SEMANTIC FRAGMENT SIMILARITY REPRESENTATION LEARNING FOR INFORMATION RETRIEVAL

Anonymous authors

000

001

002 003 004

006

008 009

010 011

012

013

014

016

017

018

019

021

023

024

025 026

027 028

029

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

We introduce Semantic Fragment Similarity (SFS), a novel similarity metric designed to enhance representation quality by partitioning embeddings into nonoverlapping fragments, computing fragment level similarity, and aggregating these local scores. Conventional similarity metrics compute relevance using the global vector as a single unit. This process flattens and entangles multi-faceted semantic features and dilutes the fine-grained alignment signals crucial for accuracy. By inducing fragments to specialize in distinct semantic roles, SFS drives the substantial gains in retrieval performance across a wide range of models, tasks, and architectures when applied in both training and inference. Further, we find that a single embedding fragment trained with SFS, comprising just 12% of the total dimensions, outperforms the entire global embedding on specific classification tasks. Ultimately, SFS can be directly integrated as a replacement for conventional similarity metrics, without architectural modifications or complex computational overhead and it opens up new avenues for building more structured and interpretable embedding models.

Introduction

As information retrieval advances, dense retrieval has become a widely used approach for efficiently retrieving the documents most relevant to a user query from large-scale collections (Karpukhin et al., 2020; Xiong et al., 2020). These approaches encode queries and documents as high-dimensional vectors and retrieve documents by their similarity in the embedding space. This representation captures complex semantic relationships beyond keyword matching (Khattab & Zaharia, 2020), leading to significant performance in applications such as retrieval-augmented generation (RAG) (Lewis et al., 2020; Gao et al., 2023; Jiang et al., 2023).

Dense retrieval models generate an embedding vector that encodes the overall meaning of a text into a single vector representation (Reimers & Gurevych, 2019; Li et al., 2020). The relevance of a query-document pair is quantified by a scalar score, typically derived from a similarity metric such as cosine similarity or the dot product computed between their vector representations (Günther et al., 2024; Lee et al., 2025b). This macro-level computation on the global vector effectively captures the overall meaning, but the process of reducing multifaceted semantics into a single scalar score inherently causes the flattening of local and multi-faceted object signals (Sinha et al., 2024). In this single-vector representation, different semantic features become entangled across the embedding's dimen- Semantic Fragment Similarity.

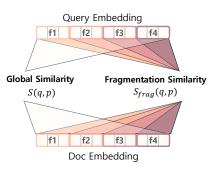


Figure 1: Conceptual Illustration of the

sions, consequently causing these distinct signals to interfere with or neutralize one another (You, 2025). For instance, if a query and a document exhibit a pronounced correspondence on one semantic axis but are irrelevant on another, the global similarity score can dilute this partial alignment, failing to capture the corresponding micro-level alignment in the vector space.

To mitigate representation flattening and entanglement, we propose Semantic Fragment Similarity (SFS), a novel metric that enhances the measurement of textual relevance by preserving local and

multi-faceted semantic signals. To encourage embeddings to encode distinct semantic aspects in different subspaces, SFS divides a high-dimensional vector into several non-overlapping fragments. It then calculates similarity for each query-document fragment pair and aggregates these local scores into a final similarity score. This approach allows SFS to explicitly retain fragment-level information, enabling a more fine-grained assessment of textual relatedness while still capturing global semantic context.

To demonstrate the effectiveness of our methodology, we conduct a comprehensive set of experiments applying SFS with diverse fragment size configurations to both embedding model training and retrieval phase. In these experiments, we train five transformer encoder models on retrieval data and conduct extensive evaluations on retrieval tasks in the MTEB benchmark (Muennighoff et al., 2023). The results show that the proposed SFS consistently outperforms a conventional learning approach based on global-vector calculation, yielding substantial improvements in retrieval performance with an average increase of 1–3% over the baseline. Moreover, these gains are observed across diverse embedding tasks (e.g., reranking, classification, and semantic similarity), pooling strategies, and model architectures, as partitioning into fine-grained fragments preserves and exploits local and multidimensional semantic features that would otherwise be diluted and flattened in a global-vector representation. Our analysis of fragment-level classification performance reveals that SFS encourages fragments to assume distinct semantic roles. This leads to cases where a single fragment, constituting just 12% of the total dimensions, outperforms the full embedding on certain classification tasks.

In summary, our contributions are: (1) We propose Semantic Fragment Similarity (SFS), a novel metric that mitigates the flattening and entanglement of semantic signals by aggregating fragment-wise similarities. This method requires no changes to the existing model architecture, such as adding new layers, parameters, or complex computations. (2) We experimentally demonstrate that SFS achieves substantial performance gains in our primary task, retrieval, while also consistently outperforming conventional global similarity across other tasks such as classification and reranking. (3) Our analysis reveals that SFS induces feature disentanglement and a semantic division of labor among fragments. We identify this mechanism as the driving force behind the observed improvements, offering a new lens that opens up possibilities for the interpretability of the embedding space.

2 SEMANTIC FRAGMENT SIMILARITY

In this section, we first introduce the training methodology for dense retrieval and the notation used throughout this paper. We then describe the training and inference processes using our proposed Semantic Fragment Similarity in detail.

2.1 PRELIMINARIES

In a dense retrieval framework using an embedding model, the objective is to retrieve semantically relevant documents from a large corpus $\mathcal{D}=\{d_1,d_2,\ldots,d_N\}$ given a query q. An embedding model \mathcal{M} encodes textual inputs into a high-dimensional vector space of a fixed dimension. The model's output is then processed through a pooling operation to produce a dense vector in $R^{d_{model}}$, where d_{model} denotes the model's output embedding dimension. For a given query q and a document $d \in \mathcal{D}$, their embeddings are generated as follows:

$$\mathbf{E}_q = \text{Pooling}(\mathcal{M}(q)), \quad \mathbf{E}_d = \text{Pooling}(\mathcal{M}(d)) \in \mathbb{R}^{d_{\text{model}}}$$
 (1)

The semantic relevance between a query q and a document d is quantified by a score S(q, d), which is typically defined as the cosine similarity between their embedding vectors E_q and E_d . This similarity function aggregates information across all dimensions of the representations and returns a single scalar that reflects the overall semantic similarity between the query and the document.

$$S(q,d) = \frac{\mathbf{E}_q \cdot \mathbf{E}_d}{\|\mathbf{E}_q\| \|\mathbf{E}_d\|}$$
(2)

The embedding model is trained to optimize retrieval performance using a contrastive learning objective. The goal is to maximize similarity score $S(q, d^+)$ for relevant query-positive document

pairs (q, d^+) and minimize the similarity score $S(q, d^-)$ for non-relevant query–negative document pairs (q, d^-) .

2.2 Fragment Representation Learning

Our method, Semantic Fragment Similarity, learns to produce a final score by aggregating similarity scores calculated for each pair of corresponding fragments. These fragments are obtained by independently assessing the subspace correlation between two vectors within more granular subspaces, each representing a specific semantic aspect.

Fine-grained Semantic Fragmentation The objective of SFS is to produce a single scalar value that reflects micro-level alignment within the vector space. It does so by distinguishing strong signals confined to certain dimensions from weak signals dispersed across multiple dimensions.

We first define a fragmentation function \mathcal{F} that partitions an embedding vector $E \in \mathbb{R}^{d_{\text{model}}}$ into an ordered sequence of non-overlapping fragments. Given a fragment dimension d_{frag} , the total number of fragments N_f is determined as $d_{\text{model}}/d_{\text{frag}}$. The fragmentation function then maps the vector E to a fragment sequence $\mathcal{F}(E) = \{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_{N_f}\}$, where each fragment \mathbf{f}_i has a fixed dimension $\mathbb{R}^{d_{\text{frag}}}$. The fragment size d_{frag} , specified externally as a hyperparameter, ensures that all fragments have identical dimensionality. For instance, if the embedding dimension $d_{\text{model}} = 768$ and the fragment dimension $d_{\text{frag}} = 64$, the fragmentation function produces a sequence of 12 fragments $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_{12}\}$, each of dimension 64. Concretely, the first fragment \mathbf{f}_1 comprises the components of E from indices 0 to 63. More generally, the i-th fragment \mathbf{f}_i corresponds to the slice $E[(i-1) \times d_{frag}: i \times d_{frag}]$.

Fragment-wise Similarity Aggregation The query embedding E_q and the document embedding E_d are each partitioned into a sequence of N_f fragments, $(\mathbf{f}_{q1}, \mathbf{f}_{q2}, \ldots, \mathbf{f}_{qN_f})$ and $(\mathbf{f}_{d1}, \mathbf{f}_{d2}, \ldots, \mathbf{f}_{dN_f})$, respectively. Instead of a global operation, we independently compute the cosine similarity, $s_i(q,d)$, for each corresponding fragment pair $(\mathbf{f}_{qi}, \mathbf{f}_{di})$ and then average the fragment-wise similarity scores to obtain a single similarity score $S_{\text{frag}}(q,d)$.

$$S_{\text{frag}}(q,d) = \frac{1}{N_f} \sum_{i=1}^{N_f} s_i(q,d) = \frac{1}{N_f} \sum_{i=1}^{N_f} \cos(\mathbf{f}_{qi}, \mathbf{f}_{di})$$
(3)

This aggregation scheme equally weights alignment across semantic aspects, thereby preventing the flattening of information that arises during encoding and resulting in a final score that reflects micro-level alignment across the entire embedding space.

2.3 Training and Inference

Training To apply our proposed SFS in training, we integrate it into a contrastive objective. Specifically, within the infoNCE loss, we replace the conventional similarity function S(q,d) with our $S_{\text{frag}}(q,d)$. The training objective is to minimize the following loss function:

$$L_{\text{NCE}} = -\frac{1}{n} \sum_{i} \log \frac{\exp(S_{\text{frag}}(q_i, d_i^+))}{\exp(S_{\text{frag}}(q_i, d_i^+)) + \sum_{j} \exp(S_{\text{frag}}(q_i, d_j^-))}$$
(4)

By minimizing this loss, the model learns to maximize fragment level semantic alignment for positive pairs (q,d^+) and minimize it for negative pairs (q,d^-) . This training objective induces the model to structure the entire embedding space into a set of semantically coherent subspaces. Instead of relying on a single, global representation, the model learns to encode distinct semantic facets (e.g., topic, domain, and style) into different fragments of the embedding vector.

Consequently, each fragment becomes more adept at comparing these subtle and local semantic features, which leads to a more robust and interpretable similarity measure compared to a conventional single scalar value.

Inference At inference time, we encode the query and all documents into their respective embeddings. Subsequently, the final document ranking is determined using the Semantic Fragment Similarity S_{frag} . This score is computed by decomposing each query-document embedding pair into fragments, consistent with the fragment size defined during training, and then aggregating their local similarities. Algorithm 1 summarizes the specific inference procedure for ranking the entire document corpus for a given query.

```
\label{eq:algorithm 1} \begin{split} & \textbf{Algorithm 1} \; \textbf{Inference with SFS} \\ & \textbf{Input: Query embedding } \; \mathbf{E}_q, \; \textbf{Document embeddings} \; \{\mathbf{E}_{d_j}\}_{j=1}^{N}, \; \textbf{Fragment size } d_{\text{frag}} \\ & \textbf{Output: Ranked documents} \\ & N_f \leftarrow d_{\text{model}}/d_{\text{frag}} \\ & \{\mathbf{f}_{qi}\}_{i=1}^{N_f} \leftarrow \mathcal{F}(\mathbf{E}_q) \\ & \textbf{for } j \leftarrow 1 \; \textbf{to } N \; \textbf{do} \\ & \left\{ \mathbf{f}_{d_ji} \right\}_{i=1}^{N_f} \leftarrow \mathcal{F}(\mathbf{E}_{d_j}) \\ & S_{\text{frag}}(\mathbf{E}_q, \mathbf{E}_{d_j}) \leftarrow \frac{1}{N_f} \sum_{i=1}^{N_f} \cos(\mathbf{f}_{qi}, \mathbf{f}_{d_ji}) \\ & \textbf{end} \end{split}
```

return sort(Documents, by= S_{frag})

3 EXPERIMENTAL SETUP

Training Our primary experiments focus on transformer encoder architectures. We select five models, all with a 768-dimension hidden state: ModernBERT-base (Warner et al., 2025), bert-base-uncased (Devlin et al., 2019), gte-en-mlm-base (Zhang et al., 2024), roberta-base (Liu et al., 2019), and nomic-bert-2048 (Nussbaum et al., 2025). We employ the [CLS] pooling strategy to generate sentence embeddings. For each fragment size in $d_{\rm frag} \in \{768, 256, 128, 64, 32, 16\}$, we train a dedicated model and subsequently evaluate it under the same size configuration. In all experiments, configurations are denoted as (number of fragments, fragment size).

We utilize the standard InfoNCE (van den Oord et al., 2018) loss over in-batch negatives and hard negatives (Henderson et al., 2017). For training data, We employ a collection of publicly available datasets that are standard training datasets in the embedding literature. Further details regarding our overall implementation and the training datasets are provided in Appendix B.

Evaluation We conduct evaluations on the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2023). Our experiments focus on a curated subset of 31 datasets from four task categories: retrieval, reranking, classification, and sentence similarity (STS). All evaluations are conducted using the official MTEB to ensure consistency and reproducibility. A comprehensive list of the datasets included in our evaluation is available in Appendix C

4 EXPERIMENTAL RESULTS

4.1 RETRIEVAL

Table 1: Retrieval performance (nDCG@10) by fragment size. Configurations are denoted as (Number of Fragments, Fragment Size). **Bold** and <u>underlined</u> values are the best and second-best scores for each model, respectively.

Model	(1,768)	(3,256)	(6,128)	(12,64)	(24,32)	(48,16)
BERT	0.5178	0.5136	0.5185	0.5163	0.5197	0.5181
RoBERTa	0.5045	0.5082	0.5099	0.5186	0.5168	0.5195
NomicBERT	0.5356	0.5346	0.5388	0.5414	0.5414	0.5427
ModernBERT	0.5375	0.5345	0.5330	0.5257	0.5483	0.5512
GTE-en-MLM	0.5424	0.5437	0.5398	0.5500	0.5517	0.5508

Table 1 presents retrieval performance across five models with varying fragment sizes. It shows that our proposed Semantic Fragment Similarity consistently outperforms similarity computations based on global vectors. Across all models evaluated in the experiments, partitioning the vectors into multiple fragments to compute similarity yields better results than the conventional single-fragment setting of (1,768).

Notably, all five models used in the experiments tend to achieve higher performance as the embeddings are segmented into more granular fragments, specifically when the fragment size decreases to 16 or 32. For example, the ModernBERT demonstrated the most significant improvement, achieving approximately a 2.5% gain over the baseline when the fragment size was set to 16. These findings

Table 2: Performance comparison on Reranking, Classification, and STS tasks.

Model	(1,768)	(3,256)	(6,128)	(12,64)	(24,32)	(48,16)				
			Reranking							
BERT	0.4972	0.4989	0.4988	0.4984	0.5004	0.5007				
RoBERTa	0.4987	0.4986	0.4997	0.4975	$\overline{0.4996}$	0.5000				
NomicBERT	0.4972	0.4974	$\overline{0.4950}$	0.4960	0.4961	0.4969				
ModernBERT	0.5260	0.5269	0.5267	0.5260	0.5283	0.5303				
GTE-en-MLM	0.5173	0.5163	0.5150	0.5160	0.5178	0.5173				
	Classification									
BERT	0.5444	0.5448	0.5448	0.5476	0.5479	0.5487				
RoBERTa	0.5585	0.5570	0.5620	0.5699	$\overline{0.5725}$	0.5677				
NomicBERT	0.5320	0.5325	0.5333	0.5420	0.5439	$\overline{0.5427}$				
ModernBERT	0.5483	0.5451	0.5470	0.5507	0.5586	0.5613				
GTE-en-MLM	0.5453	0.5450	0.5490	0.5545	0.5551	0.5502				
			Semantic Text	ual Similarity						
BERT	0.7350	0.7364	0.7389	0.7384	0.7416	0.7428				
RoBERTa	0.7330	0.7342	0.7305	0.7313	$\overline{0.7337}$	0.7341				
NomicBERT	0.7434	0.7421	0.7367	0.7373	0.7413	0.7439				
ModernBERT	0.7509	0.7490	0.7520	0.7456	0.7485	0.7470				
GTE-en-MLM	0.7497	0.7514	0.7476	0.7516	0.7532	0.7549				

indicate that our approach partitions the high dimensional vector space into multiple fine grained semantic subspaces, evaluates local similarities within each subspace independently, and subsequently aggregates the resulting similarity measures, enabling more effective capture of the multifaceted and subtle relationships.

4.2 EVALUATION ON NON-RETRIEVAL EMBEDDING TASKS

Table 2 presents the performance variations in reranking, classification, and STS tasks across different fragment sizes, using the full (1,768) embedding as the baseline. Performance on reranking and classification tasks steadily improves as fragments become more granular; in classification, Modern-BERT and RoBERTa achieve performance gains of 2.3% and 2.5%, respectively. For STS, while the optimal fragment size varies across models, more fine-grained fragmentation generally yields better results. This suggests that semantic fragmentation enables embeddings to effectively represent local semantic information and provides a robust approach to improving performance across diverse downstream tasks.

HOW ROBUST IS FRAGMENT REPRESENTATION LEARNING IN RETRIEVAL?

In this section, we conduct in-depth experiments to assess whether representation learning with the proposed Fragment Similarity remains effective under varying conditions in retrieval tasks. Specifically, we systematically and comprehensively explore variations in pooling strategy, fragment-size scaling, model architecture, and similarity metrics.

5.1 EFFECTIVENESS ACROSS DIFFERENT POOLING METHODS

Setup To assess robustness across pooling strategies, we replace [CLS] pooling with average pooling. Average pooling generates embeddings by averaging all token representations from the last hidden outputs. We train two models, ModernBERT and BERT, under the same experimental settings as the [CLS] configuration, except for the pooling strategy.

Results As shown in Table 3, overall performance Table 3: Performance comparison of differwith average pooling is slightly lower or on par with ent fragment sizes with average pooling. that obtained [CLS] pooling. Crucially, we observe consistent gains over the full-embedding baseline (1×768). For example, ModernBERT-base improves from 0.5390 to as high as 0.5444, consistent with the improvement trend observed under [CLS] pool-

(1,768)	(3,256)	(6,128)	(12,64)	(24,32)	(48,16)							
BERT												
0.5215	0.5228	0.5203	0.5241	0.5211	0.5232							
ModernBERT												
0.5390	0.5403	0.5439	0.5323	0.5444	0.5417							

Table 4: The effect of fragment granularity scaling on retrieval performance.

Model	(1,768)	(2,384)	(3,256)	(4,192)	(6,128)	(12,64)	(24,32)	(48,16)	(96,8)	(192,4)	(384,2)
BERT	0.5178	0.5191	0.5136	0.5175	0.5185	0.5163	0.5197	0.5181	0.5192	0.5144	0.5053
ModernBERT	0.5375	0.5370	0.5345	0.5368	0.5330	0.5257	0.5483	0.5512	0.5502	0.5375	0.5242

ing. This suggests that average pooling can, via fragment-wise consensus across subspaces, mitigate the influence of outlier token representations and, in turn, yield more robust representations.

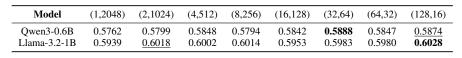
5.2 Fragment granularity scaling

Setup To more thoroughly investigate the impact of fragment granularity, we evaluate an expanded range of fragment configurations on BERT and ModernBERT. In addition to those previously evaluated, we include intermediate granularities $(d_{\text{frag}} \in \{384, 192\})$ and more fine-grained settings $(d_{\text{frag}} \in \{8, 4, 2\})$.

Results Table 4 reveal a clear trend with respect to fragment granularity. A consistent pattern is observed where performance improves as fragments become more granular, peaks at a certain point, and then sharply declines when the fragmentation becomes extreme. Generally, optimal performance is achieved within the more granular range of fragment sizes, specifically around 32, 16, and 8. This pattern suggests a fundamental trade-off related to the role of fragments. Fragments must be small enough to encode distinct semantic aspects, yet large enough to retain the minimum dimensional capacity required to encode complex meanings. Extreme fragmentation undermines this capacity, leading to performance degradation. Therefore, These findings suggest that an optimal level of granularity exists to maximize the effectiveness of SFS.

5.3 ROBUSTNESS ACROSS MODEL ARCHITECTURES

Table 5: Retrieval performance of different fragmentation configurations on decoder models.



Setup We evaluate our method on decoder architectures by training two models, Qwen3-0.6B Team (2025) and Llama-3.2-1B, which have a hidden dimension of 2048. We utilize LLMs with causal attention, appending an [EOS] token at the end of the input sequence (Zhang et al., 2025). The sentence embedding is derived from the hidden state of the last layer corresponding to this [EOS] token.

Results Table 5 shows a common trend that learning via fragment similarity yields consistent performance improvements over the baseline for decoder architectures. Both models significantly outperform the baseline with more granular fragmentation, with Qwen3-0.6B achieving a top score of 0.5888 ($d_{\rm frag}=64$) and Llama-3.2-1B a top score of 0.6028 ($d_{\rm frag}=16$). These results suggest that, similar to encoder models, the embedding space of decoder models is also composed of mixed, functionally distinct features. Our approach effectively separates these antagonistic signals to enhance local alignment, resulting in superior representational quality.

5.4 EFFECTIVENESS ACROSS SIMILARITY METRICS

Setup We conducted an experiment to determine if the benefits of fragment-based learning generalize beyond cosine similarity. Using the ModernBERT-base model, we compared a full-embedding baseline (1,768) against a fragmented configuration (48,16) across four metrics: Cosine, Euclidean (L2), Manhattan (L1), and Dot product.

Table 7: Classification performance across different fragmentation configurations on the Toxic Conversation and Amazon Counterfactual datasets.

Dataset	(1, 768)	(2, 384)	(3, 256)	(4, 192)	(6, 128)	(12, 64)	(24, 32)	(48, 16)
Toxic Conversation	0.4737	0.4743	0.4807	0.4799	0.4809	0.5165	0.5126	0.5281
Amazon Counterfactual	0.5296	0.5305	0.5333	0.5336	0.5371	0.5468	0.5694	0.5686

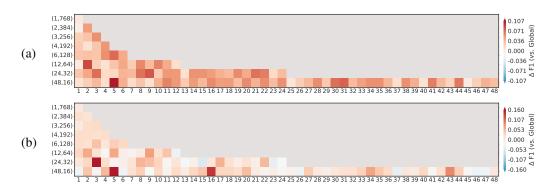


Figure 2: Visualization of single-fragment classification performance relative to the global embedding. Results are shown for (a) the Toxic Conversation and (b) the Amazon Counterfactual.

Results Table 6 demonstrates that our Fragment Similarity-based Table 6: Performance comlearning is effective for similarity metrics in addition to cosine. Apparison of different similarplying fragmentation improves performance across all metrics. No- ity metrics, with and without tably, the improvements are substantially larger for metrics sensi- Fragment Similarity. tive to vector magnitude, such as Euclidean (L2), Manhattan (L1), and the dot product. These results suggest that our method effectively mitigates the problem of anisotropy in the embedding space. The process of measuring and aggregating similarity at the fragment level reduces the directional bias and scale sensitivity of the full vector representation, which we identify as the key reason for the more significant performance enhancements in these metrics.

(1,768)	(48,16)
0.5375	0.5512
0.3348	0.4680
0.3582	0.5145
0.3463	0.5143
	0.5375 0.3348 0.3582

Fragment-Level Analysis and Comparative Evaluation

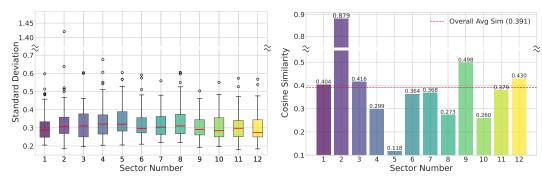
6.1 DO FRAGMENTS LEARN DISTINCT SEMANTIC ROLES?

In this section, we experimentally analyze whether training with the proposed methodology indeed induces each fragment of the embedding to assume semantically differentiated roles (distinct semantic roles). Using a ModernBERT-base model trained under various fragment configurations, we conduct two complementary experiments. In the first experiment, we directly compare the classification performance of the full embedding and individual fragments. In the second experiment, we statistically analyze, from an in-depth perspective, how specific fragments respond to specific semantic attributes (semantic features).

6.1.1 VALIDATING SPECIALIZATION VIA CLASSIFICATION PERFORMANCE

Setup We evaluate on two classification datasets with clearly delineated topics, Toxic Conversation and Amazon Counterfactual. We first measure performance using the full embedding, and then assess the performance contribution of individual fragments by comparing it to the performance obtained when using each fragment vector alone.

Results Table 7 shows that as fragment partitioning becomes more fine-grained, classification performance improves consistently. Relative to the baseline, Toxic Conversation increases by up to 11.48%, and Amazon Counterfactual by up to 7.51%. To probe whether the improvements are



- (a) Standard Deviation Distribution per Fragment.
- (b) Average Cosine Similarity per Fragment.

Figure 3: Analysis of fragment-level responses to the semantic attribute of toxicity. (a) displays the distribution of dimension-wise standard deviations for the embedding difference vectors between toxic/neutral sentence pairs, grouped by fragment. (b) shows the average cosine similarity for each fragment between the sentence pairs.

driven by overall embedding quality or by the semantic specialization of individual fragments, Figure 2 compares the performance of each fragment with that of the full vector. As the number of partitions increases, some fragments clearly outperform the full vector; in particular, in the Toxic Conversation (12,64) model, several fragments surpass the whole, and the 5th fragment exceeds it by more than 0.1. In other words, using only 16 dimensions (about 12% of 768) can outperform the full embedding, suggesting that training with fragment similarity concentrates semantic signals within fragments.

6.1.2 ANALYZING THE SPECIALIZATION MECHANISM

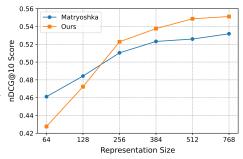
Setup Building on the previous analysis, we statistically demonstrate how specific fragments encode semantic attributes. In this experiment, we use a model trained with 12 fragments of 64 dimensions each and the TextDetox Dementieva et al. (2025) dataset containing 400 Toxic/Neutral sentence pairs. To quantify fragment-wise activation differences, we compute the dimension-wise standard deviation of the embedding difference vectors between sentence pairs, group these statistics by fragment and analyze their distributions; in parallel, we measure the average cosine similarity between the fragment embeddings of the sentence pairs.

Results The most notable finding is observed in the second fragment. While this fragment exhibits the highest average cosine similarity across toxic/neutral sentence pairs (Figure 3(b)), it concurrently achieves superior toxicity classification performance for the (12,64) model, as depicted in Figure 2(a). This result is attributable to the characteristics shown in Figure 3(a): a small subset of dimensions within this fragment presents substantial standard deviations in the pairwise difference vectors. This indicates that a minority of dimensions robustly encodes the distinction between toxic and neutral representations, while the majority remain largely invariant. Collectively, these observations validate that our methodology induces fragments to specialize in encoding distinct semantic attributes.

6.2 Comparison with Matryoshka Representation Learning

Setup We compare the efficiency of representation with Matryoshka Representation Learning (MRL) Kusupati et al. (2022), a representative compression approach for adaptive-dimensional embeddings. MRL concentrates information importance in the prefix of the embedding so that strong performance can be achieved with only a subset of dimensions. For MRL, we train ModernBERT at embedding sizes [768, 512, 384, 256, 128, 64]. For our method, we use a model trained with 48 fragments of 16 dimensions each. For a fair comparison at the same dimensionality, we construct our representation by concatenating fragments of size 16 in order until the target dimension is reached. For example, the 256 dimensional variant uses the first 16 fragments and is compared directly to MRL at 256 dimensions.

Results Figure 4 presents a comparison of retrieval performance across representation sizes. Both methods show a common pattern of improvement as dimensionality increases. For dimensionalities at or below 128, MRL holds a slight advantage, which we attribute to its training objective that concentrates critical information in the prefix of the embedding. However, after the curves cross at 256 dimensions, our method consistently outperforms MRL at all larger sizes. In particular, at 512 dimensions we observe approximately a 4.34% gain in nDCG@10, and the gap continues to widen as dimensionality increases. These results sug- Figure 4: Retrieval Performance Comparison gest that, unlike MRL, which compresses information with Matryoshka Representation Learning into a subset of dimensions, our approach regards each



fragment as an independent semantic unit and leverages complementary interactions across fragments to improve representational quality. In addition, these findings suggest that fragment training based on fragment similarity can also serve an adaptive dimensionality.

RELATED WORK 7

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447 448 449

450 451

452

453

454

455

456

457

458

459

460

461 462

463

464

465

466

467

468

469

470

471

472

473 474

475 476

477

478

479

480

481

482

483

484

485

One factor that undermines the expressiveness of embedding models and degrades retrieval performance is representation dilution. A major cause of representation dilution arises in the pooling process that aggregates token-level representations into a single document vector. Pooling inevitably incurs information loss as it compresses the rich semantic content of the input text into a single vector. In this regard, Lee et al. (2025a) point out that mean pooling dilutes information about salient spans, and that [EOS] pooling can suffer from recency bias (Lin et al., 2025), thereby clarifying the limitations of both approaches. This dilution problem becomes more severe as text length increases: Hu et al. (2025) note that representing a long context with a single vector can lead to representation collapse (Zhou et al., 2024) or dilution. Furthermore, structural characteristics of the model, such as causal attention, can also induce dilution of discriminative information in the latter part of the text (Springer et al., 2024).

Beyond these characteristics, the similarity metric itself also acts as a key contributing factor. In practice, many recent embedding models adopt cosine similarity as the primary similarity measure (Günther et al., 2024; Lee et al., 2025b; Muennighoff et al., 2024; Choi et al., 2024). In particular, cosine similarity is directly included in the training objective of contrastive learning, such as the InfoNCE loss, playing a decisive role in shaping the model's representation space. However, cosine similarity has a fundamental limitation: it gives rise to anisotropy in the embedding space (You, 2025; Liang et al., 2021). This issue causes most vectors to cluster within a narrow cone region in high-dimensional space, undermining semantic discriminability, and inducing a distance concentration effect where pairwise distances become similar, thus degrading the reliability of retrieval systems (Wang & Isola, 2020). Additionally, other metrics such as Euclidean distance can flatten complex hierarchical semantic relations, distorting the original semantic context (Sinha et al., 2024).

Conclusion

In this paper, we propose Semantic Fragment Similarity (SFS) to address how global similarity calculations in Dense Retrieval flatten multifaceted semantic information, which degrades representation quality. SFS operates by partitioning an embedding vector into multiple non-overlapping fragments, independently computing similarity at the fragment level, and aggregating these local scores. This approach induces the model to assign distinct semantic roles to each fragment, and our experiments demonstrate that it consistently outperforms conventional global similarity calculation across a diverse range of models and tasks. Notably, this approach induces a semantic division of labor, evidenced by our analysis where a single fragment can outperform the entire embedding on specific tasks. Ultimately, SFS challenges the conventional paradigm of relying on global-level operations, presenting a new direction for more structured and reliable models, though future work remains in areas like optimal partitioning and the automatic identification of fragment roles.

ETHICS STATEMENT

This research raises no direct ethical concerns. It does not involve human participants, personal or sensitive information, or animal experiments. All datasets are publicly available and legally licensed for research use. The models and methodologies employed adhere to community-accepted ethical practices and are not designed for harmful, malicious, or discriminatory purposes. We believe this work aligns with responsible AI research principles and does not introduce foreseeable risks of misuse.

REPRODUCIBILITY STATEMENT

Our research is designed for full reproducibility. All datasets, models, and training methodologies are described in detail to allow for easy replication. The experimental setup is thoroughly documented in Section 3, with specific training details, including hyperparameters and computational resources used, provided in Appendix B. We also provide a complete list of benchmark datasets used for evaluation in Appendix C.

REFERENCES

- Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension dataset, 2016.
- Chanyeol Choi, Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, and Jy yong Sohn. Linq-embed-mistral technical report, 2024.
- Gabriel de Souza P. Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt Schifferer, and Even Oldridge. Nv-retriever: Improving text embedding models with effective hard-negative mining, 2024.
- Daryna Dementieva, Nikolay Babakov, Amit Ronen, Abinew Ali Ayele, Naquee Rizwan, Florian Schneider, Xintong Wang, Seid Muhie Yimam, Daniil Alekhseevich Moskovskiy, Elisei Stakovskii, Eran Kaufman, Ashraf Elnagar, Animesh Mukherjee, and Alexander Panchenko. Multilingual and explainable text detoxification with parallel corpora. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 7998–8025, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL https://aclanthology.org/2025.coling-main.535/.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019. URL https://arxiv.org/ abs/1810.04805.
- Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. Eli5: Long form question answering, 2019.
- Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan. Scaling deep contrastive learning batch size under memory limited setup, 2021. URL https://arxiv.org/abs/2101.06983.
- Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey, 2023.
- Michael Günther, Jackmin Ong, Isabelle Mohr, Alaeddine Abdessalem, Tanguy Abel, Mohammad Kalim Akram, Susana Guzman, Georgios Mastrapas, Saba Sturua, Bo Wang, Maximilian Werk, Nan Wang, and Han Xiao. Jina embeddings 2: 8192-token general-purpose text embeddings for long documents, 2024. URL https://arxiv.org/abs/2310.19923.

- Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun hsuan Sung, Laszlo Lukacs, Ruiqi Guo, Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient natural language response suggestion for smart reply, 2017.
- Xinshuo Hu, Zifei Shan, Xinping Zhao, Zetian Sun, Zhenyu Liu, Dongfang Li, Shaolin Ye, Xinyuan Wei, Qian Chen, Baotian Hu, Haofen Wang, Jun Yu, and Min Zhang. Kalm-embedding: Superior training data brings a stronger embedding model, 2025.
- Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7969–7992, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.495. URL https://aclanthology.org/2023.emnlp-main.495/.
- Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics* (*Volume 1: Long Papers*), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147/.
- Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.emnlp-main.550/.
- Daniel Khashabi, Amos Ng, Tushar Khot, Ashish Sabharwal, Hannaneh Hajishirzi, and Chris Callison-Burch. GooAQ: Open question answering with diverse answer types. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2021*, pp. 421–433, Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021. findings-emnlp.38. URL https://aclanthology.org/2021.findings-emnlp.38/.
- Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized late interaction over bert, 2020.
- Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ramanujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, and Ali Farhadi. Matryoshka representation learning, 2022.
- Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural questions: A benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL https://aclanthology.org/Q19-1026/.
- Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models, 2025a. URL https://arxiv.org/abs/2405.17428.
- Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim, Gustavo Hernández Ábrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, Xiaoqi Ren, Shanfeng Zhang, Daniel Salz, Michael Boratko, Jay Han, Blair Chen, Shuo Huang, Vikram Rao, Paul Suganthan, Feng Han, Andreas Doumanoglou, Nithi Gupta, Fedor Moiseev, Cathy Yip, Aashi Jain, Simon Baumgartner, Shahrokh Shahi, Frank Palma Gomez, Sandeep Mariserla, Min Choi, Parashar Shah, Sonam Goenka, Ke Chen, Ye Xia, Koert Chen, Sai Meher Karthik Duddu, Yichang Chen, Trevor Walker, Wenlei Zhou, Rakesh Ghiya, Zach Gleicher, Karan Gill, Zhe Dong, Mojtaba

- Seyedhosseini, Yunhsuan Sung, Raphael Hoffmann, and Tom Duerig. Gemini embedding: Generalizable embeddings from gemini, 2025b.
- Yibin Lei, Tao Shen, Yu Cao, and Andrew Yates. Enhancing lexicon-based text embeddings with large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 18986–19001, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025. acl-long.930. URL https://aclanthology.org/2025.acl-long.930/.
- Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2020.
- Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich Küttler, Aleksandra Piktus, Pontus Stenetorp, and Sebastian Riedel. Paq: 65 million probably-asked questions and what you can do with them, 2021.
- Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence embeddings from pre-trained language models, 2020.
- Chaofan Li, MingHao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Yingxia Shao, Defu Lian, and Zheng Liu. Making text embedders few-shot learners, 2024.
- Yuxin Liang, Rui Cao, Jie Zheng, Jie Ren, and Ling Gao. Learning to remove: Towards isotropic pre-trained bert embedding, 2021.
- Ailiang Lin, Zhuoyun Li, Kotaro Funakoshi, and Manabu Okumura. Causal2vec: Improving decoder-only llms as versatile embedding models, 2025.
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019. URL https://arxiv.org/abs/1907.11692.
- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https://arxiv.org/abs/1711.05101.
- Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott, Manel Zarrouk, and Alexandra Balahur. Www'18 open challenge: Financial opinion mining and question answering. In *Companion Proceedings of the The Web Conference 2018*, WWW '18, pp. 1941–1942, Republic and Canton of Geneva, CHE, 2018. International World Wide Web Conferences Steering Committee. ISBN 9781450356404. doi: 10.1145/3184558.3192301. URL https://doi.org/10.1145/3184558.3192301.
- Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding benchmark, 2023. URL https://arxiv.org/abs/2210.07316.
- Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and Douwe Kiela. Generative representational instruction tuning, 2024.
- Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training a reproducible long context text embedder, 2025. URL https://arxiv.org/abs/2402.01613.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pp. 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264/.
- Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bertnetworks, 2019.

- Aditya Sinha, Siqi Zeng, Makoto Yamada, and Han Zhao. Learning structured representations with hyperbolic embeddings, 2024.
 - Jacob Mitchell Springer, Suhas Kotha, Daniel Fried, Graham Neubig, and Aditi Raghunathan. Repetition improves language model embeddings, 2024.
 - Sotaro Takeshita, Yurina Takeshita, Daniel Ruffinelli, and Simone Paolo Ponzetto. Randomly removing 50
 - Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
 - Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A heterogenous benchmark for zero-shot evaluation of information retrieval models, 2021.
 - James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a large-scale dataset for fact extraction and VERification. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 809–819, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10. 18653/v1/N18-1074. URL https://aclanthology.org/N18-1074/.
 - Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding, 2018.
 - Henning Wachsmuth, Shahbaz Syed, and Benno Stein. Retrieval of the best counterargument without prior topic knowledge. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 241–251, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1023. URL https://aclanthology.org/P18-1023/.
 - David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Cohan, and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 7534–7550, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.609. URL https://aclanthology.org/2020.emnlp-main.609/.
 - Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and uniformity on the hypersphere, 2020.
 - Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Griffin Thomas Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2526–2547, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.127. URL https://aclanthology.org/2025.acl-long.127/.
 - Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to advance general chinese embedding, 2023.
 - Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text retrieval, 2020.
 - Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering, 2018.
 - Kisung You. Semantics at an angle: When cosine similarity works until it doesn't, 2025.

- Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong Yang, Pengjun Xie, Fei Huang, Meishan Zhang, Wenjie Li, and Min Zhang. mgte: Generalized long-context text representation and reranking models for multilingual text retrieval, 2024. URL https://arxiv.org/abs/2407.19669.
- Xinyu Zhang, Xueguang Ma, Peng Shi, and Jimmy Lin. Mr. TyDi: A multi-lingual benchmark for dense retrieval. In Duygu Ataman, Alexandra Birch, Alexis Conneau, Orhan Firat, Sebastian Ruder, and Gozde Gul Sahin (eds.), *Proceedings of the 1st Workshop on Multilingual Representation Learning*, pp. 127–137, Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.mrl-1.12. URL https://aclanthology.org/2021.mrl-1.12/.
- Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo, Ehsan Kamalloo, David Alfonso-Hermelo, Xiaoguang Li, Qun Liu, Mehdi Rezagholizadeh, and Jimmy Lin. MIRACL: A multilingual retrieval dataset covering 18 diverse languages. *Transactions of the Association for Computational Linguistics*, 11:1114–1131, 2023. doi: 10.1162/tacl_a_00595. URL https://aclanthology.org/2023.tacl-1.63/.
- Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advancing text embedding and reranking through foundation models, 2025.
- Yuqi Zhou, Sunhao Dai, Zhanshuo Cao, Xiao Zhang, and Jun Xu. Length-induced embedding collapse in plm-based models, 2024.

A LIMITATIONS

While the proposed Semantic Fragment Similarity (SFS) improves retrieval performance, several limitations highlight important directions for future work. First, although we have experimentally confirmed that SFS training induces a semantic division of labor among fragments, intuitively interpreting and naming the specific meaning that each fragment specializes in remains a challenge. The absence of a systematic method to quantify the semantic function of each fragment is a factor that limits the model's interpretability. This limitation in interpretability is also directly linked to another assumption of our study: that SFS computes the final score by simply averaging the similarity scores of the fragments. This approach carries the implicit premise that all fragments contribute equally to relevance judgments for any given task. If future research enables the identification and quantification of each fragment's semantic function, it would be possible to devise a more sophisticated aggregation mechanism that moves beyond simple averaging to dynamically assign weights tailored to the specific characteristics of a task.

B TRAINING DETAILS

B.1 SETUP

All training is conducted on four NVIDIA A6000 GPUs. We employ GradCache (Gao et al., 2021) to train with a large batch size (512) with limited GPU memory. Models are trained for 2 epochs with a maximum sequence length of 512, using bf16 precision. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 1e-4 and a linear learning rate warm-up for 5% of the total steps. Additionally, to ensure reproducibility, all random seeds are fixed.

Table 8: Instructions and number of samples used for each training dataset.

Task Name	Instruction	# of samples
arguana	Given a claim, retrieve documents that support or refute the claim	4.1k
fever	Given a claim, retrieve documents that support or refute the claim	29.1k
scifact	Given a scientific claim, retrieve documents that support or refute the claim	0.5k
paq	Given a web search query, retrieve relevant passages that answer the query	45.2k
msmarco_document	Given a question, retrieve documents that can help answer the question	50k
msmarco_passage	Given a question, retrieve passages that can help answer the question	50k
squad	Given a question, retrieve passages that answer the question	87.6k
natural question	Given a question, retrieve passages that answer the question	58.6k
hotpotqa	Given a multi-hop question, retrieve documents that can help answer the question	84.5k
fiqa	Given a financial question, retrieve relevant passages that answer the query	5.5k
miracl	Given a question, retrieve passages that answer the question	7.9k
mrtydi	Given a question, retrieve passages that answer the question	3.5k
gooaq	Given a question, retrieve passages that answer the question	40.4k
eli5	Given a question, retrieve passages that answer the question	21k
trivia_qa	Given a question, retrieve passages that answer the question	31.7k

B.2 DATASET

We leverage the training data provided by BGE-en-ICL (Li et al., 2024) as follows (Lei et al., 2025) along with a collection of publicly available retrieval datasets. We adopt the retrieval datasets as follows: ArguAna (Wachsmuth et al., 2018), FEVER (Thorne et al., 2018), SciFact (Wadden et al., 2020), PAQ (Lewis et al., 2021), MSMARCO (Bajaj et al., 2016), SQuAD (Rajpurkar et al., 2016), Natural Question (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018), FiQA (Maia et al., 2018), MIRACL (Zhang et al., 2023), Mr.TyDi (Zhang et al., 2021), GooAQ (Khashabi et al., 2021), ELI5 (Fan et al., 2019) and TriviaQA (Joshi et al., 2017). The full list of detailed datasets and their corresponding instructions is provided in Table 8.

Hard Negative Mining To construct a high-quality training dataset, we employ a hard negative mining process (de Souza P. Moreira et al., 2024). This process begins by utilizing bge-large-en-v1.5 (Xiao et al., 2023) to convert all queries and passages into dense vector representations. For each query, we perform an efficient, corpus-wide semantic search to rank all passages by similarity. From this ranked list, we select effective hard negatives. We adopt a top sampling strategy and apply an absolute margin of 0.04. From the resulting candidates, we sample 7 hard negatives for each sample.

C EVALUATION DETAILS

Table 9: Subset of MTEB tasks and benchmarks used for our experiments.

Task Category	Benchmarks
Retrieval (12)	NanoArguAna, NanoClimateFEVER, NanoDBPEDIA, NanoFEVER,
	NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus,
	NanoQuoraRetrieval, NanoSCIDOCS, NanoSciFact, NanoTouche2020
Reranking (4)	AskUbuntuDupQuestions, MindSmallRerank, SciDocsRR,
	StackOverflowDupQuestions
Classification (7)	AmazonCounterfactual, AmazonPolarity, AmazonReviews, Banking77,
	Imdb, ToxicConversations, TweetSentimentExtraction
STS (8)	BIOSSES, STS12, STS13, STS14, STS15, STS16, STS17, STS22

Table 9 lists all the evaluation tasks. We evaluate all five fine-tuned models on the MTEB Benchmark encompassing 12 retrieval datasets, 4 reranking datasets, 7 classification datasets, and 8 semantic textual similarity datasets. Due to the significant computational cost of the full benchmark, we specifically utilize NanoBEIR Thakur et al. (2021) for the retrieval tasks (Takeshita et al., 2025). For the classification, we include datasets that are evaluated using the k-NN classification. Furthermore, to align with our model's learning mechanism, similarity is specifically measured using our proposed fragmentation similarity. For evaluation, we use the prompts provided by the library ¹ for each benchmark.

D DETAILED EXPERIMENTAL RESULTS

This appendix provides a comprehensive breakdown of the performance metrics for each model and component analysis evaluated in our study.

First, we present the detailed results for the main experiments. The performance breakdown for ModernBERT is presented in Table 13, followed by the results for BERT in Table 10, GTE-en-MLM in Table 14, NomicBERT in Table 12, and ROBERTa in Table 11.

Additionally, we provide the results from our ablation and component analysis studies. Table 15 details the impact of different **pooling methods**, while the effects of **representation scaling** are shown in Table 16. The results related to the **decoder architecture** and the choice of **similarity metric** are documented in Table 17 and Table 18, respectively. Finally, the analysis of the **Matryoshka Representation Learning (MRL)** training objective is provided in Table 19.

¹https://github.com/embeddings-benchmark/mteb

Table 10: Full Benchmark Results for BERT

Dataset	(1,768)	(3,256)	(6,128)	(12,64)	(24,32)	(48,16)
ArguAna	0.5780	0.5757	0.5873	0.5837	0.5963	0.5736
ClimateFEVER	0.2224	0.2273	0.2290	0.2243	0.2266	0.2181
DBPEDIA	0.5148	0.5129	0.5132	0.5089	0.5168	0.5155
FEVER	0.8221	0.8034	0.8208	0.8172	0.8253	0.8306
FiQA2018	0.3847	0.3730	0.3810	0.3862	0.3788	0.3774
HotpotQA	0.6313	0.6336	0.6364	0.6222	0.6263	0.6330
MSMARCO	0.5693	0.5595	0.5609	0.5503	0.5721	0.5661
NFCorpus	0.2542	0.2627	0.2628	0.2679	0.2646	0.2690
QuoraRetrieval	0.9267	0.9208	0.9210	0.9199	0.9193	0.9203
SCIDOCS	0.2475	0.2446	0.2437	0.2468	0.2458	0.2487
SciFact	0.5675	0.5644	0.5685	0.5648	0.5651	0.5571
Touche2020	0.4695	0.4615	0.4688	0.4665	0.4679	0.4739
AskUbuntuDupQuestions	0.5502	0.5551	0.5533	0.5534	0.5585	0.5570
SciDocsRR	0.7021	0.7021	0.7023	0.7017	0.7037	0.7046
StackOverflowDupQuestions	0.4248	0.4266	0.4284	0.4271	0.4279	0.4302
MindSmallRerank	0.3117	0.3117	0.3113	0.3113	0.3113	0.3111
BIOSSES	0.8170	0.8195	0.8196	0.8236	0.8218	0.8152
STS12	0.6246	0.6268	0.6277	0.6242	0.6276	0.6296
STS13	0.7893	0.7885	0.7917	0.7907	0.7932	0.7956
STS14	0.6952	0.6969	0.6995	0.6996	0.7036	0.7056
STS15	0.7836	0.7852	0.7878	0.7860	0.7894	0.7912
STS16	0.7571	0.7572	0.7568	0.7579	0.7607	0.7625
STS17	0.7689	0.7729	0.7810	0.7760	0.7836	0.7862
STS22	0.6439	0.6444	0.6468	0.6490	0.6528	0.6568
AmazonCounterfactual	0.5509	0.5535	0.5569	0.5679	0.5773	0.5730
AmazonPolarity	0.5981	0.5971	0.5969	0.6002	0.6021	0.6034
AmazonReviews	0.2756	0.2751	0.2745	0.2742	0.2773	0.2777
Banking77	0.6849	0.6859	0.6884	0.6869	0.6900	0.6902
Imdb	0.5725	0.5725	0.5707	0.5692	0.5761	0.5772
ToxicConversations	0.5027	0.5048	0.5090	0.5326	0.5099	0.5106
TweetSentimentExtraction	0.4285	0.4320	0.4293	0.4281	0.4316	0.4313

Table 11: Full Benchmark Results for RoBERTa

Dataset	(1,768)	(3,256)	(6,128)	(12,64)	(24,32)	(48,16)
ArguAna	0.6112	0.6030	0.6194	0.6198	0.6258	0.6256
ClimateFEVER	0.2098	0.2481	0.2348	0.2414	0.2225	0.2549
DBPEDIA	0.4890	0.4857	0.4929	0.4983	0.5017	0.5011
FEVER	0.6952	0.6969	0.6939	0.6800	0.6886	0.7053
FiQA2018	0.4101	0.4284	0.4317	0.4432	0.4304	0.4436
HotpotQA	0.6102	0.6178	0.6209	0.6288	0.6540	0.6392
MSMARCO	0.5601	0.5590	0.5513	0.5835	0.5763	0.5569
NFCorpus	0.2357	0.2373	0.2292	0.2397	0.2380	0.2386
QuoraRetrieval	0.9415	0.9447	0.9361	0.9433	0.9260	0.9462
SCIDOCS	0.2720	0.2768	0.2797	0.2857	0.2774	0.2916
SciFact	0.5163	0.5001	0.4999	0.5263	0.5436	0.5147
Touche2020	0.5126	0.5079	0.5110	0.5118	0.5118	0.5258
AskUbuntuDupQuestions	0.5605	0.5591	0.5622	0.5560	0.5611	0.5582
MindSmallRerank	0.3213	0.3202	0.3198	0.3208	0.3202	0.3182
SciDocsRR	0.6956	0.6964	0.6926	0.6967	0.6977	0.6977
StackOverflowDupQuestions	0.4176	0.4185	0.4163	0.4165	0.4194	0.4259
BIOSSES	0.7332	0.7400	0.7408	0.7530	0.7588	0.7477
STS12	0.6337	0.6294	0.6282	0.6244	0.6290	0.6342
STS13	0.7732	0.7731	0.7714	0.7698	0.7769	0.7730
STS14	0.6745	0.6748	0.6741	0.6676	0.6764	0.6768
STS15	0.8011	0.7976	0.7968	0.7951	0.7948	0.7971
STS16	0.7741	0.7763	0.7755	0.7644	0.7694	0.7724
STS17	0.7948	0.7965	0.7787	0.7914	0.7812	0.7925
STS22	0.6790	0.6859	0.6785	0.6844	0.6828	0.6790
AmazonCounterfactual	0.5427	0.5385	0.5388	0.5981	0.6191	0.6002
AmazonPolarity	0.6072	0.5991	0.6030	0.6004	0.6048	0.5931
AmazonReviews	0.2787	0.2761	0.2841	0.2809	0.2845	0.2823
Banking77	0.7237	0.7199	0.7232	0.7207	0.7240	0.7267
Imdb	0.5937	0.5932	0.5939	0.5757	0.5820	0.5762
ToxicConversations	0.5371	0.5611	0.5723	0.6117	0.5885	0.5979
TweetSentimentExtraction	0.4266	0.4176	0.4293	0.4344	0.4297	0.4238

Dataset

ArguAna

918 919

Table 12: Full Benchmark Results for NomicBERT

(3,256)

0.5685

(6,128)

0.5944

(12.64)

0.6109

(24,32)

0.5997

(48,16)

0.5974

(1.768)

0.5795

920 921 922

923

924

925

926

934

935

941

947 948 949

946

955

961

971

ClimateFEVER 0.3034 0.2915 0.2894 0.2947 0.2923 0.3059 **DBPEDIA** 0.5305 0.5398 0.5480 0.5399 0.5334 0.5482 **FEVER** 0.7814 0.8017 0.8181 0.80000.8120 0.8068 FiOA2018 0.4463 0.4573 0.4556 0.4580 0.4472 0.4403 HotpotQA 0.6766 0.6631 0.6628 0.6741 0.6950 0.6950 MSMARCO 0.5748 0.5860 0.5840 0.6115 0.5863 0.5925 0.2303 0.2229 0.2291 0.2329 **NFCorpus** 0.2192 0.2219 OuoraRetrieval 0.8992 0.9095 0.9258 0.9143 0.9212 0.9342 0.2630 0.2507 0.2690 0.2657 SCIDOCS 0.2724 0.2638 SciFact 0.5880 0.5865 0.5958 0.5881 0.5876 0.5741 0.5251 Touche2020 0.5429 0.5282 0.52860.5253 0.5299 AskUbuntuDupQuestions 0.5505 0.5525 0.5501 0.5521 0.5508 0.5516 0.3052 0.3041 0.3055 0.3053 MindSmallRerank 0.30620.3048SciDocsRR 0.7085 0.7070 0.7068 0.7085 0.7114 0.7126 StackOverflowDupQuestions 0.4246 0.4262 0.4168 0.4181 0.4169 0.4188 **BIOSSES** 0.7975 0.7939 0.7922 0.7987 0.8063 0.8091 0.6368 0.6375 0.6288 0.6280 0.6329 0.6393 STS12 STS13 0.78120.7794 0.7723 0.76160.7656 0.7723 STS14 0.7051 0.6974 0.6929 0.6919 0.6965 0.6994 0.7951 0.7964 0.7931 0.7898 0.7918 0.7929 STS15 STS16 0.7721 0.7677 0.7669 0.7739 0.7764 0.7772 STS17 0.7941 0.8037 0.7878 0.7908 0.7960 0.7974 0.6607 0.6598 0.6637 STS22 0.6651 0.6647 0.6635 0.4996 0.5010 0.5043 0.5134 0.5231 AmazonCounterfactual 0.5105 AmazonPolarity 0.5834 0.5857 0.5808 0.5899 0.5932 0.5934 AmazonReviews 0.2683 0.2682 0.2702 0.2733 0.2737 0.2740 0.7002 0.6996 0.7009 0.7046 0.7072 0.7063 Banking77 Imdb 0.5579 0.5587 0.5630 0.5618 0.5622 0.5610 0.4737 0.4845 0.4879 0.5224 0.5269 0.5282 ToxicConversations 5 conversations 5 conversat

Table 13: Full Benchmark Results for ModernBERT

(3,256)

0.3133

0.7320

0.4184

0.4188

(6,128)

0.5802

0.2567

0.4954

0.8071

0.4703

0.6505

0.5803

0.2248

0.9405

0.2982

0.6041

0.5179

0.5891

0.3122

0.7323

0.4733

0.8187

0.6554

0.7953

0.7162

0.8037

0.7609

0.7969

0.6689

0.5371

0.4223

(12,64)

0.5852

0.1862

0.5143

0.7306

0.4734

0.6582

0.5713

0.2208

0.9494

0.2941

0.5936

0.5114

0.5855

0.3171

0.7319

0.4692

0.8132

0.6399

0.7710

0.7051

0.8017

0.7648

0.7983

0.6712

0.5468

0.4148

(24,32)

0.5950

0.2969

0.5108

0.7968

0.4851

0.6612

0.6027

0.2387

0.9552

0.2849

0.6558

0.5146

0.5849

0.3143

0.7396

0.4746

0.8076

0.6534

0.7851

0.7109

0.8026

0.7745

0.7820

0.6718

0.5694

0.4207

(48,16)

0.5937

0.2994

0.5100

0.8051

0.4726

0.6776

0.5755

0.2544

0.9408

0.2911

0.6640

0.5201

0.5892

0.3154

0.7406

0.4760

0.8103

0.6480

0.7834

0.7059

0.8033

0.7784

0.7816

0.6652

0.5686

0.4203

(1,768)

0.5895

0.3100

0.7290

0.5932 0.5979 ArguAna ClimateFEVER 0.2782 0.2682 **DBPEDIA** 0.4932 0.5012 **FEVER** 0.7746 0.7867 FiQA2018 0.4657 0.4711 0.6561 0.6489 HotpotOA **MSMARCO** 0.5797 0.5680 **NFCorpus** 0.2263 0.2325 QuoraRetrieval 0.9450 0.9521 SCIDOCS 0.2979 0.3027 0.6228 0.6040 SciFact Touche2020 0.5279 0.5081 0.5909

TweetSentimentExtraction

Dataset

StackOverflowDupQuestions 0.4756 0.4712 BIOSSES 0.8106 0.8125 STS12 0.6480 0.6448STS13 0.7997 0.7888STS14 0.7203 0.7106STS15 0.8057 0.8044 STS16 0.7643 0.7687 STS17 0.7926 0.7981 0.6615 0.6686 STS22 AmazonCounterfactual 0.5296 0.5333

AmazonReviews Banking77 Imdb ToxicConversations TweetSentimentExtraction

AskUbuntuDupQuestions

MindSmallRerank

AmazonPolarity

SciDocsRR

0.7587 0.5822 0.5863 0.4737 0.4807 0.4090 0.4094

0.5875

0.2775

0.5883 0.5883 0.5785 0.5895 0.5970 0.2717 0.2719 0.2675 0.2765 0.2803 0.7471 0.7504 0.7501 0.7509 0.7537 0.5832 0.5754 0.5951 0.4809 0.5165 0.5126 0.4051 0.4156 0.4168

0.5953 0.5281 0.4148

Table 14: Full Benchmark Results for GTE-en-MLM

976
977
978
979
980
981
982

Dataset	(1,768)	(3,256)	(6,128)	(12,64)	(24,32)	(48,16)
ArguAna	0.5958	0.5943	0.5989	0.6015	0.6040	0.5975
ClimateFEVER	0.2631	0.2710	0.2408	0.2756	0.2802	0.2846
DBPEDIA	0.2031	0.5248	0.5260	0.5127	0.2802	0.2840
FEVER	0.3200	0.7885	0.7445	0.7837	0.7900	0.7809
FiQA2018	0.4386	0.4685	0.4699	0.4812	0.4835	0.4799
HotpotQA	0.6389	0.6516	0.6440	0.6606	0.6618	0.6655
MSMARCO	0.6039	0.5871	0.6129	0.6220	0.6177	0.6099
NFCorpus	0.0039	0.2802	0.0129	0.0220	0.0177	0.0033
QuoraRetrieval	0.2884	0.2802	0.2300	0.2371	0.2839	0.2834
SCIDOCS	0.9230	0.2893	0.2915	0.2996	0.2949	0.3023
SciDocs SciFact	0.2842	0.2893	0.2913	0.2990	0.2949	0.5023
Touche2020	0.0220	0.5252	0.5250	0.5322	0.5379	0.5361
AskUbuntuDupQuestions	0.5180	0.5790	0.5230	0.5762	0.5773	0.5301
MindSmallRerank	0.3823	0.3790	0.3771	0.3762	0.3169	0.3771
SciDocsRR	0.3133	0.7321	0.7287	0.7314	0.7324	0.3130
StackOverflowDupQuestions	0.7304	0.7321	0.7267	0.7314	0.7324	0.7321
BIOSSES	0.4409	0.4382	0.4307	0.4390	0.4446	0.4440
STS12	0.6410	0.6137	0.6346	0.6411	0.6428	0.8210
STS13	0.0410	0.0424	0.0340	0.7903	0.0428	0.0437
STS14	0.7897	0.7929	0.7084	0.7903	0.7907	0.7923
STS15	0.7112	0.7133	0.7054	0.7120	0.7140	0.7138
STS16	0.8049	0.8092	0.8037	0.8100	0.8110	0.7806
STS17	0.7070	0.7090	0.7098	0.7778	0.7798	0.7800
STS22	0.6556	0.6569	0.6571	0.6598	0.6611	0.6603
AmazonCounterfactual	0.6536	0.0309	0.0371	0.0398	0.5046	0.6603
AmazonPolarity	0.5009	0.4949	0.4934	0.4982	0.6083	0.4828
AmazonReviews	0.0007	0.0020	0.0029	0.0000	0.0083	0.3943
	0.2774	0.2781	0.2733	0.2839	0.2860	0.2843
Banking77						
Imdb Tavia Conversations	0.5663	0.5693 0.4663	0.5743	0.5815 0.5184	0.5801	0.5779
ToxicConversations Type of Continuent Extraories	0.4664		0.5046		0.5174	0.5185
TweetSentimentExtraction	0.4277	0.4234	0.4223	0.4168	0.4121	0.4113

Table 15: Retrieval Benchmark Results for Average Pooling Methods

			Moder	nBERT		
Dataset	(1,768)	(3,256)	(6,128)	(12,64)	(24,32)	(48,16)
ArguAna	0.5976	0.6003	0.6136	0.6001	0.6095	0.5961
ClimateFEVER	0.2759	0.2945	0.2897	0.3080	0.3061	0.3152
DBPEDIA	0.5233	0.5202	0.5173	0.4930	0.5021	0.4912
FEVER	0.7949	0.7731	0.7847	0.7854	0.7887	0.7856
FiQA2018	0.4406	0.4471	0.4525	0.4455	0.4884	0.4886
HotpotQA	0.6555	0.6560	0.6401	0.6608	0.6638	0.6614
MSMARCO	0.5380	0.5266	0.5556	0.5255	0.5494	0.5469
NFCorpus	0.2502	0.2864	0.2658	0.2478	0.2666	0.2532
QuoraRetrieval	0.9518	0.9357	0.9361	0.9233	0.9550	0.9313
SCIDOCS	0.2922	0.2949	0.3060	0.2832	0.2958	0.2909
SciFact	0.6278	0.6556	0.6322	0.6352	0.6285	0.6534
Touche2020	0.5123	0.5036	0.5005	0.4953	0.5118	0.5147
			BE	RT		

			DE	I I		
Dataset	(1,768)	(3,256)	(6,128)	(12,64)	(24,32)	(48,16)
ArguAna	0.5951	0.5971	0.5899	0.6012	0.5939	0.6004
ClimateFEVER	0.2527	0.2536	0.2598	0.2637	0.2461	0.2470
DBPEDIA	0.5091	0.5162	0.5184	0.5248	0.5271	0.5136
FEVER	0.8118	0.8108	0.8219	0.8272	0.8276	0.8382
FiQA2018	0.3796	0.3703	0.3708	0.3797	0.3766	0.3653
HotpotQA	0.6386	0.6484	0.6424	0.6431	0.6428	0.6384
MSMARCO	0.5651	0.5783	0.5561	0.5531	0.5451	0.5662
NFCorpus	0.2572	0.2438	0.2495	0.2495	0.2473	0.2558
QuoraRetrieval	0.9303	0.9329	0.9230	0.9305	0.9306	0.9379
SCIDOCS	0.2481	0.2464	0.2479	0.2554	0.2537	0.2525
SciFact	0.5841	0.5858	0.5801	0.5802	0.5701	0.5732
Touche2020	0.4695	0.4693	0.4663	0.4618	0.4641	0.4662

Table 16: Retrieval Benchmark Results for Fragment Granularity Scaling

1	0	3	0
1	0	3	1
4	n	2	n

032	
033	
034	
035	
036	
037	
038	
039	
1040	
041	
042	
043	
0.4.4	

				N	AodernBE	RT					
Dataset	(1, 768)	(2, 384)	(3, 256)	(4, 192)	(6, 128)	(12, 64)	(24, 32)	(48, 16)	(96, 8)	(192, 4)	(384, 2)
ArguAna	0.5932	0.5853	0.5979	0.5890	0.5802	0.5852	0.5950	0.5937	0.6031	0.5885	0.5743
ClimateFEVER	0.2782	0.2617	0.2682	0.2608	0.2567	0.1862	0.2969	0.2994	0.3035	0.2920	0.2731
DBPEDIA	0.4932	0.4939	0.5012	0.4962	0.4954	0.5143	0.5108	0.5100	0.5081	0.5030	0.4900
FEVER	0.7746	0.8147	0.7867	0.7878	0.8071	0.7306	0.7968	0.8051	0.8079	0.7846	0.7619
FiQA2018	0.4657	0.4689	0.4711	0.4835	0.4703	0.4734	0.4851	0.4726	0.4789	0.4668	0.4400
HotpotQA	0.6561	0.6482	0.6489	0.6435	0.6505	0.6582	0.6612	0.6776	0.6700	0.6540	0.6188
MSMARCO	0.5797	0.5976	0.5680	0.6046	0.5803	0.5713	0.6027	0.5755	0.5702	0.5501	0.5400
NFCorpus	0.2263	0.2237	0.2325	0.2241	0.2248	0.2208	0.2387	0.2544	0.2391	0.2318	0.2298
QuoraRetrieval	0.9450	0.9562	0.9521	0.9544	0.9405	0.9494	0.9552	0.9408	0.9676	0.9544	0.9588
SCIDOCS	0.2979	0.2881	0.3027	0.2869	0.2982	0.2941	0.2849	0.2911	0.2848	0.2654	0.2578
SciFact	0.6228	0.6005	0.6040	0.6055	0.6041	0.5936	0.6558	0.6640	0.6570	0.6487	0.6064
Touche2020	0.5279	0.5175	0.5081	0.5243	0.5179	0.5114	0.5146	0.5201	0.5171	0.5183	0.5404
		(A. A.)		// //	BERT			(10.10)	(0.5.0)	/4.5.4	

Dataset	(1,768)	(2, 384)	(3, 256)	(4, 192)	(6, 128)	(12, 64)	(24, 32)	(48, 16)	(96, 8)	(192, 4)	(384, 2)
ArguAna	0.5780	0.5841	0.5757	0.5724	0.5873	0.5837	0.5963	0.5736	0.5717	0.5847	0.5490
ClimateFEVER	0.2224	0.2285	0.2273	0.2399	0.2290	0.2243	0.2266	0.2181	0.2221	0.2052	0.2285
DBPEDIA	0.5148	0.5108	0.5129	0.5142	0.5132	0.5089	0.5168	0.5155	0.5208	0.5177	0.5099
FEVER	0.8221	0.8133	0.8034	0.8161	0.8208	0.8172	0.8253	0.8306	0.8212	0.8009	0.8504
FiQA2018	0.3847	0.3879	0.3730	0.3725	0.3810	0.3862	0.3788	0.3774	0.3798	0.3640	0.3367
HotpotQA	0.6313	0.6462	0.6336	0.6474	0.6364	0.6222	0.6263	0.6330	0.6258	0.6210	0.6059
MSMARCO	0.5693	0.5703	0.5595	0.5685	0.5609	0.5503	0.5721	0.5661	0.5938	0.5709	0.5378
NFCorpus	0.2542	0.2652	0.2627	0.2610	0.2628	0.2679	0.2646	0.2690	0.2605	0.2610	0.2540
QuoraRetrieval	0.9267	0.9175	0.9208	0.9192	0.9210	0.9199	0.9193	0.9203	0.9206	0.9300	0.9293
SCIDOCS	0.2475	0.2427	0.2446	0.2362	0.2437	0.2468	0.2458	0.2487	0.2540	0.2409	0.2463
SciFact	0.5675	0.5740	0.5644	0.5722	0.5685	0.5648	0.5651	0.5571	0.5822	0.5692	0.4953
Touche2020	0.4695	0.4726	0.4615	0.4689	0.4688	0.4665	0.4679	0.4739	0.4638	0.4599	0.4729

Table 17: Retrieval Benchmark Results for Decoder Models

				Qwen	3-0.6B			
Dataset	(1, 2048)	(2, 1024)	(4, 512)	(8, 256)	(16, 128)	(32, 64)	(64, 32)	(128, 16)
ArguAna	0.5885	0.6229	0.6168	0.6039	0.6081	0.6289	0.6214	0.6221
ClimateFEVER	0.3585	0.3471	0.3592	0.3488	0.3341	0.3686	0.3524	0.3148
DBPEDIA	0.5104	0.5084	0.5371	0.5004	0.5477	0.5416	0.5305	0.5524
FEVER	0.8833	0.8796	0.8293	0.8745	0.8398	0.8627	0.8586	0.8196
FiQA2018	0.4891	0.4889	0.5152	0.4904	0.5180	0.5193	0.5160	0.4853
HotpotQA	0.7246	0.7322	0.7216	0.7176	0.7384	0.7088	0.7413	0.7248
MSMARCO	0.5260	0.5643	0.6162	0.5666	0.5790	0.5945	0.5784	0.6013
NFCorpus	0.2719	0.2652	0.2897	0.2881	0.2898	0.2798	0.2855	0.3017
QuoraRetrieval	0.9414	0.9409	0.9397	0.9405	0.9396	0.9429	0.9450	0.9470
SCIDOCS	0.3770	0.3717	0.3735	0.3801	0.3774	0.3803	0.3701	0.3829
SciFact	0.7464	0.7441	0.7366	0.7251	0.7333	0.7511	0.7520	0.7659
Touche2020	0.5146	0.5031	0.5276	0.5375	0.5066	0.5159	0.5208	0.5410
				Llama	-3.2-1B			

				Liama	-3.2-1D			
Dataset	(1, 2048)	(2, 1024)	(4, 512)	(8, 256)	(16, 128)	(32, 64)	(64, 32)	(128, 16)
ArguAna	0.6451	0.6215	0.6365	0.6276	0.6407	0.6349	0.6320	0.6546
ClimateFEVER	0.3129	0.3086	0.3043	0.3208	0.3142	0.3194	0.3278	0.3183
DBPEDIA	0.5191	0.5514	0.5425	0.5589	0.5550	0.5344	0.5445	0.5590
FEVER	0.8917	0.9214	0.8981	0.9095	0.8804	0.8720	0.8583	0.8919
FiQA2018	0.5454	0.5374	0.5368	0.5391	0.5450	0.5205	0.5448	0.5165
HotpotQA	0.7963	0.7843	0.7740	0.7764	0.7683	0.7944	0.7817	0.7810
MSMARCO	0.5589	0.5831	0.5961	0.5858	0.5965	0.6122	0.6289	0.5985
NFCorpus	0.3253	0.3463	0.3298	0.3338	0.3180	0.3345	0.3350	0.3354
QuoraRetrieval	0.9387	0.9483	0.9470	0.9505	0.9506	0.9351	0.9433	0.9441
SCIDOCS	0.3712	0.3592	0.3709	0.3719	0.3646	0.3642	0.3554	0.3672
SciFact	0.7324	0.7422	0.7563	0.7333	0.7380	0.7287	0.7243	0.7532
Touche2020	0.4973	0.5170	0.5093	0.5131	0.5089	0.5065	0.5151	0.5076

Table 18: Retrieval Benchmark Results for ModernBERT with Different Similarity Metrics

D-44	Cos	sine	Eucl	idean	Manl	nattan	D	ot
Dataset	(1,768)	(48, 16)	(1,768)	(48, 16)	(1,768)	(48, 16)	(1,768)	(48, 16)
ArguAna	0.5932	0.5937	0.4801	0.5434	0.5060	0.5886	0.4800	0.5597
ClimateFEVER	0.2782	0.2994	0.0492	0.2157	0.0465	0.2150	0.1143	0.2419
DBPEDIA	0.4932	0.5100	0.2358	0.3313	0.2963	0.5163	0.2293	0.4879
FEVER	0.7746	0.8051	0.0885	0.7061	0.1142	0.7159	0.5152	0.7304
FiQA2018	0.4657	0.4726	0.2764	0.3646	0.2997	0.4548	0.2037	0.4403
HotpotQA	0.6561	0.6776	0.6312	0.6576	0.6316	0.6218	0.6847	0.7034
MSMARCO	0.5797	0.5755	0.3738	0.4660	0.4001	0.5457	0.2653	0.5287
NFCorpus	0.2263	0.2544	0.1179	0.1647	0.1464	0.2030	0.1135	0.2014
QuoraRetrieval	0.9450	0.9408	0.9259	0.9338	0.9288	0.9475	0.8081	0.9536
SCIDOCS	0.2979	0.2911	0.2080	0.2374	0.2667	0.2619	0.1503	0.2706
SciFact	0.6228	0.6640	0.4414	0.5955	0.4716	0.5986	0.4076	0.6039
Touche2020	0.5279	0.5201	0.3907	0.4668	0.4196	0.5021	0.3310	0.4937

Table 19: Retrieval Benchmark Results on ModernBERT: MRL vs. SFS (trained with $d_{frag}=16$)

			N	1RL		
Dataset	64	128	256	384	512	768
ArguAna	0.5466	0.5405	0.5565	0.5654	0.5695	0.5757
ClimateFEVER	0.1988	0.2500	0.2678	0.2578	0.2663	0.2883
DBPEDIA	0.4465	0.4457	0.4773	0.5019	0.5048	0.5108
FEVER	0.6840	0.6898	0.7248	0.7928	0.7784	0.7941
FiQA2018	0.3174	0.3484	0.4274	0.4266	0.4484	0.4603
HotpotQA	0.5407	0.5780	0.6066	0.6050	0.6402	0.6278
MSMARCO	0.5313	0.5342	0.5768	0.5613	0.5452	0.5612
NFCorpus	0.1627	0.1900	0.2050	0.2100	0.2109	0.2236
NQ	0.4743	0.4984	0.5357	0.5301	0.5238	0.5230
QuoraRetrieval	0.9286	0.9462	0.9441	0.9548	0.9479	0.9478
SCIDOCS	0.2085	0.2414	0.2544	0.2897	0.2877	0.2891
SciFact	0.4845	0.5479	0.5692	0.6103	0.6043	0.5958
Touche2020	0.4701	0.4858	0.4890	0.4955	0.5091	0.5161
			9	SFS		
Dataset	64 (4)	128 (8)	256 (16)	384 (24)	512 (36)	768 (48)
ArguAna	0.5015	0.5156	0.5747	0.5963	0.5953	0.5937
ClimateFEVER	0.2023	0.2347	0.3020	0.2941	0.3113	0.2994
DBPEDIA	0.3676	0.4268	0.4677	0.4916	0.4926	0.5100
FEVER	0.5891	0.7333	0.7919	0.7728	0.7990	0.8051
FiQA2018	0.3353	0.3756	0.4340	0.4606	0.4795	0.4726
HotpotQA	0.5042	0.5840	0.6196	0.6525	0.6850	0.6776
MSMARCO	0.5071	0.5264	0.5761	0.5670	0.5802	0.5755
NFCorpus	0.1226	0.1445	0.2193	0.2467	0.2338	0.2544
NQ	0.3836	0.4491	0.5341	0.5408	0.5728	0.5616
QuoraRetrieval	0.9181	0.9167	0.9357	0.9447	0.9460	0.9408
SCIDOCS	0.1633	0.1961	0.2488	0.2832	0.2956	0.2911
SciFact	0.5114	0.5646	0.5954	0.6354	0.6355	0.6640
Touche2020	0.4530	0.4729	0.4977	0.5038	0.5068	0.5201