
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPARSE SPATIO TEMPORAL RECONSTRUCTION WITH
CLOSABLE KERNEL SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantifying spatio-temporal (ST) measures of dynamical systems is a crucial
problem with wide ranging applications in climate modeling, epidemiology, phys-
ical processes to name a few. We are interested in the same but motivated by a
rather practical scenario where sparse information is collected non-uniformly. To
reconstruct the underlying dynamical system under such constraints, we propose
a novel algorithm for learning the Koopman operator via a Reproducing Kernel
Hilbert Space (RKHS) based on the Laplacian Kernel Extended Dynamic Mode
Decomposition (Lap-KeDMD). We further show that our kernel space resolves a
fundamental issue that is required for a faithful reconstruction of the Koopman
operator of the underlying ST data by proving its closability. We demonstrate our
method on standard benchmark cases – Burger’s Equation, fluid flow across cylin-
der and Duffing Oscillator. We then reconstruct the Koopman operator for a real
ST Seattle traffic flow data that is collected non-uniformly. Necessary compar-
isons are made between the current state of the art kernel methods corresponding
to Gaussian Radial Basis Function (GRBF) Kernel. Such empirical comparisons
leads us to conclude that Lap-KeDMD remarkably outperforms as compared to
that of aforementioned counter-part thereby, making the Laplacian Kernel a ro-
bust choice for such ST quantification.

1 INTRODUCTION

Spatio-temporal (ST) data have become ubiquitous in the current age where surveillance systems
and sensors are recording large volumes of video data in airports, roads, weather monitoring etc.
One important aspect of dealing with ST data is the task of prediction. Numerous applications in
traffic prediction, video action recognition, anomaly detection have led to advancement in deep
learning techniques like spatio-temporal convolution, spatio-temporal transformers, graph based
spatio-temporal transformers to name a few (see, e.g. He et al. (2019)Zhou et al. (2016)Grigsby
et al. (2021)Yu et al. (2020)Yan et al. (2021)Li et al. (2022).

On the other hand, there is an increased focus on understanding ST data from a dynamical systems
perspective (see Budišić et al. (2012)) where the task is not ST prediction but rather spatio-temporal
reconstruction. Theoretical investigations of dynamical systems, first initiated by Poincare, has re-
cently made huge advancements due to many applications arising in system design of engineered
systems, optimization and control and understandings of complex physical phenomena like turbu-
lence. Currently, data-driven methods provide a promising route in ST reconstruction by learning
spatio-temporal modes of the dynamical system. One of the key and useful data-driven algorithm to
provide ST modes is Dynamic Mode Decomposition developed by Schmid (2010). DMD in princi-
ple is an unsupervised machine learning (ML) algorithm Fujii & Kawahara (2019), based on Krylov
subspaces Saad (2003) and Arnoldi algorithm Arnoldi (1951).

As far as ST reconstruction in concerned, ML architectures for instance Rubanova et al. (2019)
(ODE-RNNs) or Ye et al. (2020); Murata et al. (2020); Hasegawa et al. (2020), (Brunton & Kutz,
2022, Chapter 6 Section 8, Page 236) based on Convolutional Neural Networks and Autoencoders
offer a competitive platform to simulate, model and forecast complex, chaotic non-linear dynami-
cal systems but face serious issues in analyzing the underlying dynamics as they lack tendency to
operate or evolve with respect to time (cf. Mezić (2021); Sarker (2021); Haggerty et al. (2023)) Inter-
estingly, such pitfall is overcome up by the data-driven techniques powered by the spectral analysis
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of the infinite-dimensional linear Koopman operators (cf. Koopman (1931); Koopman & Neumann
(1932); Mezić (2005)) over the underlying Hilbert space Williams et al. (2015a); Li et al. (2017) and
such framework of DMD is referred as Extended DMD (eDMD). However, since such data driven
methods are leveraged by the finite rank representations of the Koopman operators, which fails to
be compact Singh & Kumar (1979), hence making the usual L2� Hilbert space incomprehensible.

In such cases, choosing (adequate) RKHSs for the action of Koopman operators to perform DMD
naturally becomes a more justifiable options, which is called as Kernel Extended DMD (KeDMD)
Baddoo et al. (2022); Klus et al. (2018; 2020); Rosenfeld et al. (2022) and is central to this paper.
Recent investigation in KeDMD by Colbrook in (Colbrook, 2023, Page 44) recommends that one
should choose the kernel function space so that the Koopman operator on the underlying RKHS is
not just densely defined but also ‘closable’. However, coming up with such kernel spaces is non-
trivial Ikeda et al. (2022b;a). Among the popular choices of the kernel functions, is GRBF Kernel
(Steinwart et al., 2006, Page 4639) which not only just finds application in data-driven modeling but
also in various ML platforms such as support vector machines and etc.

There is a growing interest of data predictions based on collecting ST-reconstructions via Koopman
operators over the underlying RKHS. However, the problem of ST-reconstruction for data predic-
tions while collecting snapshots irregularly is still under-investigated. Ideally, full dataset is needed
to initiate DMD and is synthesis by stacking the data snapshots collected in a regular time-sampled
manner. Experimental analysis in Bevanda et al. (2024); Tu et al. (2014); Klus et al. (2016); Rosen-
feld et al. (2022); Brunton & Kutz (2022); Williams et al. (2015a); Schmid (2010; 2022); Baddoo
et al. (2022) (and references there in) seems to enjoy such hypothetical-ideal situation, which seems
to be quite far from the actual reality. Nevertheless, describing and forecasting the time evolution
of dynamical systems still remains a challenging problem in the setting of limited irregularly placed
data snapshots. Lack of investigation in this direction motivates this very paper, which provide the
solution to this problem by leveraging Kernelized eDMD and novelty of Laplacian Kernel.

Recovering ST modes is essentially a key to the data-driven methods and fueled by this, this paper
aims to provide the solution to the challenge of recovering data dynamics when we have irregular
and sparse data in conjunction with limited dataset.

Our main contribution in the proposed work is summarized below:

1. We develop an RKHS by the Laplacian Kernel embedded as L2�Lebesgue measure in
Subsubsection 3.1 and provide the Koopman operator theoretic quantification (cf. Theo-
rem A.12 and Theorem A.19) of Koopman operators over this RKHS.

2. We show that the Koopman operators over this RKHS space is closable(Theorem 3.2) while
showing that the current GRBF Kernel leads to a failure of closability. (Theorem 3.3).

3. We develop an algorithm to identify the Koopman operator over this RKHS based on irreg-
ular and sparsely sampled data and tabulate our results in Subsubsection 3.2. In particular,
we showcase our results on real ST data collected sparsely from speed sensors in Seattle.

2 MATHEMATICAL BACKGROUND ON DYNAMICAL SYSTEM, KOOPMAN
OPERATORS AND KERNEL SPACES

In reconstruction of ST data, we have Sampling-flow assumption that there is an underlying dy-
namical system and the data snapshots are a noisy observable of that dynamical system collected in
certain sense. This particular assumption is common and standard to initiate the data-driven meth-
ods discussion and can be learned from Bevanda et al. (2024); Brunton & Kutz (2022); Colbrook
(2023); Giannakis & Das (2020) with references present there in as well.

Assumption 2.1 (Sampling-flow assumption). Let M be a metric space and Ft : M ! M be the
flow as defined in equation 1 along with the Borel-probability measure µ whose support suppµ =
X . Let the system be sampled at a fixed-time-instant, say �t (> 0) such that Fn�t : M ! M.

d

dt
x(t) = f (x(t)) =) Ft (x(t0)) = x (t0) +

Z
t0+t

t0

f (x(t)) dt. (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definition 2.1 (Koopman Operators). Under Assumption 2.1, the dynamical flow Ft induces a linear
map KFt on the vector space of complex-valued functions on M and on X defined as

KFt : L
2 (µ) ! L2 (µ) =) KFtg := g � Ft. (2)

We now provide definition of Koopman eigenfunction �� corresponding to eigenvalue � 2 C Mezić
(2020).
Definition 2.2. Koopman eigenfunction �� 2 C(X) satisfies �� (x) = exp(��t)��(Ft(x)) over
t 2 [0, T ].

The sampling flow assumption give rise to the discrete dynamical system (n,M,F) based on which
one can discuss the interaction of Koopman operator equation 4 and the snapshots of dynamic flow
equation 3; these are respectively given as follows
Definition 2.3. Consider (n,M,F) be the discrete dynamical system where n 2 Z is time M ✓
Rn is the state space and x 7! F(x) is the dynamics. Then the data-set of snapshots of pairs
corresponding to the discrete dynamical system (n,M,F) is given as following:
2

4
| | | |
x1 x2 · · · xm

| | | |

3

5

| {z }
X

xi 7!F(xi)7!

2

4
| | | |

F(x1) F(x2) · · · F(xm)
| | | |

3

5

| {z }
X./

yi=F(xi)
:=

2

4
| | | |
y1 y2 · · · ym

| | | |

3

5 .

(3)

With a slight abuse of notation to the Koopman operator as K (instead of KFt in equation 2), we
understand that the Koopman operator acting on the observable � : M ⇢ Cn ! C as

K�(xi) = � � F(xi) = �(F(xi)) = �(yi), (4)

yields a brand new scalar valued function that gives the value of � one-step ahead in the future
against the discrete dynamical system (n,M,F), where n 2 Z, M ✓ RN and x 7! F(x). With
data sets recorded in matrix X and X./, the basic DMD based on singular value decomposition
(SVD Trefethen & Bau (2022)) to provide the spectral-observables of K is given in Tu et al. (2014).

In the natural interest of determining the Koopman spectra-observables i.e. Koopman eigen-values
(µk) and Koopman eigen-functionals ('k), they are also accompanied by the Koopman modes (⇠k)
of a certain vector valued observable g : M ! RNo , (No 2 N), which is refer as the full state ob-
servable given as g (x) = x. Further, one can have a following decomposition in terms of the afore-
mentioned the triple eigen-values, eigen-functionals & modes of the Koopman operator correspond-
ing to the (unknown) dynamics x 7! F(x): x =

P
Nk

k=1 ⇣k'k(x), F(x) =
P

Nk

k=1 µk⇣k'k(x),
where, supposing that Nk is the number of tuples required for the re-construction of the system
from the data of the dynamical system.

The eDMD is provided with the choice of scalar observables and for that let F be the appropriate
choice of scalar observables (such as RKHS). To do this, let  k : M ! R for k = 1, . . . , Nk under
the assumption that span(FNk) ⇢ F . In particular, the space of scalar observables is approximated
using { k}Nk

k=1 functions then feature space is RNk . Additionally, the feature map  will be the
‘stacked’ column vector of entries { k} given as  (x) =

⇥
 1 (x)  2 (x) · · ·  Nk (x)

⇤>
.With

the feature space RNk and considering the value of any functions �, �̃ 2 FNk , where (again)
spanFNk ⇢ RNk , one can define the evaluation of both � and �̃ against the inner product with
certain coefficient vector a and ã in CNk :

� (x) = ha, (x)iRNk =  (x)>a, �̃ (x) = hã, (x)iRNk =  (x)>ã.

The goal of the eDMD is to employ the pair of data-set of snapshots defined in equation 3 to generate
the compactified1 version of the Koopman operator denoted by K 2 RNk ⇥ RNk for some given
coefficients a and ã such that r =

⇣
K�� �̃

⌘
2 F , is minimum. The eDMD algorithm is given as:

1finite rank representation of the infinite dimensional Koopman operator
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Algorithm 1 Extended-DMD algorithm Williams et al. (2015a)

Step 1 With the pair of data-set of snapshots as defined in equation 3, compute following:

 x ,
⇥
 (x1)  (x2) · · ·  (xM )

⇤
; y ,

⇥
 (y1)  (y2) · · ·  (yM )

⇤
2 RM⇥Nk .

Step 2 Compute G =  >
x x and A =  >

x y.

Step 3 Determine pseudo-inverse of G. Denote it by G(�)p.

Step 4 Determine K by K , G(�)pA.

In the spirit of SVD based DMD via Schmid (2010); Tu et al. (2014), the SVD of  x can be used
to construct a matrix similar to K; this is given as follows:
Proposition 2.2. Let the SVD of  x be  x , Q⌃Z>, where Q and ⌃ 2 RM⇥M and Z 2
RNk⇥M . The pair of non-negative µ and v̂ are respective an eigenvalue and eigenvector of

K̂ ,
⇣
⌃(�)pQ>

⌘ �
 y 

>
x

� ⇣
Q⌃(�)p

⌘
=
⇣
⌃(�)pQ>

⌘
Â
⇣
Q⌃(�)p

⌘
, (5)

if and only if µ and v = Zv̂ are an eigen-value and eigen-vector of K.

3 PROPOSED WORK

The choice of kernel functions can dramatically change the performance of ML routine Singh
(2024); Geifman et al. (2020b;a), specifically in those situation when shorter training time or limited
and sparse data is available. The most common kernel function that arises from the class of radial
basis function (cf. Fasshauer (2007)) used in ML and AI routine such as speech enhancement is the
class of Laplace Kernel given as follows:

K1,�
EXP , K1,�

EXP(x, z) := exp

✓
�kx� zk2

�

◆
LAPLACE KERNEL.

Laplace Kernel plays a critical role to characterize Deep Neural Tangent Kernel Chen & Xu (2021)
and finds remarkable application in various ML tasks Chen et al. (2021a); Ghojogh et al. (2021);
Belkin et al. (2018); Geifman et al. (2020b); Genton (2001). We are motivated by the works Geifman
et al. (2020b;a), where they used the Laplacian Kernels to execute their ML task in presence of
either partial data or sparse data. This is so because, loosely speaking we share the common theme
of predicting the data based on limited sparse information. Lap-KeDMD algorithm to predict ST-
modes with irregular and sparse data snapshots is given as:

Algorithm 2 Proposed Lap-KeDMD algorithm

Step 1 Construct limited data-set snapshots matrix which are collected in irregular and sparse
manner.

Step 2 Compute Gram-Matrix G := [G]
i⇥j

and Interaction-Matrix I := [I]
i⇥j

by following:

[G]
i⇥j

= K1,�
EXP (xi,xj) , [I]

i⇥j
= K1,�

EXP (yi,xj) .

Step 3 Determine the spectral observables of the Gram-matrix Ĝ, i.e. Q and ⌃.

Step 4 Construct K̂ via equation 5.

Reconstructed results from Step 4 in Algorithm 2 are yielded through the dominant Koopman modes
calculated by the complex eigenvalues of the Gram Matrix whose real part’s magnitude are compar-
atively larger helping in identifying the underlying patterns of the actual data of dynamical system.
Dominant Koopman eigenvalues determined in such way is fundamentally important and thus plays
a crucial role Williams et al. (2015b); Baddoo et al. (2022); Mezić (2021). Further, Koopman eigen-
values on an unit circle symbolizes the oscillatory mode of data, while on other hand, eigenvalues

4
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lying inside an unit circle symbolizes decaying mode of data Kutz et al. (2016). We will compare the
experimental results in Subsubsection 3.2 generated by the Laplacian Kernel and the GRBF Kernel.
To collect the experimental results from the GRBF Kernel, we execute the workflow of Algorithm 2
by considering [G]

i⇥j
= K2,�

EXP (xi,xj) , [I]i⇥j
= K2,�

EXP (yi,xj) .

3.1 CLOSABILITY RESULTS

For KeDMD methods, as already first noted by Colbrook (2023) and then also by, Giannakis & Valva
(2024) a challenge associated with RKHS techniques is that RKHS fails to exhibit invariance under
the action of the Koopman operator. Further, Koopman operator invariance problem is actually tied
with ST reconstruction of data matrix Bevanda et al. (2024) as well. The solution to this problem lies
in choosing a suitable RKHSs where Koopman operators need to be closable Ikeda et al. (2022b). If
in case closability criteria is not satisfied, this immediately will implicates that ST reconstruction is
not possible. In the light of this, this section contains important theoretical results which leads up to
the justification of closability of Koopman operators over the RKHS of Laplacian Kernel.

Throughout the paper, class of observables functions is captured by holomorphic (entire) functions
(Markushevich, 2005, Chapter 9) mapping between Cn ! C. In order to systematic define the
Laplacian Kernel as an L2�measure, we consider an injective linear operator I� over Cn as I�z =
�Inz, where In is the identity matrix. Define the graph of I� as:

�Z+ (I�) := {(z, I�z) 2 Cn ⇥ Cn : z 2 Cn}
= {(z,�z) 2 Cn ⇥ Cn : z 2 Cn} ,� Z+. (6)

Graph �Z+ introduced above will play a crucial role towards the end of paper in proving closability
of Koopman operators. Laplacian Kernel as probability L2� measure dµ�,1,Cn(z) 8� > 0 is

dµ�,1,Cn(z) :=
1

(2⇡�2)n
K1,2�

EXP (�Z+)dV (z) =
1

(2⇡�2)n
exp

✓
�kzk2

�

◆
dV (z) (7)

where kzk2 =
p
|z1|2 + · · ·+ |zn|2 for z = (z1, . . . , zn) 2 Cn. Then, we can provide the inner

product between two holomorphic functions f : Cn ! C and g : Cn ! C associated with this
measure as

hf, gi�,1,Cn :=
1

(2⇡�2)n

Z

Cn

f(z)g(z)e�
kzk2

� dV (z). (8)

Now, that we have inner product, we can have following as the Hilbert function space corresponding
to the same.

H�,1,Cn := {holomorphic function f : Cn ! C : kfk�,1,Cn < 1} . (9)
Hilbert space H�,1,Cn equipped with the inner product equation 8 constitutes the RKHS (cf. Defini-
tion A.1) due to the existence of its orthonormal basis Theorem A.3 by the virtue of Theorem A.1.
Theorem 3.1. For � > 0, let z = (z1, . . . , zn) and w = (w1, . . . , wn) be in Cn. Then the
reproducing kernel for RKHS H�,1,Cn is

K�

w (z) = K� (z,w) :=

 r
hz,wiCn

�2

!�1

· sinh
 r

hz,wiCn

�2

!
(10)

where hz,wiCn = zw> =
P

n

i=1 ziwi.

Now that we have the RKHS H�,1,Cn , we are ready to define the Koopman operators K' induced
by holomorphic symbols ' : Cn ! Cn over the RKHS H�,1,Cn . This definition fundamentally
helps in operator theoretic quantification over the RKHS H�,1,Cn . It should be noted that, the way
we exposed this definition is traditional follows from the setting of Cowen (1983); Carswell et al.
(2003); Cowen Jr (2019); Hai et al. (2016); Hai & Khoi (2018); Hai & Rosenfeld (2021); Le (2014;
2017); Gonzalez et al. (2024).
Definition 3.1. Let ' : Cn ! Cn be a holomorphic function in which every coordinate function of
it are holomorphic functions from Cn ! C. Then, the Koopman operator induced by ' is denoted
by K' : D (K') ⇢ H�,1,Cn ! H�,1,Cn and is the linear operator defined by

K'(f) := f � '.
The domain of K' is D (K') given as D (K') := {f 2 H�,1,Cn : f � ' 2 H�,1,Cn} .

5
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Detailed Koopman operator theoretic quantification in terms of boundedness and compactness along
with its proofs are provided in Subsubsection A.5 and Subsubsection A.6. Now, we will discuss the
closability of the Koopman operators over the RKHS H�,1,Cn and the RKHS of the GRBF Ker-
nels. We reviewed the closability of linear (unbounded) operators in Appendix B. Our workflow of
showing the closability of the Koopman operators over the RKHS H�,1,Cn is based on Lemma B.1.
Theorem 3.2. Let K' acts boundedly over the RKHS H�,1,Cn with '(z) = Az + b. Define a
subsequence of �Z+ by �Z+,N as

�Z+,N :=
n
(zN ,�zN ) 2 Cn ⇥ Cn : lim

N!1
kzNk2 = 0 where z 2 Cn

o
. (11)

There exists a sequence KN inside the RKHS H�,1,Cn as defined KN := kzNk2K�(�Z+,N ) such
that limN!1 KN = 0. Also, K' is closable over the RKHS H�,1,Cn if b ⌘ 0, implying ' is linear
in Cn, that is '(z) = Az. Let 'A(z) := Az, then limN!1 K'AKN = 0.

Proof. See Subsubsection B.1

In order to discuss the closability of Koopman operators on the GRBF Kernel, we recall it as follows
subsequently followed by its RKHS as well.

K2,�
EXP , K2,�

EXP(x, z) := exp

✓
�kx� zk22

�

◆
GRBF KERNEL.

Norm for the GRBF Kernel Steinwart et al. (2006); Steinwart & Christmann (2008) is

kfk2
�
:=

2n�2n

⇡n

Z

Cn

|f(z)|2e�
2 Pn

i=1(zi�zi)
2

dV (z), (12)

where dV (z) is the usual Lebesgue volume measure on Cn ⌘ R2n. RKHS for K2,�
EXP(x, z) is:

H� := {f : Cn ! C : f is holomorphic and kfk� < 1} . (13)

Following theorem leverages the bounded Koopman operators over the RKHS H� defined in equa-
tion 13 whose result is borrowed from (Gonzalez et al., 2024, Corollary 1, Page 8).
Theorem 3.3. Let K' be bounded on H� , then ' = Az + b, where A 2 Cn⇥n and b 2 Cn.
Recall the domain �Z+ defined in equation 6 and the subspace �Z+,N given in equation 11.
Then limN!0 kzNk2K2,�

EXP(�Z+,N ) = 0 but zNK2,�
EXP(�Z+,N ) 62 H� . Since the sequencen

zK2,�
EXP(�Z+,N )

o

N

62 H� , hence K' is not closable over the RKHS H� .

Proof. See Subsubsection B.2.

3.2 RESULTS

We consider a number of important benchmark experiments to investigate the performance of the
proposed Lap-KeDMD algorithm under limited irregular and sparse data snapshots. These experi-
ments find wide-range applications in real-world setting and have been used by various practition-
ers Bevanda et al. (2024); Colbrook (2023); Colbrook & Townsend (2024); Baddoo et al. (2022);
Bagheri (2013); Williams et al. (2015a;b); Rosenfeld et al. (2022); Gonzalez et al. (2024).

However, previous work relied on the collection of spatio-temporal data in uniform time sampled
manner. We consider the same benchmark experiments by irregularly sampling sparse data with the
same goal of determining ST modes via the compacted Koopman operators achieved over the RKHS
of Laplacian kernel (Theorem A.19) and GRBF kernels (Gonzalez et al. (2024)). Explanations are
in the Appendix.

Additionally we consider a real-world spatio-temporal data collected from Seattle freeway traffic
speed sensors (experiment 4). This dataset has innate irregularity and sparsity due to the placement
of sensors. Moreover, there is no known underlying dynamical system generating this dataset. This
makes the reconstruction of this data set extremely challenging. In every experiment, we compare

6
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the spatio-temporal reconstruction using our proposed Laplacian Kernel K1,1
EXP (Algorithm 2) with

the state-of-the art GRBF Kernel K2,1
EXP (replacing K1,1

EXP by K2,1
EXP in Algorithm 2).

Table 1: Governing equations of experiments (if available).

EXPERIMENT GOVERNING EQUATION(S)

1. @u

@t
+ u

@u

@x
= ⌫

@2u

@x2

2. @

@t
u(x, y, t) + u(x, y, t) ·ru(x, y, t) +rp(x, y, t)� 1

RE
r2u(x, y, t) = 0.

3. ẋ = y, ẏ = �0.5y + x� x3.
4. n/a

Figure 1: EXPERIMENT 1: Nonlinear Burger’s Equation. Spatial evolution of 256 spatial values
over the time span of [0, 10] sec. Presented are the spatial data snapshots collected at the time stamp
10th, 20th, 30th and 40th.

Table 2: EXPERIMENT 1: Nonlinear Burger’s Equation. ST reconstruction through dominant Koop-
man modes via K1,1

EXP and K2,1
EXP with irregular and sparse 40 snapshots out of actual 100 snapshots.

# KOOPMAN MODE GROUND TRUTH
IRREGULAR &

SPARSE
RECON. VIA LAP

RECON. VIA
GRBF

KOOPMAN EIGENVALUES
(LAP, GRBF)

# 39th
0.99 + 0i, 0.99 + 0i

Figure 2: EXPERIMENT 1: Nonlinear Burger’s Equation. Spatial reconstruction result along with
ground truth for spatial data present at 39th snapshot by both K1,1

EXP and K2,1
EXP (left). Absolute error

plots for the same as well (right), where performance by K2,1
EXP is poor as compared to K1,1

EXP.
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Figure 3: EXPERIMENT 2: Fluid flow across cylinder. A sample of 1st and 73rd snapshots out
of available 151 snapshots for 2�D spatial plots of x ⇥ y 2 R449 ⇥ R199 spatial sensors val-
ues evolving with respect to time uniformly over time space [1, 151] sec (scaled) in 1st and 3rd

entries. Irregular and and sparse spatial 2�D plots of the same are given in 2nd and 4th entries
respectively. Few of entries of uniform time sampling recorded by 151 time sensors (scaling)
are [1, 2, 3, . . . , 151]> sec while on the other hand, the irregular version of the same is given as
[151, 148, 144, 9, 6, . . . , 94, 98, 97, 103]> sec.

Table 3: EXPERIMENT 2: Fluid flow across cylinder. ST reconstruction through dominant Koop-
man modes via K1,1

EXP and K2,1
EXP with irregular and sparse 100 snapshots out of total 151 snapshots.

Labeling for both spatial directions x and y is same from Figure 3.

# KOOPMAN MODE GROUND TRUTH
IRREGULAR &

SPARSE
RECON. VIA LAP

(REAL/IMAG)

RECON. VIA
GRBF

(REAL/IMAG)

KOOPMAN EIGENVALUES
(LAP, GRBF)

# 99th
0.96 + 0i, 0.88 + 0i

Figure 4: EXPERIMENT 2: Fluid flow across cylinder. Spatial reconstruction results along with
ground truth for 2�D spatial data present at the 99th snapshot by both K1,1

EXP and K2,1
EXP (left). Absolute

error plots for the same as well (right).

Governing 2�D equations for chaotic Duffing Oscillator is already given in entry 3 in Table 1.
Dataset for this experiment build by an initial condition given as [�1.8760, 1.7868]>. This experi-
ment actually belongs to the natural setting of phase-portrait reconstruction problem which we have
adopted the same to test proposed Lap-KeDMD algorithm in terms of spatial-modes reconstruction.

Figure 5: EXPERIMENT 3: Duffing Oscillator. Chaotic Duffing Oscillator with actual full dataset
(ground truth in first entry), irregular and sparse of the same (second entry), prediction via K1,1

EXP

(third entry) and prediction via K2,1
EXP (fourth entry) based on provided 35000 trajectories values.
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(a) 1st dim. (b) 1st dim. error (c) 2nd dim. (d) 2nd dim. error

(e) 1st dim. (f) 1st dim. error (g) 2nd dim. (h) 2nd dim. error

Figure 6: EXPERIMENT 3: Duffing Oscillator. State space reconstruction in both dimensions used
for phase portraits reconstruction in entries third and fourth in Figure 5. First state space is x 2
R35000 followed by second space y 2 R35000. Reconstruction of these x and y by K1,1

EXP are given
in Figure 6a and Figure 6c. On the other hand, reconstruction of these x and y by K1,1

EXP are given
in Figure 6e and Figure 6g. When we reconstruct and compare the complete phase portraits in third
and fourth entries in Figure 5, we see that the result by K1,1

EXP outperforms the K2,1
EXP.

Table 4: EXPERIMENT 4: Seattle I-5 Freeway Traffic Speed data. ST reconstruction through dom-
inant Koopman modes via K1,1

EXP and K2,1
EXP. For this experiment, real and imaginary parts of eigen-

values delivered by K2,1
EXP are in the order of O(10�q), q o 1 due to ill-condition of Gram Matrix.

# KOOPMAN MODE GROUND TRUTH RECON. VIA LAP
RECON. VIA

GRBF
KOOPMAN EIGENVALUES

(LAP, GRBF)

# 23th �0.28 � 0.46i, 0 + 0i

Figure 7: EXPERIMENT 4: Seattle I-5 Freeway Traffic Speed data. (Left) For the Seattle I-5 freeway
traffic speed data, there are 75 loop detectors recording vehicle’s speed in a 72 time intervals frame
over a rush-hour period 6:00 am — 12:00 pm; follow Cui et al. (2018; 2019) for more details. These
75 loop detectors present on freeway have sensor IDs as 166 till 240 in sequentially manner. (Right)
Map of Seattle freeway from Cui et al. (2018; 2019) showing their inductive loop detector locations
where each blue icon indicate loop detectors at every traffic sensor present at every milepost.

Figure 8: EXPERIMENT 4: Seattle I-5 Freeway Traffic Speed data. Histogram (speed vs. histogram
bins) of speed data on Seattle I-5 freeway traffic speed data collected by sensors with loop detector
IDs 166th, 186th and 226th (left). Plot of Seattle I-5 freeway speed collected on these sensors (right).
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Figure 9: EXPERIMENT 4: Seattle I-5 Freeway Traffic Speed data. Spatio-temporal speed recon-
struction result along with the ground truth for speed data present at the Seattle I-5 freeway traffic
sensor ID 218th by both K1,1

EXP and K2,1
EXP (left). Absolute error plots for the same as well (right).

Speed data collected at the Seattle I-5 freeway sensor ID 218th corresponds to 53rd time snapshot.

Figure 10: EXPERIMENT 4: Seattle I-5 Freeway Traffic Speed data. Spatio-temporal speed recon-
struction result along with the ground truth for speed data present at the Seattle I-5 freeway sensor
ID 232th snapshot by both K1,1

EXP and K2,1
EXP (left). Absolute error plots for the same as well (right).

Speed data collected at the Seattle I-5 freeway sensor ID 232nd corresponds to 67th time snapshot.

4 CONCLUSION

We presented Lap-KeDMD to discover ST modes from a given limited spatio-temporal dataset and
compared the results in contrast to that of GRBF Kernel using spectral observables of Koopman op-
erators. We quantify bounded closable and compact Koopman operators on RKHS H�,1,Cn . Also,
main reason why we fail to achieve the closability of the Koopman operators over the GRBF Ker-
nel is because of the inner-product for the function space corresponding to the GRBF Kernel. In
particular, the measure present in the norm for the function space in equation 12 is unable to make
the L2�integration finite. Since the closability of Koopman operator is directly linked with the
ST-mode reconstruction, we see that reconstruction for the experiments via Laplacian Kernel are of
higher quality in terms of information richness and data measure predictions as opposed to that of
GRBF Kernel. We already anticipate such results due to the closability of the Koopman operators
over the the RKHS of Laplacian Kernel as opposed to that of the GRBF Kernel. For future direc-
tions, it will be interesting to investigate the workflow of the Lap-KeDMD algorithm to recover the
ST-modes of data if we have partial information of the dynamical system.
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Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Non-
linear Dynamics, 41:309–325, 2005.
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A APPENDIX

A.1 REPRODUCING KERNEL HILBERT SPACE

The definition of reproducing kernel Hilbert space (RKHS) is given as follows:
Definition A.1. Let X = ; and (H, h·, ·iH) be the Hilbert function space over X .
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