BoE) on the 396

SHINRA2020-ML dataset, which clearly demon- 397

strates the effectiveness of our attention-based en- 398

tity detection method. 399

6 Analysis 400

We conducted a series of experiments to analyze the 401

performance of our model on the MLDoc dataset 402

(Table 6). We first analyzed the impact on the per- 403

formance of each component in the M-BoE model, 404

including the attention mechanism, pre-trained en- 405

tity embeddings, and entity detection methods. We 406

then evaluated the sensitivity of the model’s per- 407

formance to differences in the number of detected 408

entities for each language. Finally, we conducted 409

qualitative analysis by visualizing important enti- 410

ties. 411

6.1 Attention mechanism 412

We examined the effect of the attention mechanism 413

on performance. When the attention mechanism 414

was removed (Table 6: Attention mechanism), 415

the performance was substantially lower than with 416

the proposed model. This indicates that the atten- 417

tion mechanism selects the entities that are effective 418

in solving the classification task. Next, we exam- 419

ined the effectiveness of the two features (i.e., co- 420

sine and commonness) in the attention mechanism 421

by excluding them one at a time from the M-BoE 422
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(a) M-BoE (M-BERT) (b) M-BoE (XLM-R)

Figure 2: Classification accuracy for each entity detection rate using MLDoc dataset.

Model en (train) fr de ja zh it ru es avg.
External entity linking 20.0 19.2 14.6 8.15 5.2 11.7 12.7 13.8 13.2
Dictionary-based method (ours) 105.8 97.8 78.9 47.9 34.5 53.2 64.6 72.3 64.2

Table 7: Comparison of the number of detected entities on MLDoc dataset. Numbers indicate average number of
entities detected for each example.

model. Table 6 shows that there was a slight drop423

in performance when either of them was not used,424

indicating that both features are effective.425

6.2 Entity embeddings426

To investigate the effect of entity embedding ini-427

tialization, we replaced Wikipedia2Vec with (1)428

random vectors and (2) knowledge graph (KG)429

embeddings (Table 6: Entity embeddings). For430

KG embedding, we used ComplEx (Trouillon431

et al., 2016), a state-of-the-art KG embedding432

method. We trained the ComplEx embeddings433

on the wikidata5m dataset (Wang et al., 2021)434

using the kge tool (https://github.com/435

uma-pi1/kge). We set the dimension to 768436

and used the default hyper-parameters for ev-437

erything else in the wikidata5m-complex438

configuration in the tool. The results show439

that using Wikipedia2Vec was the most effective440

although using KG embeddings was better than441

using random vectors.442

6.3 Entity detection method443

To verify the effectiveness of our dictionary-based444

entity detection method, we simply replaced it with445

a commercial multilingual entity linking system,446

Google Cloud Natural Language API5 (Table 6:447

Entity detection method). All entities were de-448

tected with the API and converted into Wikidata449

5https://cloud.google.com/
natural-language

entities, as explained in Section 3.1. Note that 450

unlike our dictionary-based method, the entity link- 451

ing system detects a single disambiguated entity 452

for each entity name. 453

The results show that our entity detection method 454

outperformed the API. We attribute this to the num- 455

ber of entities detected with our dictionary-based 456

detection method. As shown in Table 7, the number 457

of entities detected with the entity linking system 458

was substantially lower than with our entity detec- 459

tion method because, unlike our method, the sys- 460

tem detects only disambiguated entities and does 461

not detect non-named entities. Therefore, we at- 462

tribute the better performance of our method com- 463

pared with that of the API to (1) non-named entities 464

also being important features and (2) the inability 465

to use the correct entity if the disambiguation error 466

is caused by entity linking. 467

Furthermore, as described in Section 5, our 468

entity detection method performed competitively 469

with the human-labeled entity annotations on the 470

SHINRA2020-ML dataset. 471

Next, we examined the performance impact of 472

the number of detected Wikidata entities. For the 473

full model and no attention model, we observed a 474

change in performance when some percentage of 475

the entities were randomly removed during train- 476

ing and inference. Figure 2 shows that, the higher 477

the entity detection rate, the better the performance 478

of the full model. When the attention mechanism 479

was removed, however, there was no consistent 480
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Figure 3: Example results for MLDoc. “Top three entities” indicates the three most influential entities selected by
attention mechanism.

trend. The performance remained the same or even481

dropped. These results suggest that the more enti-482

ties detected, the better the performance, and that483

the attention mechanism is important for this con-484

sistent improvement.485

6.4 Performance sensitivity to language486

differences487

In our method, the number of detected Wikidata488

entities during inference differs depending on the489

target languages. We investigated how this affects490

performance. For each of the datasets, we com-491

puted the Pearson’s correlation coefficient between492

the number of detected entities and the rate of im-493

provement in performance for each language (see494

Table 8 in the Appendix). As a result, there was495

no clear trend in the correlation coefficients, which496

ranged from -0.3 to 0.2. These results indicate497

that the performance was consistently improved for498

languages with a small number of detected enti-499

ties. We attribute this to the ability of our method500

to detect a sufficient number of entities, even for501

languages with a relatively small number of entity502

detections.503

6.5 Qualitative analysis504

To further investigate how the M-BoE model im-505

proved performance, we took the MLDoc docu-506

ments that our model classified correctly while M-507

BERT did not and examined the influential entities508

that were assigned the largest attention weights by509

the M-BoE model. Figure 3 shows three examples510

in which the M-BoE model effectively improved511

performance. Overall, it identified the entities that512

were highly relevant to the document. For example,513

the first document is a Japanese document about514

the Taiwanese stock market, and the M-BoE model515

correctly identified the relevant entities, including 516

Stock certificate, Share price, and Taiwan Capi- 517

talization Weighted Stock Index. 518

7 Conclusions 519

Our proposed M-BoE model is a simple extension 520

of multilingual PLMs: language-independent Wiki- 521

data entities are used as input features for zero- 522

shot cross-lingual text classification. Since the 523

Wikidata entity embeddings are shared across lan- 524

guages, and the entities associated with a document 525

are further selected by the attention mechanism, a 526

model trained on these features in one language 527

can efficiently be applied to multiple target lan- 528

guages. We achieved state-of-the-art results on 529

three cross-lingual text classification tasks, which 530

clearly shows the effectiveness of our method. 531

As future work, we plan to evaluate our model 532

on a variety of natural language processing tasks, 533

such as cross-lingual document retrieval. We would 534

also like to investigate whether our method can 535

be combined with other methods, such as using 536

additional textual data in the target language. 537
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Dataset Model fr de it ru es ja zh ar tr nl pt pl ro Pearson
#Ent 97.8 78.9 53.2 64.6 72.3 47.9 34.5 - - - - - -

MLDoc
Rate

M-BERT 5.8 2.4 4.3 5.5 0.4 2.6 6.2 - - - - - - -0.13
XLM-R 1.8 2.5 3.0 3.4 2.1 1.9 2.6 - - - - - - -0.34

#Ent 218.9 223.5 217.8 227.2 227.9 - - 227.3 185.0 190.7 166.4 134.5 211.2
TED-CLDC

Rate
M-BERT 3.8 5.2 5.7 2.7 3.0 - - 8.2 11.1 3.2 3.0 5.8 6.2 -0.11
XLM-R 1.0 8.2 5.3 8.3 3.3 - - 10.7 3.5 6.6 6.5 4.6 2.5 0.17

Table 8: Pearson correlation coefficient between average number of detected entities (#Ent) and rate of
improvement in performance (Rate) for each target language.

Appendix for “A Multilingual748

Bag-of-Entities Model for Zero-Shot749

Cross-Lingual Text Classification”750

A Details of performance sensitivity to751

language differences752

As described in Section 6.4, we tested the sensi-753

tivity of performance to the number of entities de-754

tected in the target languages. Specifically, for each755

target language, we computed (1) the ratio of per-756

formance improvement to the baseline and (2) the757

average number of detected entities per document758

and computed the Pearson correlation coefficient759

between the two variables on the MLDoc and TED-760

CLDC datasets.761

The experimental results (Table 8) do not show762

any clear trend in the correlation coefficients, indi-763

cating that the number of entity detections during764

inference does not substantially affect the model’s765

performance. For example, even for Chinese on766

the MLDoc dataset, for which the number of entity767

detections was the lowest, the performance was768

consistently higher than that of the baseline, as it769

was for the other languages.770
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