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Abstract

This paper explores the optimal imposition of hard constraints, strategic sampling1

of PDEs, and computational domain scaling for solving the acoustic wave equation2

within a specified computational budget. First, we derive a formula to systemat-3

ically enforce hard boundary and initial conditions in Physics-Informed Neural4

Networks (PINNs), employing continuous functions within the PINN ansatz to5

ensure that these conditions are satisfied. We demonstrate that optimally selecting6

these functions significantly enhances the convergence of the solution. Secondly,7

we introduce a Dynamic Amplitude-Focused Sampling (DAFS) method that opti-8

mizes the efficiency of hard-constraint PINNs under a fixed number of sampling9

points. Leveraging these strategies, we develop an algorithm to determine the opti-10

mal computational domain size, given a computational budget. Our approach offers11

a practical framework for domain decomposition in large-scale implementation of12

acoustic wave equation systems.13

1 Introduction14

The concept of using artificial neural networks to solve differential equations was first explored in the15

1990s by Lagaris et al. [1998]. In the work of Lagaris et al. [1998], they developed an ansatz solution16

that inherently satisfies the boundary conditions (BC) and the initial conditions (IC) of differential17

equations. More recently, the advent of physics-informed neural networks (PINNs) was marked by18

the influential study of Raissi et al. [2019]. This work leverages modern deep neural networks to solve19

forward and inverse problems involving nonlinear partial differential equations (PDEs), incorporating20

BCs and ICs through soft constraints in loss functions.21

Subsequent research has introduced various modifications to PINNs to enhance their accuracy,22

efficiency, and scalability [Lu et al., 2021a]. There are a couple of drawbacks for many PINNs with23

soft constraints for BCs and ICs. The selection of weights and samples for BCs and ICs cannot24

certainly be determined and requires many trial-and-error tests. Even when the loss function is25

minimized, the BCs and ICs are not strictly satisfied. To target the scaling problems of general PDEs26

and take advantage of parallel computing, XPINNs and FBPINNs have been developed based on27

domain decomposition methods [Jagtap and Karniadakis, 2020, Shukla et al., 2021, Moseley et al.,28

2023].29

There are a few key points that these previous reseearches missed. First, how to formulate ansatz30

solutions satisfying BCs and ICs, specifically the function multiplier of NN. Second, if BC and IC31

are inheriently satisfied by constructing the ansatz solution, how to optimally sample the PDEs in the32

training process. Furthermore, for the existing PINNs handling scaling problems, how to decompose33

the domain to save the overall compute budget.34
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In this paper, we set up a 1D wave equation problem and investigate the optimal sampling and35

constraint imposing method given a compute budget.36

The contributions of this paper are as follows.37

• We systematically derived the implementation of hard BC and IC constraints in PINNs to38

solve acoustic wave equations. We give a strategy to select basic functions in the PINN39

ansatz solution that guarantee the satisfaction of BCs and ICs. We find that optimal selection40

of the basic function in the PINN ansatz can improve the convergence of PINNs.41

• We developed a Dynamic Amplitude-Focused Sampling (DAFS) algorithm to improve the42

convergence of hard-constraint PINNs for wave equations given a fixed number of sampling43

points.44

• With the hard constraint and importance sampling strategies, we propose an algorithm45

to find the optimal size of the computational given a compute budget. This domain size46

optimization algorithm can help the domain decomposition-based PINNs for large-scale47

problems save computational cost.48

2 Related Work49

Hard constraint Hard constraint PINNs can guarantee the satisfaction of BCs, ICs, symmetries,50

and/or conservation laws. There are comprehensive studies of embedding BCs in PINNs. Lu51

et al. [2021b] demontrated various ansatz equations to strictly meet Dirichlet and periodic BCs,52

and proposed the penalty method and the augamented Lagrangian method to impose inequality53

constraints as hard constraints. Liu et al. [2022] developed a unified ansatz formula to enforce the54

Dirichlet, Neumann, and Robin boundary conditions for high-dimensional and geometrically complex55

domains. Moseley et al. [2023] implemented the hard Dirichlet in the subdomain using a tanh2 (ωx)56

function as the multiplier function of the neural networks in their FBPINN ansatz solution. However,57

studies on how to impose both hard BC and IC constraints in PINNs for acoustic wave equations58

that have a second-order time dirivative term are still limited. Alkhadhr and Almekkawy [2023]59

compared the accuracy and performance of PINNs with a combination of hard-BC/soft-BC and60

hard-IC/soft-IC for solving a 1D wave equation with a time-dependent point source function. This61

implementation of the hard-IC only considers the satisfaction of the wavefield values at the initial62

time u(x, t = 0), but neglects the hard constraint of the first-order time derivative of the wavefield63

u(x, t), i.e., ∂tu(x, t = 0). Brecht et al. [2023] proposed improved physics-informed DeepONets64

with hard constraints, and presented a numerical example of a 1D standing wave equation with65

Dirichlet BCs. The DeepONet framework used in the paper has an inherent satisfaction of the initial66

wavefield, but ∂tu(x, t = 0) is also neglected. This neglection does not affect the numerical results67

for the 1D standing wave equation in their paper, since they simply assume ∂tu(x, t = 0) = 0.68

Strategic Sampling Many sampling algorithms have been developed to improve the training effi-69

ciency, mitigating failure modes of PINNs. [Wu et al., 2023] provided a comprehensive comparison of70

ten sampling methods, including non-adaptive and residual-based adaptive methods. Daw et al. [2023]71

proposed a Retain-Resample-Release (R3) Sampling algorithm to mitigate the failure propagation72

during the training processes of PINNs. [Gao et al., 2023a,b] developed failure informed adamptive73

sampling for PINNs, with the extentions of combining re-sampling and subset simulation. Yang et al.74

[2023] introduced a Dynamic Mesh-Based Importance Sampling (DMIS) method to enhance the75

training of PINNs. Additionally, [Zhang et al., 2024] proposed an annealed adaptive importance76

sampling method for solving high-dimensional partial differential equations using PINNs.77

Domain Scaling Computational domain scaling is a key issue to apply PINNs to real-world large78

spatial-temporal scale applications. [Jagtap and Karniadakis, 2020] proposed a generalized space-79

time domain decomposition framework for PINNs, named extended PINNs (XPINNs), which can80

handle nonlinear PDEs on complex-geometry domains. XPINNs provide large representation and81

parallelization capacity by deploying multiple neural networks in smaller subdomains, offering both82

space and time parallelization to reduce training costs effectively. Shukla et al. [2021] developed83

a distributed framework for PINNs based on two extensions: conservative PINNs (cPINNs) and84

XPINNs. These methods employ domain decomposition in space and time-space, respectively,85

enhancing the parallelization capacity, representation capacity, and efficient hyperparameter tuning of86
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PINNs. The framework allows for optimizing all hyperparameters of each neural network separately87

in each subdomain, providing significant advantages for multi-scale and multi-physics problems. They88

demonstrated the efficiency of cPINNs and XPINNs through various forward problems, highlighting89

that cPINNs are more communication-efficient while XPINNs offer greater flexibility for handling90

complex subdomains. Moseley et al. [2023] addressed the limitations of PINNs in solving large91

domains and multi-scale solutions by proposing Finite Basis PINNs (FBPINNs). FBPINNs use neural92

networks to learn basis functions defined over small, overlapping subdomains, inspired by classical93

finite element methods. This approach mitigates the spectral bias of neural networks and reduces the94

complexity of the optimization problem by using smaller neural networks in a parallel, divide-and-95

conquer approach. Their experiments showed that FBPINNs outperform standard PINNs in accuracy96

and computational efficiency for both small and large, multi-scale problems. Chalapathi et al. [2024]97

introduced a scalable approach to enforce hard physical constraints using Mixture-of-Experts (MoE)98

in neural network architectures. This method imposes constraints over smaller decomposed domains,99

with each domain solved by an expert through differentiable optimization. The independence of each100

expert allows for parallelization across multiple GPUs, improving accuracy, training stability, and101

computational efficiency for predicting the dynamics of complex nonlinear systems. The optimal102

decomposition of subdomains is critical to the effectiveness of these scaling methods, given a fixed103

compute budget. Our work focuses on finding the maximum subdomain size that even a 64x2 small104

PINN can handle within a compute budget.105

3 Methodology106

In this section, we outline our approach to effectively implement hard constraints, strategically107

sampling partial differential equations (PDEs), and optimizing the scaling of computational domains.108

These methods are utilized to solve the acoustic wave equation within a specified computational109

budget.110

We focus on an acoustic wave equation defined by:111

D[u(x, t); c(x)] = f(x, t), x ∈ Ω, t ∈ [t0, T ],

Bi[u(x, t)] = Ui(x, t), x ∈ ∂Ωi, t ∈ [t0, T ],

Ij [u(x, t0)] = Vj(x), x ∈ Ω,

(1)

where:112

• D represents the differential operator. For a simplified one-dimensional acoustic wave113

equation, D = ∂tt − c2(x)∇2, indicating the second temporal derivative minus the spatial114

derivative scaled by the square of the local speed of sound, c(x).115

• Bi denotes the boundary condition operator applied at x ∈ ∂Ωi.116

• Ij signifies the initial condition operator, defining the state of the system at t = t0 across117

the domain Ω.118

3.1 Hard constraint imposing119

A prevalent ansatz employed in prior studies on hard-constraint PINNs for 1D wave equations is120

expressed as:121

u(x, t) = τ(t)ũ(x, t) + (1− τ(t))u(x, 0), (2)
where ũ(x, t) represents the neural network output with inputs x and t, and τ(t) is a function that122

satisfies τ(0) = 0. This design ensures that the initial condition u(x, 0) is met precisely when t = 0.123

To accommodate boundary conditions (BCs) at x = 0 and x = L, the ansatz is often modified to:124

u(x, t) = x(L− x)ũ(x, t) + Ui(x, t), (3)
ensuring that u(xi, t) = Ui(xi, t) for x ∈ ∂Ωi.125

A more comprehensive form,126

u(x, t) =x(L− x)τ(t)ũ(x, t) + (1− τ(t))u(x, 0)

+
L− x

L
(u(0, t)− (1− τ(t))u(0, 0))

+
x

L
(u(L, t)− (1− τ(t))u(L, 0)),

(4)
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can ensure both Dirichlet BCs and the initial condition u(x, t)|t=0 = u(x, 0). However, this ansatz127

does not account for ∂tu(x, t)|t=0, unless it is assumed to be zero.128

We propose a more general hard constraint imposition formula:129

u(x, t) =x(L− x)τ(t)ũ(x, t) + ((1− τ(t)) + t∂t)u(x, 0)

+
L− x

L
(u(0, t)− ((1− τ(t)) + t∂t)u(0, 0))

+
x

L
(u(L, t)− ((1− τ(t)) + t∂t)u(L, 0)),

(5)

which guarantees satisfaction of the conditions:130

u(x, t) = Ui(x, t), x ∈ ∂Ωi,

u(x, t)|t=0 = Vj(x), x ∈ Ω,

∂tu(x, t)|t=0 = Wj(x), x ∈ Ω,

(6)

where Ui(x, t), Vj(x), Wj(x) are the specified functions in BCs and ICs, and τ(t) is an arbitrary131

function satisfying τ(0) = dtτ(0) = 0.132

It is straightforward to demonstrate that the proposed ansatz correctly imposes all BCs and ICs as133

required:134 
u(x, t)|x=0 = u(0, t),

u(x, t)|x=L = u(L, t),

u(x, t)|t=0 = u(x, 0),

∂tu(x, t)|t=0 = ∂tu(x, 0).

(7)

In Section 4.2, we will explore numerical tests to optimize the selection of τ(t) by evaluating135

convergence rates and mean absolute errors (MAE).136

The primary advantage of employing hard constraints in our model is the elimination of the need to137

fine-tune the weights of PDE, BC, and IC loss terms typically required in soft-constraint PINNs.138

3.2 Sampling strategy139

Sampling is crucial for efficient training of PINNs, ensuring rapid convergence and mitigating140

potential failure modes. To enhance the computational efficiency of our hard-constraint PINNs,141

we introduce the Dynamic Amplitude-Focused Sampling (DAFS) method. This strategy optimally142

selects the number of points, Npde, used in the training.143

Initially, we segmented the computational domain to identify regions with high-amplitude acoustic144

wave fields, based on low-resolution finite difference (FD) simulations. These high-amplitude regions145

are defined by a threshold δ, which determines the intensity level above which areas are considered146

to be of high amplitude. Within these identified regions, we uniformly sampled αNpde points. This147

was supplemented by uniformly sampling (1− α)Npde points in the remaining areas of the domain.148

Both and α are parameters crucial to the sampling process and are optimally chosen to balance the149

computational budget and the accuracy of the simulations. By adjusting these parameters, we can150

tailor the distribution of sample points to areas that are most influential in the wave dynamics, thereby151

improving the efficiency of our PINN training.152

The pseudocode for the DAFS algorithm is provided in Algorithm 1.153

This sampling strategy, characterized by its focus on dynamically identified regions of interest based154

on wave amplitude, significantly optimizes the efficiency of the computation during the PINN training155

phase. The numerical tests for DAFS are in Section 4.3.156

4 Experiments157

4.1 Problem setup158

We applied our method to three numerical examples for three different types of 1D acoustic wave159

equations — standing waves, string waves, and traveling waves. The ground truth wavefields are160

shown in Figure 1.161
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Algorithm 1 Dynamic Amplitude-Focused Sampling (DAFS)

Require: Npde, α, domain,FD results (low-resolution Finite Difference results indicating amplitude)
Ensure: Sampled points for training

1: Initialize points← []
2: Identify high-amplitude regions from FD results
3: Nhigh ← αNpde ▷ Number of points in high-amplitude regions
4: Nlow ← (1− α)Npde ▷ Number of points in low-amplitude regions
5: Uniformly sample Nhigh points in high-amplitude regions and add to points
6: Uniformly sample Nlow points in the remaining areas of the domain and add to points

return points

(a) standing waves

(b) string waves

(c) Gaussian traveling waves

Figure 1: Ground truth wavefields for (a) standing waves, (b) string waves, and (c) traveling waves
with k = 1, 2, 3.

Standing waves for Dirichlet BCs Our first numerical example is a standing wave solution for the162

following 1D wave equation with Dirichlet BCs:163

∂2u(x, t)

∂t2
− c2

∂2u

∂x2
= 0, x ∈ (0, L)

B.C.: u(0, t) = u(L, t) = 0,

I.C.: u(x, 0) = U(x),
∂u

∂t
(x, 0) = V (x).

(8)

The analytical solution u(x, t) for Equation 8 is164

u(x, t) =

∞∑
n=1

An sin
(nπx

L

)
cos

(
nπct

L

)
+Bn sin

(nπx
L

)
sin

(
nπct

L

)
. (9)

A standing wave solution165

u(x, t) = sin

(
kπx

L

)
cos

(
kπct

L

)
, k ∈ Z+ (10)

can be achieved if we assume U(x) = sin
(
kπx
L

)
and V (x) = 0. We show the solutions for k = 1, 2, 3166

in Figure 1(a).167
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String waves for time-dependent BCs Our third example is a string wave solution for time-168

dependent BCs shown in Equation 11. The ground truth solutions in Figuer 1(b) are achieved by169

finite different simulation.170

∂2u(x, t)

∂t2
− c2

∂2u

∂x2
= 0, x ∈ (0, L)

B.C.: u(0, t) = u(L, t) = sin(2πt),

I.C.: u(x, 0) = 0,
∂u

∂t
(x, 0) = 2π cos

(
2kπx

L

) (11)

Traveling waves for Gaussian source time functions Our third example is a traveling wave171

solution for initial conditions of Gaussian source time functions shown in Equation 12. The ground172

truth solutions in Figuer 1(c) are computed by finite different simulation.173

∂2u(x, t)

∂t2
− c2

∂2u

∂x2
= 0, x ∈ (0, L)

B.C.: u(0, t) = u(L, t) = 0,

I.C.: u(x, 0) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
,
∂u

∂t
(x, 0) = 0

(12)

4.2 Optimal τ(t) selection for hard constraints174

We selected six candidate functions for τ(t) to construct PINNs with a network configuration of only175

64x2 neurons. Figures 2 through 4 illustrate the L2 loss and L1 error as functions of training epochs.176

Our findings suggest that τ(t) significantly influences both the convergence rate and the emergence of177

failure modes. In general, t2, 2t2

1+t2 performs better in general, especially for higher modes k = 2, 3.178

We show a few training dynmaics in Appendix C.179

Our analysis indicates that the frequency characteristics of τ(t) and the corresponding wavefields may180

be critical for selecting an appropriate τ(t). Matching these characteristics can potentially enhance181

the model’s efficiency by aligning τ(t)’s influence on the neural network’s learning dynamics with182

the physical properties of the wave phenomena being modeled.183

(a) L2 loss

(b) L1 error

Figure 2: L2 loss and L1 error for standing waves with PINNs constructed using six canditate τ(t)
functions.
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(a) L2 loss

(b) L1 error

Figure 3: L2 loss and L1 error for string waves with PINNs constructed using six canditate τ(t)
functions.

(a) L2 loss

(b) L1 error

Figure 4: L2 loss and L1 error for travelling Gaussian waves with PINNs constructed using six
canditate τ(t) functions.

4.3 Dynamic Amplitude-Focused Sampling184

We demonstrate the efficacy of our proposed Dynamic Amplitude-Focused Sampling (DAFS) in185

enhancing both the convergence and accuracy of Physics-Informed Neural Networks (PINNs).186

Experiments varying α from 0 to 0.5 to 1 indicate that optimal results are typically achieved when α187

is around 0.5.188

This suggests a balanced sampling strategy, where a significant portion of the samples is concentrated189

in regions of higher amplitude. However, exclusively focusing on these high-amplitude areas can190

hinder information transfer from boundary conditions to the interior of the domain, potentially leading191

to failure modes. Figures 5 and 6 illustrate these dynamics, showing the L2 loss and L1 error across192

different values of α, and the impact on the predicted wavefield and its accuracy.193
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Figure 5: L2 loss and L1 error with varied α from 0 to 1.

(a) α = 0.00

(b) α = 0.50

(c) α = 1.00

Figure 6: Visualizations for α = 0.00, 0.50, and 1.00 (top to bottom): Left - Predicted wavefield,
Middle - Difference between the prediction and ground truth, Right - Sampling distribution.

4.4 Optimal subdomain194

We then propose an optimal subdomain selection method shown in a flow chart in Figure 7. This195

method will automatically determine the optimal k our 64x2 small PINNs can handle, given a196

compute budget.197

5 Limitations and Training Dynamics198

While our proposed methods significantly enhance the functionality and efficiency of PINNs, the199

determination of the optimal function τ(t) presents certain limitations. The choice of τ(t) is crucial200

as it directly affects the model’s ability to satisfy boundary and initial conditions rigidly. However,201

finding an ideal τ(t) that adapts across different problems and boundary conditions without extensive202

trial and error remains challenging. The training dynamics are also sensitive to the form of τ(t), where203

inappropriate selections can lead to slower convergence or even divergence in some cases. These204

issues underscore the need for a more automated, perhaps adaptive, approach to selecting τ(t) that205

can dynamically adjust based on the evolving training characteristics and the specific requirements of206

the PDE being solved.207
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Figure 7: The flow chart of optimal subdomain determination.

6 Conclusion208

This work presented a comprehensive approach to improving the effectiveness and efficiency of209

Physics-Informed Neural Networks (PINNs) for solving acoustic wave equations. By integrating210

a well-formulated hard constraint imposition strategy and the novel Dynamic Amplitude-Focused211

Sampling (DAFS) method, we have significantly enhanced both the accuracy and convergence of212

PINNs.213

Our methodological innovations include:214

• A systematic derivation of hard boundary and initial conditions in PINNs that ensures these215

constraints are inherently satisfied, leading to better convergence and stability of the solution.216

• The introduction of DAFS, which optimally allocates computational resources by focus-217

ing sampling in regions of high amplitude while ensuring adequate coverage across the218

computational domain to prevent information isolation.219

• Development of a domain size optimization algorithm that assists in domain decompo-220

sition, enabling efficient scaling of PINNs for large-scale applications while managing221

computational costs.222

These contributions mark a significant step forward in the practical deployment of PINNs, especially223

in fields requiring the simulation of complex physical phenomena over large scales. Future work will224

focus on extending these strategies to other types of partial differential equations and exploring the225

integration of our methods with other deep learning frameworks to further enhance the adaptability226

and efficiency of PINNs in diverse applications, for example, we will explore the integration of our227

methods with existing PINNs frameworks that employ domain decomposition techniques, such as228

XPINNs and FBPINNs, to further enhance their scalability and adaptability. We aim to make PINNs229

more adaptable and efficient for a broader range of applications, particularly in complex systems230

where traditional numerical methods struggle. By advancing these strategies, we can significantly231

contribute to the deployment of PINNs in real-world scenarios, tackling large-scale and multi-scale232

challenges effectively.233
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A Phase diagrams of loss weights281

Figure 8: Phase diagrams

B Seed282

C Training dynmaics283

mono:284

string: increase Npde to 104, we have converged solution(each 104 steps):285
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(a) standing waves

(b) string waves

(c) Gaussian traveling waves

Figure 9: t2, t2

t2+1 ,
2t2

t2+1 , tanh
2(t),

(
tanh(t)
tanh(1)

)2
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Figure 10: 0, 1000, 2000, and the last(converged)

NeurIPS Paper Checklist286

The checklist is designed to encourage best practices for responsible machine learning research, addressing287

issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The288

papers not including the checklist will be desk rejected. The checklist should follow the references and follow289

the (optional) supplemental material. The checklist does NOT count towards the page limit.290

Please read the checklist guidelines carefully for information on how to answer these questions. For each291

question in the checklist:292

• You should answer [Yes] , [No] , or [NA] .293

• [NA] means either that the question is Not Applicable for that particular paper or the relevant294

information is Not Available.295

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).296

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area297

chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)298

with the final version of your paper, and its final version will be published with the paper.299

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While300

"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper301

justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or302

"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not303

grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is304

often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting305

evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer306

[Yes] to a question, in the justification please point to the section(s) where related material for the question can307

be found.308
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Figure 11: 0, 10000, 20000, and the last(converged)

IMPORTANT, please:309

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",310

• Keep the checklist subsection headings, questions/answers and guidelines below.311

• Do not modify the questions and only use the provided macros for your answers.312

1. Claims313

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s314

contributions and scope?315

Answer: [Yes]316

Justification: NA317

2. Limitations318

Question: Does the paper discuss the limitations of the work performed by the authors?319

Answer: [Yes]320

Justification: NA321

3. Theory Assumptions and Proofs322

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete323

(and correct) proof?324

Answer: [TODO]325

Justification: [TODO]326

4. Experimental Result Reproducibility327
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Question: Does the paper fully disclose all the information needed to reproduce the main experimental328

results of the paper to the extent that it affects the main claims and/or conclusions of the paper329

(regardless of whether the code and data are provided or not)?330

Answer: [TODO]331

Justification: [TODO]332

5. Open access to data and code333

Question: Does the paper provide open access to the data and code, with sufficient instructions to334

faithfully reproduce the main experimental results, as described in supplemental material?335

Answer: [TODO]336

Justification: [TODO]337

6. Experimental Setting/Details338

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,339

how they were chosen, type of optimizer, etc.) necessary to understand the results?340

Answer: [TODO]341

Justification: [TODO]342

7. Experiment Statistical Significance343

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-344

tion about the statistical significance of the experiments?345

Answer: [TODO]346

Justification: [TODO]347

8. Experiments Compute Resources348

Question: For each experiment, does the paper provide sufficient information on the computer349

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?350

Answer: [TODO]351

Justification: [TODO]352

9. Code Of Ethics353

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code354

of Ethics https://neurips.cc/public/EthicsGuidelines?355

Answer: [TODO]356

Justification: [TODO]357

10. Broader Impacts358

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts359

of the work performed?360

Answer: [TODO]361

Justification: [TODO]362

11. Safeguards363

Question: Does the paper describe safeguards that have been put in place for responsible release of364

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or365

scraped datasets)?366

Answer: [TODO]367

Justification: [TODO]368

12. Licenses for existing assets369

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,370

properly credited and are the license and terms of use explicitly mentioned and properly respected?371

Answer: [Yes]372

Justification: NA373

13. New Assets374

Question: Are new assets introduced in the paper well documented and is the documentation provided375

alongside the assets?376

Answer: [No]377
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Justification: NA378

14. Crowdsourcing and Research with Human Subjects379

Question: For crowdsourcing experiments and research with human subjects, does the paper include380

the full text of instructions given to participants and screenshots, if applicable, as well as details about381

compensation (if any)?382

Answer: [No]383

Justification: NA.384

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects385

Question: Does the paper describe potential risks incurred by study participants, whether such386

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an387

equivalent approval/review based on the requirements of your country or institution) were obtained?388

Answer: [No]389

Justification: NA390
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