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Lars van der Laan * 1 Ernesto Ulloa-Pérez * 2 Marco Carone 3 Alex Luedtke 1

Abstract

We propose causal isotonic calibration, a novel
nonparametric method for calibrating predictors
of heterogeneous treatment effects. Furthermore,
we introduce cross-calibration, a data-efficient
variant of calibration that eliminates the need
for hold-out calibration sets. Cross-calibration
leverages cross-fitted predictors and generates
a single calibrated predictor using all available
data. Under weak conditions that do not assume
monotonicity, we establish that both causal iso-
tonic calibration and cross-calibration achieve fast
doubly-robust calibration rates, as long as either
the propensity score or outcome regression is es-
timated accurately in a suitable sense. The pro-
posed causal isotonic calibrator can be wrapped
around any black-box learning algorithm, provid-
ing robust and distribution-free calibration guar-
antees while preserving predictive performance.

1. Introduction
Estimation of causal effects via both randomized experi-
ments and observational studies is critical to understanding
the effects of interventions and informing policy. Moreover,
it is often the case that understanding treatment effect hetero-
geneity can provide more insights than overall population
effects (Obermeyer & Emanuel, 2016; Athey, 2017). For
instance, a study of treatment effect heterogeneity can help
elucidate the mechanism of an intervention, design policies
targeted to subpopulations that can most benefit (Imbens &
Wooldridge, 2009), and predict the effect of interventions
in populations other than the ones in which they were de-
veloped. These necessities have arisen in a wide range of
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fields, such as marketing (Devriendt et al., 2018), the so-
cial sciences (Imbens & Wooldridge, 2009), and the health
sciences (Kent et al., 2018). For example, in the health
sciences, heterogeneous treatment effects (HTEs) are of
high importance to understanding and quantifying how cer-
tain exposures or interventions affect the health of various
subpopulations (Dahabreh et al., 2016; Lee et al., 2020). Po-
tential applications include prioritizing treatment to certain
sub-populations when treatment resources are scarce, or in-
dividualizing treatment assignments when the treatment can
have no effect (or even be harmful) in certain subpopulations
(Dahabreh et al., 2016). As an example, treatment assign-
ment based on risk scores has been used to provide clinical
guidance in cardiovascular disease prevention (Lloyd-Jones
et al., 2019) and to improve decision-making in oncology
(Collins & Varmus, 2015; Cucchiara et al., 2018).

A wide range of statistical methods are available for assess-
ing HTEs, with recent examples including Wager & Athey
(2018), Carnegie et al. (2019), Lee et al. (2020), Yadlowsky
et al. (2021), and Nie & Wager (2021), among others. In
particular, many methods, including Imbens & Wooldridge
(2009) and Dominici et al. (2020), scrutinize HTEs via con-
ditional average treatment effects (CATEs). The CATE is
the difference in the conditional mean of the counterfactual
outcome corresponding to treatment versus control given
covariates, which can be defined at a group or individual
level. When interest lies in predicting treatment effect, the
CATE can be viewed as the oracle predictor of the individual
treatment effect (ITE) that can feasibly be learned from data.
Optimal treatment rules have been derived based on the sign
of the CATE estimator (Murphy, 2003; Robins, 2004), with
more recent works incorporating the use of flexible CATE
estimators (Luedtke & van der Laan, 2016). Thus, due to its
wide applicability and scientific relevance, CATE estimation
has been of great interest in statistics and data science.

Regardless of its quality as a proxy for the true CATE, it is
generally accepted that predictions from a given treatment
effect predictor can still be useful for decision-making. How-
ever, theoretical guarantees for rational decision-making
using a given treatment effect predictor typically hinge
on the predictor being a good approximation of the true
CATE. Accurate CATE estimation can be challenging be-
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cause the nuisance parameters involved can be non-smooth,
high-dimensional, or otherwise difficult to model correctly.
Additionally, a CATE estimator obtained from samples of
one population, regardless of its quality, may not generalize
well to different target populations (Frangakis, 2009). Usu-
ally, CATE estimators (often referred to as learners) build
upon estimators of the conditional mean outcome given co-
variates and treatment level (i.e., outcome regression), the
probability of treatment given covariates (i.e., propensity
score), or both. For instance, plug-in estimators such as
those studied in Künzel et al. (2019) — so-called T-learners
— are obtained by taking the difference between estimators
of the outcome regression obtained separately for each treat-
ment level. T-learners can suffer in performance because
they rely on estimation of nuisance parameters that are at
least as non-smooth or high-dimensional as the CATE, and
are prone to the misspecification of involved outcome re-
gression models; these issues can result in slow convergence
or inconsistency of the CATE estimator. Doubly-robust and
Neyman-orthogonal CATE estimation strategies like the
DR-learner and R-learner (Wager & Athey, 2018; Foster
& Syrgkanis, 2019; Nie & Wager, 2021; Kennedy, 2020)
mitigate some of these issues by allowing for comparatively
fast CATE estimation rates even when nuisance parameters
are estimated at slow rates. However, while less sensitive
to the learning complexity of the nuisance parameters, their
predictive accuracy in finite-samples still relies on poten-
tially strong smoothness assumptions on the CATE. Even
when the CATE is estimated consistently, predictions based
on statistical learning methods often produce biased predic-
tions that overestimate or underestimate the true CATE in
the extremes of the predicted values (van Klaveren et al.,
2019; Dwivedi et al., 2020). For example, the ‘pooled cohort
equations’ (Goff et al., 2014) risk model used to predict car-
diovascular disease has been found to underestimate risk in
patients with lower socioeconomic status or chronic inflam-
matory diseases (Lloyd-Jones et al., 2019). The implications
of biased treatment effect predictors are profound when used
to guide treatment decisions and can range from harmful
use to withholding of treatment (van Calster et al., 2019).

Due to the consequence of treatment decision-making, it
is essential to guarantee, under minimal assumptions, that
treatment effect predictions are representative in magnitude
and sign of the actual effects, even when the predictor is
a poor approximation of the CATE. In prediction settings,
the aim of bestowing these properties on a given predictor
is commonly called calibration. A calibrated treatment ef-
fect predictor has the property that the average treatment
effect among individuals with identical predictions is close
to their shared prediction value. Such a predictor is more
robust against the over-or-under estimation of the CATE
in extremes of predicted values. It also has the property
that the best predictor of the ITE given the predictor is

the predictor itself, which facilitates transparent treatment
decision-making. In particular, the optimal treatment rule
(Murphy, 2003) given only information provided by the
predictor is the one that assigns the treatment predicted to
be most beneficial. Consequently, the rule implied by a
perfectly calibrated predictor is at least as favorable as the
best possible static treatment rule that ignores HTEs. While
complementing one another, the aims of calibration and
prediction are fundamentally different. For instance, a con-
stant treatment effect predictor can be well-calibrated even
though it is a poor predictor of treatment effect heterogeneity
(Gupta et al., 2020). In view of this, calibration methods are
typically designed to be wrapped around a given black-box
prediction pipeline to provide strong calibration guarantees
while preserving predictive performance, thereby mitigating
several prediction challenges mentioned previously.

In the machine learning literature, calibration has been
widely used to enhance prediction models for classification
and regression (Bella et al., 2010). However, due to the com-
paratively little research on calibration of treatment effect
predictors, such benefits have not been realized to the same
extent in the context of heterogeneous treatment effect pre-
diction. Several works have contributed to addressing this
gap in the literature. Brooks et al. (2012) propose a targeted
(or debiased) machine learning framework (van der Laan &
Rose, 2011) for within-bins calibration that could be applied
to the CATE setting. Zhang et al. (2016) and Josey et al.
(2022) consider calibration of marginal treatment effect es-
timates for new populations but do not consider CATEs.
Dwivedi et al. (2020) consider estimating calibration error
of CATE predictors for subgroup discovery using random-
ized experimental data. Chernozhukov et al. (2018) and
Leng & Dimmery (2021) propose CATE methods for linear
calibration, a weaker form of calibration, in randomized
experiments. For causal forests, Athey & Wager (2019)
evaluate model calibration using a doubly-robust estimator
of the ATE among observations above or below the median
predicted CATE. Lei & Candès (2021) propose conformal
inference methods for constructing calibrated prediction
intervals for the ITE from a given predictor but do not con-
sider calibration of the predictor itself. Xu & Yadlowsky
(2022) propose a nonparametric doubly-robust estimator of
the calibration error of a given treatment effect predictor,
which could be used to detect uncalibrated predictors. Our
work builds upon the above works by providing a nonpara-
metric doubly-robust method for calibrating treatment effect
predictors in general settings.

This paper is organized as follows. In Section 2, we intro-
duce our notation and formally define calibration. There we
also provide an overview of traditional calibration methods.
In Section 3, we outline our proposed approach, and we
describe its theoretical properties in Section 4. In Section 5,
we examine the performance of our method in simulations.
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2. Statistical Setup
2.1. Notation and Definitions

Suppose we observe n independent and identically dis-
tributed realizations of data unit O := (W,A, Y ) drawn
from a distribution P , where W ∈ W ⊂ Rd is a vector of
baseline covariates, A ∈ {0, 1} is a binary indicator of treat-
ment, and Y ∈ Y ⊂ R is an outcome. For instance, W can
include a patient’s demographic characteristics and medical
history, A can indicate whether an individual is treated (1)
or not (0), and Y could be a binary indicator of a successful
clinical outcome. We denote by Dn := {O1, O2, . . . , On}
the observed dataset, with Oi := (Wi, Ai, Yi) representing
the observation on the ith study unit.

For covariate value w ∈ W and treatment level a ∈ {0, 1},
we denote by π0(w) := P (A = 1|W = w) the propen-
sity score and by µ0(a,w) := E(Y |A = a,W = w)
the outcome regression. The individual treatment effect
is Y1 − Y0, where Ya represents the potential outcome ob-
tained by setting A = a. As convention, we take higher
values of Y1 − Y0 to be desirable. We assume that the con-
trast τ0(w) := µ0(1, w)− µ0(0, w) equals the true CATE,
E(Y1−Y0 |W = w), which holds under causal assumptions
(Rubin, 1974). Throughout, we denote by ‖ · ‖ the L2(P )
norm, that is, ‖f‖2 =

∫
[f(w)]2dPW (w) for any given PW -

square integrable function f : W → R, where PW is the
marginal distribution of W implied by P . We deliberately
take as convention that the median median{x1, x2, . . . , xk}
of a set {x1, x2, . . . , xk} equals the bk/2cth order statistic
of this set, where bk/2c := max{z ∈ N : z ≤ k/2}.

Let τ : W → R be a treatment effect predictor, that is, a
function that maps a realization w ofW to a treatment effect
prediction τ(w). In practice, τ can be obtained using any
black-box algorithm. Below, we first consider τ to be fixed,
though we later address situations in which τ is learned
from the data used for subsequent calibration. We define
the calibration function γ0(τ, w) := E[Y1 − Y0|τ(W ) =
τ(w)] as the conditional mean of the individual treatment
effect given treatment effect score value τ(w). By the tower
property, γ0(τ, w) = E[τ0(W ) | τ(W ) = τ(w)], and so,
expectations only involving γ0(τ,W ) and other functions
of W can be taken with respect to PW .

The solution to an isotonic regression problem is typically
nonunique. Throughout this text, we follow Groeneboom
& Lopuhaa (1993) in taking the unique càdlàg piece-wise
constant solution of the isotonic regression problem that can
only take jumps at observed values of the predictor.

2.2. Measuring Calibration and the
Calibration-Distortion Decomposition

Various definitions of risk predictor calibration have been
proposed in the literature — see Gupta & Ramdas (2021)

and Gupta et al. (2020) for a review. Here, we outline our
definition of calibration and its rationale. Given a treat-
ment effect predictor τ , the best predictor of the individual
treatment effect in terms of MSE is w 7→ γ0(τ, w) :=
E[Y1−Y0 | τ(W ) = τ(w)]. By the law of total expectation,
this predictor has the property that, for any interval [a, b),

E {[τ0(W )− γ0(τ,W )] I(γ0(τ,W ) ∈ [a, b))} = 0 . (1)

Equation 1 indicates that γ0(τ, ·) is perfectly calibrated on
[a, b). Therefore, when a given predictor τ is such that
τ(W ) = γ0(τ,W ) with P -probability one, τ is said to be
perfectly calibrated (Gupta et al., 2020) for the CATE — for
brevity, we omit “for the CATE” hereafter when the type of
calibration being referred to is clear from context.

In general, perfect calibration cannot realistically be
achieved in finite samples. A more modest goal is for the
predictor τ to be approximately calibrated in that τ(w) is
close to γ0(τ, w) across all covariate values w ∈ W . This
naturally suggests the calibration measure:

CAL(τ) :=

∫
[γ0(τ, w)− τ(w)]

2
dPW (w). (2)

This measure, referred to as the `2-expected calibration
error, arises both in prediction (Gupta et al., 2020) and
in the assessment of treatment effect heterogeneity (Xu &
Yadlowsky, 2022). We note that CAL(τ) is zero if τ is
perfectly calibrated. Additionally, averaging in CAL(τ)
with respect to measures other than PW could be more
relevant in certain applications; such cases can occur, for
instance, when there is a change of population that results
in covariate shift and we are interested in measuring how
well τ is calibrated in the new population.

Interestingly, the above calibration measure plays a role in a
decomposition of the mean squared error (MSE) between
the treatment predictor and the true CATE, in that

MSE(τ) := ‖τ0 − τ‖2 = CAL(τ) + DIS(τ) , (3)

with DIS(τ) := E{var[τ0(W ) | τ(W )]} a quantity we term
the distortion of τ . We refer to the above as a calibration-
distortion decomposition of the MSE. A consequence of the
calibration-distortion decomposition is that MSE-consistent
CATE estimators are also calibrated asymptotically. How-
ever, particularly in settings where the covariates are high-
dimensional or the CATE is nonsmooth, the calibration error
rate for such predictors can be arbitrarily slow — this is dis-
cussed further after Theorem 4.6.

To interpret DIS(τ), we find it helpful to envision a scenario
in which a distorted message is passed between two persons.
The goal is for Person 2 to discern the value of τ0(w), where
the value of w ∈ W is only known to Person 1. Person 1
transmitsw, which is then distorted through a function τ and
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received by Person 2. Person 2 knows the functions τ and
τ0, and may use this information to try to discern τ0(w). If
τ is one-to-one, τ0(w) can be discerned by simply applying
τ0 ◦ τ−1 to the received message τ(w). More generally,
whenever there exists a function f such that τ0 = f ◦ τ ,
Person 2 can recover the value of τ0(w). For example, if
τ = τ0 then f is the identity function. If no such function
f exists, it may not be possible for Person 2 to recover the
value of τ0(w). Instead, they may predict τ0(w) based on
τ(w) via γ0(τ, w). Averaged over W ∼ PW , the MSE
of this approach is precisely DIS(τ). See Equation 3 in
Kuleshov & Liang (2015) for a related decomposition of
E [{Y − τ(X)}2] = MSE(τ) +E [{Y − τ0(X)}2] derived
in the context of probability forecasting.

The calibration-distortion decomposition shows that, at a
given level of distortion, better-calibrated treatment effect
predictors have lower MSE for the true CATE function. We
will explore this fact later in this work when showing that, in
addition to improving calibration, our proposed calibration
procedure can improve the MSE of CATE predictors.

2.3. Calibrating Predictors: desiderata and classical
methods

In most calibration methods, the key goal is to find a
function θ : R → R of a given predictor τ such that
CAL(θ ◦ τ) < CAL(τ), where θ ◦ τ refers to the com-
posed predictor w 7→ θ(τ(w)). A mapping θ that pursues
this objective is referred to as a calibrator. Ideally, a calibra-
tor θn for τ constructed from the dataset Dn should satisfy
the following desiderata:

Property 1: CAL(θn ◦ τ) tends to zero quickly as n grows;

Property 2: θn ◦ τ and τ are comparably predictive of τ0.

Property 1 states the primary objective of a calibrator, that is,
to yield a well-calibrated predictor. Property 2 requires that
the calibrator not destroy the predictive power of the initial
predictor in the pursuit of Property 1, which would occur if
the calibration term in decomposition (3) were made small
at the cost of dramatic inflation of the distortion term.

In the traditional setting of classification and regression,
a natural aim is to learn, for a ∈ {0, 1}, a predictor w 7→
ν(a)(w) of the outcome Y among individuals with treatment
A = a. The best possible such predictor is given by the
treatment-specific outcome regression w 7→ µ0(a,w). For
a ∈ {0, 1}, ν(a) is said to be calibrated for the outcome re-
gression if ν(a)(w) ≈ E(Y | ν(a)(W ) = ν(a)(w), A = a)
for P0-almost every w. Such a calibrated predictor can
be obtained using existing calibration methods for regres-
sion (Huang et al., 2020), which we review in the next
paragraph. It is natural to wonder, then, whether existing
calibration approaches can be directly used to calibrate for

the CATE. As a concrete example, given predictors ν(1)

and ν(0) of µ0(1, ·) and µ0(0, ·), a natural CATE predic-
tor is the T-learner τ := ν(1) − ν(0). However, even if
ν(1) and ν(0) are calibrated for their respective outcome
regressions, the predictor τ can still be poorly calibrated
for the CATE. Indeed, in settings with treatment-outcome
confounding, T-learners can be poorly calibrated when the
calibrated predictors ν(1) and ν(0) are poor approximations
of their respective outcome regressions. As an extreme
example, suppose that ν(a) equals the constant predictor
w 7→ E(Y | A = a) for a ∈ {0, 1}, which is perfectly cali-
brated for the outcome regression. Then, the corresponding
T-learner τ(·) = E(Y | A = 1)− E(Y | A = 0) typically
has poor calibration for the CATE in observational settings.

In classification and regression settings (Huang et al., 2020),
the most commonly used calibration methods include Platt’s
scaling (Platt et al., 1999), histogram binning (Zadrozny &
Elkan, 2001), Bayesian binning into quantiles (Naeini et al.,
2015), and isotonic calibration (Zadrozny & Elkan, 2002;
Niculescu-Mizil & Caruana, 2005). Broadly, Platt’s scaling
is designed for binary outcomes and uses the estimated
values of the predictor to fit the logistic regression model

logitP (Y = 1 | τ(W ) = t) = α+ βt

with α, β ∈ R. While it typically satisfies Property 2, Platt’s
scaling is based on strong parametric assumptions and, as
a consequence, may lead to predictions with significant
calibration error, even asymptotically (Gupta et al., 2020).
Nevertheless, Platt’s scaling may be preferred when limited
data is available. Histogram or quantile binning involves
partitioning the sorted values of the predictor into a fixed
number of bins. Given an initial prediction, the calibrated
prediction is the empirical mean of the observed outcome
values within the corresponding prediction bin. A signif-
icant limitation of histogram binning is that it requires a
priori specification of the number of bins. Selecting too
few bins can significantly degrade the predictive power of
the calibrated predictor, whereas selecting too many bins
can lead to poor calibration. Bayesian binning improves
upon histogram binning by considering multiple binning
models and their combinations; nevertheless, it still requires
pre-specification of binning models and prior distributions.

Isotonic calibration is a histogram binning method that
learns the bins from data using isotonic regression, a non-
parametric method traditionally used for estimating mono-
tone functions (Barlow & Brunk, 1972; Martino et al., 2019;
Huang et al., 2020). Specifically, the bins are selected by
minimizing an empirical MSE criterion under the constraint
that the calibrated predictor is a nondecreasing monotone
transformation of the original predictor. Isotonic calibration
is motivated by the heuristic that, for a good predictor τ ,
the calibration function γ0(τ, ·) should be approximately
monotone as a function of τ . For instance, when τ = τ0, the
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map τ0 7→ γ0(τ0, ·) = τ0 is the identity function. Despite
its popularity and strong performance in practice (Zadrozny
& Elkan, 2002; Niculescu-Mizil & Caruana, 2005; Gupta &
Ramdas, 2021), to date, whether isotonic calibration satis-
fies distribution-free calibration guarantees remains an open
question (Gupta, 2022). In this work, we will show that
isotonic calibration satisfies a distribution-free calibration
guarantee in the sense of Property 1. We further establish
that Property 2 holds, in that the isotonic selection criterion
ensures that the calibrated predictor is at least as predictive
as the original predictor up to negligible error.

3. Causal Isotonic Calibration
In real-world experiments, Dwivedi et al. (2020) found em-
pirically that state-of-the-art CATE estimators tend to be
poorly calibrated. However, strikingly, the authors found
that such CATE predictors can often still correctly rank the
average treatment effect among subgroups defined by bins
of the predicted effects. These findings support the heuristic
that the calibration function γ0(τ, ·) is often approximately
monotone as a function of the predictor τ . This heuristic
makes extending isotonic calibration to the CATE setting
especially appealing since the monotonicity constraint en-
sures that the calibrated predictions preserve the (non-strict)
ranking of the original predictions.

Inspired by isotonic calibration, we propose a doubly-robust
calibration method for treatment effects, which we refer to
as causal isotonic calibration. Causal isotonic calibration
takes a given predictor trained on some dataset and per-
forms calibration using an independent (or hold-out) dataset.
Mechanistically, causal isotonic calibration first automat-
ically learns uncalibrated regions of the given predictor.
Calibrated predictions are then obtained by consolidating
individual predictions within each region into a single value
using a doubly-robust estimator of the ATE. In addition, we
introduce a novel data-efficient variant of calibration which
we refer to as cross-calibration. In contrast with the stan-
dard calibration approach, causal isotonic cross-calibration
takes cross-fitted predictors and outputs a single calibrated
predictor obtained using all available data. Our methods can
be implemented using standard isotonic regression software.

Let τ be a given treatment effect predictor assumed, for now,
to have been built using an external dataset, and suppose that
Dn is the available calibration dataset. In general, we can
calibrate the predictor τ using regression-based calibration
methods by employing an appropriate surrogate outcome
for the CATE. For both experimental and observational
settings, a surrogate outcome with favorable efficiency and
robustness properties is the pseudo-outcome χ0(O) defined
via the mapping

χ0 : o 7→ τ0(w)+
a− π0(w)

π0(w)[1− π0(w)]
[y − µ0(a,w)] , (4)

with o := (w, a, y) representing a realization of the data
unit. This pseudo-outcome has been used as surrogate for
the CATE in previous methods for estimating τ0, including
the DR-learner (Luedtke & van der Laan, 2016; Kennedy,
2020). If χ0 were known, an external predictor τ could be
calibrated using Dn by isotonic regression of the pseudo-
outcomes χ0(O1), χ0(O2), . . . , χ0(On) onto the calibra-
tion sample predictions τ(W1), τ(W2), . . . , τ(Wn). How-
ever, χ0 depends on π0 and µ0, which are usually unknown
and must be estimated.

A natural approach for calibrating treatment effect predictors
using isotonic regression is as follows. First, define χn as
the estimated pseudo-outcome function based on estimates
µn and πn derived from Dn. Then, a calibrated predictor
is given by θn ◦ τ , where the calibrator θn is found via
isotonic regression as a minimizer over Fiso := {θ : R→
R; θ is monotone nondecreasing} of the empirical least-
squares risk function

θ 7→ 1

n

n∑
i=1

[χn(Oi)− θ ◦ τ(Wi)]
2
.

However, this optimization problem requires a double use of
Dn: once, for creating the pseudo-outcomes χn(Oi), and a
second time, in the calibration step. This double usage could
lead to over-fitting (Kennedy, 2020), and so we recommend
obtaining pseudo-outcomes via sample splitting or cross-
fitting. Sample splitting involves randomly partitioning Dn
into Em ∪ C`, with Em used to estimate µ0 and π0, and C`
used to carry out the calibration step — see Algorithm 1
for details. Cross-fitting improves upon sample splitting
by using all available data to estimate µ0 and π0 as well as
to carry out the calibration step. Algorithm 4, outlined in
Appendix B, is the cross-fitted variant of Algorithm 1.

Algorithm 1 Causal isotonic calibration

Require: predictor τ , training data Em, calibration data C`
1: obtain estimate χm of χ0 using Em;
2: perform isotonic regression to find

θ∗n = argmin
θ∈Fiso

∑
i∈I`

[χm(Oi)− θ ◦ τ(Wi)]
2

with I` the set of indices for observations in C` ⊂ Dn;
3: set τ∗n := θ∗n ◦ τ .

Ensure: τ∗n

In practice, the external dataset used to construct τ for input
into Algorithm 1 is likely to arise from a sample splitting
approach wherein a large dataset is split in two, with one
half used to estimate τ and the other to calibrate it. This
naturally leads to the question of whether there is an ap-
proach that fully utilizes the entire dataset for both fitting an
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initial estimate of τ0 and calibration. Algorithm 2 describes
causal isotonic cross-calibration, which provides a means
to accomplish precisely this. In brief, this approach applies
Algorithm 1 a total of k times on different splits of the data,
where for each split an initial predictor of τ0 is fitted based
on the first subset of the data and this predictor is calibrated
using the second subset. These k calibrated predictors are
then aggregated via a pointwise median. Interestingly, other
aggregation strategies, such as pointwise averaging, can lead
to uncalibrated predictions (Gneiting & Ranjan, 2013; Ra-
haman & Thiery, 2020). A computationally simpler variant
of Algorithm 2 is given by Algorithm 3. In this implemen-
tation, a single isotonic regression is performed using the
pooled out-of-fold predictions; this variant may also yield
more stable performance in finite-samples than Algorithm 2
— see Section 2.1.2 of Xu & Yadlowsky (2022) for a related
discussion in the context of debiased machine learning.

Algorithm 2 Causal isotonic cross-calibration (unpooled)

Require: dataset Dn, # of cross-fitting splits k

1: partition Dn into datasets C(1), C(2), . . . , C(k);
2: for s = 1, 2, . . . , k do
3: set E(s) := Dn\C(s);
4: get initial predictor τn,s of τ0 using E(s);
5: get calibrated predictor τ∗n,s via Alg. 1 using predictor

τn,s, training data E(s), and calibration data C(s);
6: end for
7: set τ∗n : w 7→ median{τ∗n,1(w), τ∗n,2(w), . . . , τ∗n,k(w)}.

Ensure: τ∗n

Algorithm 3 Causal isotonic cross-calibration (pooled)

Require: dataset Dn, # of cross-fitting splits k

1: partition Dn into datasets C(1), C(2), . . . , C(k);
2: for s = 1, 2, . . . , k do
3: let j(i) = s for each i ∈ C(s);
4: set E(s) := Dn\C(s);
5: get estimate χn,s of χ0 from E(s);
6: get initial predictor τn,s of τ0 from E(s);
7: end for
8: perform isotonic regression using pooled out-of-fold

predictions to find

θ∗n = argmin
θ∈Fiso

n∑
i=1

[
χn,j(i)(Oi)− (θ ◦ τn,j(i))(Wi)

]2
;

9: set τ∗n,s := θ∗n ◦ τn,s for s = 1, 2, . . . , k;
10: set τ∗n : w 7→ median{τ∗n,1(w), τ∗n,2(w), . . . , τ∗n,k(w)}.
Ensure: τ∗n

4. Large-Sample Theoretical Properties
We now present theory for causal isotonic calibration. We
obtain results for causal isotonic calibration described by
Algorithm 1 applied to a fixed predictor τ . We also establish
MSE guarantees for the calibrated predictor and argue that
the proposed calibrator satisfies Properties 1 and 2. We
extend our results to the procedure of Algorithm 2.

For ease of presentation, we only establish theoretical results
for the case where the nuisance estimators are obtained using
sample splitting. With minor modifications, our results
can be readily extended to cross-fitting by arguing along
the lines of Newey & Robins (2018). In that spirit, we
assume that the available data Dn is the union of a training
dataset Em and a calibration dataset C` of sizes m and `,
respectively, with n = m + ` and min{m, `} → ∞ as
n → ∞. Let τ∗n be the calibrated predictor obtained from
Algorithm 1 using τ , Em and C` where the estimated pseudo-
outcome χm is obtained by substituting estimates πm and
µm of π0 and µ0 into (4).
Condition 4.1 (bounded outcome support). The P -support
Y of Y is a uniformly bounded subset of R.
Condition 4.2 (positivity). There exists ε > 0 such that
P (ε < π0(W ) < 1− ε) = 1.
Condition 4.3 (independence). Estimators πm and µm do
not use any data in C`.
Condition 4.4 (bounded range of πm, µm, τ ). There exist
0 < η, α < ∞ such that P (η < πm(W ) < 1 − η) =
P (|µm(A,W )| < α) = P (|τ(W )| < α) = 1 for m =
1, 2, . . .

Condition 4.5 (bounded variation of best predictor). The
function θ0 : R 7→ R such that θ0 ◦ τ = γ0(τ, ·) is of
bounded total variation.

It is worth noting that the initial predictor and its best mono-
tone transformation can be arbitrarily poor CATE predictors.
Condition 4.1 holds trivially when outcomes are binary, but
even continuous outcomes are often known to satisfy fixed
bounds (e.g., physiologic bound, limit of detection of instru-
ment) in applications. Condition 4.2 is standard in causal
inference and requires that all individuals have a positive
probability of being assigned to either treatment or control.
Condition 4.3 follows as a direct consequence of the sam-
ple splitting approach, because the estimators are obtained
from an independent sample from the data used to carry the
calibration step. Condition 4.4 requires that the estimators
of the outcome regression and propensity score be bounded;
this can be enforced, for example, by threshholding when es-
timating these regression functions. Condition 4.5 excludes
cases in which the best possible predictor of the CATE given
only the initial predictor τ has pathological behavior, in the
sense that it has infinite variation norm as a (univariate)
mapping of τ . We stress here that isotonic regression is
used only as a tool for calibration, and our theoretical guar-
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antees do not require any monotonicity on components of
the data-generating mechanism — for example, γ0(τ, w)
need not be monotone as a function of τ(w).

The following theorem establishes the calibration rate of the
predictor τ∗n obtained using causal isotonic calibration.

Theorem 4.6 (τ∗n is well-calibrated). Under Conditions 4.1–
4.5, as n→∞, it holds that

CAL(τ∗n) = OP

(
`−2/3 + ‖(πm − π0)(µm − µ0)‖2

)
.

The calibration rate can be expressed as the sum of an oracle
calibration rate and the rate of a second-order cross-product
bias term involving nuisance estimators. Notably, the causal
isotonic calibrator rate can satisfy Property 1 at the oracle
rate `−2/3 so long as ‖(πm − π0)(µm − µ0)‖ shrinks no
slower than `−1/3, which requires that one or both of π0
and µ0 is estimated well in an appropriate sense. If π0 is
known, as in most randomized experiments, the fast cal-
ibration rate of `−2/3 can be achieved even when µm is
inconsistent, thereby providing distribution-free calibration
guarantees irrespective of the smoothness of the outcome
regression or dimension of the covariate vector. When π0
is unknown, the oracle rate of `−2/3 may not be achievable
if the propensity score and outcome regression are insuf-
ficiently smooth relative to the dimension of the covariate
vector (Kennedy, 2020; Kennedy et al., 2022).

It is interesting to contrast the calibration guarantee in The-
orem 4.6 with existing MSE guarantees for DR-learners
(Kennedy, 2020) since, in view of (3), they also provide
calibration guarantees. While the MSE estimation rates
for the CATE depend on the dimension and smoothness
of τ0, the curse of dimensionality for our calibration rates
only manifests itself in the doubly-robust cross-remainder
term that involves nuisance estimation rates. For instance,
when ` = m = n/2, if π0 and µ0 are known to be Hölder
smooth with exponent α ≥ 1, the calibration rate implied
by Theorem 4.6 with minimax optimal nuisance estimators
is, up to logarithmic factors, `−2/3 + `−4α/(2α+d). In con-
trast, if τ0 is known to be Hölder smooth with exponent
β ≥ 1, a minimax optimal estimator of τ0 is only guaran-
teed to achieve an MSE, and therefore calibration, rate of
`−2β/(2β+d) + `−4α/(2α+d) (Kennedy et al., 2022). When
the nuisance smoothness satisfies α ≥ d/4, causal isotonic
calibration can achieve the oracle calibration rate of `−2/3,
whereas a minimax optimal CATE estimator is only guaran-
teed to achieve the same calibration rate under the stringent
condition that the smoothness of τ0 satisfies β ≥ d.

The following theorem states that the predictor obtained by
taking pointwise medians of calibrated predictors is also
calibrated.

Theorem 4.7 (Pointwise median preserves calibration).
Let τ∗n,1, τ

∗
n,2, . . . , τ

∗
n,k be predictors, and define pointwise

τ∗n(w) := median{τ∗n,1(w), τ∗n,2(w), . . . , τ∗n,k(w)}. Then,

CAL(τ∗n) ≤ k
k∑
s=1

CAL(τ∗n,s) ,

where the median operation is defined as in Section 2.1.

Under similar conditions, Theorem 4.7 combined with a
generalization of Theorem 4.6 that handles random τ (see
Theorem C.5 in Appendix C.4) establishes that a predictor
τ∗n obtained using causal isotonic cross-calibration (Algo-
rithm 2) has calibration error CAL(τ∗n) of order

OP

(
n−2/3 + max

1≤s≤k
‖(πn,s − π0)(µn,s − µ0)‖2

)
as n→∞, where µn,s and πn,s are the outcome regression
and propensity score estimators obtained after excluding
the sth fold of the full dataset. In fact, Theorem 4.7 is
valid for any calibrator of the form τ∗n : w 7→ τ∗n,sn(w)(w),
where sn(w) is any random selector that may depend on
the covariate value w. This suggests that the calibration rate
for the median-aggregated calibrator implied by Theorem
4.7 is conservative as it also holds for the worst-case oracle
selector that maximizes calibration error.

We now establish that causal isotonic calibration satisfies
Property 2, that is, it maintains the predictive accuracy of
the initial predictor τ . In what follows, predictive accu-
racy is quantified in terms of MSE. At first glance, the
calibration-distortion decomposition appears to raise con-
cerns that causal isotonic calibration may distort τ so much
that the predictive accuracy of τ∗n may be worse than that of
τ . This possibility may seem especially concerning given
that the ouput of isotonic regression is a step function, so that
there could be many w,w′ ∈ W such that τ(w) 6= τ(w′)
but τ∗n(w) = τ∗n(w′). The following theorem alleviates this
concern by establishing that, up to a remainder term that
decays with sample size, the MSE of τ∗n is no larger than the
MSE of the initial CATE predictor τ . A consequence of this
theorem is that causal isotonic calibration does not distort τ
so much as to destroy its predictive performance. To derive
this result, we leverage that τ∗n is in fact a misspecified DR-
learner of the univariate CATE function γ0(τ, ·). While iso-
tonic calibrated predictors are calibrated even when γ0(τ, ·)
is not a monotone function of τ , we stress that misspecified
DR-learners for γ0(τ, ·) are typically uncalibrated.

In the theorem below, we define the best isotonic approxi-
mation of the CATE given the initial predictor τ as

τ∗0 := argmin
θ◦τ :θ∈Fiso

‖τ0 − θ ◦ τ‖ .

Theorem 4.8 (Causal isotonic calibration does not inflate
MSE much). Under Conditions 4.1–4.5,

‖τ∗n − τ∗0 ‖ = OP

(
`−1/3 + ‖(πm − π0)(µm − µ0)‖

)
7
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as n→∞. As such, as n→∞, the inflation in root MSE
from causal isotonic calibration satisfies√

MSE(τ∗n)−
√

MSE(τ)

≤ OP
(
`−1/3 + ‖(πm − π0)(µm − µ0)‖

)
.

A similar MSE bound can be established for causal isotonic
cross-calibration as defined in Algorithm 2.

5. Simulation Studies
5.1. Data-Generating Mechanisms

We examined the behavior of our proposal under two data-
generating mechanisms. The first mechanism (Scenario 1)
includes a binary outcome whose conditional mean is an
additive function (on the logit scale) of non-linear trans-
formations of four confounders with treatment interactions.
The second mechanism (Scenario 2) includes instead a con-
tinuous outcome with conditional mean linear on covariates
and treatment interactions, with more than 100 covariates of
which only 20 are true confounders. In both scenarios, the
propensity score follows a logistic regression model. All
covariates were independent and uniformly distributed on
(−1,+1). Sample sizes 1, 000, 2, 000, 5, 000 and 10, 000
were considered. Further details are given in Appendix D.1.

5.2. CATE Estimation

We employed the DR-learner algorithm, as outlined by
Kennedy (2020), in combination with different supervised
learning algorithms to generate uncalibrated predictors of
the CATE. In Scenario 1, to estimate the CATE, we imple-
mented gradient-boosted regression trees (GBRT) with max-
imum depths equal to 2, 5, and 8 (Chen & Guestrin, 2016),
random forests (RF) (Breiman, 2001), generalized linear
models with lasso regularization (GLMnet) (Friedman et al.,
2010), generalized additive models (GAM) (Wood, 2017),
and multivariate adaptive regression splines (MARS) (Fried-
man, 1991). In Scenario 2, we implemented RF, GLMnet,
and a combination of variable screening with lasso regular-
ization followed by GBRT with maximum depth determined
via cross-validation. We used the implementation of these
estimators found in R package sl3 (Coyle et al., 2021).
Causal isotonic cross-calibration was implemented using
the variant outlined in Algorithm 3. Further details are given
in Appendix D.2.

5.3. Performance Metrics

We evaluated the performance of each causal isotonic cross-
calibrated predictor relative to its corresponding uncali-
brated predictor using three metrics: the calibration measure
defined in (1), MSE, and the calibration bias within bins de-
fined by the first and last prediction deciles. The calibration

bias within bins is given by the measure in (2) standardized
by the probability of falling within each bin. For each simu-
lation iteration, the metric was estimated empirically using
an independent sample V of size nV = 104. These met-
ric estimates were then averaged across 1000 simulations.
Details on these metrics are provided in Appendix D.3.

5.4. Simulation Results

Results from Scenario 1 are summarized in Figure 1. The
predictors based on GLMnet and GAM happened to be well-
calibrated, and so, causal isotonic calibration did not lead
to substantial improvements in calibration error. In con-
trast, causal isotonic calibration of RF, MARS, and GBRT
substantially decreased its calibration error, regardless of
tree depth and sample size. In terms of MSE, calibration
improved the predictive performance of RF, MARS, GBRT,
and preserved the performance of GLMnet and GAM. The
calibration bias within bins of prediction was generally
smaller after calibration, with a more notable improvement
on MARS, RF, and GBRT — see Table 2 in Appendix E.

Results from Scenario 2 are summarized in Figure 2. The
predictors based on RF and GBRT with GLMnet screen-
ing were poorly calibrated, and causal isotonic calibration
substantially reduced their calibration error. Calibration did
not noticeably change the already small calibration error
of the GLMnet predictions; however, calibration substan-
tially reduced the calibration error within quantile bins of
its predictions — see Table 3 in Appendix E. Finally, with
respect to MSE, causal isotonic calibration improved the
performance of RF and GBRT with variable screening, and
yielded similar performance to GLMnet.

In Figure 3 of Appendix E, we compared calibration per-
formance using hold-out sets to cross-calibration and found
substantial improvements in MSE and calibration by using
cross-calibration.

6. Conclusion
In this work, we proposed causal isotonic calibration as a
novel method to calibrate treatment effect predictors. In
addition, we established that the pointwise median of cal-
ibrated predictors is also calibrated. This allowed us to
develop a data-efficient variant of causal isotonic calibra-
tion using cross-fitted predictors, thereby avoiding the need
for a hold-out calibration dataset. Our proposed methods
guarantee that, under minimal assumptions, the calibration
error defined in (2) vanishes at a fast rate of `−2/3 with little
or no loss in predictive power, where ` denotes the number
of observations used for calibration. This property holds
regardless of how well the initial predictor τ approximates
the true CATE function. To our knowledge, our method is
the first in the literature to directly calibrate CATE predic-
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Figure 1. Calibration error and MSE in Scenario 1. The panels
show the calibration error (top) and MSE (bottom) using the cal-
ibrated (left) and uncalibrated (right) predictors as a function of
sample size. Both calibration error and the MSE were standardized
by Var (Y (1)− Y (0)). The y-axes and x-axis are on a log scale.

tors without requiring trial data or parametric assumptions.
Potential applications of our method include data-driven
decision-making with strong robustness guarantees. In fu-
ture work, it would be interesting to study whether pairing
causal isotonic cross-calibration with conformal inference
(Lei & Candès, 2021) leads to improved ITE prediction
intervals, and whether causal isotonic calibration and shape-
constrained inference methods (Westling & Carone, 2020)
can be used to construct confidence intervals for γ0(τ∗n, ·).

Our method has limitations. Its calibration guarantees re-
quire that either µ0 or π0 be estimated sufficiently well.
Flexible learning methods can be used to satisfy this con-
dition. If π0 is known, this condition can be trivially met.
Hence, our method can be readily used to calibrate CATE
predictors and characterize HTEs in clinical trials. For
proper calibration, our method requires all confounders to
be measured and adjusted for. In future work, it will be
important to study CATE calibration in the context of un-
measured confounding. Our strategy could be adapted to
construct calibrators for general learning tasks, including
E-learning of the conditional relative risk (Jiang et al., 2019;
Qiu et al., 2019), proximal causal learning (Tchetgen et al.,
2020; Sverdrup & Cui, 2023), and instrumental variable-
based learning (Okui et al., 2012; Syrgkanis et al., 2019).

In simulations, we found that causal isotonic cross-
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Figure 2. Calibration error and MSE in Scenario 2. The panels
show the calibration error (top) and MSE (bottom) using the cal-
ibrated (left) and uncalibrated (right) predictors as a function of
sample size. Both calibration error and the MSE were standardized
by Var (Y (1)− Y (0)). The y-axes and x-axis are on a log scale.

calibration led to well-calibrated predictors without sac-
rificing predictive performance; benefits were especially
prominent in high-dimensional settings and for tree-based
methods. This is of particularly high relevance given that
regression trees have become popular for CATE estima-
tion, due to both their flexibility (Athey & Imbens, 2016)
and interpretability (Lee et al., 2020). We also found that
cross-calibration substantially improved the MSE of the
calibrated predictor relative to hold-out set approaches. In
some cases, cross-calibration even improved upon the MSE
of the uncalibrated predictor.

Though our focus was on treatment effect estimation, our
theoretical arguments can be readily adapted to provide
guarantees for isotonic calibration in regression and classifi-
cation problems. Hence, we have provided an affirmative
answer to the open question of whether it is possible to es-
tablish distribution-free calibration guarantees for isotonic
calibration (Gupta, 2022).
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A. Implementation of algorithms in R
R code implementing causal isotonic calibration with user-supplied (cross-fitted) nuisance estimates and predictions is
provided in the Github package causalCalibration and can be found at https://github.com/Larsvanderlaan/causalCalibration.

B. Algorithm for causal isotonic calibration with cross-fitted nuisance estimates

Algorithm 4 Causal isotonic calibration (cross-fitted nuisances)

Require: predictor τ , dataset Dn, # of cross-fitting splits k

1: partition Dn into datasets T (1), T (2), . . . , T (k);
2: for s = 1, 2, . . . , k do
3: let j(i) = s for each i ∈ T (s);
4: get estimate χn,s of χ0 from Dn\T (s);
5: end for
6: perform isotonic regression using pooled out-of-fold estimates to find

θ∗n = argmin
θ∈Fiso

1

n

n∑
i=1

[
χn,j(i)(Oi)− (θ ◦ τ)(Wi)

]2
;

7: set τ∗n := θ∗n ◦ τ ;
Ensure: τ∗n

C. Technical proofs
Unless stated otherwise, the function τ∗n denotes a calibrated predictor obtained using Algorithm 1 with a predictor τ ,
training dataset Em, and calibration dataset C` = Dn\Em as described in Section 4.

C.1. Notation & definitions

Let T := {τ(w) : w ∈ W} denote the range of the predictor τ , which is a bounded subset of R by Condition 4.4.
We redefine Fiso ⊂ {θ : T → R; θ is monotone nondecreasing} to denote the family of nondecreasing functions on T
uniformly bounded by

B := sup
m∈N

sup
Em

sup
o∈O

[|χ0(o)|+ |χm(o)|] ,

where the second supremum is over all possible realizations of the training dataset Em. We necessarily have that B
is nonrandom and finite by Lemma C.2. Redefining Fiso to be bounded allows us to directly apply certain maximal
inequalities for empirical processes indexed by Fiso. Since the isotonic regression estimator is obtained by locally
averaging the pseudo-outcome χm (Barlow & Brunk, 1972), the unconstrained isotonic regression solution satisfies this
bound and falls in the interior of this class almost surely. Moreover, Fiso is a convex subset of the space of monotone
nondecreasing functions. Let FTV ⊂ {θ : R → R; θ is of bounded variation} denote the space of functions with total
variation uniformly bounded by three times the total variation of the function θ0 where θ0 is as in condition 4.5. Additionally,
let Fτ,iso := {θ ◦ τ :W → R; θ ∈ Fiso} be the family of functions obtained by composing nondecreasing functions in
Fiso with τ , and let Fτ,TV := {θ ◦ τ : W → R; θ ∈ FTV } be the family of functions obtained by composing functions
in FTV with τ . Let FLip,m := {o 7→ [τ2(w)− τ1(w)][χm(o)− τ2(w)] : O → R; τ2 ∈ Fτ,TV , τ1 ∈ Fτ,iso}, where χm is
the estimated pseudo-outcome function. Finally, for a function class F , let N(ε,F , L2(P )) denote the ε−covering number
(van der Vaart & Wellner, 1996) of F and define the uniform entropy integral of F by

J (δ,F) :=

∫ δ

0

sup
Q

√
logN(ε,F , L2(Q)) dε ,

where the supremum is taken over all discrete probability distributions Q. In contrast to the definition provided in van der
Vaart & Wellner (1996), we do not define the uniform entropy integral relative to an envelope function for the function class
F . We can do this since all function classes we consider are uniformly bounded. Thus, any uniformly bounded envelope
function will only change the uniform entropy integral as defined in van der Vaart & Wellner (1996) by a constant.
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In the results below, we will use the following empirical process notation: for a P−measurable function f , we denote∫
f(o)dP (o) by Pf , and so, letting P` denote the empirical distribution of C`, P`f equals 1

`

∑
i∈I` f(Oi) with I` indexing

observations of C` ⊂ Dn. We also let ‖f‖2P := Pf2; to simplify notation, we omit the dependency in P and use ‖f‖2

instead of ‖f‖2P . Finally, for two quantities x and y, we use the expression x / y to mean that x is upper bounded by y
times a universal constant that may only depend on global constants that appear in conditions 4.1-4.5

C.2. Technical lemmas

The following lemma is a key component of our proof of Theorem 4.6.

Lemma C.1. For a calibrated predictor τ∗n obtained using Algorithm 1, and any real-valued function r, we have that∑
i∈I`

[r ◦ τ∗n(Wi)] [τ∗n(Wi)− χm(Oi)] = 0 . (5)

Proof. Note that τ∗n(w) can be expressed pointwise for any w ∈ W as θ∗n ◦ τ(w) = a0 +
∑J
j=1 aj1(τ(w) ≥ uj) for a

piecewise constant function θ∗n determined by coefficients {aj}Jj=0 and jump points {uj}Jj=1 (Barlow & Brunk, 1972). By
monotonicity, we necessarily have a0 ∈ R and {aj}Jj=1 are positive coefficients.

LetRn(θ) :=
∑
i∈I` [θ◦τ(Wi)−χm(Oi)]

2 denote the least-squares risk used in the isotonic regression step. Fix an arbitrary
jump point ūj , and let ξn : R2 → R denote the function ξn(ε, h) := θ∗n(h) + ε1(h ≥ ūj). Note that δ > 0 can be chosen to
be sufficiently small that, for all |ε| ≤ δ, h 7→ ξn(ε, h) is nondecreasing — for instance, δ = min{aj}Jj=1 suffices. Thus, for
sufficiently small δ > 0, h 7→ ξn(ε, h) lies in the space of monotone nondecreasing function for all |ε| ≤ δ. In a slight abuse
of notation, we letRn(ξn(ε)) :=

∑
i∈I` [ξn(ε, τ(Wi))−χm(Oi)]

2 andRn(ξn(−ε)) :=
∑
i∈I` [ξn(−ε, τ(Wi))−χm(Oi)]

2.

Now, because θ∗n minimizes θ 7→ Rn(θ) over the space of monotone nondecreasing functions, for all ε ≥ 0, it holds
that both Rn(ξn(ε))− Rn(τ∗n) ≥ 0 and Rn(ξn(−ε))− Rn(τ∗n) ≥ 0. Moreover, when ε = 0, Rn(ξn(0))− Rn(τ∗n) = 0.
Therefore, if ε is sufficiently close to 0, the derivative with respect to ε of Rn(ξn(ε))−Rn(τ∗n) must be non-negative, and
Rn(ξn(−ε))−Rn(τ∗n) must be non-positive. Hence, it must be true that

d

dε
[Rn(ξn(ε))−Rn(θ∗n)]

∣∣∣
ε=0
≥ 0 and

d

dε
[Rn(ξn(−ε))−Rn(θ∗n)]

∣∣∣
ε=0
≤ 0 .

This, in turn, implies that

2
∑
i∈I`

1(τ(Wi) ≥ ūj) [τ∗n(Wi)− χm(Oi)] ≥ 0 and 2
∑
i∈I`

1(τ(Wi) ≥ ūj) [τ∗n(Wi)− χm(Oi)] ≤ 0 ,

and so, it follows that
∑
i∈I` 1(τ(Wi) ≥ ūj) [τ∗n(Wi)− χm(Oi)] = 0. Because the jump point ūj was arbitrary, we have

that for all functions of the form s(w) = b0 +
∑J
j=1 bj1(τ(w) ≥ uj) with coefficients {bj}Jj=0, we can show that∑

i∈I`

s(Wi) [τ∗n(Wi)− χm(Oi)] = 0

by taking linear combinations of 1(τ(w) ≥ uj) and noting that the score equations are linear in s. The main result of this
lemma follows from the fact that, since both τ∗n and r ◦ τ∗n can be expressed in this form, for any real-valued function r, we
have that ∑

i∈I`

r ◦ τ∗n(Wi) [τ∗n(Wi)− χm(Oi)] = 0 .

Lemma C.2. Conditions 4.1, 4.2 and 4.4 imply that the function classes Fiso, Fτ,TV , Fτ,iso and FLip,m are bounded.

Proof. By Conditions 4.1, 4.2 and 4.4, we know that χm(o) is bounded uniformly over all observations o ∈ O and
realizations of Em, that is, there exists a finite fixed constant B such that ess supm∈N,o∈O χm(o) ≤ B/2. Hence, as
defined in the previous section, Fiso is uniformly bounded. Moreover, because Fiso is bounded, it directly implies that
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Fτ,iso is bounded. Noting that functions of finite variation are bounded, in view of Condition 4.5, we have that FTV is
uniformly bounded by some constant that depends neither on θ nor τ . This implies that Fτ,TV is uniformly bounded. Finally,
because Fτ,TV , Fτ,iso, χm and the potential outcomes are uniformly bounded, the function class FLip,m is also uniformly
bounded.

Lemma C.3. Under conditions 4.5 and the conditions of Lemma C.2, the function τ ′ 7→ E[Y1− Y0 | τ∗n(W ) = τ ′] has total
variation bounded above by three times the total variation of θ0, where θ0 is as in Condition 4.5.

Proof. Since the function θ∗n is nondecreasing and piecewise constant, we have

E[Y1 − Y0 | (θ∗n ◦ τ)(W ) = τ ′] = E[Y1 − Y0 | τ(W ) ∈ Bτ ′ ]

for the set Bτ ′ := {z ∈ T : θ∗n(z) = τ ′}, where Bτ ′ = {z ∈ T : a(τ ′) ≤ z < b(τ ′)} for some endpoints a(τ ′), b(τ ′) ∈ R.
The law of total expectation further implies that

E[Y1 − Y0 | τ(W ) ∈ Bτ ′ ] = E[θ0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ] ,

where θ0 is such that θ0 ◦τ(W ) = γ0(τ,W ) P -almost surely. By Condition 4.5, the function θ0 is of bounded total variation.
Heuristically, since τ ′ 7→ E[θ0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ] is obtained by locally averaging θ0 within the bins (Bτ ′ : τ ′), its
total variation should also be bounded. We show this formally as follows. Note first that

E[θ0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ] = E[θ+0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ]− E[θ−0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ] ,

where θ+0 and θ−0 are two bounded, nondecreasing functions satisfying the Jordan decomposition θ0 = θ+0 − θ
−
0 (Theorem

4, Section 5.2 of Royden, 1963). Moreover, we can choose θ+0 such that θ+0 (∞)− θ+0 (−∞) is equal to the total variation of
θ0. Since ‖θ−0 ‖TV = ‖θ0 − θ+0 ‖TV ≤ ‖θ0‖TV + ‖θ+0 ‖TV , we have that ‖θ−0 ‖TV is bounded by 2‖θ0‖TV .

Since θ∗n is nondecreasing, by definition, we have that t1 < t2 implies that x1 < x2 for any x1 ∈ Bt1 and x2 ∈ Bt2 .
It follows that both τ ′ 7→ E[θ+0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ] and τ ′ 7→ E[θ−0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ] are nondecreasing;
furthermore, they are also bounded. By Theorem 4 of Royden (1963), a function is of bounded variation if and only if it
is the difference between two bounded nondecreasing functions. We conclude that τ ′ 7→ E[Y1 − Y0 | θ∗n ◦ τ(W ) = τ ′] =
E[θ+0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ]− E[θ−0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ] is of bounded variation. Moreover, its total variation norm is
bounded above by the sum of the total variation norm ofE[θ+0 ◦τ(W ) | τ(W ) ∈ Bτ ′ ] and that ofE[θ−0 ◦τ(W ) | τ(W ) ∈ Bτ ′ ].
We recall that the total variation of monotone functions is simply the difference between the left and right endpoints of the
monotone function, and that

ess inf
w∈W

(θ+0 ◦ τ)(w) ≤ E[θ+0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ] ≤ ess sup
w∈W

(θ+0 ◦ τ)(w),

and similarly for θ−0 ◦ τ . As a consequence, the total variation norms of E[θ+0 ◦ τ(W ) | τ(W ) ∈ Bτ ′ ] and E[θ−0 ◦
τ(W ) | τ(W ) ∈ Bτ ′ ] are bounded by the total variation norm of θ+0 and that of θ−0 , respectively. Using the sublinearity of
the total variation norm, we conclude that τ ′ 7→ E[Y1 − Y0 | θ∗n ◦ τ(W ) = τ ′] has total variation norm bounded above by
3‖θ0‖TV .

C.3. Proofs of theorems

PROOF OF THEOREM 4.6

Proof. Conditioning on Dn, we have that

E {[γ0(τ∗n,W )− τ∗n(W )] [χ0(O)− τ∗n(W )] | Dn}
= E{E {[γ0(τ∗n,W )− τ∗n(W )] [χ0(O)− τ∗n(W )] |W} |Dn}
= E{[γ0(τ∗n,W )− τ∗n(W )] [τ0(W )− τ∗n(W )] | Dn}
= E{E {[γ0(τ∗n,W )− τ∗n(W )] [τ0(W )− τ∗n(W )] |τ∗n(W )} |Dn}
= E{[γ0(τ∗n,W )− τ∗n(W )] [γ0(τ∗n,W )− τ∗n(W )] | Dn}

= E{[γ0(τ∗n,W )− τ∗n(W )]
2 | Dn} .
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The above equality implies that∫
{γ0(τ∗n, w)− τ∗n(w)}2 dP (w) =

∫
{γ0(τ∗n, w)− τ∗n(w)} {χ0(o)− τ∗n(w)} dP (o)

=

∫
{γ0(τ∗n, w)− τ∗n(w)} {χ0(o)− χm(o)} dP (o) (6)

+

∫
{γ0(τ∗n, w)− τ∗n(w)} {χm(o)− τ∗n(w)} dP (o) .

Note that, by Lemma C.1, for each real-valued function r, τ∗n satisfies the equation

1

`

∑
i∈I`

r(τ∗n(Wi)) [χm(Oi)− τ∗n(Wi)] = 0 .

Setting r(τ ′) := E[Y1 − Y0 | τ∗n(W ) = τ ′]− τ ′, we conclude that∫
{γ0(τ∗n, w)− τ∗n(w)} {χm(o)− τ∗n(w)} dP`(o) = 0 .

Subtracting the above score equation from the second summand in (6), we obtain that∫
{γ0(τ∗n, w)− τ∗n(w)}2 dP (w) =

∫
{γ0(τ∗n, w)− τ∗n(w)} {χ0(o)− χm(o)} dP (o) (7)

+

∫
{γ0(τ∗n, w)− τ∗n(w)} {χm(o)− τ∗n(w)} d(P − P`)(o) .

This may be written in shorthand as ‖γ0(τ∗n, ·)− τ∗n‖
2

= (I) + (II) with

(I) := P{[γ0(τ∗n, ·)− τ∗n](χ0 − χm)}
(II) := (P − P`){[γ0(τ∗n, ·)− τ∗n](χm − τ∗n)} .

In order to show the desired result, we will bound both (I) and (II).

We can bound (I) using the law of iterated conditional expectations and the Cauchy-Schwarz inequality. First, conditioning
on Em, we note that

P{[γ0(τ∗n, ·)− τ∗n](χ0 − χm)}

=

∫
{γ0(τ∗n, w)− τ∗n(w)}E[χ0(O)− χm(O) |W = w, Em] dP (w)

≤ ‖γ0(τ∗n, ·)− τ∗n‖ ‖E[χ0(O) |W = · ]− E[χm(O) |W = · , Em]‖ . (8)

Next, we express the second norm in (8) in terms of ‖πm − π0‖ and ‖µm − µ0‖. Recalling thatE[χ0(O) |W = w] = τ0(w),
we have that

E[χm(O) |W = w, Em]− E[χ0(O) |W = w]

= µm(1, w)− µ0(1, w)− [µm(0, w)− µ0(0, w)] +
π0(w)

πm(w)
[µ0(1, w)− µm(1, w)]

+
1− π0(w)

1− πm(w)
[µ0(0, w)− µm(0, w)]

=

[
π0(w)− πm(w)

πm(w)

]
[µ0(1, w)− µm(1, w)] +

[
πm(w)− π0(w)

1− πm(w)

]
[µ0(0, w)− µm(0, w)] .

By Condition 4.2, P (1− η > πm(W ) > η) = 1 for some η > 0. The latter condition combined with the Cauchy-Schwarz
inequality gives that ‖E[χ0(O) |W = · ]− E[χm(O) |W = · , Em]‖ is bounded above by

‖[πm(·)− π0(·)][µ0(0, ·)− µm(0, ·)]‖+ ‖[πm(·)− π0(·)][µ0(1, ·)− µm(1, ·)]‖ .
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By Condition 4.2, we also have that for any P -measurable function h :W → R∫
h(w)2[µ0(1, w)− µm(1, w)]2dP (w) =

∫∫
h(w)2[µ0(a,w)− µm(a,w)]2

a

π0(w)
P (da, dw)

≤ 1

η

∫∫
h(w)2[µ0(a,w)− µm(a,w)]2P (da, dw) .

The same bound holds for
∫
h(w)2[µ0(0, w)− µm(0, w)]2dP (w). Setting h : w 7→ πm(w)− π0(w), we conclude

‖E[χm(O) |W = · , Em]− E[χ0(O) |W = · ]‖ / ‖(πm − π0)(µ0 − µm)‖ . (9)

Together, (8) and (9) yield that (I) is bounded above by

P{[γ0(τ∗n, ·)− τ∗n](χ0 − χm)} / ‖γ0(τ∗n, ·)− τ∗n‖ ‖(πm − π0) (µ0 − µm)‖ . (10)

We now find an upper bound for (II). We claim that, conditionally on Em, the random functions appearing in this empirical
process term are contained in fixed and uniformly bounded function classes. To see this, we note that τ∗n = θ∗n ◦ τ for
some θ∗n ∈ Fiso and, as a consequence, τ∗n ∈ Fτ,iso, a uniformly bounded function class by Lemma C.2, P0-almost
surely. By Lemma C.3, the function w 7→ γ0(τ∗n, w) falls in Fτ,TV . This further implies that o 7→ {E[Y1 − Y0 | τ∗n(W ) =
τ∗n(w)]− τ∗n(w)}{χm(o)− τ∗n(w)} ∈ FLip,m, which is a uniformly bounded function class by Lemma C.2.

Next, we let C := ess supx∈T |θ0(x)| and define K := B + C, where we recall that B :=
supm∈N supEm ess supo∈O {|χ0(o)|+ |χm(o)|}. Furthermore, we set δn := ‖γ0(τ∗n, ·)− τ∗n‖, which is a random rate.
For any given rate δ, we define

Sn(δ) := sup
τ1∈Fτ,TV ,τ2∈Fτ,iso:‖τ1−τ2‖≤δ

(P − P`){(τ1 − τ2)(χm − τ2)} = sup
f∈FLip,m:‖f‖≤δK

(P − P`)f .

As a consequence of the above, we have that (II) ≤ Sn(δn). Due to the randomness in δn, the above cannot be further
upper-bounded immediately. To bound the term above, we will take a δ > 0 that is deterministic conditional on Em, and
upper-bound φn(δ) := E {Sn(δ)}, where the expectation is also taken over Dn. To bound the above term, we will use
empirical process techniques with the function classes Fiso, Fτ,TV , Fτ,iso and FLip,m. To do so, we must study the uniform
entropy integral

J (δ,F) :=

∫ δ

0

sup
Q

√
N(ε,F , ‖ · ‖Q) dε

for each of these function classes. By Lemma C.2, all these function classes are uniformly bounded. We note that, conditional
on Em so that χm is fixed, FLip,m is a multivariate Lipschitz transformation of Fτ,TV and Fτ,iso, and therefore, by Theorem
2.10.20 of (van der Vaart & Wellner, 1996), we have that J (δ,FLip,m) / J (δ,Fτ,TV ) + J (δ,Fτ,iso). Since functions of
bounded total variation can be written as a difference of nondecreasing monotone functions, we have by the same theorem
that J (δ,FTV ) / J (δ,Fiso). We claim the same upper bound holds up to a constant for Fτ,TV and Fτ,iso. We establish
this explcitly for Fτ,iso below; the result for Fτ,TV follows from an identical argument. We note that

J (δ,Fτ,iso) =

∫ δ

0

sup
Q

√
N(ε,Fτ,iso, ‖ · ‖Q) dε =

∫ δ

0

sup
Q

√
N(ε,Fiso, ‖ · ‖Q◦τ−1) dε = J (δ,Fiso) ,

where Q ◦ τ−1 is the push-forward probability measure for the random variable τ(W ). We now proceed with bounding
φn(δ). Applying Theorem 2.10.20 of (van der Vaart & Wellner, 1996), we obtain, for any δ > 0 deterministic conditionally
on Em, that

E [Sn(δ) | Em] / `−1/2J (δ,FLip,m)

(
1 +
J (δ,FLip,m)√

`δ2

)
/ `−1/2J (δ,Fiso)

(
1 +
J (δ,Fiso)√

`δ2

)
, (11)

where the right-hand side can only be random through δ.
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We can now proceed with the main argument that gives a rate of convergence for δn. First, we note that combining Equations
7 and 10 yields that the event{

‖γ0(τ∗n, ·)− τ∗n‖
2 ≤ ‖γ0(τ∗n, ·)− τ∗n‖ ‖(πm − π0)(µm − µ0)‖+ Sn(δn)

}
occurs with probability one. We then proceed with a peeling argument to account for the randomness of δn. Let εn be any
given sequence that is deterministic conditional on Em, and define As as the event

{
2s+1εn ≥ ‖γ0(τ∗n, ·)− τ∗n‖ ≥ 2sεn

}
as well as the random quantity εnuism := ‖(πm − π0)(µm − µ0)‖. Then, for any S > 0, we have that

(
‖γ0(τ∗n, ·)− τ∗n‖ ≥ 2Sεn

)
=

∞∑
s=S

P
(
2s+1εn ≥ ‖γ0(τ∗n, ·)− τ∗n‖ ≥ 2sεn

)
=

∞∑
s=S

P (As)

=

∞∑
s=S

P

(
As, δ

2
n ≤ δnεnuism + Sn(δn)

)
. (12)

In all the events in the above sum, we have that Sn(δn) ≤ Sn(2s+1εn) since δn = ‖γ0(τ∗n, ·)− τ∗n‖. Next, manipulating
the inequalities in the above events, we have that{

As, δ
2
n ≤ δnεnuism + Sn(δn)

}
⊆
{
As, δ

2
n ≤ 2s+1εnε

nuis
m + Sn(2s+1εn)

}
⊆
{

22sε2n ≤ δ2n ≤ 2s+1εnε
nuis
m + Sn(2s+1εn)

}
⊆
{

22sε2n ≤ 2s+1εnε
nuis
m + Sn(2s+1εn)

}
,

which implies that the sum in (12) is upper bounded by
∞∑
s=S

P

(
22sε2n ≤ 2s+1εnε

nuis
m + Sn(2s+1εn)

)
.

Using (11) and Markov’s inequality, we find that
∞∑
s=S

P

(
22sε2n ≤ 2s+1εnε

nuis
m + Sn(2s+1εn)

)

≤
∞∑
s=S

E

{
P

(
22sε2n ≤ 2s+1εnε

nuis
m + Sn(2s+1εn) | Em

)}

≤
∞∑
s=S

E

{
2s+1εnε

nuis
m + E[Sn(2s+1εn) | Em]

22sε2n

}

/
∞∑
s=S

E

[
εnuism

2s−1εn
+
J (2s+1εn,Fiso)

22s
√
`ε2n

(
1 +
J (2s+1εn,Fiso)√

`22s+1ε2n

)]
.

As a consequence of Lemma C.2 and the covering number bound for bounded monotone functions given in Theorem 2.7.5
of van der Vaart & Wellner (1996), we have that J (2s+1εn,Fiso) = 2s/2+1/2√εn. Using this fact, we find that

J (2s+1εn,Fiso)
22s
√
`ε2n

/
1

2s
J (εn,Fiso)√

`ε2n
,

from which it follows that

J (2s+1εn,Fiso)
(

1 + J (2s+1εn,Fiso)√
`22s+1ε2n

)
22s
√
`ε2n

/ 2−s
J (εn,Fiso)

(
1 + J (εn,Fiso)√

`ε2n

)
√
`ε2n

.

We now choose εn := max{`−1/3, ‖(πm − π0)(µm − µ0)‖}, which indeed is deterministic conditional on Em. This choice
ensures that J (εn,Fiso) /

√
`ε2n and εnuism = ‖(πm − π0)(µm − µ0)‖ / εn, so that

εnuism

2s−1εn
+
J (2s+1εn,Fiso)

22s
√
`ε2n

(
1 +
J (2s+1εn,Fiso)√

`22s+1ε2n

)
/

1

2s
,
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where the right-hand side is nonrandom. Thus, we have that

P
(
‖γ0(τ∗n, ·)− τ∗n‖ ≥ 2Sεn

)
/

∞∑
s=S

1

2s
−−−−→
S→∞

0 .

As a consequence, for every ε > 0, we can find a constant 2S sufficiently large such that P
(
‖γ0(τ∗n, ·)− τ∗n‖ ≥ 2Sεn

)
<

ε. In other words, we have shown that ‖γ0(τ∗n, ·)− τ∗n‖ = OP (εn) for our choice of εn, and so, CAL(τ∗n) =

‖γ0(τ∗n, ·)− τ∗n‖
2

= OP (ε2n). The result follows from that the fact that ε2n ≤ `−2/3 + ‖(πm − π0)(µm − µ0)‖2.

PROOF OF THEOREM 4.7

Proof. By the definition of the pointwise median stated in Section 2.1, for each covariate value w ∈ W , there exists some
random index jn(w) such that τ∗n(w) = τ∗n,jn(w)(w). (We note here that this property may fail for other definitions of the

median when k is even.) Thus, we have that |γ0(τ∗n, w)−τ∗n(w)| = |γ0(τ∗n,jn(w), w)−τ∗n,jn(w)(w)| ≤
∑k
s=1 |γ0(τ∗n,s, w)−

τ∗n,s(w)|, and so,

‖γ0(τ∗n, ·)− τ∗n‖ ≤

∥∥∥∥∥
k∑
s=1

|γ0(τ∗n,s, ·)− τ∗n,s|

∥∥∥∥∥ ≤
k∑
s=1

∥∥γ0(τ∗n,s, ·)− τ∗n,s
∥∥

≤

√√√√k

k∑
s=1

∥∥γ0(τ∗n,s, ·)− τ∗n,s
∥∥2 ,

where the final inequality follows from the Cauchy-Schwarz inequality. Squaring both sides gives that CAL(τ∗n) ≤
k
∑k
s=1 CAL(τ∗n,s), as desired.

PROOF OF THEOREM 4.8

Proof. As before, we may write τ∗n = θ∗n ◦ τ for some θ∗n ∈ Fiso that minimizes the empirical risk

Rn(θ) : θ 7→
∑
i∈I`

[χm(Oi)− θ ◦ τ(Wi)]
2

over Fiso. For any given θ ∈ Fiso, the one-sided path {ε 7→ θ∗n + ε(θ − θ∗n) : ε ∈ [0, 1]} through θ∗n lies entirely in Fiso
since Fiso is a convex space. Furthermore, we have that

− 2
∑
i∈I`

(θ − θ∗n) ◦ τ(Wi)[χm(Oi)− θ∗n ◦ τ(Wi)] = lim
ε↓0

Rn(θ∗n + ε(θ − θ∗n))−Rn(θ∗n)

ε
≥ 0 (13)

for all θ ∈ Fiso. The oracle isotonic risk minimizer τ∗0 can be expressed as τ∗0 = θ0 ◦ τ where θ0 :=
argminθ∈Fiso ‖θ ◦ τ − τ0‖. Taking θ = θ0 in (13), we obtain the inequality∑

i∈I`

[(θ0 − θ∗n) ◦ τ(Wi)][χm(Oi)− θ∗n ◦ τ(Wi)] ≤ 0 . (14)

Rearranging terms and adding and subtracting P`{[(θ0 − θ∗n) ◦ τ ](χ0)} in the above inequality implies that P`{[(θ0 − θ∗n) ◦
τ ](χm − χ0)} ≤ P`{[(θ0 − θ∗n) ◦ τ ](θ∗n ◦ τ − χ0)}. Adding and subtracting P{[(θ0 − θ∗n) ◦ τ ](θ∗n ◦ τ − χ0)} yields that

P`{[(θ0 − θ∗n) ◦ τ ](χm − χ0)} − (P` − P ){[(θ0 − θ∗n) ◦ τ ](θ∗n ◦ τ − χ0)}
≤ P{[(θ0 − θ∗n) ◦ τ ](θ∗n ◦ τ − χ0)} . (15)

Next, adding and subtracting P{(θ0 ◦ τ)[(θ0 − θ∗n) ◦ τ ]}, we have that

P{[(θ0 − θ∗n) ◦ τ ](θ∗n ◦ τ − χ0)}
= P{[(θ0 − θ∗n) ◦ τ ][θ∗n ◦ τ − E[χ0(O) |W = · ]]}
= P{[(θ0 − θ∗n) ◦ τ ](θ∗n ◦ τ − τ0)}
= P{[(θ0 − θ∗n) ◦ τ ][(θ∗n − θ0) ◦ τ ]}+ P{[(θ0 − θ∗n) ◦ τ ](θ0 ◦ τ − τ0)}
= P{[(θ0 − θ∗n) ◦ τ ](θ0 ◦ τ − τ0)} − ‖(θ0 − θ∗n) ◦ τ‖2 , (16)
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where we used the fact that E[χ0(O) |W = w] = τ0(w). Next, we note that θ0 minimizes the population risk function
θ 7→ EP [τ0(W )− θ ◦ τ(W )]2 over Fiso. As a consequence, the same argument used to derive (14) can be used to obtain
that P{[(θ − θ0) ◦ τ ](τ0 − θ0 ◦ τ)} ≤ 0 for any θ ∈ Fiso. Taking θ = θ∗n, we find that

P{[(θ0 − θ∗n) ◦ τ ](θ0 ◦ τ − τ0)} ≤ 0 . (17)

Combining (16) and (17), we obtain that

P{[(θ0 − θ∗n) ◦ τ ](θ∗n ◦ τ − χ0)} ≤ −‖(θ0 − θ∗n) ◦ τ‖2 . (18)

Finally, combining (15) and (18), we obtain the following inequality

‖(θ0 − θ∗n) ◦ τ‖2 ≤ −P`{[(θ0 − θ∗n) ◦ τ ](χm − χ0)}+ (P` − P ){[(θ0 − θ∗n) ◦ τ ](θ∗n ◦ τ − χ0)} .

Adding and subtracting P{[(θ0 − θ∗n) ◦ τ ](χm − χ0)} and noting that τ∗0 − τ∗n = (θ0 − θ∗n) ◦ τ , we finally obtain the key
inequality

‖τ∗0 − τ∗n‖
2 ≤ P [(τ∗0 − τ∗n)(χ0 − χm)] + (P − P`)[(τ∗0 − τ∗n)(χm − χ0)]

+ (P` − P )[(τ∗0 − τ∗n)(τ∗n − χ0)] . (19)

The above is similar to (7) in the proof of Theorem 4.6, and a similar proof technique is used to establish a convergence rate
for τ∗n . Specifically, we use the Cauchy-Schwarz inequality to bound the first term on the right-hand side of (19) in terms of
‖τ∗0 − τ∗n‖, and empirical process techniques to bound the remaining terms in terms of a function of ‖τ∗0 − τ∗n‖ with high
probability. Using a similar approach as for the derivation of (10), we can upper-bound the first term of the right-hand side
of (19) as P [(τ∗0 − τ∗n)(χ0−χm)] ≤ ‖τ∗0 − τ∗n‖‖(πm−π0)(µm−µ0)‖. The second term in the right-hand side of (19) can
be examined as follows. We let F4,m := {(τ1 − τ2)(χm − χ0); τ1, τ2 ∈ Fτ,iso}, and define Q := supo∈O χ0(o), which is
finite in view of Conditions 4.1 and 4.2. Additionally, we let R := Q+B, and define for any fixed δ ∈ R

Z1,n(δ) := sup
θ1,θ2∈Fiso:‖(θ1−θ2)◦τ‖≤δR

(P − P`){[(θ1 − θ2) ◦ τ ](χm − χ0)} = sup
f∈F4,m:‖f‖≤δR

(P − P`)f.

Letting δ1,n := ‖τ∗0 − τ∗n‖, we have that (P − P`)[(τ∗0 − τ∗n)(χm − χ0)] ≤ Z1,n(δ1,n). We note that F4,m is a Lipschitz
transformation of the function classes Fτ,iso and Fτ,iso, and so, for every δ > 0 that is deterministic conditional on Em, we
have that

ψ1,n(δ | Em) := E[Z1,n(δ) | Em] / `−1/2J (δ,Fiso)
(

1 +
J (δ,Fiso)√

`δ2

)
in view of Theorem 2.10.20 of (van der Vaart & Wellner, 1996) and the results outlined in Theorem 4.6, where the
right-hand side can only be random through δ. Finally, the third term in (19) can be studied as follows. We let F5 :=
{(τ1 − τ2)(τ2 − χ0) : τ1, τ2 ∈ Fτ,iso}, and for any given δ > 0, we define

Z2,n(δ) := sup
θ1,θ2∈Fiso:‖(θ1−θ2)◦τ‖≤δG

(P − P`){[(θ1 − θ2) ◦ τ ](θ2 − χ0)} = sup
f∈F5:‖f‖≤δG

(P − P`)f

with G := Q+B. We note that F5 is a Lipschitz transformation of Fτ,iso. Hence, similarly as above, for any δ > 0 that is
nonrandom conditional on Em, we have that

ψ2,n(δ | Em) := E[Z2,n(δ) | Em] / `−1/2J (δ,Fiso)
(

1 +
J (δ,Fiso)√

`δ2

)
,

where the right-hand side can only berandom through δ. Defining εnuism := ‖(πm − π0)(µm − µ0)‖, by a similar peeling
argument as in Theorem 4.6, for any rate εn that is nonrandom conditional on Em, we can show that

P
(
‖τ∗0 − τ∗n‖ ≥ 2Sεn

)
≤

∞∑
s=S

E

[
2s+1εnε

nuis
m + ψ1,n(2s+1εn | Em) + ψ2,n(2s+1εn | Em)

22sε2n

]

/
∞∑
s=S

E

[
εnuism

2s−1εn
+
J (2s+1εn,Fiso)

22s
√
`ε2n

(
1 +
J (2s+1εn,Fiso)√

`22s+1ε2n

)]
.

Then, by the same arguments used in Theorem 4.6 and the same choice of Em-random εn, we can estab-
lish that ‖τ∗0 − τ∗n‖ = OP (`−1/3) + OP (‖(πm − π0)(µm − µ0)‖). By the triangle inequality and the fact that
τ∗0 = argminθ◦τ :θ∈Fiso ‖τ0 − θ ◦ τ‖ implies ‖τ0 − τ∗0 ‖ ≤ ‖τ0 − τ‖, we find that ‖τ0 − τ∗n‖ ≤ ‖τ0 − τ∗0 ‖ +

‖τ∗0 − τ∗n‖ ≤ ‖τ0 − τ‖ + ‖τ∗0 − τ∗n‖. Combining these bounds, we find that ‖τ0 − τ∗n‖ ≤ ‖τ0 − τ‖ + OP (`−1/3) +
OP (‖(πm − π0)(µm − µ0)‖).
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C.4. Statement and proof of generalized Theorem 4.6 for random predictor

Here, we consider the same setup as Theorem 4.6 but allow τ∗n to be obtained from a random predictor τm, as long as τm is
built using only data in Em.
Condition C.4 (independence of predictor). The predictor w 7→ τm(w) is independent of C`.
Theorem C.5 (Calibration with random predictors). Provided Conditions 4.1–C.4 hold, it holds that

CAL(τ∗n) = OP

(
`−2/3 + ‖(πm − π0)(µm − µ0)‖2

)
.

Proof. Arguing exactly as in Theorem 4.6 with τ taken to be τm and conditioning on Em as needed, we obtain the basic
inequality stating that

‖γ0(τ∗n, ·)− τ∗n‖
2 ≤ P{[γ0(τ∗n, ·)− τ∗n](χ0 − χm)}+ (P − P`){[γ0(τ∗n, ·)− τ∗n](χm − τ∗n)}

P -almost surely, where τ∗n := θ∗n ◦ τm. To establish the result of the theorem, we only need to make minor modifications to
the proof of Theorem 4.6 to allow τ to be replaced by τm. We sketch those modifications here. A core component of the
proof of Theorem 4.6 involved upper-bounding E[Sn(δ) | Em]; this must now be done with Sn(δ) defined as

sup
τ1∈Fτm,TV ,τ2∈Fτm,iso:‖τ1−τ2‖≤δ

(P − P`)[(τ1 − τ2)(χm − τ2)] = sup
f∈FLip,m:‖f‖≤δK

(P − P`)f

with τm now a random predictor. Previously, we showed that E[Sn(δ) | Em] can be bounded by a nonrandom constant
depending on n, m and δ that is independent of Em. To do so, we showed that the random function class FLip,m is fixed
conditional on Em, uniformly bounded, and has uniform entropy integral bounded by the uniform entropy integral of Fiso.
It suffices to show that this remains true when τ is replaced by τm. Since τm is obtained from Em, as with χm, the predictor
τm is deterministic conditionally on Em. As a consequence, the function classes Fτm,TV and Fτm,iso, which are now
random through τm, are fixed conditional on Em. Since FLip,m is obtained from a Lipschitz transformation of elements of
Fτm,TV and Fτm,iso, we have that FLip,m is also fixed conditional on Em. Moreover, by the same argument as in the proof
of Lemma C.2, which also holds for random τ , these function classes are uniformly bounded by a nonrandom constant
almost surely. Finally, the preservation of the uniform entropy integral argument of the proof of Theorem 4.6 is valid with τ
random. With these modifications to the proof of Theorem 4.6, the result follows.

D. Simulation studies
D.1. Data-generating mechanisms

In simulation studies, data units were generated as follows for the two scenarios considered.

Scenario 1:

1. generate W1,W2, . . . ,W4 independently from the uniform distribution on (−1,+1);

2. given (W1,W2,W3,W4) = (w1, w2, w3, w4), generate A as a Bernoulli random variable with success probability
π0(w1, w2, w3, w4) := expit{−0.25− w1 + 0.5w2 − w3 + 0.5w4};

3. given (W1,W2,W3,W4) = (w1, w2, w3, w4) and A = a, generate Y as a Bernoulli random variable with success
probability µ0(a,w1, w2, . . . , w4) := expit{1.5+1.5a+2a|w1||w2|−2.5(1−a)|w2|w3+2.5w3+2.5(1−a)

√
|w4|−

1.5aI(w2 < 0.5) + 1.5(1− a)I(w4 < 0)}.

Scenario 2:

• generate W1,W2, . . . ,W20 independently from the uniform distribution on (−1,+1);

• given (W1,W2, . . . ,W20) = (w1, w2, . . . , w20), generate A as a Bernoulli random variable with success probability
π0(w1, w2, . . . , w20) := expit{0.2− 0.5w1− 0.5w2− 0.5w3 + 0.5w4− 0.5w5 + 0.5w6− 0.5w7− 0.5w8− 0.5w9−
0.2w10 + 0.5w11 − w12 + w13 − 1.5w14 + w15 − w16 + 2w17 − w18 + 1.5w19 − w20};
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• given (W1,W2, . . . ,W20) = (w1, w2, . . . , w20) and A = a, generate Y as a normal random variable with mean
µ0(a,w1, w2, . . . , w20) = −0.5+3.5a+3aw1+6.5(1−a)w2+1.5aw3+4(1−a)w4+2.5aw5−6(1−a)w6+1aw7+
4.5(1−a)w8+aw9+2.5(1−a)w10+1.5w11−2.5w12+w13−1.5w14+3w15−2w16+3w17−w18+1.5w19−2w20

and unit variance.

Coefficients of the propensity score logistic regression models above were selected such that the probabilities of treatment
were bounded between 0.05 and 0.95 in the low-dimensional case (Scenario 1), and between 0.01 and 0.99 in the high-
dimensional setting (Scenario 2).

D.2. Implementation of the causal isotonic calibrator

In our simulation studies, we followed Algorithm 3 to fit the causal isotonic calibrator. In particular, we estimated the
components of χ0 (i.e., µ0 and π0) using the Super Learner (van der Laan et al., 2007) in Scenario 1, and penalized regression
in Scenario 2. Super learner is an ensemble learning approach that uses cross-validation to select a convex combination of
a library of candidate prediction methods. Table 1 shows the library of prediction models we used to estimate µ0 and π0.
Note that all of our models for the outcome regression were misspecified in Scenario 1 because of the nonlinearities in the
true outcome regression. However, in both scenarios, the propensity score estimator was a consistent estimator of the true
propensity score. Additionally, for numerical stability, we imposed a threshold on the estimated propensity scores such that
it took values between 0.01 and 0.99. We used the R package sl3 (Coyle et al., 2021) to implement the estimation procedure.
Finally, we used the R function isoreg to performed the isotonic regression step.

Table 1. Information on the set of estimators used by the Super Learner to estimate the pseudo-outcome components. Abbreviations:
generalized additive models (GAM), generalized linear model (GLM), generalized linear model with lasso regularization (GLMnet),
gradient boosted trees (GBRT), random forests (RF), multivariate adaptive regression splines (MARS).

scenario library for µ0 library for π0
1 logistic regression, GLMnet, GAM, logistic regression, GLMnet, GAM,

GBRT with depth ∈ {2, 3, 5, 6, 8}, GBRT with depth ∈ {2, 4, 6}
RF, MARS

2 GLMnet GLMnet

D.3. Performance metrics

We estimated the performance metrics as follows. With a slight abuse of notation, let τ̂ denote an arbitrary estimated
treatment effect predictor or its calibrated version. For each fitted τ̂ in a given simulation, we computed its mean squared
error by taking the empirical mean of the squared difference between the fitted values of the CATE estimator and τ0,

M̂SE(τ̂) :=
1

nV

∑
i:wi∈V

[τ̂(wi)− τ0(wi)]
2.

We obtained the estimated calibration measure in two steps. We recall that the calibration measure for a given predictor τ is∫
[γ0(τ, w)− τ(w)]

2
dPW (w) .

First, we estimated γ0(τ̂ , w) using an independent dataset of 100,000 observations and fitted gradient boosted regression
trees with the fitted values of the treatment effect predictors as covariates and the true CATE as outcome. For each simulation
setting and CATE estimator, the depths of each of the regression trees were obtained using cross-validation in a separate
simulation. Let γ̂0(τ̂ , w) denote the estimated function. In the second step, we used the sample V to estimate the calibration
measure as

ĈAL(τ) :=
1

nV

∑
i:wi∈V

[τ0(wi)− τ̂(wi)] [γ̂0(τ̂ , wi)− τ̂(wi)] .

The above measure has the advantage of having less bias with respect to CAL(τ̂) than the plug-in estimator
n−1V

∑
i:wi∈V [γ̂0(τ̂ , wi)− τ̂(wi)]

2.
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E. Simulation results

Table 2. Scenario 1 bias within bins of predictions for the calibrated and uncalibrated estimators. Each row shows the resulting bias for a
given CATE estimator, and the Cal column indicates if it is calibrated or not. The columns are organized by sample size, and within each
sample size, we show the results for the bias in the upper and lower deciles. Abbreviations: calibrated (cal), estimator (est), generalized
additive models (GAM), generalized linear model (GLM), generalized linear model with lasso regularization (GLMnet), gradient boosted
regression trees (GBRT), random forests (RF), multivariate adaptive regression splines (MARS).

Sample Size 1000 2000 5000 10000

Cal CATE
estimator

Lower
Decile

Upper
Decile

Lower
Decile

Upper
Decile

Lower
Decile

Upper
Decile

Lower
Decile

Upper
Decile

yes MARS -0.01 -0.02 0.01 -0.01 0 -0.02 0 -0.01
no MARS -0.23 0.23 -0.13 0.14 -0.06 0.06 -0.02 0.03
yes GAM -0.04 0.02 -0.01 0.03 0 0.01 0 0
no GAM -0.08 0.04 -0.04 0.01 -0.02 0 -0.01 -0.01
yes GLM -0.05 0.04 -0.02 0.03 -0.02 0.02 -0.01 0.02
no GLM -0.02 0.05 0.02 0.03 0.02 0.01 0.03 0.02
yes GLMnet -0.05 0.04 -0.02 0.02 -0.02 0.02 -0.01 0.02
no GLMnet 0 0.03 0.03 0.02 0.03 0.01 0.03 0.01
yes RF -0.06 0.03 -0.01 0.02 -0.01 -0.01 -0.01 0
no RF -0.34 0.34 -0.3 0.31 -0.28 0.27 -0.24 0.25
yes GBRT 2 -0.03 0 0 -0.01 -0.01 -0.01 0 0
no GBRT 2 -0.15 0.14 -0.05 0.05 -0.01 -0.03 0.01 -0.04
yes GBRT 5 -0.01 -0.03 0.03 -0.06 0.03 -0.06 0.03 -0.05
no GBRT 5 -0.49 0.51 -0.34 0.37 -0.19 0.2 -0.1 0.12
yes GBRT 8 -0.02 -0.03 0.02 -0.06 0.05 -0.09 0.05 -0.09
no GBRT 8 -0.67 0.74 -0.54 0.6 -0.39 0.42 -0.27 0.32

Table 3. Scenario 2 bias within bins of predictions for the calibrated and uncalibrated estimators. Each row shows the resulting bias for a
given CATE estimator, and the Cal column indicates if it is calibrated or not. The columns are organized by sample size, and within each
sample size, we show the results for the bias in the upper and lower deciles. Abbreviations: calibrated (cal), generalized linear model with
lasso regularization (GLMnet), gradient boosted regression trees with GLMNet screening (GLMNet scr + GBRT).

Sample Size 1000 2000 5000 10000

Cal CATE
estimator

Lower
Decile

Upper
Decile

Lower
Decile

Upper
Decile

Lower
Decile

Upper
Decile

Lower
Decile

Upper
Decile

yes GLMnet -0.01 0.01 -0.04 -0.01 -0.04 -0.01 -0.03 -0.01
no GLMnet -0.11 -0.07 -0.11 -0.06 -0.08 -0.04 -0.07 -0.03

yes GLMnet scr
+ GBRT -0.11 -0.08 -0.12 -0.08 -0.12 -0.07 -0.1 -0.06

no GLMnet scr
+ GBRT 0.09 0.03 0.05 0.01 0.04 0.01 0.03 0

yes random
forest -0.03 -0.01 -0.03 -0.02 -0.04 -0.02 -0.03 -0.02

no random
forest -0.8 -0.41 -0.72 -0.38 -0.62 -0.33 -0.54 -0.29
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(a) Scenario 1 calibration measure and MSE simulation re-
sults for causal calibration approach with an external hold-out
dataset. The top left and right panels show the calibration mea-
sure and using conventional calibration and the uncalibrated
estimator, respectively. Similarly, the bottom plots show MSE
for the calibrated and uncalibrated estimators. Results for
GLM and GBRT with depths of 3 and 6 are omitted because
they were nearly identical to results shown for GLMnet and
GBRT with other depths, respectively.
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(b) Scenario 2 calibration measure and MSE simulation results
for causal calibration approach with hold-out dataset. The top
left and right panels show the calibration error using conven-
tional calibration and the uncalibrated estimator, respectively.
Similarly, the bottom plots show the MSE for the calibrated
and uncalibrated estimators.

Figure 3. Causal isotonic calibration with a hold-out dataset external to the training dataset: Monte-Carlo estimates of calibration measure
and MSE for calibrated vs uncalibrated predictors for Scenarios 1 and 2.
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