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Abstract

We present a multilingual bag-of-entities
model that effectively boosts the performance
of zero-shot cross-lingual text classification by
extending a multilingual pre-trained language
model (e.g., M-BERT). It leverages the multi-
lingual nature of Wikidata: entities in multi-
ple languages representing the same concept
are defined with a unique identifier. This en-
ables entities described in multiple languages
to be represented using shared embeddings. A
model trained on entity features in a resource-
rich language can thus be directly applied to
other languages. Our experimental results
on cross-lingual topic classification (using the
MLDoc and TED-CLDC datasets) and entity
typing (using the SHINRA2020-ML dataset)
show that the proposed model consistently out-
performs state-of-the-art models.

1 Introduction

In the zero-shot approach to cross-lingual transfer
learning, models are trained on annotated data in a
resource-rich language (the source language) and
then applied to another language (the target lan-
guage) without any training. Substantial progress
in cross-lingual transfer learning has been made
using multilingual pre-trained language models
(PLMs), such as multilingual BERT (M-BERT),
jointly trained on massive corpora in multiple lan-
guages (Devlin et al., 2019; Conneau and Lample,
2019; Conneau et al., 2020a). However, recent em-
pirical studies have found that cross-lingual trans-
fer learning with PLMs does not work well for
languages with insufficient pre-training data or be-
tween distant languages (Conneau et al., 2020b;
Lauscher et al., 2020), which suggests the difficulty
of cross-lingual transfer based solely on textual in-
formation.

We propose a multilingual bag-of-entities (M-
BoE) model that boosts the performance of zero-
shot cross-lingual text classification by injecting

features of language-agnostic knowledge base (KB)
entities into PLMs. KB entities, unlike words, can
capture unambiguous semantics in documents and
be effectively used to address text classification
tasks (Gabrilovich and Markovitch, 2006; Chang
et al., 2008; Negi and Rosner, 2013; Song et al.,
2016; Yamada and Shindo, 2019). In particular, our
model extends PLMs by using Wikidata entities as
input features (see Figure 1). A key idea behind
our model is to leverage the multilingual nature of
Wikidata: entities in multiple languages represent-
ing the same concept (e.g., Apple Inc., H=, 7

7 L) are assigned a unique identifier across lan-
guages (e.g., Q312). Given a document to be classi-
fied, our model extracts Wikipedia entities from the
document, converts them into the corresponding
Wikidata entities, and computes the entity-based
document representation as the weighted average of
the embeddings of the extracted entities. Inspired
by previous work (Yamada and Shindo, 2019; Pe-
ters et al., 2019), we compute the weights using
an attention mechanism that selects the entities rel-
evant to the given document. We then compute
the sum of the entity-based document representa-
tion and the text-based document representation
computed using the PLM and feed it into a linear
classifier. Since the entity vocabulary and entity
embedding are shared across languages, a model
trained on entity features in the source language can
be directly transferred to multiple target languages.

We evaluated the performance of the M-BoE
model on three cross-lingual text classification
tasks: topic classification on the MLDoc (Schwenk
and Li, 2018) and TED-CLDC (Hermann and
Blunsom, 2014) datasets and entity typing on the
SHINRA2020-ML (Sekine et al., 2020) dataset.
We trained the model using training data in the
source language (English) and then evaluated it
on the target languages. It outperformed our base
PLMs (i.e., M-BERT (Devlin et al., 2019) and the
XLM-R model (Conneau et al., 2020a)) for all tar-
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Figure 1: Architecture of M-BoE. Given a document, the model extracts Wikipedia entities, converts them into
corresponding Wikidata entities, and calculates the entity-based document representation by using the weighted
average of the embeddings of the entities selected by an attention mechanism. The sum of the entity-based repre-
sentation and the representation computed using a multilingual PLM is used to perform linear classification for the

task.

get languages on all three tasks, thereby demon-
strating the effectiveness of the entity-based rep-
resentation. Furthermore, our model performed
better than state-of-the-art models on the MLDoc
dataset.

Our contributions are as follows:

* We present a method for boosting the per-
formance of cross-lingual text classification
by extending multilingual PLMs to leverage
the multilingual nature of Wikidata entities.
Our method successfully improves the per-
formance on multiple target languages simul-
taneously without expensive pre-training or
additional text data in the target languages.

* Inspired by previous work (Yamada and
Shindo, 2019; Peters et al., 2019), we in-
troduce an attention mechanism that enables
entity-based representations to be effectively
transferred from the source language to the tar-
get languages. The mechanism selects entities
that are relevant to address the task.

* We present experimental results for three
cross-lingual text classification tasks demon-
strating that our method outperformed our
base PLMs (i.e., M-BERT and XLM-R) for
all languages on the three tasks and outper-
formed state-of-the-art methods on the ML-
Doc dataset.

2 Related Work

Cross-lingual PLMs Zero-shot cross-lingual
transfer learning approaches have relied on par-
allel corpora (Xu and Wan, 2017) or multilingual
word representation (Duong et al., 2017). Con-
siderable progress has been made on PLMs for
various cross-lingual transfer tasks. The representa-
tive models are M-BERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020a), which are multi-
lingual extensions of BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), respectively. Both
models are pre-trained on massive corpora of ap-
proximately 100 languages. LASER (Artetxe and
Schwenk, 2019) is a PLM trained on a parallel
corpus of 93 languages by using a sequence-to-
sequence architecture.

Improving cross-lingual transfer learning
Several studies have attempted to improve
cross-lingual transfer learning by using additional
text data in the target language. Lai et al. (2019)
proposed using an unlabeled corpus in the target
language to bridge the gap between the language
and the domain. Dong et al. (2020) and Keung
et al. (2019) incorporated adversarial training
using unlabeled target language examples. Dong
and de Melo (2019) and Eisenschlos et al. (2019)
presented methods for data augmentation in which
pseudo-labels are assigned to an unlabeled corpus
in the target language. Conneau and Lample (2019)
additionally pre-trained BERT-based models using
a parallel corpus. However, these methods require
extra training on additional text data for each



target language, and their resulting models work
well only on a single target language. Unlike
these methods, our method does not require extra
training and improves performance simultaneously
for all target languages with only a single PLM.
Furthermore, our method can be easily applied to
these models since it is a simple extension of a
PLM and does not modify its internal architecture.

Enhancing monolingual PLMs using entities
Several methods have been proposed for improv-
ing the performance of PLMs through pre-training
using entities. ERNIE (Zhang et al., 2019) and
KnowBert (Peters et al., 2019) enrich PLMs by
using pre-trained entity embeddings. LUKE (Ya-
mada et al., 2020b) and EaE (Févry et al., 2020)
train entity embeddings from scratch during pre-
training. However, all of these methods are aimed
at improving the performance of monolingual tasks
and require pre-training with a large corpus, which
is computationally expensive. Our method dynami-
cally injects entity information into PLMs during
fine-tuning without expensive pre-training.

Several studies have attempted to incorporate
entity information into PLMs after pre-training to
enhance the performance of monolingual tasks. Os-
tendorff et al. (2019) concatenated contextualized
representations with knowledge graph embeddings
to represent author entities and used them as fea-
tures for the book classification task. E-BERT
(Poerner et al., 2020) inserts KB entities next to
the entity names in the input sequence to improve
BERT’s performance for entity-centric tasks. Ver-
linden et al. (2021) introduced a mechanism for
combining span representations and KB entity rep-
resentations within a BILSTM-based end-to-end in-
formation extraction model. Unlike these methods,
our method aims to improve the cross-lingual text
classification by combining PLMs with language-
agnostic entity embeddings.

Text classification models using entities Sev-
eral methods have been commonly used to address
text classification using entities. Explicit seman-
tic analysis (ESA) is a representative example; it
represents a document as a bag of entities, which
is a sparse vector in which each dimension is a
score reflecting the relevance of the text to each
entity (Gabrilovich and Markovitch, 2006; Chang
et al., 2008; Negi and Rosner, 2013). More re-
cently, Song et al. (2016) proposed cross-lingual
explicit semantic analysis (CLESA), an extension

of ESA, to address cross-lingual text classification.
CLESA computes sparse vectors from the intersec-
tion of Wikipedia entities in the source and target
languages using Wikipedia language links. Unlike
CLESA’s approach, we address cross-lingual text
classification by extending state-of-the-art PLMs
with a language-agnostic entity-based document
representation based on Wikidata.

The most relevant to our proposed approach is
the neural attentive bag-of-entities (NABoE) model
proposed by Yamada and Shindo (2019). It ad-
dresses monolingual text classification using enti-
ties as inputs and uses an attention mechanism to
detect relevant entities in the input document. Our
model can be regarded as an extension of NABoE
by (1) representing documents using a shared entity
embedding across languages and (2) combining an
entity-based representation and attention mecha-
nism with state-of-the-art PLMs.

3 Proposed Method

Figure 1 shows the architecture of our model. The
model extracts Wikipedia entities, converts them
into Wikidata entities, and computes the entity-
based document representation using an attention
mechanism. The sum of the entity-based document
representation and the text-based document repre-
sentation computed using the PLM is fed into a
linear classifier to perform classification tasks.

3.1 Entity detection

To detect entities in the input document, we use two
dictionaries that can be easily constructed from the
KB: (1) a mention-entity dictionary, which binds
an entity name (e.g., “Apple”) to possible referent
KB entities (e.g., Apple Inc. and Apple (food))
by using the internal anchor links in Wikipedia
(Guo et al., 2013), and (2) an inter-language entity
dictionary, which links multilingual entities (e.g.,
Tokyo, &= 3, B ) to a corresponding identifier
(e.g., Q7473516) of Wikidata.

All words and phrases are extracted from the
given document in accordance with the mention-
entity dictionary, and all possible referent entities
are detected if they are included as entity names in
the dictionary. Note that all possible referent enti-
ties are detected for each entity name rather than
a single resolved entity. For example, we detect
both Apple Inc. and Apple (food) for entity name



“Apple”. Next, the detected entities are converted
into Wikidata entities if they are included in the
inter-language entity dictionary.

3.2 Model

Each Wikidata entity is assigned a representation
v, € RY. Since our method extracts all possible
referent entities rather than a single resolved entity,
it often extracts entities that are not related to the
document. Therefore, we introduce an attention
mechanism inspired by previous work (Yamada
and Shindo, 2019; Peters et al., 2019) to prioritize
entities related to the document. Given a document
with K detected entities, our method computes the
entity-based document representation z € R? as
the weighted average of the entity embeddings:

K

2= aeve, (1)

=1

where a., € R is the attention weight correspond-
ing to entity e; and calculated using

a= Softmax(WIqb), 2)
b(ei, d) = [ Cosm‘;(}_"’ . } 3)

where @ = [ae,,ac,, - , e, | are the attention
weights; W, € R? is a weight vector; ¢p =
[¢(€17 d)a ¢(€27 d)? T 7¢(6K7 d)] € R¥*K repre-
sents the degree to which each entity e; is related to
document d; and ¢(e;, d) is calculated by concate-
nating commonness' p., with the cosine similarity
between the document representation computed us-
ing the PLM, h € R? (e.g., the final hidden state
of the [CLS] token), and entity embedding, v, .

The sum of this entity-based document represen-
tation z and text-based document representation h
is fed into a linear classifier” to predict the proba-
bility of label c:

p(c| h,z) = Classifier(h + z). 4)

!Commonness (Mihalcea and Csomai, 2007) is the proba-
bility that an entity name refers to an entity in Wikipedia.

In preliminary experiments, we also tested concatenation,
but observed worse overall results than with summation.

Dataset Language Train Dev. Test
MLDoc 8 1,000 1,000 4,000
TED-CLDC 12 936 105 51-106
SHINRA 30 417,387 21,967 30k-920k

Table 1: Number of examples in MLDoc, TED-CLDC,
and SHINRA2020-ML datasets.

4 Experimental Setup

In this section, we describe the experimental setup
we used for the three cross-lingual text classifica-
tion tasks.

4.1 Data

We evaluated our model using three datasets: ML-
Doc (Schwenk and Li, 2018), TED-CLDC (Her-
mann and Blunsom, 2014), and SHINRA2020-ML
(Sekine et al., 2020).

MLDoc is a dataset for multi-class text classifi-
cation, i.e., classifying news articles into four cat-
egories. We used the english.train.1000 and en-
glish.dev datasets, which contain 1000 documents
for training and validation data. As in the previous
work (Schwenk and Li, 2018; Keung et al., 2020),
we used accuracy as the metric.

TED-CLDC is a multi-label classification
dataset covering 15 topics. This topic classification
dataset is exactly like the MLDoc dataset except
that the classification task is more difficult because
of its colloquial nature and because the amount
of training data is small. Following the previous
work (Hermann and Blunsom, 2014), we used
micro-average F1 as the metric.

SHINRA2020-ML is an entity typing dataset
that assigns fine-grained entity labels (e.g., Per-
son, Country, Government) to a Wikipedia page.
We used this dataset for multi-label classification
tasks; we used all datasets in 30 languages except
English for the test data. Following the original
work (Sekine et al., 2020), we used micro-average
F1 as the metric.

We created a validation set by randomly select-
ing 5% of the training data in TED-CLDC and 5%
of the training data in SHINRA2020-ML. We used
English as the source language in all experiments.
A summary of the datasets is shown in Table 1.



Model MLDoc  TED-CLDC SHINRA2020-ML
M-BERT 32/2e-05 16/2e-05 128 / 5e-05
XLM-R 32/2e-05 16/5e-05 64 /2e-05
M-BoE (M-BERT) | 32/2e-05 16/ 2e-05 128 / 5e-05
M-BoE (XLM-R) | 32/2e-05 16/ 5e-05 64 / 2e-05

Table 2: Hyper-parameters used for experiments. In each cell, the left value indicates batch size, and the right

value indicates learning rate.

Model en fr de ja zh it ru es | targetavg.
MultiCCA (Schwenk and Li, 2018) 9221724 812 676 747 694 60.8 725 71.2

LASER (Artetxe and Schwenk, 2019) | 89.9 | 78.0 84.8 603 719 694 678 773 72.8

M-BERT 9401794 751 693 68.0 671 653 752 |7l4x14
XLM-R 944 1849 867 785 852 734 713 81.5(802+0.5
M-BoE (M-BERT) 94.1 | 84.0 769 71.1 722 70.0 689 755 |741+0.7
M-BoE (XLM-R) 94.6 | 86.4 889 80.0 874 756 73.7 83.2|822+0.6

Table 3: Classification accuracy for topic classification
for target languages.

4.2 Entity preprocessing

We constructed a mention-entity dictionary from
the January 2019 version of Wikipedia dump® and
an inter-language entity dictionary from the March
2020 version in the Wikidata dump,* which con-
tains 45,412,720 Wikidata entities (e.g., Q312). We
computed the commonness values from the same
versions of Wikipedia dumps in the correspond-
ing language, following the work of Yamada and
Shindo (2019).

We initialized Wikidata entity embeddings using
pre-trained English entity embeddings trained on
the KB. To train these embeddings, we used the
open-source Wikipedia2Vec tool (Yamada et al.,
2020a). We used the January 2019 English
Wikipedia dump mentioned above and set the di-
mension to 768 and the other parameters to the
default values. We initialized an entity embedding
using a random vector if the entity did not exist in
the Wikipedia2Vec embeddings. Note that we used
only English Wikipedia to train the entity embed-
dings.

4.3 Models

We used M-BERT (Devlin et al., 2019) and XLM-
Rpase (Conneau et al., 2020a) as the baseline multi-
lingual PLMs to evaluate the proposed method. We
added a single fully-connected layer on top of the
PLMs and used the final hidden state h of the first
[CLS] token as the text-based document representa-

*https://dumps.wikimedia.org/
*https://dumps.wikimedia.org/
wikidatawiki/entities/

on MLDoc dataset; “target avg.” indicates average scores

tion. For the MLDoc dataset, we trained the model
by minimizing the cross-entropy loss with softmax
activation. For the TED-CLDC and SHINRA2020-
ML datasets, we trained the model by minimizing
the binary cross-entropy loss with sigmoid activa-
tion. For these two tasks, we regarded each label as
positive if its corresponding predicted probability
was greater than 0.5 during inference.

For topic classification using MLDoc, we com-
pared the performance of the proposed model with
those of two state-of-the-art cross-lingual models:
LASER (Artetxe and Schwenk, 2019) (see Section
2), and MultiCCA (Schwenk and Li, 2018), which
is based on a convolutional neural network with
multilingual word embeddings. To ensure a fair
comparison, we did not include models that use
additional unlabeled text data or a parallel corpus
to train models for each target language.

For entity typing, we tested a model that uses or-
acle entity annotations (i.e., hyperlinks) contained
in the Wikipedia page to be classified instead of
entities detected using the entity detection method
described in Section 3.1. Note that this model also
uses attention mechanisms and pre-trained entity
embeddings.

4.4 Detailed settings

The hyper-parameters used in our experiments are
shown in Table 2. We tuned them on the basis of the
English validation set. We trained the model using
the AdamW optimizer with a gradient clipping of
1.0.

In all experiments, we trained the models until
the performance on the English validation set con-


https://dumps.wikimedia.org/
https://dumps.wikimedia.org/wikidatawiki/entities/
https://dumps.wikimedia.org/wikidatawiki/entities/

Model en fr de it ru es ar tr nl pt pl ro | targetavg.
M-BERT 51.6 | 47.7 439 50.6 479 53.1 413 442 494 462 451 454 |471+14
XLM-R 5151495 49.7 487 483 512 456 513 48.8 463 483 484 |49.1+1.8
M-BoE (M-BERT) | 52.9 | 49.5 46.2 533 492 54.7 447 49.1 51.0 476 477 482|496+ 1.1
M-BoE (XLM-R) | 51.7 | 50.0 53.8 513 523 529 505 53.1 52.0 493 50.5 49.6 | 51.8+0.9
Table 4: F1 score for topic classification on TED-CLDC dataset.
fr de ja zh it ru es ar tr nl pt pl 0 hi no
M-BERT 68.5 842 813 80.7 852 814 856 574 507 556 804 777 769 81.8 83.6
XLM-R 73.0 826 774 751 842 81.0 853 589 69.1 63.7 798 80.0 769 833 82.4
M-BoE (M-BERT) 69.3 851 825 822 864 832 86.6 619 540 59.0 81.7 794 80.5 829 84.8
M-BoE (XLM-R) 774 845 79.0 77.0 856 832 858 633 723 655 80.7 818 778 84.8 84.0
Oracle M-BoE (M-BERT) | 754 852 819 81.8 865 830 865 619 537 617 818 79.7 799 83.0 84.8
Oracle M-BoE (XLM-R) | 76.5 84.8 79.6 772 855 834 862 63.0 718 67.6 804 815 788 848 83.2
th ca da fa id sV vi bg cs fi he hu ko uk  target avg.
M-BERT 84.0 81.5 80.1 802 724 794 1793 740 746 757 740 77.1 813 780 76.6+0.7
XLM-R 814 79.0 81.0 824 755 755 80.7 760 779 747 705 73.1 826 743 7T7.1x12
M-BoE (M-BERT) 85.1 832 814 821 754 824 812 76.1 768 77.6 781 79.2 829 80.0 78.7+0.5
M-BoE (XLM-R) 82.1 809 833 84.1 782 787 819 79.1 796 769 719 755 840 770 79.2+0.9
Oracle M-BoE (M-BERT) | 85.3 83.2 823 824 755 820 81.6 76.6 774 774 778 787 833 799 79.0+0.5
Oracle M-BoE (XLM-R) | 81.8 81.2 829 839 783 782 825 791 799 77.1 718 758 8392 769 792+09

Table 5: F1 score for entity typing on SHINRA2020-ML dataset.

M-BoE M-BoE
Setting (M-BERT) (XLM-R)
target avg. target avg.

Full model 74.1 82.2
Attention mechanism:

without attention 70.5 81.1

commonness only 72.4 81.8

cosine only 72.8 81.8
Entity embeddings:

random vectors 73.0 80.9

KG embedding 73.2 81.4
Entity detection method:

entity linking 71.7 80.5

entity linking + att 73.0 81.9

Table 6: Results of analysis of our model on MLDoc.

verged. We conducted all experiments ten times
with different random seeds, and recorded the aver-
age scores and 95% confidence intervals.

5 Results

Tables 3, 4, and 5 show the results of our experi-
ments. Overall, the M-BoE models outperformed
their baselines (i.e., M-BERT and XLM-R) for
all target languages on all three datasets. Further-
more, there was a significant difference in the mean
scores for the target languages for those models in
a paired t-test (p < 0.05). In particular, the perfor-
mance of our model clearly exceeded that of the
M-BERT baseline by 2.7% in accuracy, 2.5% in
F1, and 2.1% in F1, on the MLDoc, TED-CLDC,
and SHINRA2020-ML datasets, respectively.

For entity typing, using the entities detected with
our simple dictionary-based approach achieved
comparable performance to using gold entity
annotations (Table 5: Oracle M-BoE) on the
SHINRA2020-ML dataset, which clearly demon-
strates the effectiveness of our attention-based en-
tity detection method.

6 Analysis

We conducted a series of experiments to analyze the
performance of our model on the MLDoc dataset
(Table 6). We first analyzed the impact on the per-
formance of each component in the M-BoE model,
including the attention mechanism, pre-trained en-
tity embeddings, and entity detection methods. We
then evaluated the sensitivity of the model’s per-
formance to differences in the number of detected
entities for each language. Finally, we conducted
qualitative analysis by visualizing important enti-
ties.

6.1 Attention mechanism

We examined the effect of the attention mechanism
on performance. When the attention mechanism
was removed (Table 6: Attention mechanism),
the performance was substantially lower than with
the proposed model. This indicates that the atten-
tion mechanism selects the entities that are effective
in solving the classification task. Next, we exam-
ined the effectiveness of the two features (i.e., co-
sine and commonness) in the attention mechanism
by excluding them one at a time from the M-BoE
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Table 7: Comparison of the number of detected entities on MLDoc dataset. Numbers indicate average number of

entities detected for each example.

model. Table 6 shows that there was a slight drop
in performance when either of them was not used,
indicating that both features are effective.

6.2 Entity embeddings

To investigate the effect of entity embedding ini-
tialization, we replaced Wikipedia2Vec with (1)
random vectors and (2) knowledge graph (KG)
embeddings (Table 6: Entity embeddings). For
KG embedding, we used ComplEx (Trouillon
et al.,, 2016), a state-of-the-art KG embedding
method. We trained the ComplEx embeddings
on the wikidataSm dataset (Wang et al., 2021)
using the kge tool (https://github.com/
uma-pil/kge). We set the dimension to 768
and used the default hyper-parameters for ev-
erything else in the wikidataS5m-complex
configuration in the tool. The results show
that using Wikipedia2Vec was the most effective
although using KG embeddings was better than
using random vectors.

6.3 Entity detection method

To verify the effectiveness of our dictionary-based
entity detection method, we simply replaced it with
a commercial multilingual entity linking system,
Google Cloud Natural Language API° (Table 6:
Entity detection method). All entities were de-
tected with the API and converted into Wikidata

Shttps://cloud.google.com/
natural-language

entities, as explained in Section 3.1. Note that
unlike our dictionary-based method, the entity link-
ing system detects a single disambiguated entity
for each entity name.

The results show that our entity detection method
outperformed the API. We attribute this to the num-
ber of entities detected with our dictionary-based
detection method. As shown in Table 7, the number
of entities detected with the entity linking system
was substantially lower than with our entity detec-
tion method because, unlike our method, the sys-
tem detects only disambiguated entities and does
not detect non-named entities. Therefore, we at-
tribute the better performance of our method com-
pared with that of the API to (1) non-named entities
also being important features and (2) the inability
to use the correct entity if the disambiguation error
is caused by entity linking.

Furthermore, as described in Section 5, our
entity detection method performed competitively
with the human-labeled entity annotations on the
SHINRA2020-ML dataset.

Next, we examined the performance impact of
the number of detected Wikidata entities. For the
full model and no attention model, we observed a
change in performance when some percentage of
the entities were randomly removed during train-
ing and inference. Figure 2 shows that, the higher
the entity detection rate, the better the performance
of the full model. When the attention mechanism
was removed, however, there was no consistent


https://github.com/uma-pi1/kge
https://github.com/uma-pi1/kge
https://github.com/uma-pi1/kge
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language

Language

Document

Label

Probability distribution
M-BERT M-BoE

Top three entities

BAL 20 vA 2 —] 5ITATO GBS T IMEFE$033.28% B LTz, 7u—

H—bIzkdE, TERICTRONER L0, £, KE1TRT1047 (0350gmt) BIfE,

MCAT

"Stock certificate"
"Share price"

I8 Unbetsig27s. 071 (3. 28%) L, 8207. 59, RCAIL, 1090fEFTE | o "Tajwan Capitalization
K, ‘Weighted Stock Index"
CCAT MCAT ECAT GCAT
(B0 FL ) AR — AT LI DO 39 A 50 ) 5L PP Mfinictes of the Tresoury"
Zh | PHIESRTIECTINESS S, e IR HOANHETT 50 5 SEABAOIR. SESURBIOI | mear Ministry of the Treasury
A 2 H AN T35 50 0 5 5 MEA ST St T AR 0 ), M (R T3 | oomomicn o
RN T TG FE i A (e
TRENPE K TS RS HE T 922 5. (58) o mon eoxr ccnr
Mockea, 17 Map (pefitep) - pesiAeHT pd GOPHC e/IbLIAH NOAMHCA HEACPAIBHbIC FAKOHBL O BHECCHHH HIMCHEHIH I
JIONOJIHEHHH B CTATHH 100 U 110 3aKoHa pd "0 rocy x nexcusx B p”, D npesuzenta pd. "Federal law"
nercun Bee By GCAT "Pension Fund of the

R cTaThs 100 3aKOHA B "B s
u BBIIAT (l0X0/1a), X B CBABM C pabots,
HAYHCIIAIOTCS CTPAXOBBIE BAHOCH B if ora po”. py

KOTOpHIe He it pomz peb,

BHOCHL B

cratben 89 3aKoHa, Ha KOTOpbIe
P coOBILILIa, UTO BHABI BBILIAT, Ha
PABHTENBCTEOM P,

Social) t Russian Federation"
"Kremlin Press Secretary"

CCAT MCAT ECAT  GCAT

Figure 3: Example results for MLDoc. “Top three entities” indicates the three most influential entities selected by

attention mechanism.

trend. The performance remained the same or even
dropped. These results suggest that the more enti-
ties detected, the better the performance, and that
the attention mechanism is important for this con-
sistent improvement.

6.4 Performance sensitivity to language
differences

In our method, the number of detected Wikidata
entities during inference differs depending on the
target languages. We investigated how this affects
performance. For each of the datasets, we com-
puted the Pearson’s correlation coefficient between
the number of detected entities and the rate of im-
provement in performance for each language (see
Table 8 in the Appendix). As a result, there was
no clear trend in the correlation coefficients, which
ranged from -0.3 to 0.2. These results indicate
that the performance was consistently improved for
languages with a small number of detected enti-
ties. We attribute this to the ability of our method
to detect a sufficient number of entities, even for
languages with a relatively small number of entity
detections.

6.5 Qualitative analysis

To further investigate how the M-BoE model im-
proved performance, we took the MLDoc docu-
ments that our model classified correctly while M-
BERT did not and examined the influential entities
that were assigned the largest attention weights by
the M-BoE model. Figure 3 shows three examples
in which the M-BoE model effectively improved
performance. Overall, it identified the entities that
were highly relevant to the document. For example,
the first document is a Japanese document about
the Taiwanese stock market, and the M-BoE model

correctly identified the relevant entities, including
Stock certificate, Share price, and Taiwan Capi-
talization Weighted Stock Index.

7 Conclusions

Our proposed M-BoE model is a simple extension
of multilingual PLMs: language-independent Wiki-
data entities are used as input features for zero-
shot cross-lingual text classification. Since the
Wikidata entity embeddings are shared across lan-
guages, and the entities associated with a document
are further selected by the attention mechanism, a
model trained on these features in one language
can efficiently be applied to multiple target lan-
guages. We achieved state-of-the-art results on
three cross-lingual text classification tasks, which
clearly shows the effectiveness of our method.

As future work, we plan to evaluate our model
on a variety of natural language processing tasks,
such as cross-lingual document retrieval. We would
also like to investigate whether our method can
be combined with other methods, such as using
additional textual data in the target language.
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Dataset Model fr de it ru es ja zh ar tr nl pt pl ro Pearson

#Ent 97.8 789 532 646 723 479 345 - - - - - -
MLDoc Rate M-BERT 5.8 2.4 4.3 55 04 26 62 - - - - - - -0.13
XLM-R 1.8 2.5 3.0 3.4 2.1 19 26 - - - - - - -0.34

#Ent 2189 2235 217.8 2272 2279 - - 2273 185.0 190.7 1664 1345 211.2
TED-CLDC Rate M-BERT 3.8 52 5.7 2.7 3.0 - - 82 111 32 3.0 5.8 6.2 -0.11
XLM-R 1.0 8.2 53 8.3 33 - - 107 3.5 6.6 6.5 4.6 2.5 0.17

Table 8: Pearson correlation coefficient between average number of detected entities (#Ent) and rate of
improvement in performance (Rate) for each target language.

Appendix for “A Multilingual
Bag-of-Entities Model for Zero-Shot
Cross-Lingual Text Classification”

A Details of performance sensitivity to
language differences

As described in Section 6.4, we tested the sensi-
tivity of performance to the number of entities de-
tected in the target languages. Specifically, for each
target language, we computed (1) the ratio of per-
formance improvement to the baseline and (2) the
average number of detected entities per document
and computed the Pearson correlation coefficient
between the two variables on the MLDoc and TED-
CLDC datasets.

The experimental results (Table 8) do not show
any clear trend in the correlation coefficients, indi-
cating that the number of entity detections during
inference does not substantially affect the model’s
performance. For example, even for Chinese on
the MLDoc dataset, for which the number of entity
detections was the lowest, the performance was
consistently higher than that of the baseline, as it
was for the other languages.
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