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ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a groundbreaking
3D scene representation technique, offering unprecedented visual
quality and rendering efficiency. However, the substantial data vol-
ume of 3DGS scenes poses significant challenges for streaming ap-
plications. Existing research on 3DGS has primarily focused on
compression and rendering efficiency, neglecting the specific re-
quirements of streaming transmission. Moreover, the Spherical
Harmonics color representation in 3DGS complicates viewport-
based transmission partitioning. Achieving hierarchical Gaussian
streaming without noticeable quality degradation also remains a
significant challenge.

To address these challenges, we propose SRBF-Gaussian, a new
paradigm that revolutionizes the traditional 3DGS format. Our
approach introduces viewport-dependent color encoding based on
Spherical Radial Basis Functions (SRBFs) and HSL color space,
enabling selective transmission of viewport-relevant color data.
This reduces data transmission while maintaining visual quality.
We implement adaptive Gaussian pruning and transmission, op-
timized for current viewports and network conditions. Addition-
ally, we develop coherent multi-level Gaussian representations for
smooth transitions between quality levels. Our system incorporates
user-behavior-aware streaming strategies to anticipate and pre-fetch
relevant data. In cloud VR scenarios, our approach demonstrates
substantial improvements, achieving a 5.63% - 14.17% increase
in PSNR, a 7.61% - 59.16% reduction in latency, and a 10.45%
- 30.12% improvement in overall Quality of Experience (QoE).

Index Terms: 3D Gaussian Splatting, 3D Scene Transmission,
Quality of Experience, Bitrate Adaptation.

1 INTRODUCTION

The rapid advancement of 3D reconstruction and rendering tech-
niques has ushered in a new era of immersive virtual experiences.
Among these techniques, 3D Gaussian Splatting (3DGS) [27] has
emerged as a groundbreaking approach, offering unprecedented vi-
sual quality and rendering efficiency for complex 3D scenes. 3DGS
represents 3D scenes as a collection of 3D Gaussians, each with
its own position, scale, rotation, and appearance attributes, en-
abling high-fidelity reconstruction and efficient rendering of com-
plex environments. However, the substantial data volume of
3DGS scenes poses significant challenges for streaming appli-
cations. A typical courtyard-sized scene in 3DGS format can de-
mand 700MB to 1.5GB of data, far exceeding the capacity of cur-

• ⋆ corresponding author.

Table 1: Supported Features of Previous 3DGS-based Research.

Viewport-based Viewport-based Differential
Gaussian Pruning Attribute Pruning Transmission

CVPR24 Compress-3D [45] ✕ ✕ ✕

ECCV24 SOGG [41] ✕ ✕ ✕

CVPR24 Compact-3D [33] ✓ ✕ ✕

CVPR24 Scaffold-GS [37] ✓ ✕ ✕

Ours ✓ ✓ ✓

rent network infrastructures for real-time transmission, especially
in the context of immersive, interactive experiences.

Existing research on 3DGS has primarily focused on compres-
sion techniques and rendering efficiency, neglecting the specific
requirements of streaming media transmission. As illustrated in
Tab.1, recent approaches [45, 41, 33, 37] do not adequately ad-
dress key streaming challenges. These methods lack support
for viewport-dependent attribute pruning (selective transmission
of view-relevant color attributes) and Gaussian pruning (transmit-
ting only view-relevant Gaussian ellipsoids), as well as differential
transmission that adapts content quality based on network band-
width conditions - all crucial features for adaptive streaming. In
dynamic network scenarios, current methods require full scene re-
transmission to improve quality when bandwidth increases, rather
than supporting incremental updates, which significantly impacts
both bandwidth efficiency and user experience.

Moreover, applying traditional streaming techniques [51, 60, 25,
63, 24, 34, 59] to 3DGS presents unique challenges due to its in-
herent structure. The use of Spherical Harmonics (SH) for color
representation, while effective for comprehensive scene visualiza-
tion, is inefficient for viewport-dependent streaming contexts [14].
This makes it difficult to implement partial streaming based on the
viewer’s perspective. Additionally, attempts at incremental stream-
ing of multi-level Gaussians often result in noticeable visual qual-
ity degradation, manifesting as object loss rather than resolution
reduction [49]. These mismatches between 3DGS and conven-
tional streaming methods call for a tailored 3DGS streaming ap-
proach with guaranteed visual quality and accurate network condi-
tion adaptation.

To address these challenges, we introduce SRBF-Gaussian, a
novel streaming-optimized framework built on the foundations of
3D Gaussian Splatting. Our work tackles two critical issues in im-
mersive content streaming: (1) We propose a viewport-dependent
color representation scheme that replaces traditional Spherical Har-
monics with a hybrid model utilizing the HSL color space [48] and
Spherical Radial Basis Functions (SRBF) [22]. This innovation en-
ables efficient partial streaming of color information based on the
user’s viewport. We extract base colors using HSL and employ
an SRBF-based neural network to approximate viewport-dependent
lighting efficiently, significantly reducing bandwidth requirements
while maintaining visual fidelity. (2) Moreover, we present a multi-
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bitrate streaming strategy that enables the reuse of low-bitrate scene
representations in high-bitrate scenarios. Our approach involves
training with a subset of Gaussian ellipsoids fixed across differ-
ent quality levels, allowing for incremental quality improvements.
This method facilitates smooth transitions between quality levels
and efficient adaptation to varying bandwidth conditions, enhancing
overall streaming performance and visual consistency. Our contri-
butions include:

• We conduct a comprehensive analysis of the inefficiencies in-
herent in using Spherical Harmonics for color representation
in streaming 3DGS scenarios, providing insights into the lim-
itations of current approaches. (§ 3)

• We develop a novel color extraction and representation
method using the HSL color space, coupled with an SRBF-
based approximation, enabling efficient, viewport-dependent
color expression for streaming applications.(§ 5)

• We design and implement a multi-bitrate streaming frame-
work that allows for seamless quality transitions and efficient
scene reuse across different bandwidth scenarios, addressing
key challenges in adaptive 3D content delivery. (§ 6)

• We perform an extensive evaluation of our proposed frame-
work, demonstrating significant improvements in streaming
efficiency, visual quality, and adaptation to varying network
conditions compared to state-of-the-art methods.(§ 7)

In conclusion, our research addresses a significant gap in the
application of 3DGS for cloud-based streaming services. SRBF-
Gaussian have substantially enhanced the efficiency of streaming
3DGS, thereby facilitating more accessible and immersive virtual
experiences across a broader spectrum of network conditions. This
advancement may contribute to various domains, including virtual
reality applications, remote collaboration platforms, and interactive
entertainment systems.

2 RELATED WORK

2.1 3D Gaussian Splatting

3D Gaussian Splatting (3DGS), an emerging technique [27], in-
tegrates the strengths of both implicit [40] and explicit radiance
fields [56]. It employs 3D Gaussians as a flexible and efficient
representation to accurately depict the scene. As shown in Fig. 1,
3DGS excels in high-quality rendering and real-time performance,
particularly for complex scenes and high-resolution outputs.

At the core of 3DGS is the composition of numerous Gaussian
ellipsoids, each possessing unique attributes that contribute to the
overall scene representation. These ellipsoids serve as the founda-
tional elements, characterized by position, rotation, scale, opacity,
and color. Position determines the splat’s location in 3D space,
while rotation and scale define its orientation and size. Opacity
controls transparency, facilitating the blending of overlapping ele-
ments, while color determines visual appearance. Together, these
attributes enable 3DGS to intricately capture the complexity and
fidelity of real-world scenes, making it an influential tool for ren-
dering interactive visuals of exceptional quality.

2.2 3D Scene Streaming

In the past two decades, significant progress has been made in the
development of immersive telepresence systems. However, several
challenges still need to be addressed. These challenges primarily
involve efficient streaming and management of reconstructed mod-
els, as well as the use of high-quality visualization through AR and
VR equipment. Earlier approaches were limited by the available
hardware [26, 30]. Thankfully, recent advancements in streaming
and visualization technology have resulted in impressive immersive
AR/VR-based live telepresence experiences.

Live 3D streaming has been successfully achieved in small-scale
scenarios, such as teleconferencing [8, 12] and collaborative envi-
ronments [38, 65]. These scenarios often involve expensive multi-
camera static and pre-calibrated systems [17, 11, 32]. Addition-
ally, for larger scenarios beyond a few square meters, live telepres-
ence has been accomplished using low-cost and lightweight incre-
mental scene capture with a moving depth camera [42, 54]. This
approach allows remote users to immerse themselves in a live-
captured environment, regardless of the specific sensor configura-
tions. Bandwidth requirements, which were previously impracti-
cal, have been overcome by recent methods that enable group-scale
sharing of telepresence experiences in live-captured environments
while handling network interruptions [53, 54]. However, the practi-
cal sharing of live-captured 3D experiences in large-scale environ-
ments [55, 58], particularly for multiple users with low-cost setups,
remains an ongoing challenge.

2.3 Color Space and Intrinsic Image Decomposition
The representation and manipulation of color have been fundamen-
tal to computer graphics and image processing. Over the years, var-
ious color spaces have been developed to address different needs
and applications. The CIERGB color space [57], introduced in
1931, was one of the first standardized color spaces. However,
its limitations in perceptual uniformity led to the development of
more advanced color spaces. The YUV color space [47], widely
used in video encoding, separates luminance (Y) from chrominance
(UV) components, allowing for efficient compression. The LAB
color space [23], designed to be perceptually uniform, has found
extensive use in color management systems. Meanwhile, the HSV
(Hue, Saturation, Value) and HSL (Hue, Saturation, Lightness)
color spaces [50] offer intuitive color manipulation by separating
color information from intensity.

While color space transformations can help separate different vi-
sual components, the complete separation of illumination and ma-
terial properties presents an even more challenging problem known
as intrinsic image decomposition [39]. This fundamental com-
puter vision challenge aims to separate an observed image into
its reflectance and shading components [5]. Land and McCann’s
Retinex theory [31] provided an early computational framework,
while Horn [20] advanced this by introducing priors about edge
characteristics. Recent works have further developed these con-
cepts, with Grosse et al. [18] introducing sophisticated decompo-
sition techniques, and Bell et al. [6] extending these approaches to
complex real-world scenes. The field has seen significant progress
through both traditional approaches using carefully designed pri-
ors [1, 2, 3] and modern deep learning methods [43, 66, 67].

In our work, we take a fundamentally different approach as the
3DGS scenes we deal with have fixed illumination and reflectance
conditions. This means we do not need to employ complex in-
trinsic image decomposition techniques to separate and recalcu-
late shading and reflectance components. Instead, our goal is sim-
ply to utilize a color space that better isolates illumination-induced
color variations from inherent object colors. By fixing the base
color components and only transmitting the necessary components
for viewport-dependent variations, we can significantly reduce the
transmission data volume while maintaining visual quality.

3 MOTIVATION: RETHINKING 3D GAUSSIAN SPLATTING
FOR STREAMING APPLICATIONS

The rapid advancement of 3D Gaussian Splatting (3DGS) has revo-
lutionized neural rendering, offering unprecedented levels of visual
fidelity and rendering efficiency. However, as we push the bound-
aries of immersive experiences and real-time rendering, particularly
in the context of VR cloud applications and cloud-based 3D scenes,
we encounter fundamental challenges that necessitate a critical re-
evaluation of the current 3DGS paradigm. This section explores
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Figure 1: 3DGS reconstructed scene.

two pivotal questions in adapting 3DGS for streaming scenarios:

• Can the current 3DGS representation efficiently utilize band-
width in cloud VR and similar streaming scenarios?

• Does the existing 3DGS framework effectively handle quality
transitions under fluctuating network conditions in streaming
environments?

Our investigation reveals that while 3DGS offers impressive ca-
pabilities, its current form is not optimized for these streaming sce-
narios. However, our measurements indicate significant untapped
potential for improvement.

3.1 Huge Potential for Gaussian and Attribute Pruning
Our analysis of the Tank&Temple dataset [29] reveals a substantial
opportunity for optimization in 3DGS streaming:
Necessity for Field of View (FoV) Based Gaussian Pruning:
The three-dimensional structure of scenes creates complex occlu-
sion patterns between different objects and even between various
surfaces of the same object. These occlusion relationships di-
rectly impact the visibility of Gaussians in the spatial representa-
tion. For instance, in Fig. 1, the locomotive not only occludes its
own rear surface but also obscures the ground and mountains be-
hind it. From this particular viewpoint, only 33.58% of the Gaus-
sians contribute to the final rendering. More broadly, our analysis of
the Tank&Temple dataset reveals that, on average, a mere 20.21%
of Gaussians are visible from any given training viewport. Conse-
quently, there exists substantial potential for bandwidth reduction
through view-dependent Gaussian pruning.
The Paradox of Spherical Harmonics and Viewport-Dependent
Streaming: The current use of Spherical Harmonics (SH) for color
representation in 3DGS, as shown in Fig. 2, while mathematically
elegant, leads to significant inefficiencies in streaming contexts.
SH requires the transmission of 48 parameters to represent the full
spherical color distribution for each Gaussian, regardless of the ac-
tual visible portion.

To quantify this phenomenon, we conducted a statistical analysis
of Gaussian rendering angles using spherical surface area measure-
ments. Our methodology involved approximating each Gaussian’s
sphere of influence using an icosahedron (a regular polyhedron with
20 faces). We further refined this approximation by subdividing
each triangular face of the icosahedron into four smaller triangles,
resulting in a more granular representation of 80 triangular regions.
We considering a triangular region fully visible if it was observed
from any part of the triangular. To ensure comprehensive coverage,
we rendered the scene from a diverse array of angles, accumulating
visibility data across multiple viewpoints.

The resultant Cumulative Distribution Function (CDF), as illus-
trated in Fig. 3, reveals that 39.4% of Gaussians are visible from

Figure 2: Visualization of spher-
ical harmonics basis functions.

Figure 3: Cumulative Distribu-
tion Function of the visible por-
tion of Gaussians in 3DGS.
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Figure 4: Comparison between traditional image downsampling
and LOD-based gaussians downsampling in 3DGS.

less than 41.25% of all angles, and 80.4% of Gaussians are vis-
ible from less than 60% of all angles. This finding underscores
a significant potential for view-dependent attribute pruning, as it
demonstrates that a substantial portion of Gaussians have limited
visibility across different viewing angles.

This mismatch between SH’s unified representation and the lo-
calized nature of user perception in interactive environments leads
to unnecessary data transmission. In cloud-based streaming scenar-
ios, where bandwidth optimization is crucial, the transmission of
complete SH representations for each Gaussian becomes not just
inefficient but potentially detrimental to the user experience, partic-
ularly in scenarios requiring low-latency interactions.

3.2 The Dilemma of Hierarchical Streaming in 3DGS
Traditional approaches to streaming optimization, such as down-
sampling [16, 21, 46] in point cloud streaming or scalabel encoding
[44, 7] in video streaming, face unique challenges when applied to
3DGS. We illustrate this point with the following experiments.
Quality Degradation in Tiered Gaussian Transmission: We
replicated and analyzed the LOD-based hierarchical Gaussian clas-
sification methods presented in Octree-GS [49], conducting exten-
sive measurements on the results. Our findings reveal a non-linear
relationship between Gaussian density and perceived visual qual-
ity, as shown in Fig. 4. Unlike traditional image downsampling,
where quality degradation often occurs gradually, the reduction in
Gaussian density can lead to abrupt and severe losses in both visual
coherence and semantic integrity of the scene. Specifically, when
the number of Gaussians is reduced to 23% of the original, critical
scene elements such as the bicycle in the yard become virtually in-
discernible, with the PSNR [19] dropping to 14.78. In contrast, a
2D image compressed to 14.7% of its original size maintains clear
object representation and a PSNR of 22.55. This stark difference
underscores the challenges in downsampling 3DGS representations
compared to traditional 2D image compression techniques.
Incompatibility in Multi-Resolution Gaussian Scenes: Our in-
vestigations further reveal a critical limitation in combining 3DGS
representations of varying resolutions or quality levels. As illus-
trated in Fig. 5, the naive combination of sparse and dense Gaussian
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Figure 5: Illustration of the challenges in merging Gaussians of
different densities, demonstrating that lower-quality Gaussians are
not simply subsets of higher-quality representations.

distributions often results in visual artifacts and quality degradation
rather than enhancement.

This incompatibility stems from the complex spatial relation-
ships between Gaussians of different densities. Gaussians at iden-
tical spatial coordinates in scenes of different densities frequently
overlap and contradict each other. There is no one-to-one corre-
spondence between Gaussians in low and high-density representa-
tions, making it challenging to seamlessly integrate or transition
between different quality levels.

3.3 Towards a New Paradigm in 3DGS Streaming
Our analysis reveals that while 3DGS offers impressive rendering
capabilities, its current form is not optimized for streaming appli-
cations, particularly in cloud-based VR and interactive 3D envi-
ronments. The challenges identified the urgently need of a new
paradigm of 3DGS that is inherently designed for streaming and
interactive applications.

This paradigm shift encompasses several key aspects: (1)
Viewport-dependent color encoding that moves beyond SH to more
flexible, directionally-aware color representations; (2) Adaptive
Gaussian pruning and transmission methods to dynamically deter-
mine and prioritize perceptually significant Gaussians; (3) Coherent
multi-resolution representations that maintain visual and semantic
coherence across different levels of detail; and (4) User-behavior-
aware streaming strategies that incorporate prediction and scene un-
derstanding to anticipate and pre-fetch relevant Gaussian data.

By addressing these challenges, we aim to unlock the full po-
tential of 3DGS in cloud-based streaming applications, paving the
way for more immersive, responsive, and efficient virtual reality
experiences.

4 SYSTEM OVERVIEW

Fig. 6 illustrates the workflow of our proposed framework. Ini-
tially, ① Reusable Multi-Quality Scene Training generates multi-
bitrate 3DGS scenes by creating hierarchical representations with
varying numbers of Gaussian primitives, enabling adaptive stream-
ing. Subsequently, ② SRBF Color Expression transforms the tra-
ditional color representation into an SRBF-based HSL representa-
tion, facilitating divisible encoding and efficient transmission. Fol-
lowing this, ③ Occlusion Culling Preprocessing computes visibility
information through occlusion culling, significantly reducing data
transmission requirements. During real-time streaming, ④ Differ-
ential Transmission dynamically selects bitrate based on prevailing
network conditions. Broadly speaking, our system comprises two
principal components:
SRBF-based (Spherical Radial Basis Function) Color Expres-
sion (§5) transforms the traditional Spherical Harmonic-based RGB

color representation into an SRBF-based HSL representation. This
approach utilizes OMP algorithm to determine the optimal SRBF
parameters, enabling efficient encoding and transmission of color
information. The SRBF module significantly reduces the data vol-
ume while preserving viewport-dependent color effects, crucial for
high-quality rendering in bandwidth-constrained environments.
Differentiable streaming-optimized 3DGS Framework (§6) ad-
dresses the challenges of real-time 3DGS delivery in dynamic net-
work conditions. It incorporates a multi-bitrate generation mech-
anism that creates hierarchical representations of the scene with
varying numbers of Gaussian primitives. This component works
with an adaptive bitrate selection algorithm to ensure smooth visual
experiences during navigation while reducing network throughput.
The framework also leverages precomputed occlusion information
to further enhance transmission and rendering efficiency.

5 SRBF COLOR EXPRESSION

5.1 Separating Color and Lighting using HSL Color
Space

In our SRBF-Gaussian framework, we propose a novel approach:
the intrinsic color of objects can be separated from lighting effects.
This separation not only simplifies color representation but also en-
hances streaming efficiency. However, we recognize that employ-
ing complex lighting calculation methods (such as global illumi-
nation or ray tracing) could significantly reduce rendering speed.
Consequently, we prioritized a method that separates the expres-
sion, storage, and transmission of color and lighting effects, opting
for the HSL color space to achieve this objective.

The HSL (Hue, Saturation, Lightness) color space demonstrates
superior performance in separating color and lighting effects. As
illustrated in Fig. 7, the HSL space utilizes three components to
represent color: Hue (H) denotes the dominant wavelength, Sat-
uration (S) represents color intensity, and Lightness (L) indicates
brightness. This representation enables us to encode fundamental
color information in the hue component while employing saturation
and lightness to express variations in lighting conditions.

We first convert colors from RGB to the HSL space [50]. Then,
we define a base color for each Gaussian ellipsoid:

Cbase = (H,Sre f ,Lre f ) (1)

where H is the hue, and Sre f and Lre f are reference saturation and
lightness values under neutral lighting conditions.

To implement viewport-dependent lighting effects, we introduce
a lighting function L(θ ,φ) that modulates the saturation and light-
ness components based on viewing angles:

C f inal(θ ,φ) = (H,Sre f ·Ls(θ ,φ),Lre f ·Ll(θ ,φ)) (2)

where Ls and Ll are lighting functions for saturation and lightness,
respectively.

This methodology enables efficient transmission of base color in-
formation and computation of lighting effects based on the current
viewport, thereby optimizing bandwidth utilization while maintain-
ing visual quality. The HSL-based color representation effectively
replicates the expressive power of Spherical Harmonics in RGB
space, while improving streaming efficiency by transmitting only
the necessary color and lighting information for the current view-
point.

5.2 SRBF Decomposition using Orthogonal Matching
Pursuit

To efficiently represent and compute the viewport-dependent light-
ing functions Ls and Lv introduced in the previous section, we pro-
pose using Spherical Radial Basis Functions (SRBF) with Orthog-
onal Matching Pursuit (OMP) algorithm. This method provides an
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efficient sparse approximation of complex lighting conditions while
maintaining high accuracy.

5.2.1 SRBF Definition
Spherical Radial Basis Functions (SRBFs) are a class of functions
defined on the surface of a sphere, making them ideal for represent-
ing spherical data such as directional lighting. It is defined as:

G(x;c,λ ) = exp(λ (x · c−1)) (3)

where x is a unit vector on the sphere, c is the center of the SRBF
(also a unit vector), and λ > 0 is the shape parameter controlling
the width of the function.

A linear combination of SRBFs can approximate any smooth
function on the sphere. For a given function f (x) on the unit sphere,
we can approximate it as:

f (x)≈
n

∑
i=1

wiG(x;ci,λi) (4)

where wi are the weights, and n is the number of SRBFs used.
The theoretical foundation and practical effectiveness of SRBFs

have been extensively studied in various domains. Research has
demonstrated that SRBFs can achieve approximation convergence
for smooth functions on the sphere [36, 35], with applications rang-
ing from scattered data approximation to computer graphics [9, 13].
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Figure 8: Visualization of spherical function approximation using
spherical basis functions.

5.2.2 OMP-based SRBF Decomposition

We employ the Orthogonal Matching Pursuit algorithm to decom-
pose our lighting functions into a sparse combination of SRBFs.
As illustrated in Fig. 8, this approach iteratively selects the most
relevant SRBF components to approximate the target function.

The decomposition process can be formalized as:

L(θ ,φ) =
K

∑
i=1

wiG(x(θ ,φ);ci,λi) (5)

where K is the number of selected SRBF components, determined
by the desired approximation accuracy or sparsity constraints. The
L(θ ,φ) here represents either Ls or Ll from the previous section,
allowing us to decompose both saturation and lightness modulation
functions independently.

The OMP algorithm iteratively constructs the SRBF approxima-
tion through a systematic process. Initially, the algorithm begins
with the target lighting function as the residual. In each iteration, it
identifies the SRBF component that exhibits the strongest correla-
tion with the current residual signal. Upon selecting a new compo-
nent, the algorithm performs a least-squares optimization to update
all weights of the previously selected components, ensuring opti-
mal approximation at each step. The residual is then recomputed
by subtracting the current approximation from the target function.



This process continues iteratively until either a predetermined ap-
proximation accuracy threshold is achieved or a specified maximum
number of components is reached.

This iterative selection and optimization strategy ensures that
each additional SRBF component maximally reduces the approx-
imation error, resulting in a compact yet accurate representation of
the lighting function. The orthogonality property of OMP guaran-
tees that the algorithm efficiently captures distinct features of the
lighting function while avoiding redundant representations.

6 STREAMING-OPTIMIZED 3DGS FRAMEWORK

6.1 Reusable Multi-Quality Scene Training
Inspired by scalable encoding techniques [44, 51, 7], we introduce
a differential multi-bitrate training method that enables high-bitrate
versions to efficiently reuse a substantial portion of low-bitrate
Gaussians. This approach significantly reduces data redundancy
and transmission overhead while maintaining visual quality across
different bitrates.

Our approach begins with training a high-fidelity 3DGS model
using conventional methods. Subsequently, we quantify each Gaus-
sian’s contribution to the rendered image across all training view-
points using the following formula:

W (g) =
1

∑
N
i=1 Pi

N

∑
i=1

|∂Ei

∂g
| (6)

where W (g) represents the importance weight of Gaussian g, N is
the number of training views, Pi is the number of pixels in view i,
and Ei is the rendering error for view i.

Based on these importance weights, we extract hierarchical sub-
sets of the most significant Gaussians (e.g., 25%, and 50% in our
experiments). We then freeze these subsets and adjust the 3DGS
training process for each bitrate level. This involves increasing the
threshold for Gaussian cloning, changing split operations to cloning
operations, and restricting clone operations to the top 1 percent of
total Gaussians for each cloning operation.

This modified training process yields a multi-bitrate 3DGS scene
representation that supports differential transmission. Our method
ensures that higher bitrate versions can effectively reuse Gaussians
from lower bitrate versions, significantly reducing data redundancy
and transmission overhead.

6.2 Occlusion Culling Preprocessing
To optimize data transmission in 3DGS, we introduce an occlusion-
aware Gaussian culling [15] preprocessing pipeline. This approach
significantly reduces the number of Gaussians and their attributes
that need to be rendered and transmitted, thereby improving both
performance and bandwidth efficiency.

Our culling algorithm operates in two phases: visibility determi-
nation and SRBF activation. In the visibility determination phase,
we discretize the navigable space within the scene into a 3D grid.
For each grid cell, we compute the set of potentially visible Gaus-
sians using a hybrid approach that combines a hierarchical Z-buffer
technique optimized for 3DGS and a modified version of the Hid-
den Point Removal operator adapted for Gaussian primitives. This
process accounts for both self-occlusion within objects and inter-
object occlusion, providing a comprehensive visibility solution for
complex 3DGS scenes.

In the SRBF activation phase, we determine which Spherical Ra-
dial Basis Functions (SRBFs) need to be activated to accurately
represent the viewport-dependent lighting effects for each visible
Gaussian from a given viewpoint. Formally, for a given viewpoint
v and Gaussian g, we define the set of active SRBFs as:

A(v,g) = si|contrib(si,v,g)> ε (7)

where contrib(si,v,g) measures the contribution of SRBF si to the
appearance of Gaussian g from viewpoint v. The adaptive threshold
ε is determined through a perceptual study: we conducted experi-
ments with participants using a staircase procedure to find the just-
noticeable difference threshold. Starting with ε = 0.1, participants
compared original and approximated renderings, adjusting ε until
differences became imperceptible (75% detection threshold). The
final ε values typically range from 0.01 to 0.05, depending on the
scene complexity and viewing conditions.

The result of this preprocessing step is a compact, queryable data
structure that maps each grid cell to its corresponding set of visible
Gaussians and active SRBFs. Crucially, due to the separable nature
of our SRBF approximation, we only need to transmit parameters
for 1-4 SRBFs per Gaussian in most cases. Each SRBF is rep-
resented by its position (2D spherical coordinates), intensity, and
decay rate, resulting in a highly compact representation.

6.3 Adaptive Bitrate Streaming
Our adaptive streaming strategy, built upon the multi-bitrate train-
ing method, optimizes content delivery based on network condi-
tions and user behavior. This approach prioritizes visual quality
within the user’s FoV while ensuring smooth transitions during sud-
den movements or view changes. We categorize scene Gaussians
into three primary groups: FoV Gaussians (within the current field
of view), Peripheral Gaussians (visible from the current cell but
outside the FoV), and Adjacent Gaussians (visible from neighbor-
ing cells). Each category is further divided into low, medium, and
high bitrate levels.

The streaming algorithm dynamically selects Gaussians for
transmission based on their category, bitrate level, and available
bandwidth. Our transmission priority order balances immediate vi-
sual quality with preemptive loading. It begins with low-bitrate
FoV Gaussians, progressively enhancing them to medium and high
quality. This is followed by low-bitrate Peripheral Gaussians, then
medium-bitrate FoV Gaussians, with subsequent transmission or-
dered by increasing distance from the viewer’s current cell to the
nearest cell where each Gaussian becomes visible.

This priority scheme ensures rapid population of the user’s im-
mediate view with at least low-quality Gaussians, followed by pro-
gressive enhancement. It also preloads lower quality versions of
nearby content to prevent blank areas during sudden movements or
view changes. The streaming process adapts to varying bandwidth
conditions. Under high bandwidth, the algorithm aims to deliver the
highest quality experience across all visible areas. With medium or
low bandwidth, transmission focuses on lower and medium bitrate
versions, adjusting the priority order accordingly.

7 EVALUATION

7.1 Methodology
7.1.1 Implementation Details
We first construct a series of 3DGS models at different quality lev-
els, and then decompose their color information into SRBF repre-
sentations using the OMP algorithm. For Gaussian ellipsoids that
appear in multiple quality levels, the SRBF decomposition is per-
formed only once. The space is then divided into cells for com-
puting view-dependent occlusion culling. Our framework is im-
plemented in Python, with network conditions simulated using the
Linux Traffic Control (tc) tool. We have modified the diff-gaussian-
rasterization (specifically the forward.cu) to incorporate our SRBF-
based color rendering process.

All training and testing procedures were executed on a high-
performance computing system equipped with an Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20GHz and a single NVIDIA A100 GPU
with 80GB of dedicated memory. SRBF-Gaussian renders scenes
at 1080p resolution (1920×1080 pixels). While we don’t impose
frame rate restrictions on either the baselines or SRBF-Gaussian,



all methods consistently maintain frame rates above 30 FPS. For vi-
sualization and evaluation, scenes are rendered on a standard com-
puter display monitor rather than a VR headset.

7.1.2 Dataset
We conducted comprehensive evaluations using real-world scene
datasets including Mip-NeRF360 [4], and Tanks&Temples [29]. By
encompassing a diverse range of scenarios, these datasets enabled
us to comprehensively demonstrate the effectiveness of our pro-
posed approach. We applied various walking and viewing tracks
for each scene, utilizing the participation of three volunteers.

7.1.3 Experiment Setting
In the experiment, participants were assumed to navigate within the
3D regions. Considering the general movement speed, we set a
fixed duration of 30-seconds for each scene. After that, participants
would proceed to load a new scene and engage in another 30-second
navigation session. Participants were afforded 6DoF, enabling un-
restricted movement and rotation of their viewpoint.

7.1.4 Evaluation Metric
Follows previous research [34, 52, 61, 62, 64], the Quality of Expe-
rience (QoE) is determined by perceptual quality and delay in our
context and formulated as:

QoE =
T

∑
t=1

( f (t)−λg(t)) (8)

where f (t) measures the distortion between the reconstructed
scene and the ground truth and g(t) calculates the latency stems
from client-side data transmission and decoding, and λ signifies the
relative importance assigned to the delay component in the overall
QoE calculation. In our experiment, we employ Peak Signal-to-
Noise Ratio (PSNR) [19] as the metric for f (t), while g(t) is mea-
sured in seconds to represent latency. The value of λ is set to 5, and
both PSNR and latency are normalized.

7.1.5 Baseline
To ascertain the performance superiority of SRBF-Gaussian, we
consider four state-of-the-art baselines:
• Compressed-3D [45]: This method employs sensitivity-aware

clustering, quantization-aware fine-tuning, and entropy encoding
to reduce memory consumption and improve efficiency.

• SOGG [41]: SOGG introduces a parallel sorting algorithm to
arrange high-dimensional Gaussian parameters into a 2D grid,
effectively preserving neighborhood structure. It incorporates
a smoothness loss to enforce local grid coherence for efficient
JPEG XL compression.

• Compact-3D [33]: This method proposes a learnable mask strat-
egy to reduce the number of Gaussians and employs residual vec-
tor quantization for compact geometry attribute representation,
and applies quantization, pruning, and entropy coding to further
optimize the model size.

• Scaffold-GS [37]: This approach utilizes anchor points initial-
ized from Structure from Motion (SfM) to distribute local 3D
Gaussians, predicting their attributes based on viewing direction
and distance. It also employs pruning strategies for improved
scene coverage to enhance rendering speed.

7.2 Performance Analysis
7.2.1 Overall Performance of of SRBF-Gaussian:
Fig. 9, 10, 11, and 12 illustrate the trends in QoE score, average
PSNR, average latency, and network simulation bandwidth, respec-
tively. These results demonstrate that SRBF-Gaussian significantly
outperforms the other four baselines across various metrics.

In terms of overall QoE, SRBF-Gaussian achieves the high-
est score, showing improvements of 10.45%, 25.80%, 30.12%,

and 16.69% compared to Compact-3D, Scaffold-GS, SOGG, and
Compressed-3D, respectively. SOGG and Compressed-3D, due to
their lack of support for progressive transmission, perform the poor-
est in this aspect. Compact-3D ranks second, followed by Scaffold-
GS, attributed to Compact-3D’s slightly better compression ratio.

Visual quality, as measured by PSNR, showcases SRBF-
Gaussian’s superior performance, especially in the initial sec-
onds of transmission. Our method demonstrates PSNR improve-
ments of 7.44%, 12.47%, 14.17%, and 5.63% over Compact-3D,
Scaffold-GS, SOGG, and Compressed-3D, respectively. Compact-
3D and Scaffold-GS exhibit gradual PSNR improvements due to
their support for partial transmission, with Compact-3D show-
ing a slightly faster increase owing to its better compression ra-
tio. SRBF-Gaussian, benefiting from multi-bitrate support and
viewport-dependent optimization, achieves exceptional visual qual-
ity in the first few seconds, outperforming all baselines until con-
verging with others later. SOGG and Compressed-3D, unable to
support progressive transmission, only begin rendering after com-
plete data transfer at the fourth and fifth second, respectively, re-
sulting in zero PSNR before these points.

Regarding latency, SRBF-Gaussian demonstrates substantial
reductions of 7.61%, 47.31%, 59.19%, and 30.11% compared
to Compact-3D, Scaffold-GS, SOGG, and Compressed-3D, re-
spectively. Our method achieves the lowest initial latency due
to its multi-bitrate support and viewport-dependent optimization.
Compact-3D follows, then Scaffold-GS, reflecting their compres-
sion efficiency. Both Compact-3D and Scaffold-GS eventually
reach a minimal latency primarily consisting of rendering time,
with Compact-3D slightly outperforming Scaffold-GS. SOGG and
Compressed-3D, limited by their transmission approach, only start
rendering after complete data transfer at the fourth and fifth sec-
ond, respectively, with latency treated as a timeout (1 second) be-
fore completion. SRBF-Gaussian occasionally experiences slight
transmission delays in later stages when higher bitrates are needed
for specific viewpoints to enhance visual quality.

7.3 Component Analysis

7.3.1 Effectiveness of Gaussian and Attributes Pruning

The effectiveness of our pruning approach in reducing data trans-
mission requirements is demonstrated through experimental evalua-
tion. Fig. 13 shows the proportion of Gaussians and SRBFs retained
after applying Occlusion Culling.

Our findings reveal a significant enhancement in data representa-
tion efficiency. As users navigate through the scene, the proportion
of Gaussians classified as visible exhibits a natural increase, culmi-
nating in 86.85% by the conclusion of the exploration phase. This
indicates that the position, rotation, opacity, and base color informa-
tion of these Gaussians require transmission. Notably, despite the
high percentage of visible Gaussians, merely 22.39% of SRBFs are
requisite for accurate chromatic representation at the termination of
the exploration. This marked disparity between the proportion of
Gaussians (86.85%) and SRBFs (22.39%) requiring transmission
underscores the exceptional effectiveness of our method.

The substantially lower percentage of SRBFs, both initially
(3.58%) and at the end of exploration (22.39%), provides significant
evidence that our SRBF-based approach successfully minimizes the
transmission of viewport-dependent color data. This empirical re-
sult demonstrates that our innovative viewport-dependent color rep-
resentation scheme significantly outperforms the traditional Spher-
ical Harmonics color expression in the context of 3DGS.

Furthermore, our comparative analysis of throughput across dif-
ferent baselines, as shown in Fig. 14, reveals that our method
achieves comparable throughput to compression-based approaches
like Scaffold-GS. It is important to note that the throughput mea-
surement here does not directly reflect compression efficiency, but
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Number of SRBF=2
MSE = 0.58533

Number of SRBF=6
MSE = 0.12596

Number of SRBF=10
MSE = 0.035824

Number of SRBF=20
MSE=0.00302

Number of SRBF=15
MSE = 0.0083Groud Truth

Rotate 120°：

Rotate 240°：

Number of SRBF=30
MSE=0.00074

Figure 15: SRBF Approximation for Global Lightness: Illustration
of spherical surface fitting using varying numbers of Spherical Ra-
dial Basis Functions (SRBFs). As the number of SRBFs increases,
the approximation of the spherical surface improves. With over 20
SRBFs, the Mean Squared Error (MSE) reaches an acceptable level,
demonstrating a good balance between accuracy and computational
efficiency.

Ground Truth 3DGS
SSIM:0.74552
PSNR: 24.502
LPIPS:0.21417

Ours
SSIM:0.74526
PSNR:24.607
LPIPS:0.21603

Ground Truth 3DGS
SSIM:0.91926
PSNR: 28.3996
LPIPS:0.06742

Ours
SSIM:0.91707
PSNR:28.51334
LPIPS:0.06814

Figure 16: Qualitative comparisons between 3DGS and SRBF-
based method on the Mip-NeRF 360 Dataset.

rather indicates how much data is actually transmitted based on the
current viewport requirements.

7.3.2 Performance of SRBF-based Color Expression
Our novel approach utilizing Spherical Radial Basis Functions
(SRBF) for light effect approximation demonstrates significant im-
provements over the original color representation in original 3DGS.

Ground Truth Ground Truth Ground Truth

Ours
SSIM:0.90645
PSNR: 29.497
LPIPS:0.05825

Ours
SSIM:0.90914
PSNR: 29.250
LPIPS:0.06609

Ours
SSIM:0.90404
PSNR: 29.424
LPIPS:0.06515

Figure 17: Visual effect of illumination. Different angle of the table
shows the effect of the desktop reflecting sunlight.

Table 2: Quantitative results on Mip-NeRF 360 dataset.

Scene Avg. SSIM ↑ Avg. PSNR ↑ Avg. LPIPS ↓
3DGS Ours 3DGS Ours 3DGS Ours

bicycle 0.8287 0.8287 26.014 25.939 0.1472 0.1472
bonsai 0.9025 0.9051 30.543 30.886 0.0946 0.0891
counter 0.9106 0.9084 30.532 30.212 0.0919 0.0941
garden 0.9084 0.9055 30.289 29.970 0.0867 0.0900
kitchen 0.9182 0.9148 30.964 30.501 0.0782 0.0818
room 0.9228 0.9196 31.691 31.364 0.0775 0.0808
stump 0.9198 0.9167 31.576 31.268 0.0799 0.0832

Fig. 15 illustrates the approximation capability of our SRBF ap-
proximation. As the number of SRBFs on the sphere increases,
the approximation accuracy improves substantially. Notably, with
more than 20 SRBFs, we achieve a Mean Squared Error (MSE)
below 0.003, indicating high-fidelity representation. It is worth
noting that our evaluation encompasses the entire spherical sur-
face approximation to showcase the robustness of our SRBF-based
method. In practical 3D scene training scenarios, some Gaussians
may be occluded in certain directions due to spatial relationships,
which can further reduce the required number of SRBFs.

Fig.16 presents the visual quality achieved by our SRBF-based
method on the Mip-NeRF 360 Dataset. The results demonstrate the
method’s ability to accurately capture and render complex scenes.
Furthermore, Fig.17 provides a compelling example that highlights
our method’s capacity to fit illumination effects with high fidelity,
showcasing its potential for realistic light modeling in diverse en-
vironments. Quantitative results for each scene in the Mip-NeRF
360 Dataset are presented in Table 2. Our SRBF-based approach
achieves visual quality comparable to the original 3DGS across
most scenes. Notably, in the ”bonsai” scene, our method even out-
performs the original 3DGS, underscoring its effectiveness in cap-
turing the subtle lighting effects.

We evaluated different color spaces for color and lighting de-
composition in our method. Table 3 compares our approach using
YUV, HSV, and two variants of HSL color spaces against the orig-
inal 3DGS method. While YUV and HSV color spaces offer some



Table 3: Quantitative Comparison of Different Color Space.

SSIM ↑ PSNR ↑ LPIPS ↓

Original 3DGS 0.8679 25.7551 0.1104

Ours-HSV 0.8588 24.6019 0.1195(Fixed H,S + SRBF-based V)

Ours-YUV 0.8622 25.0568 0.1195(Fixed U,V + SRBF-based Y)

Ours-HSL 0.8619 25.0958 0.1199(Fixed H,S + SRBF-based L)

Ours-HSL 0.8659 25.6043 0.1132(Fixed H + SRBF-based S,L) 
Best Quality

Gaussians:1005498 
SSIM: 0.88113
PSNR: 24.039

LPIPS: 0.09447

Middle Quality
Gaussians:350629 

Reuse Percent:96.69% 
SSIM: 0.86259
PSNR: 24.050

LPIPS: 0.13547

Low Quality
Gaussians:187986

Reuse Percent:90.01%
SSIM: 0.81249
PSNR: 20.404

LPIPS: 0.18786

Best Quality
Gaussians:822124 

SSIM: 0.80904
PSNR: 17.161

LPIPS: 0.08542

Middle Quality
Gaussians:336828 

SSIM: 0.74377
PSNR: 17.056

LPIPS: 0.15198

Low Quality
Gaussians:193579

SSIM: 0.65288
PSNR: 16.317

LPIPS: 0.24320

Octree-GS

Ours

Figure 18: Qualitative performance of multi-bitrate training.

benefits in terms of color-lighting separation, they do not perform
as well as either the original 3DGS or our HSL-based methods.
Among all tested variants, the HSL color space, particularly with
fixed H and SRBF-fitted SL, demonstrates superior performance
across multiple metrics.

7.3.3 Performance of Multi-Quality Training
As demonstrated in Fig. 18, our approach offers significant advan-
tages, particularly in the efficient reuse of Gaussians across vari-
ous bitrate versions. In contrast to octree-based Gaussian Splat-
ting (octree-GS) methods, which primarily focus on Level of Detail
(LoD) layering for Gaussians and often result in a loss of scene
details during low-bitrate rendering, our method successfully pre-
serves more fine-grained information even at lower bitrates.

Both qualitative visual assessments and quantitative metrics
(PSNR, SSIM [19], and LPIPS [28]) consistently show that our
multi-bitrate approach surpasses the octree-GS method. This supe-
rior performance can be attributed to our method’s ability to main-
tain critical scene details across diverse bitrate levels, thereby en-
suring a more coherent and high-quality visual experience as the
stream quality improves. Interestingly, we observed that the lower
bitrate versions of our scenes tend to appear slightly brighter over-
all when rendered. This phenomenon likely stems from the freezing
of a substantial portion of Gaussians and the limitation on cloning
and splitting during the post-training process, which may result in
reduced overlapping of Gaussians at lower bitrates.

8 DISCUSSION

The SRBF-Gaussian framework represents a significant advance-
ment in 3D Gaussian Splatting streaming technology, offering sub-
stantial improvements in transmission efficiency while maintain-
ing high visual quality. The framework’s innovative approach to
viewport-dependent color encoding and adaptive streaming demon-
strates considerable potential for applications in cloud-based virtual
reality, remote collaboration, and interactive entertainment systems.
This advancement is particularly significant given the growing de-
mand for high-quality 3D content streaming in emerging metaverse
applications and next-generation immersive telecommunications.

However, there are several limitations and opportunities for fu-
ture work that should be acknowledged. First, the current imple-
mentation relies on OMP for SRBF optimization, which presents
significant computational challenges due to its limited paralleliza-
tion capabilities. While this preprocessing overhead does not di-
rectly impact the online user experience in video-on-demand sce-
narios, the substantial computational resources and time required
for conversion could impede practical deployment at scale. Future
research should explore more efficient optimization algorithms or
parallel processing techniques to address this computational bottle-
neck.

Second, while the current approach leverages the same Hue of
the HSL to reduce transmission requirements for view-dependent
Gaussian colors, the HSL color space may not represent the opti-
mal solution for this purpose. Future work could investigate cus-
tom color spaces specifically designed to decompose illumination
and reflection-induced color variations, or explore alternative ap-
proaches such as intrinsic decomposition methods to further sepa-
rate and optimize the transmission of lighting-related color changes.

The scalability and robustness of SRBF-Gaussian also warrant
further investigation. While the experiments demonstrated promis-
ing results, they were primarily conducted using standard computer
displays rather than virtual reality headsets. Future evaluations
should include comprehensive testing with actual VR hardware to
better understand the system’s performance under real-world usage
conditions and diverse network environments. This would provide
more meaningful insights into the framework’s practical effective-
ness in immersive applications.

The personalization of the SRBF-Gaussian to individual users
is another area for future exploration. The current implementation
lacks sophisticated scene analysis and user intent prediction mech-
anisms. By incorporating these elements, along with advanced tra-
jectory prediction and viewport direction estimation algorithms, the
system could potentially achieve more precise bandwidth optimiza-
tion and faster loading times. This user-centric approach could sig-
nificantly enhance the overall streaming efficiency and QoE.

9 CONCLUSION

This study introduces SRBF-Gaussian, a novel framework for ad-
dressing challenges in 3DGS scene transmission and enhancing
user experience. Our approach involves implementing viewport-
dependent color encoding based on Spherical Radial Basis Func-
tions and HSL color space, employing adaptive Gaussian pruning
and transmission, and developing coherent multi-level Gaussian
representations. Extensive experimental results in cloud VR sce-
narios demonstrate substantial improvements, including a higher
reconstruction quality with a 5.63% - 14.17% increase in PSNR,
a 7.61% - 59.16% reduction in latency, and a 10.45% - 30.12% en-
hancement in QoE compared to existing state-of-the-art solutions.
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