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ABSTRACT

We introduce Semantic Fragment Similarity (SFS), a novel similarity metric de-
signed to enhance representation quality by partitioning embeddings into non-
overlapping fragments, computing fragment level similarity, and aggregating these
local scores. Conventional similarity metrics compute relevance using the global
vector as a single unit. This process flattens and entangles multi-faceted seman-
tic features and dilutes the fine-grained alignment signals crucial for accuracy. By
inducing fragments to specialize in distinct semantic roles, SFS drives the sub-
stantial gains in retrieval performance across a wide range of models, tasks, and
architectures when applied in both training and inference. Further, we find that
a single embedding fragment trained with SFS, comprising just 12% of the to-
tal dimensions, outperforms the entire global embedding on specific classification
tasks. Ultimately, SFS can be directly integrated as a replacement for conventional
similarity metrics, without architectural modifications or complex computational
overhead and it opens up new avenues for building more structured and inter-
pretable embedding models.

1 INTRODUCTION

As information retrieval advances, dense retrieval has become a widely used approach for efficiently
retrieving the documents most relevant to a user query from large-scale collections (Karpukhin et al.|
2020; | Xiong et al.,2020). These approaches encode queries and documents as high-dimensional vec-
tors and retrieve documents by their similarity in the embedding space. This representation captures
complex semantic relationships beyond keyword matching (Khattab & Zaharia, [2020), leading to
significant performance in applications such as retrieval-augmented generation (RAG) (Lewis et al.}
20205 |Gao et al.| [2023} |Jiang et al., 2023)).

Dense retrieval models generate an embedding vector that Query Embedding
encodes the overall meaning of a text into a single vec- f 2 B 2
tor representation (Reimers & Gurevych, 2019; |Li et al.,
2020). The relevance of a query-document pair is quanti-
fied by a scalar score, typi'cal!y derived from a similarity Globél’;_;im“arity Fragmentation Similarity
metric such as cosine similarity or the dot product com- S(@.p) Srrag(@.1)
puted between their vector representations (Giinther et al.| —
2024} [Lee et al.,[2025b). This macro-level computation on T

the global vector effectively captures the overall meaning,
but the process of reducing multifaceted semantics into a
single scalar score inherently causes the flattening of lo-
cal and multi-faceted object signals (Sinha et al.| 2024).
In this single-vector representation, different semantic fea- Figure 1: Conceptual Illustration of the
tures become entangled across the embedding’s dimen- Semantic Fragment Similarity.

sions, consequently causing these distinct signals to interfere with or neutralize one another (You,
2025)). For instance, if a query and a document exhibit a pronounced correspondence on one seman-
tic axis but are irrelevant on another, the global similarity score can dilute this partial alignment,
failing to capture the corresponding micro-level alignment in the vector space.

7 | Jf2) | 3] | If4
Doc Embedding

To mitigate representation flattening and entanglement, we propose Semantic Fragment Similarity
(SES), a novel metric that enhances the measurement of textual relevance by preserving local and
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multi-faceted semantic signals. To encourage embeddings to encode distinct semantic aspects in dif-
ferent subspaces, SFS divides a high-dimensional vector into several non-overlapping fragments. It
then calculates similarity for each query-document fragment pair and aggregates these local scores
into a final similarity score. This approach allows SFS to explicitly retain fragment-level informa-
tion, enabling a more fine-grained assessment of textual relatedness while still capturing global
semantic context.

To demonstrate the effectiveness of our methodology, we conduct a comprehensive set of experi-
ments applying SFS with diverse fragment size configurations to both embedding model training
and retrieval phase. In these experiments, we train five transformer encoder models on retrieval data
and conduct extensive evaluations on retrieval tasks in the MTEB benchmark (Muennighoff et al.,
2023)). The results show that the proposed SFS consistently outperforms a conventional learning
approach based on global-vector calculation, yielding substantial improvements in retrieval perfor-
mance with an average increase of 1-3% over the baseline. Moreover, these gains are observed
across diverse embedding tasks (e.g., reranking, classification, and semantic similarity), pooling
strategies, and model architectures, as partitioning into fine-grained fragments preserves and ex-
ploits local and multidimensional semantic features that would otherwise be diluted and flattened
in a global-vector representation. Our analysis of fragment-level classification performance reveals
that SFS encourages fragments to assume distinct semantic roles. This leads to cases where a single
fragment, constituting just 12% of the total dimensions, outperforms the full embedding on certain
classification tasks.

In summary, our contributions are: (1) We propose Semantic Fragment Similarity (SFS), a novel met-
ric that mitigates the flattening and entanglement of semantic signals by aggregating fragment-wise
similarities. This method requires no changes to the existing model architecture, such as adding new
layers, parameters, or complex computations. (2) We experimentally demonstrate that SFS achieves
substantial performance gains in our primary task, retrieval, while also consistently outperforming
conventional global similarity across other tasks such as classification and reranking. (3) Our anal-
ysis reveals that SFS induces feature disentanglement and a semantic division of labor among frag-
ments. We identify this mechanism as the driving force behind the observed improvements, offering
a new lens that opens up possibilities for the interpretability of the embedding space.

2 SEMANTIC FRAGMENT SIMILARITY

In this section, we first introduce the training methodology for dense retrieval and the notation used
throughout this paper. We then describe the training and inference processes using our proposed
Semantic Fragment Similarity in detail.

2.1 PRELIMINARIES

In a dense retrieval framework using an embedding model, the objective is to retrieve semantically
relevant documents from a large corpus D = {dy,ds,...,dx} given a query g. An embedding
model M encodes textual inputs into a high-dimensional vector space of a fixed dimension. The
model’s output is then processed through a pooling operation to produce a dense vector in R%medet
where d,,04¢; denotes the model’s output embedding dimension. For a given query ¢ and a document
d € D, their embeddings are generated as follows:

E, = Pooling(M(q)), Eg = Pooling(M(d)) € R dmodel 1)

The semantic relevance between a query g and a document d is quantified by a score S(q, d), which is
typically defined as the cosine similarity between their embedding vectors E; and E4. This similarity
function aggregates information across all dimensions of the representations and returns a single
scalar that reflects the overall semantic similarity between the query and the document.

E, - E,

S(g,d) = —"——
@) = g, TEdl

2)

The embedding model is trained to optimize retrieval performance using a contrastive learning ob-
jective. The goal is to maximize similarity score S(g,d") for relevant query—positive document
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pairs (g, d") and minimize the similarity score S(q,d™) for non-relevant query—negative document
pairs (q,d™).

2.2 FRAGMENT REPRESENTATION LEARNING

Our method, Semantic Fragment Similarity, learns to produce a final score by aggregating similarity
scores calculated for each pair of corresponding fragments. These fragments are obtained by inde-
pendently assessing the subspace correlation between two vectors within more granular subspaces,
each representing a specific semantic aspect.

Fine-grained Semantic Fragmentation The objective of SFS is to produce a single scalar value
that reflects micro-level alignment within the vector space. It does so by distinguishing strong signals
confined to certain dimensions from weak signals dispersed across multiple dimensions.

We first define a fragmentation function F that partitions an embedding vector £ € R% into an
ordered sequence of non-overlapping fragments. Given a fragment dimension dy,e, the total num-
ber of fragments N is determined as dmodel / dfrag- The fragmentation function then maps the vector
E to a fragment sequence F(E) = {fi,fs,...,fy,}, where each fragment f; has a fixed dimen-
sion R%re, The fragment size dfmg, specified externally as a hyperparameter, ensures that all frag-
ments have identical dimensionality. For instance, if the embedding dimension dpege; = 768 and
the fragment dimension dg,, = 64, the fragmentation function produces a sequence of 12 frag-
ments {f}, fs, ..., 12}, each of dimension 64. Concretely, the first fragment f; comprises the com-
ponents of E from indices 0 to 63. More generally, the i-th fragment f; corresponds to the slice
E[(Z — 1) X df'rag 11X dfrag]-

Fragment-wise Similarity Aggregation The query embedding E, and the document em-
bedding FE; are each partitioned into a sequence of Ny fragments, (f1,f,...,f,n,) and
(fa1, fa2, ..., fan, ), respectively. Instead of a global operation, we independently compute the
cosine similarity, s;(g,d), for each corresponding fragment pair (f,;,fy;) and then average the
fragment-wise similarity scores to obtain a single similarity score Stag(q, d).

Ny
1
Sfrag(‘]7d) = Nf E Si Qa E COs thdl 3)
=1

This aggregation scheme equally weights alignment across semantic aspects, thereby preventing
the flattening of information that arises during encoding and resulting in a final score that reflects
micro-level alignment across the entire embedding space.

2.3 TRAINING AND INFERENCE
Training To apply our proposed SFS in training, we integrate it into a contrastive objective. Specif-

ically, within the infoNCE loss, we replace the conventional similarity function S(g,d) with our
Strag (¢, d). The training objective is to minimize the following loss function:

4)

1 exp(sfrag(qia d+))
L = —— log .
NCE n Z eXp(Sfrdg ((]z; )) + Z exp(Sfrdé(qla ' ))

By minimizing this loss, the model learns to maximize fragment level semantic alignment for pos-
itive pairs (q,d™) and minimize it for negative pairs (q,d ™). This training objective induces the
model to structure the entire embedding space into a set of semantically coherent subspaces. Instead
of relying on a single, global representation, the model learns to encode distinct semantic facets
(e.g., topic, domain, and style) into different fragments of the embedding vector.

Consequently, each fragment becomes more adept at comparing these subtle and local semantic fea-
tures, which leads to a more robust and interpretable similarity measure compared to a conventional
single scalar value.
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Inference At inference time, we encode the
query and all documents into their respective
embeddings. Subsequently, the final document
ranking is determined using the Semantic Frag-
ment Similarity S,.4. This score is computed
by decomposing each query-document embed-
ding pair into fragments, consistent with the
fragment size defined during training, and then
aggregating their local similarities. Algorithm ]
summarizes the specific inference procedure for
ranking the entire document corpus for a given

Algorithm 1 Inference with SFS

Input: Query embedding E,, Document embed-
dings {Eg, } ', Fragment size dira,
Output: Ranked documents
Nf <~ dmodel/dfrag
N
{foi}ih < F(Eq)
for j < 1to N do
Ny
{fa,i}:y < F(Ea,)
N

Strag(Bq, By, ) < N% >y cos(fyi, faji)
end
return sort(Documents, by=Si,s)

query.
3 EXPERIMENTAL SETUP

Training Our primary experiments focus on transformer encoder architectures. We select five
models, all with a 768-dimension hidden state: ModernBERT-base (Warner et al., 2025), bert-base-
uncased (Devlin et al.,|2019)), gte-en-mlm-base (Zhang et al., [2024), roberta-base (Liu et al.,|2019),
and nomic-bert-2048 (Nussbaum et al., 2025)). We employ the [CLS] pooling strategy to generate
sentence embeddings. For each fragment size in dgag € {768, 256, 128, 64, 32, 16}, we train a
dedicated model and subsequently evaluate it under the same size configuration. In all experiments,
configurations are denoted as (number of fragments, fragment size).

We utilize the standard InfoNCE (van den Oord et al., 2018) loss over in-batch negatives and hard
negatives (Henderson et al.,|2017). For training data, We employ a collection of publicly available
datasets that are standard training datasets in the embedding literature. Further details regarding our
overall implementation and the training datasets are provided in Appendix

Evaluation We conduct evaluations on the Massive Text Embedding Benchmark (MTEB) (Muen-
nighoff et al., 2023). Our experiments focus on a curated subset of 31 datasets from four task cat-
egories: retrieval, reranking, classification, and sentence similarity (STS). All evaluations are con-
ducted using the official MTEB to ensure consistency and reproducibility. A comprehensive list of
the datasets included in our evaluation is available in Appendix [C]

4 EXPERIMENTAL RESULTS

4.1 RETRIEVAL

Table 1: Retrieval performance (nDCG@ 10) by fragment size. Configurations are denoted as (Num-
ber of Fragments, Fragment Size). Bold and underlined values are the best and second-best scores
for each model, respectively.

Model (1,768) (3,256) (6,128) (12,64) (24,32) (48,16)
BERT 0.5178 0.5136 0.5185 0.5163 0.5197 0.5181
RoBERTa 0.5045 0.5082 0.5099 0.5186 0.5168 0.5195
NomicBERT 0.5356 0.5346 0.5388 0.5414 0.5414 0.5427
ModernBERT 0.5375 0.5345 0.5330 0.5257 0.5483 0.5512
GTE-en-MLM 0.5424 0.5437 0.5398 0.5500 0.5517 0.5508

Table [I] presents retrieval performance across five models with varying fragment sizes. It shows
that our proposed Semantic Fragment Similarity consistently outperforms similarity computations
based on global vectors. Across all models evaluated in the experiments, partitioning the vectors into
multiple fragments to compute similarity yields better results than the conventional single-fragment
setting of (1,768).

Notably, all five models used in the experiments tend to achieve higher performance as the embed-
dings are segmented into more granular fragments, specifically when the fragment size decreases to
16 or 32. For example, the ModernBERT demonstrated the most significant improvement, achieving
approximately a 2.5% gain over the baseline when the fragment size was set to 16. These findings
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Table 2: Performance comparison on Reranking, Classification, and STS tasks.

Model (1,768) (3,256) (6,128) (12,64) (24,32) (48,16)
Reranking
BERT 0.4972 0.4989 0.4988 0.4984 0.5004 0.5007
RoBERTa 0.4987 0.4986 0.4997 0.4975 0.4996 0.5000
NomicBERT 0.4972 0.4974 0.4950 0.4960 0.4961 0.4969
ModernBERT 0.5260 0.5269 0.5267 0.5260 0.5283 0.5303
GTE-en-MLM 0.5173 0.5163 0.5150 0.5160 0.5178 0.5173
Classification
BERT 0.5444 0.5448 0.5448 0.5476 0.5479 0.5487
RoBERTa 0.5585 0.5570 0.5620 0.5699 0.5725 0.5677
NomicBERT 0.5320 0.5325 0.5333 0.5420 0.5439 0.5427
ModernBERT 0.5483 0.5451 0.5470 0.5507 0.5586 0.5613
GTE-en-MLM 0.5453 0.5450 0.5490 0.5545 0.5551 0.5502
Semantic Textual Similarity
BERT 0.7350 0.7364 0.7389 0.7384 0.7416 0.7428
RoBERTa 0.7330 0.7342 0.7305 0.7313 0.7337 0.7341
NomicBERT 0.7434 0.7421 0.7367 0.7373 0.7413 0.7439
ModernBERT 0.7509 0.7490 0.7520 0.7456 0.7485 0.7470
GTE-en-MLM 0.7497 0.7514 0.7476 0.7516 0.7532 0.7549

indicate that our approach partitions the high dimensional vector space into multiple fine grained se-
mantic subspaces, evaluates local similarities within each subspace independently, and subsequently
aggregates the resulting similarity measures, enabling more effective capture of the multifaceted and
subtle relationships.

4.2 EVALUATION ON NON-RETRIEVAL EMBEDDING TASKS

Tablepresents the performance variations in reranking, classification, and STS tasks across differ-
ent fragment sizes, using the full (1,768) embedding as the baseline. Performance on reranking and
classification tasks steadily improves as fragments become more granular; in classification, Modern-
BERT and RoBERTa achieve performance gains of 2.3% and 2.5%, respectively. For STS, while the
optimal fragment size varies across models, more fine-grained fragmentation generally yields better
results. This suggests that semantic fragmentation enables embeddings to effectively represent lo-
cal semantic information and provides a robust approach to improving performance across diverse
downstream tasks.

5 How ROBUST IS FRAGMENT REPRESENTATION LEARNING IN
RETRIEVAL?

In this section, we conduct in-depth experiments to assess whether representation learning with the
proposed Fragment Similarity remains effective under varying conditions in retrieval tasks. Specif-
ically, we systematically and comprehensively explore variations in pooling strategy, fragment-size
scaling, model architecture, and similarity metrics.

5.1 EFFECTIVENESS ACROSS DIFFERENT POOLING METHODS

Setup To assess robustness across pooling strategies, we replace [CLS] pooling with average pool-
ing. Average pooling generates embeddings by averaging all token representations from the last hid-
den outputs. We train two models, ModernBERT and BERT, under the same experimental settings
as the [CLS] configuration, except for the pooling strategy.

Results  As shown in Table [3} overall performance Table 3: Performance comparison of differ-
with average pooling is slightly lower or on par with ent fragment sizes with average pooling.

that obtained [CLS] pooling. Crucially, we observe
consistent gains over the full-embedding baseline

(1,768)  (3,256) (6,128) (12,64) (24,32) (48,16)

. BERT
(1x768). For examplt?, ModernBERT—bas§ IMproves o) \s (58 05203 05241 05211 05232
from 0.5390 to as high as 0.5444, consistent with ModermBERT

the improvement trend observed under [CLS] pool- 05300 05403 05439 05323 05444 05417
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Table 4: The effect of fragment granularity scaling on retrieval performance.

Model (1,768) (2,384) (3,256) (4,192) (6,128) (12,64) (24,32) (48,16) (96,8) (192,4) (384,2)

BERT 0.5178 0.5191 0.5136  0.5175 0.5185 0.5163  0.5197 05181 0.5192 0.5144  0.5053
ModernBERT ~ 0.5375  0.5370  0.5345 0.5368 0.5330  0.5257 0.5483  0.5512 0.5502 0.5375 0.5242

ing. This suggests that average pooling can, via fragment-wise consensus across subspaces, mitigate
the influence of outlier token representations and, in turn, yield more robust representations.

5.2 FRAGMENT GRANULARITY SCALING

Setup To more thoroughly investigate the impact of fragment granularity, we evaluate an expanded
range of fragment configurations on BERT and ModernBERT. In addition to those previously eval-
uated, we include intermediate granularities (df., € {384,192}) and more fine-grained settings
(dfrag € {8, 4, 2})

Results Table [4| reveal a clear trend with respect to fragment granularity. A consistent pattern is
observed where performance improves as fragments become more granular, peaks at a certain point,
and then sharply declines when the fragmentation becomes extreme. Generally, optimal performance
is achieved within the more granular range of fragment sizes, specifically around 32, 16, and 8. This
pattern suggests a fundamental trade-off related to the role of fragments. Fragments must be small
enough to encode distinct semantic aspects, yet large enough to retain the minimum dimensional
capacity required to encode complex meanings. Extreme fragmentation undermines this capacity,
leading to performance degradation. Therefore, These findings suggest that an optimal level of gran-
ularity exists to maximize the effectiveness of SFS.

5.3 ROBUSTNESS ACROSS MODEL ARCHITECTURES

Table 5: Retrieval performance of different fragmentation configurations on decoder models.

Model (1,2048)  (2,1024) (4,512) (8,256) (16,128) (32,64) (6432) (128,16)

Qwen3-0.6B 0.5762 0.5799  0.5848 0.5794  0.5842  0.5888 0.5847  0.5874
Llama-3.2-1B 0.5939 0.6018  0.6002 0.6014  0.5953  0.5983 0.5980  0.6028

Setup We evaluate our method on decoder architectures by training two models, Qwen3-
0.6B [Team| (2025) and Llama-3.2-1B, which have a hidden dimension of 2048. We utilize LLMs
with causal attention, appending an [EOS] token at the end of the input sequence (Zhang et al.,
2025). The sentence embedding is derived from the hidden state of the last layer corresponding to
this [EOS] token.

Results Table [5] shows a common trend that learning via fragment similarity yields consistent
performance improvements over the baseline for decoder architectures. Both models significantly
outperform the baseline with more granular fragmentation, with Qwen3-0.6B achieving a top score
of 0.5888 (dfrag = 64) and Llama-3.2-1B a top score of 0.6028 (dga = 16). These results sug-
gest that, similar to encoder models, the embedding space of decoder models is also composed of
mixed, functionally distinct features. Our approach effectively separates these antagonistic signals
to enhance local alignment, resulting in superior representational quality.

5.4 EFFECTIVENESS ACROSS SIMILARITY METRICS

Setup We conducted an experiment to determine if the benefits of fragment-based learning gener-
alize beyond cosine similarity. Using the ModernBERT-base model, we compared a full-embedding
baseline (1,768) against a fragmented configuration (48,16) across four metrics: Cosine, Euclidean
(L2), Manhattan (L.1), and Dot product.
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Table 7: Classification performance across different fragmentation configurations on the Toxic Con-
versation and Amazon Counterfactual datasets.

Dataset (1,768) (2,384) (3,256) (4,192) (6,128) (12,64) (24,32) (48,16)

Toxic Conversation 04737 04743 04807 04799 04809 0.5165 0.5126  0.5281
Amazon Counterfactual ~ 0.5296  0.5305  0.5333  0.5336  0.5371  0.5468  0.5694  0.5686

(1,768) 0.107
(2,384) 0071 g
(3,256) 0.036 2
(4,192) 0.000 ©

(@) (28 | 036 S
a264)( [l -0.036 o
(24,32) B -] 00714
(48,16) ¥-0.107

123456 7 8 91011121314151617 181920212223 242526272829 3031 323334353637 3839404142434445464748

(1,768) '0.160
(;282) 0.107 8
(3.256) 0.053 2
(4,192) 0.000 °

(b) (6,128) 000 ¢
(12,64) -0.053 o
(24,32) [ | 0107 4
(48,16) ¥-0.160

123456 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748

Figure 2: Visualization of single-fragment classification performance relative to the global embed-
ding. Results are shown for (a) the Toxic Conversation and (b) the Amazon Counterfactual.

Results Table [6] demonstrates that our Fragment Similarity-based Table 6: Performance com-
learning is effective for similarity metrics in addition to cosine. Ap- parison of different similar-
plying fragmentation improves performance across all metrics. No- ity metrics, with and without
tably, the improvements are substantially larger for metrics sensi- Fragment Similarity.

tive to vector magnitude, such as Euclidean (L2), Manhattan (L1),

and the dot product. These results suggest that our method effec-  Metric (1,768)  (48,16)
tively mitigates the prgblem of anisotropy in t.he .embeddmg Space. "~ oodine 05375 0.5512
The process of measuring and aggregating similarity at the fragment  gyclidean 03348 0.4680
level reduces the directional bias and scale sensitivity of the full vec-  Manhattan  0.3582  0.5145
tor representation, which we identify as the key reason for the more Dot 0.3463  0.5143
significant performance enhancements in these metrics.

6 FRAGMENT-LEVEL ANALYSIS AND COMPARATIVE EVALUATION

6.1 DO FRAGMENTS LEARN DISTINCT SEMANTIC ROLES?

In this section, we experimentally analyze whether training with the proposed methodology indeed
induces each fragment of the embedding to assume semantically differentiated roles (distinct se-
mantic roles). Using a ModernBERT-base model trained under various fragment configurations, we
conduct two complementary experiments. In the first experiment, we directly compare the classi-
fication performance of the full embedding and individual fragments. In the second experiment,
we statistically analyze, from an in-depth perspective, how specific fragments respond to specific
semantic attributes (semantic features).

6.1.1 VALIDATING SPECIALIZATION VIA CLASSIFICATION PERFORMANCE

Setup We evaluate on two classification datasets with clearly delineated topics, Toxic Conversa-
tion and Amazon Counterfactual. We first measure performance using the full embedding, and then
assess the performance contribution of individual fragments by comparing it to the performance
obtained when using each fragment vector alone.

Results Table [/| shows that as fragment partitioning becomes more fine-grained, classification
performance improves consistently. Relative to the baseline, Toxic Conversation increases by up
to 11.48%, and Amazon Counterfactual by up to 7.51%. To probe whether the improvements are
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(a) Standard Deviation Distribution per Fragment. (b) Average Cosine Similarity per Fragment.

Figure 3: Analysis of fragment-level responses to the semantic attribute of toxicity. (a) displays
the distribution of dimension-wise standard deviations for the embedding difference vectors between
toxic/neutral sentence pairs, grouped by fragment. (b) shows the average cosine similarity for each
fragment between the sentence pairs.

driven by overall embedding quality or by the semantic specialization of individual fragments, Fig-
ure 2] compares the performance of each fragment with that of the full vector. As the number of
partitions increases, some fragments clearly outperform the full vector; in particular, in the Toxic
Conversation (12,64) model, several fragments surpass the whole, and the 5th fragment exceeds it
by more than 0.1. In other words, using only 16 dimensions (about 12% of 768) can outperform
the full embedding, suggesting that training with fragment similarity concentrates semantic signals
within fragments.

6.1.2 ANALYZING THE SPECIALIZATION MECHANISM

Setup Building on the previous analysis, we statistically demonstrate how specific fragments en-
code semantic attributes. In this experiment, we use a model trained with 12 fragments of 64 di-
mensions each and the TextDetox |Dementieva et al.| (2025) dataset containing 400 Toxic/Neutral
sentence pairs. To quantify fragment-wise activation differences, we compute the dimension-wise
standard deviation of the embedding difference vectors between sentence pairs, group these statis-
tics by fragment and analyze their distributions; in parallel, we measure the average cosine similarity
between the fragment embeddings of the sentence pairs.

Results The most notable finding is observed in the second fragment. While this fragment ex-
hibits the highest average cosine similarity across toxic/neutral sentence pairs (Figure 3(b)), it con-
currently achieves superior toxicity classification performance for the (12,64) model, as depicted in
Figure [2[(a). This result is attributable to the characteristics shown in Figure [3(a): a small subset of
dimensions within this fragment presents substantial standard deviations in the pairwise difference
vectors. This indicates that a minority of dimensions robustly encodes the distinction between toxic
and neutral representations, while the majority remain largely invariant. Collectively, these observa-
tions validate that our methodology induces fragments to specialize in encoding distinct semantic
attributes.

6.2 COMPARISON WITH MATRYOSHKA REPRESENTATION LEARNING

Setup We compare the efficiency of representation with Matryoshka Representation Learning
(MRL) [Kusupati et al.| (2022), a representative compression approach for adaptive-dimensional em-
beddings. MRL concentrates information importance in the prefix of the embedding so that strong
performance can be achieved with only a subset of dimensions. For MRL, we train ModernBERT
at embedding sizes [768, 512, 384, 256, 128, 64]. For our method, we use a model trained with 48
fragments of 16 dimensions each. For a fair comparison at the same dimensionality, we construct our
representation by concatenating fragments of size 16 in order until the target dimension is reached.
For example, the 256 dimensional variant uses the first 16 fragments and is compared directly to
MRL at 256 dimensions.



Under review as a conference paper at ICLR 2026

o
w
o

Results Figure [ presents a comparison of retrieval
performance across representation sizes. Both meth-
ods show a common pattern of improvement as dimen-
sionality increases. For dimensionalities at or below
128, MRL holds a slight advantage, which we attribute
to its training objective that concentrates critical infor-
mation in the prefix of the embedding. However, after

Ours
the curves cross at 256 dimensions, our method con-
sistently outperforms MRL at all larger sizes. In par-

ticular, at 512 dimensions we observe approximately 64 128 %6 384 512 768
a 4.34% gain in nDCG @10, and the gap continues to Representation Size

widen as dimensionality increases. These results sug- Figure 4: Retrieval Performance Comparison
gest that, unlike MRL, which compresses information with Matryoshka Representation Learning
into a subset of dimensions, our approach regards each

fragment as an independent semantic unit and leverages complementary interactions across frag-
ments to improve representational quality. In addition, these findings suggest that fragment training
based on fragment similarity can also serve an adaptive dimensionality.
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7 RELATED WORK

One factor that undermines the expressiveness of embedding models and degrades retrieval per-
formance is representation dilution. A major cause of representation dilution arises in the pooling
process that aggregates token-level representations into a single document vector. Pooling inevitably
incurs information loss as it compresses the rich semantic content of the input text into a single vec-
tor. In this regard, [Lee et al.| (2025a)) point out that mean pooling dilutes information about salient
spans, and that [EOS] pooling can suffer from recency bias (Lin et al.,|2025)), thereby clarifying the
limitations of both approaches. This dilution problem becomes more severe as text length increases:
Hu et al.|(2025) note that representing a long context with a single vector can lead to representation
collapse (Zhou et al., [2024)) or dilution. Furthermore, structural characteristics of the model, such
as causal attention, can also induce dilution of discriminative information in the latter part of the
text (Springer et al., 2024)).

Beyond these characteristics, the similarity metric itself also acts as a key contributing factor. In
practice, many recent embedding models adopt cosine similarity as the primary similarity mea-
sure (Gtinther et al, 2024} [Lee et al.| |2025b; Muennighoff et al., 2024} |Choi et al.| [2024). In par-
ticular, cosine similarity is directly included in the training objective of contrastive learning, such
as the InfoNCE loss, playing a decisive role in shaping the model’s representation space. How-
ever, cosine similarity has a fundamental limitation: it gives rise to anisotropy in the embedding
space (You, 2025; [Liang et al.,[2021)). This issue causes most vectors to cluster within a narrow cone
region in high-dimensional space, undermining semantic discriminability, and inducing a distance
concentration effect where pairwise distances become similar, thus degrading the reliability of re-
trieval systems (Wang & Isola, |2020). Additionally, other metrics such as Euclidean distance can
flatten complex hierarchical semantic relations, distorting the original semantic context (Sinha et al.,
2024).

8 CONCLUSION

In this paper, we propose Semantic Fragment Similarity (SFS) to address how global similarity
calculations in Dense Retrieval flatten multifaceted semantic information, which degrades repre-
sentation quality. SFS operates by partitioning an embedding vector into multiple non-overlapping
fragments, independently computing similarity at the fragment level, and aggregating these local
scores. This approach induces the model to assign distinct semantic roles to each fragment, and our
experiments demonstrate that it consistently outperforms conventional global similarity calculation
across a diverse range of models and tasks. Notably, this approach induces a semantic division of
labor, evidenced by our analysis where a single fragment can outperform the entire embedding on
specific tasks. Ultimately, SFS challenges the conventional paradigm of relying on global-level op-
erations, presenting a new direction for more structured and reliable models, though future work
remains in areas like optimal partitioning and the automatic identification of fragment roles.
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A LIMITATIONS

While the proposed Semantic Fragment Similarity (SFS) improves retrieval performance, several
limitations highlight important directions for future work. First, although we have experimentally
confirmed that SFS training induces a semantic division of labor among fragments, intuitively inter-
preting and naming the specific meaning that each fragment specializes in remains a challenge. The
absence of a systematic method to quantify the semantic function of each fragment is a factor that
limits the model’s interpretability. This limitation in interpretability is also directly linked to another
assumption of our study: that SFS computes the final score by simply averaging the similarity scores
of the fragments. This approach carries the implicit premise that all fragments contribute equally to
relevance judgments for any given task. If future research enables the identification and quantifi-
cation of each fragment’s semantic function, it would be possible to devise a more sophisticated
aggregation mechanism that moves beyond simple averaging to dynamically assign weights tailored
to the specific characteristics of a task.

B TRAINING DETAILS

B.1 SETUP

All training is conducted on four NVIDIA A6000 GPUs. We employ GradCache (Gao et al., 2021)) to
train with a large batch size (512) with limited GPU memory. Models are trained for 2 epochs with a
maximum sequence length of 512, using bf16 precision. We use the AdamW optimizer (Loshchilov
& Hutter} 2019) with a learning rate of le-4 and a linear learning rate warm-up for 5% of the total
steps. Additionally, to ensure reproducibility, all random seeds are fixed.

Table 8: Instructions and number of samples used for each training dataset.

Task Name Instruction # of P
arguana Given a claim, retrieve documents that support or refute the claim 4.1k
fever Given a claim, retrieve documents that support or refute the claim 29.1k
scifact Given a scientific claim, retrieve documents that support or refute the claim 0.5k
paq Given a web search query, retrieve relevant passages that answer the query 45.2k
msmarco_document  Given a question, retrieve documents that can help answer the question 50k
msmarco_passage Given a question, retrieve passages that can help answer the question 50k
squad Given a question, retrieve passages that answer the question 87.6k
natural question Given a question, retrieve passages that answer the question 58.6k
hotpotqa Given a multi-hop question, retrieve documents that can help answer the question 84.5k
figa Given a financial question, retrieve relevant passages that answer the query 5.5k
miracl Given a question, retrieve passages that answer the question 7.9k
mrtydi Given a question, retrieve passages that answer the question 3.5k
gooaq Given a question, retrieve passages that answer the question 40.4k
eli5 Given a question, retrieve passages that answer the question 21k
trivia_qa Given a question, retrieve passages that answer the question 31.7k

B.2 DATASET

We leverage the training data provided by BGE-en-ICL (L1 et al.,2024) as follows (Le1 et al., [2025)
along with a collection of publicly available retrieval datasets. We adopt the retrieval datasets as
follows: ArguAna (Wachsmuth et al., [2018)), FEVER (Thorne et al., [2018]), SciFact (Wadden et al.,
2020), PAQ (Lewis et al.,|2021), MSMARCO (Bajaj et al.,|2016), SQuAD (Rajpurkar et al.,|2016),
Natural Question (Kwiatkowski et al.l 2019), HotpotQA (Yang et al. 2018), FiQA (Maia et al.,
2018)), MIRACL (Zhang et al., 2023), Mr.TyDi (Zhang et al.|[2021)), GooAQ (Khashabi et al.,|2021)),
ELIS5 (Fan et al., 2019) and TriviaQA (Joshi et al.,[2017). The full list of detailed datasets and their
corresponding instructions is provided in Table[8]

Hard Negative Mining To construct a high-quality training dataset, we employ a hard negative
mining process (de Souza P. Moreira et al., [2024). This process begins by utilizing bge-large-en-
v1.5 (Xiao et al., |2023) to convert all queries and passages into dense vector representations. For
each query, we perform an efficient, corpus-wide semantic search to rank all passages by similarity.
From this ranked list, we select effective hard negatives. We adopt a top sampling strategy and apply
an absolute margin of 0.04. From the resulting candidates, we sample 7 hard negatives for each
sample.

15



Under review as a conference paper at ICLR 2026

C EVALUATION DETAILS

Table 9: Subset of MTEB tasks and benchmarks used for our experiments.

Task Category Benchmarks

Retrieval (12) NanoArguAna, NanoClimateFEVER, NanoDBPEDIA, NanoFEVER,
NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus,
NanoQuoraRetrieval, NanoSCIDOCS, NanoSciFact, NanoTouche2020

Reranking (4) AskUbuntuDupQuestions, MindSmallRerank, SciDocsRR,
StackOverflowDupQuestions

Classification (7) AmazonCounterfactual, AmazonPolarity, AmazonReviews, Banking77,
Imdb, ToxicConversations, TweetSentimentExtraction
STS (8) BIOSSES, STS12, STS13, STS14, STS15, STS16, STS17, STS22

Table [9lists all the evaluation tasks. We evaluate all five fine-tuned models on the MTEB Bench-
mark encompassing 12 retrieval datasets, 4 reranking datasets, 7 classification datasets, and 8 se-
mantic textual similarity datasets. Due to the significant computational cost of the full benchmark,
we specifically utilize NanoBEIR [Thakur et al.|(2021) for the retrieval tasks (Takeshita et al.| [2025)).
For the classification, we include datasets that are evaluated using the k-NN classification. Further-
more, to align with our model’s learning mechanism, similarity is specifically measured using our
proposed fragmentation similarity. For evaluation, we use the prompts provided by the library || for
each benchmark.

D DETAILED EXPERIMENTAL RESULTS

This appendix provides a comprehensive breakdown of the performance metrics for each model and
component analysis evaluated in our study.

First, we present the detailed results for the main experiments. The performance breakdown for
ModernBERT is presented in Table[I3] followed by the results for BERT in Table[I[0] GTE-en-MLM
in Table[T4] NomicBERT in Table[12] and RoBERTa in Table[T1}

Additionally, we provide the results from our ablation and component analysis studies. Table[I5]de-
tails the impact of different pooling methods, while the effects of representation scaling are shown
in Table[16} The results related to the decoder architecture and the choice of similarity metric are
documented in Table[I7)and Table[I8] respectively. Finally, the analysis of the Matryoshka Repre-
sentation Learning (MRL) training objective is provided in Table

'https://github.com/embeddings-benchmark/mteb

16


https://github.com/embeddings-benchmark/mteb

Under review as a conference paper at ICLR 2026

Table 10: Full Benchmark Results for BERT

Dataset (1,768) (3,256) (6,128) (12,64) (24,32) (48,16)
ArguAna 0.5780 0.5757 0.5873 0.5837 0.5963 0.5736
ClimateFEVER 0.2224 0.2273 0.2290 0.2243  0.2266 0.2181
DBPEDIA 0.5148 0.5129 0.5132 0.5089 0.5168 0.5155
FEVER 0.8221 0.8034 0.8208 0.8172 0.8253  0.8306
FiQA2018 0.3847 0.3730 0.3810 0.3862 0.3788 0.3774
HotpotQA 0.6313 0.6336 0.6364 0.6222 0.6263 0.6330
MSMARCO 0.5693 0.5595 0.5609 0.5503 0.5721 0.5661
NFCorpus 0.2542 0.2627 0.2628 0.2679 0.2646  0.2690
QuoraRetrieval 0.9267 0.9208 0.9210 0.9199 0.9193 0.9203
SCIDOCS 0.2475 0.2446  0.2437 0.2468 0.2458  0.2487
SciFact 0.5675 0.5644 0.5685 0.5648 0.5651 0.5571
Touche2020 0.4695 0.4615 04688 0.4665 0.4679 0.4739
AskUbuntuDupQuestions 0.5502 0.5551 0.5533 0.5534 0.5585 0.5570
SciDocsRR 0.7021  0.7021 0.7023 0.7017 0.7037  0.7046
StackOverflowDupQuestions | 0.4248 0.4266 0.4284 0.4271 04279 0.4302
MindSmallRerank 0.3117 0.3117 03113 0.3113 0.3113  0.3111
BIOSSES 0.8170 0.8195 0.8196 0.8236 0.8218 0.8152
STS12 0.6246  0.6268 0.6277 0.6242 0.6276  0.6296
STS13 0.7893 0.7885 0.7917 0.7907 0.7932  0.7956
STS14 0.6952 0.6969 0.6995 0.6996 0.7036 0.7056
STS15 0.7836 0.7852 0.7878 0.7860 0.7894  0.7912
STS16 0.7571 0.7572  0.7568 0.7579 0.7607 0.7625
STS17 0.7689 0.7729 0.7810 0.7760 0.7836 0.7862
STS22 0.6439 0.6444 0.6468 0.6490 0.6528 0.6568
AmazonCounterfactual 0.5509 0.5535 0.5569 0.5679 0.5773 0.5730
AmazonPolarity 0.5981 0.5971 0.5969 0.6002 0.6021 0.6034
AmazonReviews 0.2756  0.2751 0.2745 0.2742 0.2773 0.2777
Banking77 0.6849 0.6859 0.6884 0.6869 0.6900 0.6902
Imdb 0.5725 0.5725 0.5707 0.5692 0.5761 0.5772
ToxicConversations 0.5027 0.5048 0.5090 0.5326 0.5099 0.5106
TweetSentimentExtraction 0.4285 04320 0.4293 04281 04316 04313

Table 11: Full Benchmark Results for ROBERTa

Dataset (1,768) (3,256) (6,128) (12,64) (24,32) (48,16)
ArguAna 0.6112 0.6030 0.6194 0.6198 0.6258 0.6256
ClimateFEVER 0.2098 0.2481 0.2348 02414 0.2225 0.2549
DBPEDIA 0.4890 0.4857 0.4929 0.4983 0.5017 0.5011
FEVER 0.6952  0.6969 0.6939 0.6800 0.6886 0.7053
FiQA2018 0.4101 04284 04317 04432 04304 0.4436
HotpotQA 0.6102 0.6178 0.6209 0.6288 0.6540 0.6392
MSMARCO 0.5601 0.5590 0.5513 0.5835 0.5763  0.5569
NFCorpus 0.2357 02373 02292 0.2397 0.2380 0.2386
QuoraRetrieval 0.9415 09447 09361 0.9433 0.9260 0.9462
SCIDOCS 0.2720 02768 0.2797 0.2857 0.2774 0.2916
SciFact 0.5163 0.5001 0.4999 0.5263 0.5436 0.5147
Touche2020 0.5126  0.5079 05110 05118 0.5118 0.5258
AskUbuntuDupQuestions 0.5605 0.5591 0.5622 0.5560 0.5611 0.5582
MindSmallRerank 0.3213 03202 0.3198 0.3208 0.3202 0.3182
SciDocsRR 0.6956  0.6964 0.6926 0.6967 0.6977 0.6977
StackOverflowDupQuestions | 0.4176 04185 0.4163 0.4165 0.4194 0.4259
BIOSSES 0.7332  0.7400 0.7408 0.7530 0.7588 0.7477
STS12 0.6337 0.6294 0.6282 0.6244 0.6290 0.6342
STS13 0.7732 07731  0.7714 0.7698 0.7769  0.7730
STS14 0.6745 0.6748 0.6741 0.6676 0.6764 0.6768
STS15 0.8011 0.7976  0.7968 0.7951 0.7948 0.7971
STS16 0.7741  0.7763  0.7755 0.7644 0.7694 0.7724
STS17 0.7948 0.7965 0.7787 0.7914 0.7812  0.7925
STS22 0.6790 0.6859 0.6785 0.6844 0.6828 0.6790
AmazonCounterfactual 0.5427 0.5385 0.5388 0.5981 0.6191 0.6002
AmazonPolarity 0.6072  0.5991 0.6030 0.6004 0.6048 0.5931
AmazonReviews 0.2787 02761 0.2841 0.2809 0.2845 0.2823
Banking77 0.7237  0.7199 0.7232  0.7207 0.7240  0.7267
Imdb 0.5937 0.5932  0.5939 0.5757 0.5820 0.5762
ToxicConversations 0.5371 0.5611 0.5723 0.6117 0.5885 0.5979
TweetSentimentExtraction 0.4266 04176 04293 0.4344 04297 0.4238
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Table 12: Full Benchmark Results for NomicBERT

Dataset (1,768) (3,256) (6,128) (12,64) (24,32) (48,16)
ArguAna 0.5795 0.5685 0.5944 0.6109 0.5997 0.5974
ClimateFEVER 0.3034 0.2915 0.2894 0.2947 0.2923  0.3059
DBPEDIA 0.5305 0.5398 0.5480 0.5399 0.5334 0.5482
FEVER 0.7814 0.8017 0.8181 0.8000 0.8120 0.8068
FiQA2018 0.4463 0.4573 0.4556 0.4580 0.4472 0.4403
HotpotQA 0.6766  0.6631 0.6628 0.6741 0.6950 0.6950
MSMARCO 0.5748 0.5860 0.5840 0.6115 0.5863 0.5925
NFCorpus 0.2303 0.2229 0.2192 0.2219 0.2291 0.2329
QuoraRetrieval 0.8992 0.9095 0.9258 0.9143 09212 0.9342
SCIDOCS 0.2724  0.2630 0.2507 0.2638 0.2690  0.2657
SciFact 0.5880 0.5865 0.5958 0.5881 0.5876 0.5741
Touche2020 0.5429 0.5251 0.5282 0.5286 0.5253  0.5299
AskUbuntuDupQuestions 0.5505 0.5525 0.5501 0.5521 0.5508 0.5516
MindSmallRerank 0.3052 0.3041 0.3062 0.3055 0.3053 0.3048
SciDocsRR 0.7085 0.7070 0.7068 0.7085 0.7114 0.7126
StackOverflowDupQuestions | 0.4246 0.4262 0.4168 0.4181 0.4169 0.4188
BIOSSES 0.7975 0.7939 0.7922 0.7987 0.8063 0.8091
STS12 0.6368 0.6375 0.6288 0.6280 0.6329 0.6393
STS13 0.7812 0.7794 0.7723 0.7616 0.7656  0.7723
STS14 0.7051 0.6974 0.6929 0.6919 0.6965 0.6994
STS15 0.7951 0.7964 0.7931 0.7898 0.7918 0.7929
STS16 0.7721 0.7677 0.7669 0.7739 0.7764 0.7772
STS17 0.7941 0.8037 0.7878 0.7908 0.7960 0.7974
STS22 0.6651 0.6607 0.6598 0.6637 0.6647 0.6635
AmazonCounterfactual 0.4996 0.5010 0.5043 0.5134 0.5231 0.5105
AmazonPolarity 0.5834 0.5857 0.5808 0.5899 0.5932 0.5934
AmazonReviews 0.2683 0.2682 0.2702 0.2733 0.2737 0.2740
Banking77 0.7002  0.6996 0.7009 0.7046 0.7072  0.7063
Imdb 0.5579 0.5587 0.5630 0.5618 0.5622 0.5610
ToxicConversations 0.4737 0.4845 0.4879 0.5224 0.5269 0.5282
TweetSentimentExtraction 0.4203 04184 04188 0.4223 04148 0.4207

Table 13: Full Benchmark Results for ModernBERT

Dataset (1,768) (3,256) (6,128) (12,64) (24,32) (48,16)
ArguAna 0.5932  0.5979 0.5802  0.5852  0.5950  0.5937
ClimateFEVER 0.2782  0.2682 0.2567 0.1862 02969  0.2994
DBPEDIA 0.4932  0.5012 0.4954 0.5143 0.5108 0.5100
FEVER 0.7746  0.7867 0.8071  0.7306  0.7968  0.8051
FiQA2018 0.4657 04711 04703 04734 04851 0.4726
HotpotQA 0.6561  0.6489 0.6505 0.6582 0.6612 0.6776
MSMARCO 0.5797 0.5680 0.5803 0.5713 0.6027 0.5755
NFCorpus 0.2263  0.2325 0.2248 0.2208 0.2387  0.2544
QuoraRetrieval 0.9450 0.9521 0.9405 0.9494 09552 0.9408
SCIDOCS 0.2979  0.3027 0.2982 0.2941 02849 0.2911
SciFact 0.6228  0.6040 0.6041  0.5936 0.6558  0.6640
Touche2020 0.5279  0.5081 0.5179 0.5114 05146  0.5201
AskUbuntuDupQuestions 0.5895 0.5909 0.5891 0.5855 0.5849 0.5892
MindSmallRerank 0.3100 03133 0.3122 0.3171 03143 0.3154
SciDocsRR 0.7290 0.7320 0.7323 0.7319 0.7396  0.7406
StackOverflowDupQuestions | 0.4756  0.4712 04733 04692 04746 0.4760
BIOSSES 0.8106 0.8125 0.8187 0.8132 0.8076 0.8103
STS12 0.6480 0.6448 0.6554 0.6399 0.6534 0.6480
STS13 0.7997 0.7888 0.7953 0.7710 0.7851 0.7834
STS14 0.7203 0.7106 0.7162 0.7051  0.7109  0.7059
STS15 0.8057 0.8044 0.8037 0.8017 0.8026 0.8033
STS16 0.7687 0.7643  0.7609 0.7648 0.7745 0.7784
STS17 0.7926  0.7981 0.7969 0.7983 0.7820 0.7816
STS22 0.6615 0.6686 0.6689 0.6712 0.6718 0.6652
AmazonCounterfactual 0.5296  0.5333  0.5371 0.5468 0.5694  0.5686
AmazonPolarity 0.5875 0.5883 0.5883 0.5785 0.5895 0.5970
AmazonReviews 0.2775 02717 0.2719 0.2675 02765 0.2803
Banking77 0.7587 0.7471  0.7504 0.7501  0.7509  0.7537
Imdb 0.5822 0.5863 0.5832 0.5754 0.5951 0.5953
ToxicConversations 0.4737 0.4807 0.4809 0.5165 0.5126  0.5281
TweetSentimentExtraction 0.4090 0.4094 04051 04156 04168 0.4148
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Table 14: Full Benchmark Results for GTE-en-MLM

Dataset (1,768) (3,256) (6,128) (12,64) (24,32) (48,16)
ArguAna 0.5958 0.5943 0.5989 0.6015 0.6040 0.5975
ClimateFEVER 0.2631 0.2710 0.2408 0.2756 0.2802 0.2846
DBPEDIA 0.5206 0.5248 0.5260 0.5127 0.5143 0.5271
FEVER 0.7952 0.7885 0.7445 0.7837 0.7900 0.7809
FiQA2018 04386 0.4685 0.4699 0.4812 0.4835 0.4799
HotpotQA 0.6389 0.6516 0.6440 0.6606 0.6618 0.6655
MSMARCO 0.6039 0.5871 0.6129 0.6220 0.6177  0.6099
NFCorpus 0.2884 0.2802 0.2866 0.2871 0.2839 0.2834
QuoraRetrieval 0.9236 09172 09134 09214 09197 0.9264
SCIDOCS 0.2842 0.2893 0.2915 0.2996 0.2949 0.3023
SciFact 0.6226  0.6088 0.6150 0.6126 0.6284  0.6077
Touche2020 0.5180 0.5252 0.5250 0.5322 0.5379 0.5361
AskUbuntuDupQuestions 0.5825 0.5790 0.5771 0.5762 0.5773 0.5771
MindSmallRerank 0.3155 0.3162 0.3172 0.3167 03169 0.3156
SciDocsRR 0.7304 0.7321 0.7287 0.7314 0.7324  0.7321
StackOverflowDupQuestions | 0.4409 0.4382 0.4367 0.4396 0.4446 0.4446
BIOSSES 0.8198 0.8157 0.8139 0.8111 0.8145 0.8210
STS12 0.6410 0.6424 0.6346 0.6411 0.6428 0.6437
STS13 0.7897 0.7929 0.7893 0.7903 0.7907 0.7925
STS14 0.7112 0.7135 0.7084 0.7126 0.7146  0.7158
STS15 0.8049 0.8092 0.8057 0.8100 0.8110 0.8114
STS16 0.7676  0.7696  0.7698 0.7778 0.7798 0.7806
STS17 0.8074 0.8110 0.8021 0.8103 0.8114 0.8144
STS22 0.6556  0.6569 0.6571 0.6598 0.6611 0.6603
AmazonCounterfactual 0.5009 0.4949 0.4954 0.4982 0.5046 0.4828
AmazonPolarity 0.6007 0.6020 0.6029 0.6060 0.6083 0.5943
AmazonReviews 0.2774 0.2781 0.2755 0.2839 0.2860 0.2843
Banking77 0.7394 0.7404 0.7407 0.7453 0.7456  0.7445
Imdb 0.5663 0.5693 0.5743 0.5815 0.5801 0.5779
ToxicConversations 0.4664 0.4663 0.5046 0.5184 0.5174 0.5185
TweetSentimentExtraction 0.4277 04234 04223 04168 04121 04113

Table 15: Retrieval Benchmark Results for Average Pooling Methods

ModernBERT
Dataset (1,768) (3,256) (6,128) (12,64) (24,32) (48,16)
ArguAna 0.5976  0.6003 0.6136 0.6001 0.6095 0.5961
ClimateFEVER | 0.2759 0.2945 0.2897 0.3080 0.3061 0.3152
DBPEDIA 0.5233  0.5202 0.5173 0.4930 0.5021 0.4912
FEVER 0.7949  0.7731 0.7847 0.7854 0.7887  0.7856
FiQA2018 0.4406 04471 0.4525 0.4455 0.4884 0.4886
HotpotQA 0.6555 0.6560 0.6401 0.6608 0.6638 0.6614
MSMARCO 0.5380 0.5266 0.5556 0.5255 0.5494  0.5469
NFCorpus 0.2502 0.2864 0.2658 0.2478  0.2666  0.2532
QuoraRetrieval | 0.9518 0.9357 0.9361 0.9233 09550 0.9313
SCIDOCS 0.2922  0.2949 03060 0.2832 0.2958  0.2909
SciFact 0.6278  0.6556 0.6322 0.6352 0.6285 0.6534
Touche2020 0.5123  0.5036  0.5005 0.4953 0.5118 0.5147
BERT
Dataset (1,768) (3,256) (6,128) (12,64) (24,32) (48,16)
ArguAna 0.5951 0.5971 0.5899 0.6012 0.5939 0.6004
ClimateFEVER | 0.2527 0.2536  0.2598 0.2637 0.2461  0.2470
DBPEDIA 0.5091 0.5162 0.5184 0.5248 0.5271 0.5136
FEVER 0.8118 0.8108 0.8219 0.8272 0.8276  0.8382
FiQA2018 0.3796  0.3703 0.3708 0.3797 0.3766  0.3653
HotpotQA 0.6386  0.6484 0.6424 0.6431 0.6428 0.6384
MSMARCO 0.5651 0.5783 0.5561 0.5531 0.5451 0.5662
NFCorpus 0.2572  0.2438 0.2495 0.2495 0.2473  0.2558
QuoraRetrieval | 0.9303  0.9329  0.9230 0.9305 0.9306 0.9379
SCIDOCS 0.2481 0.2464 02479 0.2554 0.2537 0.2525
SciFact 0.5841 0.5858 0.5801 0.5802 0.5701  0.5732
Touche2020 0.4695 0.4693 0.4663 0.4618 0.4641 0.4662
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Table 16: Retrieval Benchmark Results for Fragment Granularity Scaling

ModernBERT
Dataset (1,768) (2,384) (3,256) 4,192) (6,128) (12,64) (24,32) (48,16) (96,8) (192,4) (384,2)
ArguAna 05932 05853 0.5979 0.5890 0.5802 0.5852  0.5950 0.5937 0.6031 0.5885 0.5743
ClimateFEVER | 02782 02617 02682 02608 02567 0.1862 02969 02994 0.3035 0.2920 0.2731
DBPEDIA 04932 04939 05012 04962 04954 0.5143 05108 05100 0.5081 0.5030  0.4900
FEVER 0.7746  0.8147 0.7867 0.7878 0.8071 07306 0.7968 0.8051 0.8079 0.7846  0.7619
FiQA2018 04657 04689 04711 04835 04703 04734 04851 04726 04789 0.4668  0.4400
HotpotQA 0.6561  0.6482  0.6489  0.6435 0.6505 0.6582 0.6612 0.6776 0.6700 0.6540  0.6188
MSMARCO 05797 05976 0.5680 0.6046 0.5803 0.5713  0.6027 0.5755 0.5702 0.5501  0.5400
NFCorpus 02263 02237 02325 02241 02248 02208 02387 02544 02391 02318 0.2298
QuoraRetrieval | 0.9450 0.9562 0.9521 09544 09405 0.9494 009552 0.9408 0.9676 09544  0.9588
SCIDOCS 02979 02881 03027 02869 02982 02941 02849 02911 02848 02654 0.2578
SciFact 0.6228  0.6005 0.6040  0.6055 0.6041 0.5936 0.6558 0.6640 0.6570 0.6487  0.6064
Touche2020 05279 05175 05081 05243 05179 05114 05146 05201 05171 0.5183  0.5404
BERT
Dataset (1,768) (2,384) (3,256) (4,192) (6,128) (12,64) (24,32) (48,16) (96,8) (192,4) (384,2)
ArguAna 05780 05841 0.5757 0.5724 0.5873 0.5837 05963 05736 05717 0.5847  0.5490
ClimateFEVER | 02224 02285 02273 02399 02290 0.2243 02266 02181 02221 02052 02285
DBPEDIA 05148 05108 05129 05142 05132 05089 05168 05155 0.5208 0.5177  0.5099
FEVER 0.8221 0.8133 0.8034 0.8161 0.8208 0.8172 0.8253 0.8306 0.8212 0.8009  0.8504
FiQA2018 03847 03879 03730 03725 03810 0.3862 0.3788 03774 03798 0.3640  0.3367
HotpotQA 0.6313  0.6462 0.6336 0.6474 0.6364 0.6222 06263 0.6330 0.6258 0.6210  0.6059
MSMARCO 0.5693 05703 05595 0.5685 0.5609  0.5503 0.5721  0.5661 0.5938 0.5709  0.5378
NECorpus 02542 02652 02627 02610 02628 02679 02646 02690 02605 02610 0.2540
QuoraRetrieval | 0.9267 09175 09208 09192 09210 09199 09193 09203 0.9206 09300 0.9293
SCIDOCS 02475 02427 02446 02362 02437 02468 02458 0.2487 02540 02409  0.2463
SciFact 05675 05740 0.5644 0.5722  0.5685 0.5648 0.5651 0.5571 0.5822 0.5692  0.4953
Touche2020 04695 04726 04615 04689 04688 04665 04679 04739 04638 04599  0.4729
Table 17: Retrieval Benchmark Results for Decoder Models
Qwen3-0.6B
Dataset (1,2048) (2,1024) (4,512) (8,256) (16,128) (32,64) (64,32) (128,16)
ArguAna 05885  0.6229 0.6168 0.6039 06081  0.6289 0.6214  0.6221
ClimateFEVER | 03585  0.3471  0.3592  0.3488  0.3341 03686 03524  0.3148
DBPEDIA 05104 05084 05371 05004 05477 05416 05305  0.5524
FEVER 0.8833  0.8796  0.8293 0.8745  0.8398  0.8627 0.8586  0.8196
FiQA2018 0.4891 04889 05152 04904 05180 05193 05160  0.4853
HotpotQA 0.7246 07322 07216 07176  0.7384  0.7088  0.7413  0.7248
MSMARCO 0.5260  0.5643  0.6162 05666  0.5790  0.5945 0.5784  0.6013
NFCorpus 02719 02652 02897 02881  0.2898 02798 0.2855  0.3017
QuoraRetrieval | 0.9414  0.9409 09397 09405 09396 09429 09450  0.9470
SCIDOCS 03770 03717 03735 03801 03774 03803 03701  0.3829
SciFact 0.7464 07441 07366 07251 07333 0.7511  0.7520  0.7659
Touche2020 05146 05031 05276 05375 05066 05159 05208  0.5410
Llama-3.2-1B
Dataset (1,2048) (2,1024) (4,512) (8,256) (16,128) (32,64) (64,32) (128,16)
ArguAna 0.6451 06215 0.6365 06276 06407 06349 06320 0.6546
ClimateFEVER | 03129  0.3086  0.3043 03208 03142 03194 03278  0.3183
DBPEDIA 0.5191 0.5514 05425 05589  0.5550  0.5344 05445  0.5590
FEVER 0.8917 09214  0.8981 09095  0.8804  0.8720 0.8583  0.8919
FiQA2018 0.5454 05374 05368 05391 05450  0.5205 0.5448  0.5165
HotpotQA 0.7963 07843 07740 07764  0.7683  0.7944  0.7817  0.7810
MSMARCO 0.5589  0.5831  0.5961 0.5858  0.5965  0.6122  0.6289  0.5985
NFCorpus 03253 03463 03298 03338 03180 03345 03350  0.3354
QuoraRetrieval | 0.9387  0.9483  0.9470  0.9505 09506  0.9351  0.9433  0.9441
SCIDOCS 03712 03592 03709 03719 03646 03642 03554 03672
SciFact 07324 07422 07563 07333 0.7380  0.7287  0.7243  0.7532
Touche2020 04973 05170 05093 05131 05089 05065 05151  0.5076

20



Under review as a conference paper at ICLR 2026

Table 18: Retrieval Benchmark Results for ModernBERT with Different Similarity Metrics

Dataset Cosine Euclidean Manhattan Dot
(1,768) (48,16) (1,768) (48,16) (1,768) (48,16) (1,768) (48,16)
ArguAna 0.5932  0.5937 04801 0.5434  0.5060 0.5886  0.4800  0.5597
ClimateFEVER  0.2782  0.2994  0.0492 02157 0.0465 02150 0.1143  0.2419
DBPEDIA 0.4932  0.5100 0.2358  0.3313  0.2963  0.5163  0.2293  0.4879
FEVER 0.7746  0.8051 0.0885 0.7061  0.1142 0.7159 0.5152  0.7304
FiQA2018 04657 04726 02764 0.3646  0.2997 04548  0.2037  0.4403
HotpotQA 0.6561  0.6776  0.6312  0.6576  0.6316  0.6218  0.6847  0.7034
MSMARCO 0.5797 0.5755 03738 04660 0.4001 0.5457 0.2653  0.5287
NFCorpus 0.2263  0.2544  0.1179  0.1647  0.1464  0.2030 0.1135 0.2014
QuoraRetrieval ~ 0.9450 0.9408 0.9259 0.9338 09288 09475 0.8081  0.9536
SCIDOCS 0.2979  0.2911  0.2080  0.2374  0.2667 0.2619  0.1503  0.2706
SciFact 0.6228  0.6640 04414 0.5955 04716 0.5986  0.4076  0.6039
Touche2020 0.5279  0.5201  0.3907 04668 04196  0.5021 0.3310  0.4937

Table 19: Retrieval Benchmark Results on ModernBERT: MRL vs. SFS (trained with d f,.q4 = 16)

MRL
Dataset 64 128 256 384 512 768
ArguAna 0.5466  0.5405  0.5565 0.5654 0.5695 0.5757
ClimateFEVER | 0.1988 0.2500  0.2678 0.2578 0.2663 0.2883
DBPEDIA 0.4465 0.4457  0.4773 0.5019 0.5048 0.5108
FEVER 0.6840 0.6898  0.7248 0.7928 0.7784 0.7941
FiQA2018 03174 0.3484  0.4274 0.4266 0.4484 0.4603
HotpotQA 0.5407 0.5780  0.6066 0.6050 0.6402 0.6278
MSMARCO 0.5313 0.5342  0.5768 0.5613 0.5452 0.5612
NFCorpus 0.1627  0.1900  0.2050 0.2100 0.2109 0.2236
NQ 0.4743  0.4984  0.5357 0.5301 0.5238 0.5230
QuoraRetrieval | 0.9286 0.9462  0.9441 0.9548 0.9479 0.9478
SCIDOCS 02085 0.2414  0.2544 0.2897 0.2877 0.2891
SciFact 0.4845 0.5479  0.5692 0.6103 0.6043 0.5958
Touche2020 0.4701 0.4858  0.4890 0.4955 0.5091 0.5161
SFS

Dataset 64 (4) 128(8) 256 (16) 384 (24) 512(36) 768 (48)
ArguAna 0.5015 0.5156  0.5747 0.5963 0.5953 0.5937
ClimateFEVER | 0.2023  0.2347  0.3020 0.2941 0.3113 0.2994
DBPEDIA 0.3676  0.4268  0.4677 0.4916 0.4926 0.5100
FEVER 0.5891 0.7333  0.7919 0.7728 0.7990 0.8051
FiQA2018 0.3353 0.3756  0.4340 0.4606 0.4795 0.4726
HotpotQA 0.5042 0.5840  0.6196 0.6525 0.6850 0.6776
MSMARCO 0.5071 0.5264  0.5761 0.5670 0.5802 0.5755
NFCorpus 0.1226  0.1445  0.2193 0.2467 0.2338 0.2544
NQ 0.3836 0.4491  0.5341 0.5408 0.5728 0.5616
QuoraRetrieval | 0.9181 0.9167  0.9357 0.9447 0.9460 0.9408
SCIDOCS 0.1633  0.1961  0.2488 0.2832 0.2956 0.2911
SciFact 0.5114 0.5646  0.5954 0.6354 0.6355 0.6640
Touche2020 0.4530 04729  0.4977 0.5038 0.5068 0.5201
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