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Abstract

Discrete-state denoising diffusion models led to state-of-the-art performance in graph genera-
tion, especially in the molecular domain. Recently, they have been transposed to continuous
time, allowing more flexibility in the reverse process and a better trade-off between sampling
efficiency and quality. However, they have not yet been applied to graphs. Here, to leverage
the benefits of both approaches for graphs, we propose Cometh, a continuous-time discrete-
state graph diffusion model, tailored to the specificities of graph data. In addition, we also
successfully replaced the set of structural features previously used in discrete graph diffusion
models with a single random-walk-based encoding, providing a simple and principled way to
boost the model’s expressive power. Empirically, we show that integrating continuous time
leads to significant improvements across various metrics over state-of-the-art discrete-state
diffusion models on a large set of molecular and non-molecular benchmark datasets. In terms
of valid, unique, and novel (VUN) samples, Cometh obtains a near-perfect performance
of 99.5% on the planar graph dataset and outperforms DiGress by 12.6% on the large
GuacaMol dataset.

1 Introduction

Denoising diffusion models (Ho et al., 2020; Song et al., 2020) are among the most prominent and successful
classes of generative models. Intuitively, these models aim to denoise diffusion trajectories and produce new
samples by sampling noise and recursively denoising it, often outperforming competing architectures in tasks
such as image and video generation (Sohl-Dickstein et al., 2015; Yang et al., 2023). Recently, a large set
of works, e.g., Chen et al. (2023); Jo et al. (2022; 2024); Vignac et al. (2022), aimed to leverage diffusion
models for graph generation, e.g., the generation of molecular structures. One class of such models embeds the
graphs into a continuous space and adds Gaussian noise to the node features and graph adjacency matrix (Jo
et al., 2022). However, such noise destroys the graphs’ sparsity, resulting in complete, noisy graphs without
meaningful structural information, making it difficult for the denoising network to capture the structural
properties of the data. Therefore, discrete-state graph diffusion models such as DiGress (Vignac et al., 2022)
have been proposed, exhibiting competitive performance against their continuous-state counterparts. These
models utilize a categorical corruption process (Austin et al., 2021), making them more suited to the discrete
structure of graph data.

In parallel, the above Gaussian-noise-based diffusion models have been extended to continuous time (Song
et al., 2020), i.e., relying on a continuous-time stochastic process (Capasso & Bakstein, 2021), by formulating
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the forward process as a stochastic differential equation. In addition, discrete-state diffusion models have
recently been transposed to continuous time (Campbell et al., 2022; Sun et al., 2022), relying on continuous-
time Markov chains (CTMC). Unlike their discrete-time counterparts, which define a fixed time scale during
training, they allow training using a continuous-time scale and leave the choice of the time discretization
strategy for the sampling stage. Hence, incorporating continuous time enables a more optimal balance
between sampling efficiency and quality while providing greater flexibility in designing the reverse process, as
various CTMC simulation tools can be utilized (Campbell et al., 2022; Sun et al., 2022). However, extending
continuous-time discrete-state diffusion models to graphs is not straightforward. Unlike other discrete data,
such as text, where all tokens share the same support, nodes and edges in graphs have distinct attributes and
must be handled separately. Furthermore, the noise models used for other data – particularly the uniform
noise model, which yields very dense graphs – may be suboptimal for sparse, real-world graphs (Vignac et al.,
2022).

Present work Hence, to leverage the benefits of both approaches for graph generation, i.e., discrete-state
and continuous-time, we propose Cometh, a continuous-time discrete-state graph diffusion model, integrating
graph data into a continuous diffusion model framework; see Figure 1 for an overview of Cometh. Concretely,
we

1. propose a new noise model adapted to graph specificities, featuring distinct noising processes for
nodes and edges, and we extend the marginal transitions previously proposed for graph data to the
continuous-time setting.

2. In addition, we successfully replace the structural features used in most previous discrete graph
diffusion models with a random-walk-based encoding. We prove that it generalizes most of the
features used in DiGress, representing a simple and elegant way to boost the model’s expressivity
and reach state-of-the-art performance.

3. Empirically, we show that integrating continuous-time into a discrete-state graph diffusion model
leads to state-of-the-art results on synthetic and established molecular benchmark datasets across
various metrics. For example, in terms of VUN (valid, unique, and novel) samples, Cometh obtains
a near-perfect performance of 99.5% on the planar graph dataset and outperforms DiGress by 12.6%
on the large GuacaMol dataset.

Overall, Cometh is a state-of-the-art graph diffusion model that combines the benefits of a discrete-state
space with the flexibility of a continuous-time scale in its sampling algorithm design.

1.1 Related work

Diffusion models are a prominent class of generative models successfully applied to many data modalities,
such as images, videos, or point clouds (Yang et al., 2023).

Graph generation is a well-studied task applied to various application domains, such as molecule generation,
floorplan generation, or abstract syntax tree generation (Shabani et al., 2023; Shi et al., 2019). We can
roughly categorize graph generation approaches into auto-regressive models such as Kong et al. (2023); You
et al. (2018); Zhao et al. (2024); Jang et al. (2024b) and one-shot models such as diffusion models. The main
advantage of one-shot models over auto-regressive ones is that they generate the whole graph in a single step
and do not require any complex procedure to select a node ordering. On the other hand, auto-regressive
models are more flexible regarding the size of the generated graph, which can remain unknown beforehand,
and they usually enjoy more favorable complexity since the don’t require as many sampling steps as diffusion
models.

While the first diffusion models for graph generation leveraged continuous-state spaces (Niu et al., 2020), they
are now largely replaced by discrete-state diffusion models (Haefeli et al., 2022; Vignac et al., 2022), using a
discrete-time scale. However, using discrete time constrains the sampling scheme to a particular form called
ancestral sampling, which prevents the exploration of alternative sampling strategies that could optimize
sampling time or enhance sampling quality. Recently, there has been a surge of interest in continuous-time
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Figure 1: Overview of Cometh. During training, the graph transformer learns to predict the clean graph
G(0) from a noisy graph G(t). Unlike previous discrete-time diffusion models, Cometh performs transitions
at any time t ∈ [0, 1]. During sampling, the clean graph G(0) is first predicted and used to compute the
reverse rate R̂t,θ(G, G̃) as defined in Equation (2). Next, a τ -leaping step is performed to sample G(t−τ), with
the step length fixed to τ . Optionally, multiple corrector steps can be applied at t− τ , which experimentally
improves sample quality.

discrete-state diffusion models (Lou et al., 2023; Gat et al., 2024; Shi et al., 2024), which have demonstrated
promising performance on text generation tasks, rivaling GPT-2 models of comparable scale.

Another line of research considers lifting the graphs into a continuous-state space and applying Gaussian
noise to the node and edge features matrices (Niu et al., 2020; Jo et al., 2022; 2024). Such continuous
noise allows the generation of continuous features to be handled smoothly, such as the generation of atomic
coordinates in molecular graphs (Jo et al., 2024). The above Gaussian-noise-based diffusion models have
many successful applications in computational biology (Corso et al. (2023); Yim et al. (2023)). However,
they almost exclusively consider point-cloud generation, focusing on modeling the geometry of the molecules
and ignoring structural information. In addition, some hybrid approaches also exist that consider jointly
modeling the 2D molecular graphs and their 3D geometry (Hua et al., 2024; Le et al., 2023; Vignac et al.,
2023). These models usually rely on continuous noise for the atomic coordinates and discrete noise for the
atom and edge types.

Recent works have tried to scale graph generative models in size (Bergmeister et al., 2023; Luo et al.,
2023; Qin et al., 2023). Such frameworks are often built on top of previously proposed approaches, e.g.,
SparseDiff (Qin et al., 2023) is based on DiGress. Therefore, these scaling methods are likely to apply to
our approach.

Concurrently with our work, Xu et al. (2024) proposed a continuous-time discrete-state graph diffusion model.
While they experiment using an MPNN as the backbone with limited success, we effectively utilize RRWP
(Relative Random Walk Probabilities) as a positional encoding. Moreover, our experimental evaluation of
Cometh is more comprehensive, as we successfully implement the predictor-corrector mechanism (Diethelm
et al., 2004) and include a conditional generation experiment.

2 Background

In the following, we overview the continuous-time discrete-state diffusion framework on which Cometh builds.
We provide a complete description of this framework in Appendix B.1, providing intuitions and technical
details, and refer to Yang et al. (2023) for a general introduction to diffusion models.
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2.1 Continuous-time discrete diffusion

In the discrete diffusion setting, we aim at modeling a discrete data distribution pdata(z(0)), where z(0) ∈ Z
and Z is a finite set with cardinality S := |Z|. A continuous-time diffusion model (Campbell et al., 2022; Sun
et al., 2022; Lou et al., 2023) is a stochastic process, running from time t = 0 to t = 1. In the following, we
denote the marginal distributions of the state z(t) ∈ Z at time t by qt(z(t)), and qt|s(z(t) | z(s)) denotes the
conditional distribution of the state z(t) given the state z(s) ∈ Z at some time s ∈ [0, 1]. We also denote δz̃,z

the Kronecker delta, which equals 1 if z̃ = z and 0 otherwise. We define a forward process which gradually
transforms the marginal distribution q0(z(0)) = pdata(z(0)) into q1(z(1)), that is “close” to an easy-to-sample
prior distribution pref(z(1)), e.g., a uniform categorical distribution.

We define the forward process as a continuous-time Markov chain (CTMC). The current state z(t) alternates
between resting in the current state and transitioning to another state, where a transition rate matrix
R(t) ∈ RS×S controls the dynamics of the CTMC. Formally, the forward process is defined through the
infinitesimal transition probability from z(t) to another state z̃ ∈ Z, for a infinitesimal time step dt between
time t and t + dt,

qt+dt|t

(
z̃

∣∣ z(t)
)

:= δz̃,z(t) + R(t)
(

z(t), z̃
)

dt,

where R(t)(z(t), z̃) denotes the entry of R(t) that gives the rate from z(t) to z̃. Intuitively, the process is
more likely to transition to a state where R(t)(z(t), z̃) is high, and R(t) is designed so that q1(z(1)) closely
approximates the prior distribution pref.

The generative process is formulated as the time reversal of the forward process, therefore interpolating from
q1(z(1)) to pdata(z(0)). The rate of this reverse CTMC, R̂(t), is intractable (Campbell et al., 2022) and has to
be modeled by a parametrized approximation, i.e.,

R̂t,θ(z, z̃) = R(t)(z̃, z)
∑

z(0)∈Z

qt|0
(
z̃ | z(0))

qt|0
(
z | z(0)

)pθ
0|t

(
z(0) | z

)
, for z ̸= z̃,

where pθ
0|t

(
z(0) | z

)
is the denoising neural network with parameters θ.

For efficient training, the conditional distribution qt|0(z(t) | z(0)) needs to be analytically obtained; see
Appendix B.1 for more details. As demonstrated in Campbell et al. (2022), this property is achieved by
choosing R(t) = β(t)Rb with β(t) ∈ R being the noise schedule and Rb ∈ RS×S is a constant base rate
matrix. We can now generate samples by simulating the reverse process from t = 1 to t = 0. Different
algorithms can be employed for this purpose, such as Euler’s method (Sun et al., 2022), τ -leaping and the
predictor-corrector scheme (Campbell et al., 2022). In particular, the predictor-corrector method consists in,
after each τ -leaping step using R̂(t),θ(z(t)

d , z̃d), in applying several corrector steps using the expression defined
in Campbell et al. (2022), i.e., R̂(t),c = R̂(t),θ + R(t). This rate admits qt(z(t)) as its stationary distribution,
which means that applying the corrector steps brings the distribution of noisy graphs at time t closer to the
marginal distribution of the forward process.

3 A Continuous-Time Discrete-State Graph Diffusion Model

Here, we present our Cometh framework, a continuous-time discrete-state diffusion model for graph
generation. Let Jm, nK := {m, . . . , n} ⊂ N. We denote n-order attributed graph as a pair G := (G, X, E),
where G := (V (G), E(G)) is a graph, X ∈ {0, 1}n×a, for a > 0, is a node feature matrix, and E ∈ {0, 1}n×n×b,
for b > 0, is an edge feature tensor. Note that node and edge features are considered to be discrete and
consequently encoded in a one-hot encoding. For notational convenience, in the following, we denote the
graph at time t ∈ [0, 1] by G(t), the node feature of node i ∈ V (G) at time t by x

(t)
i ∈ J1, aK, and similarly

the edge feature of edge (i, j) ∈ E(G) at time t by e
(t)
ij ∈ J1, bK. In addition, we treat the absence of an edge

as a special edge with a unique edge feature. By 1, we denote an all-one vector of suitable size, by I, the
identity matrix of suitable size, while 0 denotes the all-zero matrix of suitable size. Moreover, by a′, we
denote the transpose of the vector a.
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3.1 Forward process factorization

Considering the graph state-space would result in a prohibitively large state, making it impossible to construct
a transition matrix. Therefore, we consider that the forward process factorizes and that the noise propagates
independently on each node and edge, enabling us to consider node and edge state spaces separately. Formally,
let G = (G, X, E) be n-order attributed graph, then we have

qt+dt|t

(
G(t+dt) ∣∣ G(t)

)
:=

n∏
i=1

qt+dt|t

(
x

(t+dt)
i

∣∣ x
(t)
i

) n∏
i<j

qt+dt|t

(
e

(t+dt)
ij

∣∣ e
(t)
ij

)
.

The above factorization reveals a challenge not yet addressed for the continuous-time diffusion model. In
other types of discrete data, such as text, all tokens share the same support. In contrast, nodes and edges
have different attributes, and their respective sets of labels may have different sizes. We, therefore, need to
define their respective forward processes differently.

We then define a pair of rate matrices (R(t)
X , R

(t)
E ), with R

(t)
X := β(t)RX and R

(t)
E := β(t)RE , where β is the

noise schedule and RX ∈ Rd×d, RE ∈ Re×e are base rate matrices for nodes and edges, respectively. The two
matrices differ in size and allow for controlling the dynamics of the forward process in distinct ways for nodes
and edges. Note that we followed the design choice of Campbell et al. (2022) introduced in Section 2.

3.2 Noise model: extending marginal transitions to continuous time

In the following, we detail the proposed noise model.

Noise model Several noise models have been proposed for discrete diffusion models, including uniform
transitions, absorbing transitions (Austin et al., 2021), and marginal transitions (Vignac et al., 2022). We
propose to use a rate matrix that is analogous to the marginal transition matrix, as it is well adapted for
graph data. However, marginal transitions have not yet been utilized in the continuous-time framework. To
address this, we extend this concept by constructing the following rate matrices, i.e.,

RX = 1m′
X − I and RE = 1m′

E − I,

where mX and mE are vectors representing the marginal distributions mX and mE of node and edge labels,
i.e., they contain the frequency of the different labels in the dataset. With such a rate, the transition rate to a
particular state depends on its marginal probability. Specifically, the more common a node or edge label is in
the dataset, the higher the transition rate to that label. Consequently, this approach helps preserve sparsity
in noisy graphs by favoring transitions to the “no edge” label. Embedding this inductive bias in the noise
model simplifies the model’s task, as it no longer needs to reconstruct this sparsity during the generative
process.

Deriving an explicit expression for the forward process We now aim to understand the relationship
between the rate matrix and the endpoint of the diffusion process at t = 1, q1(G(1)). In fact, we need
to choose pref so that q1(G) ≈ pref(G) for determining the appropriate prior distribution that aligns with
the chosen rate matrix. Ideally, we seek to use the product of distributions

∏n
i mX

∏n
i<j mE , which, as

demonstrated in Vignac et al. (2022, Theorem 4.1), is optimal within the space of distributions factorized
over nodes and edges. In the following, we explain how to design the noise schedule β to achieve this.

To better understand the relationship between the rate matrix and q1(z(1)), we require an explicit expression
that readily links qt|0(z(t) | z(0)) to R(t). However, Campbell et al. (2022) providess the following closed-form
for the former, which does not easily allow for the direct deduction of an appropriate prior distribution,

qt|0

(
z(t) = k

∣∣ z(0) = l
)

=
(

P exp
[
Λ

∫ t

0
β(s)ds

]
P −1

)
kl

, (1)

where Rb = P ΛP −1 and exp refer to the matrix exponential. Given Equation (1), it is not straightforward
to determine the form of q1|0(z(1) | z(0)), and, consequently, the form of q1(z(1)).
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We, therefore, prove that this expression can be refined, offering more precise insights into the behavior of
the forward process.
Proposition 1. For a CTMC (z(t))t∈[0,1] with rate matrix R(t) = β(t)Rb and Rb = 1m′ − I, the forward
process can be written as

Q̄(t) = e−β̄(t)
I +

(
1− e−β̄(t)

)
1m′,

where (Q̄(t))ij = q(z(t) = i | z0 = j) and β̄(t) =
∫ t

0 β(s)ds.

Therefore, if we can design β̄(t) so that limt→1 e−β̄(t) = 0, we get that limt→1 Q̄(t) = 1m′, which means that
z(1) is sampled from the categorical distribution m whatever the value of z(0), i.e., q1(z(1)) = m. In our case,
since Proposition 1 holds for every node and edge, and given that the forward process is factorized, this would
yield that q1(G(1)) =

∏n
i mX

∏n
i<j mE as desired. We provide a more detailed explanation in Appendix B.2.

Proposed noise schedule Even though, in theory, one should set limt→1 β̄(t) = +∞ so that limt→1 Q̄(t) =
1m′, it considerably restricts the space of possible noise schedules. Relying on the exponentially decreasing
behavior of the cumulative noise schedule e−β̄(t) , one only needs to ensure that β̄(1) is high enough so that
Q̄(1) satisfyingly approximates 1m′. Campbell et al. (2022) proposed an exponential noise schedule for
categorical data. Instead, we followed an older heuristic, i.e., using a cosine-shaped schedule as introduced for
discrete-time models in Nichol & Dhariwal (2021). We therefore propose to use a cosine noise schedule, where

β(t) = α
π

2 sin
(π

2 t
)

and
∫ t

0
β(s)ds = α

(
1− cos

(π

2 t
))

.

Here, α is a constant factor. Since e−β̄1 = e−α, given that α is high enough, q1(G(1)) will be close to 1m′,
and we can therefore use

∏n
i mX

∏n
i<j mE as our prior distribution. We provide more intuition on our noise

schedule in Appendix C.2. Finally, noising an n-order attributed graph G = (G, X, E) amounts to sampling
from the following distribution,

qt|0

(
G(t) ∣∣ G

)
=

(
XQ̄

(t)
X , EQ̄

(t)
E

)
.

Since we consider only undirected graphs, we apply noise to the upper-triangular part of E and symmetrize.
Note that we apply noise to a graph in the same manner as in discrete-time models, with the only difference
being that t is no longer discrete.

3.3 Parametrization and optimization

We can now formulate the approximate reverse rate for our graph generation model. We set the uni-dimensional
rates according to the parameterized approximation derived by Campbell et al. (2022),

R̂t,θ
X

(
x

(t)
i , x̃i

)
= R

(t)
X

(
x̃i, x

(t)
i

) ∑
x0

qt|0

(
x̃i | x(0)

i

)
qt|0

(
x

(t)
i | x

(0)
i

)pθ
0|t

(
x

(0)
i | G(t)

)
, for x

(t)
i ̸= x̃i, (2)

and similarly for the edge reverse rate R̂t,θ
E

(
e

(t)
ij , ẽij

)
. We elaborate on using those rates to simulate the

reverse process in Section C.1. Formally, we set the overall reverse rate to

R̂t,θ(G, G̃) =
∑

i

δG\xi ,G̃\xi R̂t,θ
X (x(t)

i , x̃) +
∑
i<j

δ
G\eij ,G̃\eij R̂t,θ

E (e(t)
ij , ẽij),

where δG\xi ,G̃\xi is 1 if G and G̃ differ only on node i and 0 otherwise, and similarly δ
G\eij ,G̃\eij for edges.

The reverse rate exhibits the classic diffusion model parametrization, which relies on predicting a clean data
point G given a noisy input G(t). We, therefore, train a denoising neural network pθ

0|t(G | G(t)) for this
purpose. The outputs are normalized into probability distributions for node and edge labels.
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The model can be optimized using the continuous-time ELBO proposed in Campbell et al. (2022). Additionally,
they incorporate direct model supervision by optimizing an auxiliary objective, i.e., the cross-entropy loss
between the predicted clean graph and the ground truth G(0). However, our preliminary experiments with this
ELBO yielded poor empirical results, as detailed in Appendix E.3. Given that the ELBO and cross-entropy
share the same optimum Campbell et al. (2022, Proposition 8), and the cross-entropy loss alone has been
successfully applied for graphs in the discrete-time case (Vignac et al., 2022), we opted to use the cross-entropy
loss LCE as our optimization objective,

Et∼U([0,1]),pdata(G(0)),q(G(t)|G(0))

− n∑
i

log pθ
0|t

(
x

(0)
i

∣∣ G(t)
)
− λ

n∑
i<j

log pθ
0|t

(
e

(0)
ij | G

(t)
), (3)

where λ ∈ R+ is a scaling factor that controls the relative importance of edges and nodes in the loss. In
practice, we set λ > 1 so that the model prioritizes predicting a correct graph structure over predicting
correct node labels.

3.4 Simple and powerful positional encodings with RRWP

In all our experiments, we use the graph transformer proposed by Vignac et al. (2022); see Figure 4 in the
appendix. Relying on the fact that discrete diffusion models preserve the sparsity of noisy graphs, they
propose a large set of features to compute at each denoising step to boost the expressivity of the model.
This set includes Laplacian features, connected components features, and node- and graph-level cycle counts.
Even though this set of features has been successfully used in follow-up works, e.g., Vignac et al. (2023), Qin
et al. (2023), Igashov et al. (2023), no theoretical nor experimental study exists to investigate the relevance
of those particular features. In addition, a rich literature on encodings in graph learning has been developed,
e.g., LapPE (Kreuzer et al., 2021), SignNet (Lim et al., 2023), RWSE (Dwivedi et al., 2021), SPE (Huang
et al., 2023), which led us to believe that powerful encodings developed for discriminative models should be
transferred to the generative setting.

Specifically, in our experiments, we leverage the relative random-walk probabilites (RRWP) encoding, intro-
duced in Ma et al. (2023). Denoting A the adjacency matrix of a graph G, D the diagonal degree matrix,
and M = D−1A the degree-normalized adjacency matrix, for each pair of nodes (i, j) ∈ V (G)2, the RRWP
encoding computes

P K
ij :=

[
Iij , Mij , M2

ij , . . . , MK−1
ij

]
, (4)

where K refers to the maximum length of the random walks. The entry P K
ii corresponds to the RRWP

encoding of node i; therefore, we leverage them as node encodings. This encoding provides an efficient and
elegant solution for boosting model expressivity and performance through a unified encoding.

In the following, we show that RRWP encoding can (approximately) determine if two nodes lie in the same
connected components, approximate the size of the largest connected component, and count small cycles.
Theorem 2 (Informal). For n ∈ N, let Gn denote the set of n-order graphs and for a graph G ∈ Gn let
V (G) := J1, nK. Then RRWP composed with a universally approximating feed-forward neural network can

1. determine if two vertices are in the same connected component,

2. approximate the size of the largest connected component in G,

3. approximately count the number p-cycles, for p < 5, in which a node is contained.

See Appendix B.3 for the detailed formal statements.

However, we can also show that RRWP encodings cannot detect if a node is contained in a large cycle of a
given graph. We say the RRWP encoding counts the number of p-cycles for p ≥ 2 if there do not exist two
graphs, one containing at least one p-cycle while the other does not, while the RRWP encodings of the two
graphs are equivalent.
Proposition 3. For p ≥ 8, the RRWP encoding does not count the number of p-cycles.
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Hence, for p ≥ 8 and K ≥ 0, there exists a graph and two vertex pairs (r, s), (v, w) ∈ V (G)2 such that (r, s)
is contained in C while (v, w) is not and P K

vw = P K
rs .

3.5 Equivariance properties

Since graphs are invariant to node reordering, it is essential to design methods that capture this fundamental
property of the data. Relying on the similarities between Cometh and DiGress, we establish that Cometh
is permutation-equivariant and that our loss is permutation-invariant. We also establish that the τ -leaping
sampling scheme and the predictor-corrector yield exchangeable distributions, i.e., the model assigns each
graph permutation the same probability. Since those results mainly stem from proofs outlined in Vignac
et al. (2022), we moved them to Appendix B.4.

3.6 Conditional generation

If unconditional generation is essential to designing an efficient diffusion model, conditioning the generation
on some high-level property is critical in numerous real-world applications (Corso et al., 2023; Lee & Min,
2022). In addition, Vignac et al. [2022] used classifier guidance, which relies on a trained unconditional model
guided by a regressor on the target property. Instead, we rely on the classifier-free guidance procedure (Ho
& Salimans, 2021), which consists in jointly optimizing a conditional model pθ

0|t
(
G(0) | G(t), y

)
and an

unconditional model pθ
0|t

(
G(0) | G(t)) by randomly dropping the conditioner y during training. We provide

further details concerning conditional generation in appendix B.5.

4 Experiments

In the following, we empirically evaluate Cometh on synthetic and real-world graph generation benchmarks.
For all datasets, the results obtained with the raw model are denoted as Cometh, while the results using the
predictor-corrector are referred to as Cometh-PC. We sample from Cometh using the tau-leaping algorithm
as described in Campbell et al. (2022), a procedure that we detail in Appendix C.1. We also conduct several
ablation studies in Appendix E. Our code is available at github.com/asiraudin/Cometh.

4.1 Synthetic graph generation: Planar and SBM

Here, we outline experiments regarding synthetic graph generation.

Datasets and metrics We first validate Cometh on two benchmarks proposed by Martinkus et al.
(2022), Planar and SBM. We measure four standard metrics to assess the ability of our model to capture
structural properties of the graph distributions, i.e., degree (Degree), clustering coefficient (Cluster),
orbit count(Orbit), and the eigenvalues of the graph Laplacian (Spectrum). The reported values are the
maximum mean discrepancies (MMD) between those metrics evaluated on the generated graphs and the test
set. We also report the percentage of valid, unique, and novel (VUN) samples among the generated graphs
to further assess the ability of our model to capture the properties of the targeted distributions correctly. We
provide a detailed description of the metrics in Appendix D.1.

Baselines We evaluate our model against several graph diffusion models, namely DiGress (Vignac et al.,
2022), GruM (Jo et al., 2024), two autoregressive models, Gran (Liao et al., 2019), and GraphRnn (You
et al., 2018), and a GAN, Spectre (Martinkus et al., 2022). We re-evaluated previous state-of-the-art models
over five runs, namely DiGress and GruM, to provide error bars for the results.

Results See Table 1. On Planar, our Cometh yields very good results over all metrics, being outperformed
by a couple of baselines on Degree and Orbit, but with a much lower VUN. The sampling quality benefits
from the predictor-corrector scheme, with a near-perfect VUN score. On SBM, we also obtain state-of-the-art
results on all metrics. However, we found that, overall, the predictor-corrector did not improve performance
on this dataset.
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Table 1: Synthetic graph generation results. We report the mean of five runs, as well as 95% confidence
intervals. We reproduced the baselines results for DiGress and GruM; the rest is taken from Jo et al. (2024).
The best results are highlighted in bold.

Model Degree ↓ Cluster ↓ Orbit ↓ Spectrum ↓ VUN [%] ↑
Planar graphs

GraphRnn 24.5 9.0 2508 8.8 0
Gran 3.5 1.4 1.8 1.4 0
Spectre 2.5 2.5 2.4 2.1 25
DiGress 0.8±0.0 4.1±0.3 0.5±0.0 – 76.0±0.1
GruM 2.6±1.7 1.3±0.3 10.0±7.7 1.4±0.2 91.0±5.7
Disco 1.2±0.5 1.3±0.5 1.7±0.7 - 83.6±2.1
Cometh 2.1±1.3 1.5±0.4 3.1±3.0 1.3±0.3 92.5±3.7
Cometh–PC 2.0±0.9 1.1±0.1 7.7±3.8 1.3±0.2 99.5±0.9

Stochastic block model
GraphRnn 6.9 1.7 3.1 1.0 5
Gran 14.1 1.7 2.1 0.9 25
Spectre 1.9 1.6 1.6 0.9 53
DiGress 1.7±0.1 5.0±0.1 3.6±0.4 – 74.0±4.0
GruM 2.6±1.0 1.5±0.0 1.8±0.4 0.9±0.2 69.0±8.5
Disco 0.8±0.2 0.8±0.4 2.0±0.5 - 66.2±1.4
Cometh 2.4±1.1 1.5±0.0 1.7±0.2 0.8±0.1 77.0±5.3
Cometh–PC 1.4±0.4 1.5±0.0 2.0±0.1 0.8±0.1 75.5±4.0

Ablation Study We also conducted an ablation study on the positional encoding to compare the benefits
of the RRWP encoding against the feature set used in Digress (see table 2). While both approaches achieve
comparable results across most distribution metrics, RRWP significantly outperforms DiGress’ set of features
in terms of VUN.

Table 2: Ablation study on the positional encoding for synthetic graphs. We report the mean of 5
runs, as well as 95% confidence intervals.

Noise Model Degree ↓ Cluster ↓ Orbit ↓ Spectrum ↓ VUN [%] ↑
Planar graphs

RRWP 2.1±1.3 1.5±0.3 3.1±3.0 1.2±0.2 92.5±3.67
DiGress’ features 2.2±1.1 2.2±0.3 18.0±7.4 1.3±0.2 67.5±3.7

Stochastic block model
Marginal 2.4±1.1 1.5±0.0 1.7±0.2 0.8±0.1 77.0±5.26
DiGress’ features 2.3±1.2 1.5±0.0 1.3±0.2 0.9±0.2 64.5±6.41

4.2 Small-molecule generation: QM9

Here, we outline experiments regarding small-molecule generation.

Datasets and metrics To assess the ability of our method to model attributed graph distributions, we
evaluate its performance on the standard dataset QM9 (Wu et al. (2018)). Molecules are kekulized using the
RDKit library, removing hydrogen atoms. We use the same split as Vignac et al. (2022), with 100k molecules
for training, 10k for testing, and the remaining data for the validation set. We want to stress that this split
differs from Jo et al. (2022), which uses ∼ 120k molecules for training and the rest as a test set. We choose
to use the former version of this dataset because it allows for selecting the best checkpoints based on the
evaluation of the ELBO on the validation set. We report the Validity over 10k molecules, as evaluated
by RDKit sanitization, as well as the Uniqueness, FCD, using the MOSES benchmark, and NSPDK.
Appendix D.2 provides a complete description of the metrics.
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Table 3: Molecule generation results on QM9. We report the mean of five runs, as well as 95% confidence
intervals. The best results are highlighted in bold. Baseline results are taken from Jang et al. (2024a).

Model Validity ↑ Uniqueness ↑ Valid & Unique ↑ FCD ↓ NSPDK ↓
GDSS 95.72 98.46 94.25 2.9 0.003
DiGress 99.01 96.34 95.39 0.25 0.001
GraphARM 90.25 95.26 85.97 1.22 0.002
Hggt 99.22 95.65 94.90 0.40 0.000
Cometh 99.57±0.07 96.76±0.17 96.34±0.2 0.25±0.01 0.000±0.00
Cometh - PC 99.69±0.03 96.66±0.08 96.36±0.07 0.25±0.01 0.000±0.00

Table 4: Molecule generation on MOSES. We report the mean of five runs, as well as 95% confidence
intervals. The best results are highlighted in bold, and the second-best results are underlined.

Model Class Val. ↑ Val. & Uni. ↑ VUN ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
VAE Smiles 97.7 97.5 67.8 99.7 0.57 0.58 5.9
JT-VAE Fragment 100 100 99.9 97.8 1.00 0.53 10
GraphInvent Autoreg. 96.4 96.2 – 95.0 1.22 0.54 12.7
DiGress One-shot 85.7 85.7 81.4 97.1 1.19 0.52 14.8
Disco One-shot 88.3 88.3 86.3 95.6 1.44 0.50 15.1
Cometh One-shot 87.0±0.2 86.9±0.2 83.8±0.2 97.2±0.1 1.44±0.02 0.51±0.0 15.9±0.8
Cometh–PC One-shot 90.5±0.3 90.4±0.3 83.7±0.2 99.1±0.1 1.27±0.02 0.54±0.0 16.0±0.7

Baselines We evaluate our model against several recent graph generation models, including two diffusion
models, DiGress Vignac et al. (2022) and Gdss (Jo et al., 2022)), and two autoregressive models, Hggt
Jang et al. (2024a) and GraphARM Kong et al. (2023)).

Results We report results using 500 denoising steps for a fair comparison, as in Vignac et al. (2022).
Cometh performs very well on this simple molecular dataset, notably outperforming its discrete-time
counterpart DiGress in terms of valid and unique samples with similar FCD and NSPDK. We experimentally
find that the predictor-corrector offers only a slight improvement in the number of valid and unique samples
on this dataset, with performance comparable for FCD and NSPDK.

4.3 Molecule generation on large datasets: Moses and GuacaMol

Here, we outline experiments regarding large-scale molecule generation.

Datasets and benchmarks We also evaluate our model on two much larger molecular datasets, MOSES
(Polykovskiy et al., 2020)) and GuacaMol (Brown et al., 2019). The former is a refinement of the ZINC
database and includes 1.9M molecules, with 1.6M allocated to training. The latter is derived from the
ChEMBL database and comprises 1.4M molecules, from which 1.1M are used for training. We use a
preprocessing step similar to Vignac et al. (2022) for the GuacaMol dataset, which filters molecules that
cannot be mapped from SMILES to graph and back to SMILES.

Both datasets come with their own metrics and baselines, which we briefly describe here. As for QM9, we
report Validity, as well as the percentage of Valid & Unique (Val. & Uni.) samples, and Valid, Unique
and Novel (VUN) samples for both datasets. We also report Filters, FCD, SNN, and Scaf for MOSES,
as well as KL div and FCD for GuacaMol. These metrics are designed to evaluate the model’s capability
to capture the chemical properties of the learned distributions. We provide a detailed description of those
metrics in Appendix D.3.

Results Similarly to previous graph generation models, Cometh does not match the performance of
molecule generation methods that incorporate domain-specific knowledge, especially SMILES-based models
(see Table 4). However, Cometh further bridges the gap between graph diffusion models and those methods,
outperforming DiGress in terms of validity by a large margin.
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Table 5: Molecule generation on GuacaMol. We report the mean of five runs, as well as 95% confidence
intervals. Conversely to MOSES, the GuacaMol benchmark reports scores, so higher is better. The best
results are highlighted in bold, and the second-best results are underlined.

Model Class Val.↑ Val. & Uni.↑ VUN↑ KL div↑ FCD↑
LSTM Smiles 95.9 95.9 87.4 99.1 91.3
NAGVAE One-shot 92.9 95.5 88.7 38.4 0.9
MCTS One-shot 100.0 100.0 95.4 82.2 1.5
DiGress One-shot 85.2 85.2 85.1 92.9 68.0
Disco One-shot 86.6 86.6 86.5 92.6 59.7
Cometh One-shot 94.4±0.2 94.4±0.2 93.5±0.3 94.1±0.4 67.4±0.3
Cometh–PC One-shot 98.9±0.1 98.9±0.1 97.6±0.2 96.7±0.2 72.7±0.2

Table 6: Conditional molecule generation results on QM9. We report the mean of five runs, as well as
95% confidence intervals.

Model µ HOMO µ & HOMO
MAE ↓ Val ↑ MAE ↓ Val ↑ MAE ↓ Val ↑

DiGress 0.81 – 0.56 – 0.87 –
Cometh 0.67±0.02 88.8±0.5 0.32±0.01 94.1±0.8 0.58±0.01 92.5±0.7

On GuacaMol (see Table 5), Cometh obtains excellent performance in terms of VUN samples, with an
impressive 12.6% improvement over DiGress. The LSTM model still surpasses our graph diffusion model on
the FCD metric. This may be because we train on a subset of the original dataset, whereas the LSTM is
trained directly on SMILES.

4.4 Conditional generation

We perform conditional generation on QM9 following the setting of Vignac et al. (2022). We target two
molecular properties, the dipole moment µ and the highest occupied molecular orbital energy
(HOMO). We sample 100 properties from the test set for each experiment and use them as conditioners to
generate ten molecules. We estimate the properties of the sampled molecules using the Psi4 library (Smith
et al. (2020)) and report the mean absolute error (MAE) between the estimated properties from the
generated set and the targeted properties.

We report our results against DiGress in Table 6. Overall, Cometh outperforms DiGress by large margin,
with 18%, 43%, and 33% improvements on µ, HOMO and both targets respectively. Those performance
improvements indicate the superiority of classifier-free guidance over classifier guidance for conditional graph
generation.

5 Conclusion

Here, to leverage the benefits of continuous-time and discrete-state diffusion model, we proposed Cometh,
a continuous-time discrete-state graph diffusion model, integrating graph data into a continuous-time
diffusion model framework. We introduced a new noise model adapted to graph specificities using different
node and edge rates and a tailored marginal distribution and noise schedule. In addition, we successfully
replaced the structural features of DiGress with a single encoding with provable expressivity guarantees,
removing unnecessary features. Empirically, we showed that integrating continuous time leads to significant
improvements across various metrics over state-of-the-art discrete-state diffusion models on a large set of
molecular and non-molecular benchmark datasets.
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A Appendix

We provide proofs and additional theoretical background in Appendix B. We give details on our implementation
in Appendix C, experimental details in Appendix D, and additional experimental results in Appendix E.
Finally, we provide visualization for generated samples in Appendix G.

B Theoretical details

Here, we outline the theoretical details of our Cometh architecture.

B.1 Continuous-time discrete diffusion

Here, we provide a more detailed description of the continuous-time, discrete-state diffusion model introduced
in Campbell et al. (2022).

We begin by recalling our notations. We aim to model a discrete data distribution pdata(z(0)), where z(0) ∈ Z
and Z is a finite set with cardinality S := |Z|. In the following, the state is denoted by z(t) ∈ Z, where
time is denoted by t ∈ [0, 1], and z(t) ∈ {0, 1}S is its one-hot encoding. The marginal distributions at time t
are denoted by qt(z(t)) and the conditional distribution of the state z(t) given the state z(s) at some time
s ∈ [0, 1] by qt|s(z(t) | z(s)). We also denote δz̃,z the Kronecker delta, which equals 1 if z̃ = z and 0 otherwise.

A continuous-time, discrete-state diffusion model builds upon continuous-time Markov chains (CTMCs).
CTMCs are continuous-time processes in which the state z(t) alternates between remaining in the current state
and transitioning to another state. The dynamics of the CTMC are governed by a rate matrix R(t) ∈ RS×S ,
where S represents the number of possible states. We denote R(t)(z(t), z̃) the transition rate from the state
z(t) to another state z̃.

Precisely, a CTMC satisfies three differential equations:

(forward) ∂tqt|s(z̃ | z) =
∑

y

qt|s(y | z)R(t)(y, z̃),

(backward) ∂sqt|s(z | z̃) =
∑

y

R(s)(z̃, y)qt|s(z | y),

(forward, marginals) ∂tqt(z) =
∑

y

qt(y)R(t)(y, z),

where z, z̃, y ∈ Z and t, s ∈ [0, 1]. The infinitesimal probability of transition from z(t) to another state z̃ ∈ Z,
for a infinitesimal time step dt between time t and t + dt is given by

qt+dt|t(z̃ | z(t)) :=
{

R(t)(z(t), z̃)dt if z̃ ̸= z(t),
1 + R(t)(z(t), z̃)dt if z̃ = z(t)

= δz̃,z(t) + R(t)(z(t), z̃)dt.

15



Published in Transactions on Machine Learning Research (04/2025)

The rate matrix must satisfy the following conditions,

R(t)(z(t), z̃) ≥ 0, and R(t)(z(t), z̃(t)) = −
∑

z̃

R(t)(z(t), z(t)) < 0.

The second condition ensures that qt+dt|t(· | z(t)) sums to 1. Intuitively, the rate matrix contains instantaneous
transition rates, i.e., the number of transitions per unit of time. Therefore, the higher R(t)(z(t), z̃), the more
likely the transition from z(t) to z̃. Since the diagonal coefficients of the rate matrix can be derived from the
off-diagonal ones, we will define only the latter in the following.

The CTMC is initialized with q(z(0)) = pdata(z(0)). The key challenge in designing the rate matrix is ensuring
that the forward process converges to a well-known categorical distribution we can use later as a prior
distribution during the generative process. In the discrete case, such a distribution can be, e.g., a uniform
distribution, a discretized-Gaussian distribution, or an absorbing distribution (Campbell et al., 2022).

The reverse process can also be formulated as a CTMC. Using similar notations as for the forward process,
the reverse process is defined through

qt|t+dt(z(t) | z̃) = δz(t),z̃ + R̂(t)(z̃, z(t))dt,

where R̂(t) is the rate matrix for the reverse process. Similar to discrete-time diffusion models, this reverse
rate can be expressed as (Campbell et al., 2022, Proposition 1),

R̂(t)(z̃, z(t)) = R(t)(z(t), z̃)
∑

z(0)∈Z

qt|0(z̃ | z(0))
qt|0(z(t) | z(0))q0|t(z(0) | z(t)), for z ̸= z̃.

Since the true reverse process q0|t(z(0) | z(t)) is intractable, we approximate it using a neural network
pθ

0|t(z(0) | z) parameterized by θ, yielding the approximate reverse rate,

R̂t,θ(z, z̃) = R(t)(z̃, z)
∑

z(0)∈Z

qt|0(z̃ | z(0))
qt|0(z | z(0))pθ

0|t(z(0) | z), for z ̸= z̃.

Diffusion models are typically optimized by minimizing the negative ELBO on the negative log-likelihood,
i.e., − log pθ

0(z(0)). Campbell et al. (2022, Proposition 2) provides an expression for the ELBO. Although it is
not used in this work, we include it for completeness,

LCT (θ) = T Et∼U([0,T ]),qt(z),r(z|z̃)

∑
z′ ̸=z̃

R̂t,θ(z, z′)−Z(t) log
(

R̂t,θ(z̃, z)
) + C,

where C is a constant independent of θ, Z(t) =
∑

z′ ̸=z R(t)(z, z′), and r(z | z̃) = 1− δz̃,zR(t)(z, z̃)/Z(t).

For efficient optimization, it is essential to express qt(z) = qt|0(z | z(0))q0(z(0)) in closed form. In this context,
the transition matrix R(t) must be designed so that qt|0(z | z(0)) has a closed-form expression. Campbell
et al. (2022) established that when R(t) and R(t′) commute for any t and t′, the transition probability matrix
can be written as:

Q̄(t) := qt|0(z(t) | z(0)) = exp
(∫ t

0
R(s)ds

)
,

where (Q̄(t))ij = q(z(t) = i | z0 = j). This condition is met when the rate is written as R(t) = β(t)Rb, where
β is a time-dependent scalar and Rb is a constant base rate matrix. In that case, the forward process can be
further refined as

(Q̄(t))kl = qt|0(z(t) = k | z(0) = l) =
(

P exp
[
Λ

∫ t

0
β(s)ds

]
P −1

)
kl

,
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where Rb = P ΛP −1 and exp refer to the element-wise exponential.

Given a one-hot encoded data sample z(0), we can sample a noisy state z(t) by sampling a categorical
distribution with probability vector z(0)Q̄(t).

Since most real-world data is multi-dimensional, the above framework needs to be extended to D dimensions.
This is done by assuming that each dimension is noised independently so that the forward process factorizes
as

qt+dt|t(z̃ | z) =
D∏

d=1
qt+dt|t(z̃d | zd),

where qt+∆t|t(z̃d | zd) is the uni-dimensional forward process on the dth dimension.

Campbell et al. (2022, Proposition 3) establishes how to write the forward and reverse rates in the D-
dimensional case,

R(t)(z̃, z) =
D∑

d=1
δz̃\d,z\dR

(t)
d (z̃d, zd),

R̂t,θ(z, z̃) =
D∑

d=1
δz̃\d,z\dR

(t)
d (z̃d, zd)

∑
z0

qt|0(z̃d | z0
d)

qt|0(zd | z0
d)pθ

0|t(z0
d | z),

for zd ≠ z̃d. In brief, assuming that a transition cannot occur in two different dimensions simultaneously, the
multi-dimensional rates are equal to the uni-dimensional rates in the dimension of transition. Importantly, if
the dimensions are independent in the forward process, they are not in the reverse process since the whole
state is given as input in pθ

0|t(z0
d | z).

Finally, we need a practical way to simulate the reverse process over finite time intervals for D-dimensional
data. To that extent, we follow Campbell et al. (2022) and use the τ -leaping algorithm. The first step is to
sample z(1) from the prior pref(z(1)). The sampling procedure is as follows. At each iteration, we keep z(t)

and R̂t,θ(z, z̃) constant and simulate the reverse process for a time interval of length τ . It means we count all
the transitions between t and t− τ and apply them simultaneously.

The number of transitions in each dimension z
(t)
d of the current state z(t), between z

(t)
d and z̃d is Poisson

distributed with mean τR̂t,θ(z(t)
d , z̃d). In a state space with no ordinal structure, multiple transitions in one

dimension are meaningless, and we reject them. In addition, we experiment using the predictor-corrector
scheme. After each predictor step using R̂(t),θ(z(t)

d , z̃d), we can also apply several corrector steps using the
expression defined in Campbell et al. (2022), i.e., R̂(t),c = R̂(t),θ + R(t). The transitions using the corrector
rate are counted the same way as for the predictor. This rate admits qt(z(t)) as its stationary distribution,
which means that applying the corrector steps brings the distribution of noisy graphs at time t closer to the
marginal distribution of the forward process.

B.2 Noise schedule

Here, we provide a proof for Proposition 1, as well as some intuition on the prior distribution.
Proposition 4. (Proposition 1 in the main body) For a CTMC (z(t))t∈[0,1] with rate matrix R(t) = β(t)Rb

and Rb = 1m′ − I, the forward process can be written as

Q̄(t) = e−β̄t

I + (1− e−β̄t

)1m′,

where (Q̄(t))ij = q(z(t) = i | z(0) = j) and β̄t =
∫ t

0 β(s)ds.

Proof. Since 1m′ is a rank-one matrix with trace 1, it is diagonalizable and has only one non-zero eigenvalue,
equal to tr(1m′) = 1. Therefore,

Rb = 1m′ − I = P DP −1 − I = P (D − I)) P −1,
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with D = diag(1, 0, . . . , 0). Denoting β̄t =
∫ t

0 β(s)ds,

Q̄(t) = P exp
(
β̄t(D − I)

)
P −1

= P
(

D − e−β̄t

I − e−β̄t

D
)

P −1

= e−β̄t

I + (1− e−β̄t

)1m′.

We now wish to elaborate on the link between Proposition 4 and the choice of the prior distribution. Recall
our noise schedule,

β(t) = α
π

2 sin
(π

2 t
)

and
∫ t

0
β(s)ds = α

(
1− cos

(π

2 t
))

.

When t = 1, it holds that e−β̄t = e−α, and therefore Q̄(1) = e−αI+(1−e−α)1m′. When α is large enough, then
e−α ≈ 0 and Q̄(1) ≈ 1m′. Denoting (Q̄(1))j the j-th row of Q̄(1), it holds that (Q̄(1))j = q(z(1) | z(0) = j) ≈m.
In other terms, whatever the value z(0), z(1) is sampled from the same categorical distribution with probability
vector m. Therefore,

q1(z(1)) =
∑
j∈Z

q1|0(z(1) | z(0) = j)q0(z(0) = j)

≈
∑
j∈Z

mq0(z(0) = j)

≈ m = pref(z(1))

The first line is obtained by marginalizing z(0), the second line by using the factg that q1|0(z(1) | z(0) = j) ≈ m

for all possible z(0), and the last one using that
∑

j∈Z q0(z(0) = j) = 1 and m is independent of j.

In the D-dimensional case, since the forward process factorizes, we get

q1|0(z(1) | z(0)) =
D∏

d=0
m = pref(z(1)),

where d ∈ J0, DK denotes d-th dimension of z ∈ ZD.

B.3 RRWP properties

In the following, we formally study the encodings of the RRWP encoding.

Notations A graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges E(G) ⊆
{{u, v} ⊆ V (G) | u ̸= v}. If not otherwise stated, we set n := |V (G)|, and the graph is of order n. For ease
of notation, we denote the edge {u, v} ∈ E(G) by (u, v) or (v, u). An n-order attributed graph is a pair
G = (G, X, E), where G = (V (G), E(G)) is a graph and X ∈ {0, 1}n×a, for a > 0, is a node feature matrix
and E ∈ {0, 1}n×n×b, for b > 0, is an edge feature tensor. Here, we set V (G) := J1, nK. The neighborhood of
v ∈ V (G) is denoted by N(v) := {u ∈ V (G) | (v, u) ∈ E(G)}.

In our experiments, we leverage the relative random-walk probabilites (RRWP) encoding, introduced in Ma
et al. (2023). Denoting A the adjacency matrix of a graph G, and D the diagonal degree matrix, and
M = D−1A the degree-normalized adjacency matrix, for each pair of nodes (i, j), the RRWP encoding
computes

P K
ij :=

[
Iij , Mij , M2

ij , . . . , MK−1
ij

]
, (5)

where K refers to the maximum length of the random walks. The entry P K
ii corresponds to the RRWP

encoding of node i; therefore, we leverage them as node encodings. This encoding alone can train our graph
diffusion model and attain state-of-the-art results.

18



Published in Transactions on Machine Learning Research (04/2025)

In the following, we show that RWP encoding can (approximately) determine if two nodes lie in the same
connected components and approximate the size of the largest connected component.
Proposition 5. For n ∈ N, let Gn denote the set of n-order graphs and for a graph G ∈ Gn let V (G) := J1, nK.
Assume that the graph G has c connected components and let C ∈ {0, 1}n×c be a matrix such the ith row
Ci· is a one-hot encoding indicating which of the c connected components the vertex i belongs to. Then, for
any ε > 0, there exists a feed-forward neural network FNN : Rn×n → [0, 1]n×c such that

∥FNN(Mn−1)−C∥F ≤ ε.

Proof. Let R := Mn−1. First, since the graphs have n vertices, the longest path in the graphs has length
n − 1. Hence, two vertices v, w ∈ V (G), with v ̸= w are in the same connected component if, and only, if
Rvw ≠ 0. Hence, applying a sign activation function to R pointwisely, we get a matrix over {0, 1} with the
same property. Further, by adding Dn ∈ {0, 1}n×n, an n×n diagonal matrix with ones on the main diagonal,
to this matrix, this property also holds for the case of v = w. In addition, there exists a permutation matrix
Pn such that applying it to the above matrix results in a block-diagonal matrix B ∈ {0, 1}n×n such that
Bv· = Bw·, for v, w ∈ V (G), if, and only, if the vertices v, w are in the same connected component. Since n is
finite, the number of such B matrices is finite and hence compact. Hence, we can find a continuous function
mapping each possible row of Bv·, for v ∈ V (G), to the corresponding one-hot encoding of the connected
component. Since all functions after applying the sign function are continuous, we can approximate the above
composition of functions via a two-layer feed-forward neural network leveraging the universal approximation
theorem (Cybenko, 1992; Leshno et al., 1993).

Similarly, we can also approximate the size of the largest component in a given graph.
Proposition 6. For n ∈ N, let Gn denote the set of n-order graphs and for G ∈ Gn let V (G) := J1, nK.
Assume that S is the number of vertices in the largest connected component of the graph G. Then, for any
ε > 0, there exists a feed-forward neural network FNN : Rn×n → [1, n],

|FNN(Mn−1)− S| ≤ ε.

Proof. By the proof of Proposition 5, we a get a block-diagonal matrix B ∈ {0, 1}n×n, such that Buv = 1 if,
and only, if u, v are in the same connected components. Hence, by column-wise summation, we get the number
of vertices in each connected component. Hence, there is an n× 1 matrix over {0, 1}, extracting the largest
entry. Since all of the above functions are continuous, we can approximate the above composition of functions
via a two-layer feed-forward neural network leveraging the universal approximation theorem (Cybenko, 1992;
Leshno et al., 1993).

Moreover, we can show RRWP encodings can (approximately) count the number p-cycles, for p < 5, in which
a node is contained. A p-cycle is a cycle on p vertices.
Proposition 7. For n ∈ N, let Gn denote the set of n-order graphs and for G ∈ Gn let V (G) := J1, nK.
Assume that c ∈ Nn contains the number of p-cycles a node is contained in for all vertices in G, for p ∈ {3, 4}.
Then, for any ε > 0, there exists a feed-forward neural network FNN : Rn×n → Rn,

∥FNN(P n−1)− c∥2 ≤ ε.

Proof. For p ∈ {3, 4}, Vignac et al. (2022, Appendix B.2) provide simple linear-algebraic equations for the
number of p-cycles each vertex of a given graph is contained based on powers of the adjacency matrix, which
can be expressed as compositions of linear mappings, i.e., continuous functions. We can extract these matrices
from P n−1. Further, note that the domain of these mappings is compact. Hence, we can approximate this
composition of functions via a two-layer feed-forward neural network leveraging the universal approximation
theorem (Cybenko, 1992; Leshno et al., 1993).

However, we can also show that RRWP encodings cannot detect if a node is contained in a large cycle of a
given graph. We say that an encoding, e.g., RRWP, counts the number of p-cycles for p ≥ 2 if there do not
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exist two graphs, one containing at least one p-cycle while the other does not, while the RRWP encodings of
the two graphs are equivalent.
Proposition 8. For p ≥ 8, the RRWP encoding does not count the number of p-cycles.

Proof. First, by Rattan & Seppelt (2023), the RRWP encoding does not distinguish more pairs of non-
isomorphic graphs than the so-called (1, 1)-dimensional Weisfeiler–Leman algorithm. Secondly, the latter
algorithm is strictly weaker than the 3-dimensional Weisfeiler–Leman algorithm in distinguishing non-
isomorphic graphs (Rattan & Seppelt, 2023, Theorem 1.4). However, by Fürer (2017, Theorem 4), the
3-dimensional Weisfeiler–Leman algorithm cannot count 8-cycles. Hence, the results follows.

Hence, the above proposition implies the following results.
Corollary 9. For p ≥ 8 and K ≥ 0, there exists a graph G containing a p-cycle C, and two vertex pairs
(r, s), (v, w) ∈ V (G)2 such that (r, s) is contained in C while (v, w) is not and P K

vw = P K
rs .

B.4 Equivariance properties

In this section, we prove that our model is equivariant (Proposition 10) and that our loss is permutation-
invariant (Proposition 11), relying on Vignac et al. (2022, Lemma 3.1 and 3.2). We also prove exchangeability
with Proposition 12.

Let us start by defining the notation for a graph permutation. Denote π a permutation, π acts on the
attributed graph G = (G, X, E) as,

• πG = (V (πG), E(πG)) where V (πG) = {π(1), . . . , π(n)} and E(πG) = {(π(i), π(j)) | (vi, vj) ∈
E(G)},

• πX the matrix obtained by permutating the rows of X according to π, i.e. (πX)i = xπ−1(i),

• Similarly, πE is the tensor obtained by the permutation of the components eij of E according to π,
i.e. (πE)ij = eπ−1(i)π−1(j).

Proposition 10 (Equivariance). DiGress’ graph transformer using RWSE as node encodings and RRWP
as edge encodings is permutation equivariant.

Proof. We recall the sufficient three conditions stated in Vignac et al. (2022) for ensuring permutation-
equivariance of the DiGress architecture, namely,

• their set of structural and spectral features is equivariant.

• All the blocks of their graph transformer architecture are permutation equivariant.

• The layer normalization is equivariant.

Replacing the first condition with the permutation-equivariant nature of the RRWP-based node and edge
encodings completes the proof.

We now derive a more thorough proof of the permutation invariance of the loss compared to Vignac et al.
(2022, Lemma 3.2), relying on the permutation-equivariant nature of both the forward process and the
denoising neural network.
Proposition 11 (Permutation invariance of the loss). The cross-entropy loss defined in Equation 3 is
invariant to the permutation of the input graph G(0).

Proof. Given a graph G = (G, X, E), we denote by Ĝ = (Ĝ, X̂, Ê) the predicted clean graph by the neural
network and πG = (πG, πX, πE) a permutation of this graph, for arbitrary permutation π. Let us now
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establish that the loss function is permutation-invariant. We recall the loss function for a permutation π of
the clean data sample G(0) is

LCE := Et∼[0,1],pdata(πG(0)),q(πG(t)|πG(0))

− n∑
i

log pθ
0|t(x

(0)
π(i) | πG(t))− λ

n∑
i<j

log pθ
0|t(e

(0)
π(i)π(j) | πG(t))

 .

Because dimensions are noised independently, the true data distribution pdata(πG(0)) = pdata(G(0)) is
permutation-invariant, and the forward process is permutation-equivariant. Thus, we can write,

LCE := Et∼[0,1],pdata(G(0)),q(G(t)|G(0))

− n∑
i

log pθ
0|t(x

(0)
π(i) | πG(t))− λ

n∑
i<j

log pθ
0|t(e

(0)
π(i)π(j) | πG(t))

 .

Using Proposition 10, we also have that pθ
0|t(x

(0)
i | G(t)) = pθ

0|t(x
(0)
π(i) | πG(t)) and pθ

0|t(e
(0)
ij | G(t)) =

pθ
0|t(e

(0)
π(i)π(j) | πG(t)), which concludes the proof.

Proposition 11 shows that, whatever permutation of the original graph we consider, the loss function remains
the same, and so do the gradients. Hence, we do not have to consider all the permutations of the same graph
during the optimization process.
Proposition 12 (Exchangeability). Cometh yields exchangeable distributions.

Proof. To establish the exchangeability, we require two conditions, a permutation-invariant prior distribution
and an equivariant reverse process.

• Since nodes and edges are sampled i.i.d. from the same distribution, our prior distribution is
permutation-invariant, i.e., each permutation of the same random graph has the same probability of
being sampled. Hence pref(πG(T )) = pref(G(T )).

• It is straightforward to see that our reverse rate is permutation-equivariant regarding the joint
permutations of G(t) and G(0). We illustrate this using the node reverse rate,

Rt
X(x̃i, x

(t)
i )

∑
x0

qt|0(x̃i | x(0)
i )

qt|0(x(t)
i | x

(0)
i )

pθ
0|t(x

(0)
i | G(t)).

The forward rate, as well as the forward process, is permutation-equivariant regarding the joint
any permutation on G(t) and G(0), and the neural network is permutation-equivariant. Similarly,
we can reason regarding the edge reverse rate. Therefore, the overall reverse rate is permutation-
equivariant. Since we sample independently across dimensions, the τ -leaping procedure is also
permutation-equivariant.

B.5 Classifier-free guidance

In the conditional generation setting, one wants to generate samples satisfying a specific property y, to which
we refer as the conditioner. For example, in text-to-image diffusion models, the conditioner consists of a
textual description specifying the image the model is intended to generate. The most straightforward way to
perform conditional generation for diffusion models is to inject the conditioner into the network—therefore
modeling pθ(z(t−1) | z(t), y)—hoping that the model will take it into account. However, the network might
ignore y, and several efficient approaches to conditional generation for diffusion models were consequently
developed.

The approach leveraged by Vignac et al. (2022) to perform conditional generation is classifier-guidance. It
relies on a trained unconditional diffusion model and a regressor, or classifier, depending on the conditioner,
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trained to predict the conditioner given noisy inputs. As mentioned in Ho & Salimans (2021), it has the
disadvantage of complicating the training pipeline, as a pre-trained classifier cannot be used during inference.

To avoid training a classifier to guide the sampling process, classifier-free guidance has been proposed in Ho
& Salimans (2021) and then adapted for discrete data in Tang et al. (2022). A classifier-free conditional
diffusion model jointly trains a conditional and unconditional model through conditional dropout. That is,
the conditioner is randomly dropped with probability puncond during training, in which the conditioner is
set to a null vector. However, Tang et al. (2022) showed that learning the null conditioner jointly with the
model’s parameters is more efficient.

At the sampling stage, the next state is sampled through

log pθ(z(t−1) | z(t), y) = log pθ(z(t−1) | z(t), ∅) + (s + 1)(log pθ(z(t−1) | z(t), y)− log pθ(z(t−1) | z(t), ∅)),

where s is the guidance strength. We refer to Tang et al. (2022) for deriving the above expression for the
sampling process.

Let us now explain how we apply classifier-free guidance in our setting. Denoting R̂t,θ(G, G̃ | y), the
conditional reverse rate can be written as

R̂t,θ(G, G̃ | y) =
∑

i

δG\xi ,G̃\xi R̂t,θ
X (x(t)

i , x̃ | y) +
∑
i<j

δ
G\eij ,G̃\eij R̂t,θ

E (e(t)
ij , ẽij | y),

and

R̂t,θ
X (x(t)

i , x̃) = Rt
X(x̃i, x

(t)
i )

∑
x0

qt|0(x̃i | x(0)
i )

qt|0(x(t)
i | x

(0)
i )

pθ
0|t(x

(0)
i | G(t), y), for x

(t)
i ̸= x̃i,

and similarly for edges. At the sampling stage, we first compute the unconditional probability distribution
pθ

0|t(x
(0)
i | G(t), ∅), where ∅ denotes the learned null vector, then the conditional distribution pθ

0|t(x
(0)
i | G(t), y).

These two distributions are combined in the log-probability space in the following way,

log pθ(z(t−1) | z(t), y) = log pθ(z(t−1) | z(t), ∅) + (s + 1)(log pθ(z(t−1) | z(t), y)− log pθ(z(t−1) | z(t), ∅)). (6)

Finally, the distribution in Equation (6) is exponentiated and plugged into the reverse rate.

C Implementation details

Here, we provide some implementation details.

C.1 Reverse process: Tau-leaping and predictor-corrector

At the sampling stage, we use the τ -leaping algorithm to generate new samples, as proposed by Campbell
et al. (2022). We first sample the graph size and then sample the noisy graph G(t) from the prior distribution.
At each iteration, we keep G(t) and R̂t,θ(G, G̃) constant and simulate the reverse process for a time interval
of length τ . In practice, we count all the transitions between t and t − τ and apply them simultaneously.
The number of transitions between x

(t)
i and x̃i (respectively e

(t)
ij and ẽij) is Poisson distributed with mean

τR
(t),θ
X (x(t)

i , x̃) (respectively τR̂
(t),θ
E (e(t)

ij , ẽij)). Since our state space has no ordinal structure, multiple
transitions in one dimension are meaningless, and we reject them. In addition, we experiment using the
predictor-corrector scheme. After each predictor step using R̂(t),θ(G, G̃), we can also apply several corrector
steps using the expression defined in Campbell et al. (2022), i.e., R̂(t),c = R̂(t),θ + R(t). This rate admits
qt(G(t)) as its stationary distribution, which means that applying the corrector steps brings the distribution
of noisy graphs at time t closer to the marginal distribution of the forward process. As τ is fixed only during
the sampling stage, its value can be adjusted to balance sample quality and efficiency, i.e., the number of
model evaluations. We perform an ablation study in Appendix E.
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Figure 2: Comparison between our cosine noise schedule and the constant noise schedule proposed by
Campbell et al. (2022). Both schedules are plotted using a rate constant α = 5.

C.2 Noise schedule

We plot our noise schedule against the constant noise schedule used for categorical data in Campbell et al.
(2022) in Figure 2. Following Proposition 1, we plot ᾱt = e−β̄t on the y-axis, quantifying the information
level of the original data sample retained at time t. Similarly to Nichol & Dhariwal (2021), we can see that
the constant noise schedule converges towards zero faster than the cosine schedule, hence degrading the data
faster. In our experiments, we perform a hyperparameter search to select the best rate constant for each
dataset, with α ∈ {4, 5, 6}. Following Campbell et al. (2022), we set a minimum time to tmin = 0.01T because
the reverse rates are ill-conditioned close to t = 0.

C.3 Algorithms

We provide the pseudo-code for the training and sampling from Cometh in Figure 3. Similar to Campbell
et al. (2022), we apply a last neural network pass at t = tmin and set the node and edge types to the types
with the highest predicted probability. We omit the corrector steps in the sampling algorithm for conciseness.
They are exactly the same as the predictor τ -leaping steps, using the corrector rate R̂(t),c = R̂(t),θ + R(t),
and applied after time update, i.e. at t− τ . Since those steps are sampled from different CTMC with rate
R̂(t),c, we have control over τ when applying corrector steps. We provide additional details on the choice of
this hyperparameter, denoted as τc, in Appendix D.

C.4 Graph transformer

See Figure 4 for an overview of the used graph transformer, building on Vignac et al. (2022).

The transformer takes node features X as input, and updates them using the self attention mechanism,
i.e., Attention(X, X) = softmax

(
1√
d
WQX(WKX)′

)
WV X. Edge features are incoporated into the

attention scores i.e. 1√
d
WQX(WKX)′ using a FiLM layer (Perez et al., 2018), were FiLM(M1, M2) =

M1W1 + (M1W2)⊙M2 + M2. The attention scores with incorporated edge features are used to update
edge features. Global features y are incorporated into the updated node and edge features using FiLM layers
as well. The final outputs are obtained by passing the representations through fully connected networks.

We use the RRWP encoding, defined in Equation 5, for synthetic graph generation. For molecule generation
datasets, we additionally compute several molecular features used in Vignac et al. (2022), namely the valency
and charge for each node and the molecular weight.

D Experimental details

Here, we outline the details of your experimental study.
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Algorithm 1: Training
Input: A graph G = (X, E)
Sample t ∼ U([0, 1])
Sample Gt ∼XQ̄t

X × EQ̄t
E ▷ Sample sparse noisy graph

Predict pθ
0|t(G | G(t)) ▷ Predict clean graph using neural network

LCE ← −
∑n

i log pθ
0|t(x

(0)
i | G(t))− λ

∑n
i<j log pθ

0|t(e
(0)
ij | G(t))

Update θ using LCE

Algorithm 2: τ -leaping sampling of Cometh
Sample n from the training data distribution
Sample G(T ) ∼

∏
i mX

∏
ij mE ▷ Sample random graph from prior distribution

while t > 0.01 do
for i = 1 to n do

for x̃ in X do
R̂t,θ

X (x(t)
i , x̃) = Rt

X(x̃i, x
(t)
i )

∑
x0

qt|0(x̃i|x(0)
i

)
qt|0(x

(t)
i

|x(0)
i

)
pθ

0|t(x
(0)
i | G(t)), for x

(t)
i ̸= x̃i

Sample j
x

(t)
i

,x̃
∼ P(τR̂t,θ

X (x(t)
i , x̃)) ▷ Count transitions on node i

end
end
for i, j = 1 to n, i < j do

for ẽ in E do

R̂t,θ
E (e(t)

ij , ẽij) = Rt
E(ẽij , e

(t)
ij )

∑
e0

qt|0(ẽij |e(0)
ij

)

qt|0(e
(t)
ij

|e(0)
ij

)
pθ

0|t(e
(0)
ij | G(t)), for e

(t)
ij ̸= ẽij

Sample j
e

(t)
ij

,ẽij
∼ P(τR̂t,θ

E (e(t)
ij , ẽij)) ▷ Count transitions on edge ij

end
end
for i = 1 to n do

for x̃ in X do
if j

x
(t)
i

,x̃
= 1 and

∑
x̃ j

x
(t)
i

,x̃
= 1 then

x
(t−τ)
i = x̃ ▷ Apply unique transition or discard

end
end

end
for i, j = 1 to n, i < j do

for ẽ in E do
if j

e
(t)
ij

,ẽ
= 1 and

∑
ẽ j

e
(t)
ij

,ẽ
= 1 then

e
(t−τ)
ij = ẽ ▷ Apply unique transition or discard

end
end

end
t← t− τ

end
G0 ←

∏
i argmax pθ

0|t(x
(0)
i | G(t))

∏
ij argmax pθ

0|t(e
(0)
ij | G(t)) ▷ Last pass

return G0

Figure 3: Training and Sampling algorithms of Cometh

D.1 Synthetic graph generation

We evaluate our method on two datasets from the SPECTRE benchmark (Martinkus et al., 2022), with
200 graphs each. Planar contains planar graphs of 64 nodes, and SBM contains graphs drawn from a
stochastic block model with up to 187 nodes. We use the same split as the original paper, which uses 128
graphs for training, 40 for training, and the rest as a validation set. Similar to Jo et al. (2024), we apply
random permutations to the graphs at each training epoch.

We report five metrics from the SPECTRE benchmark, which include four MMD metrics between the
test set and the generated set and the VUN metric on the generated graphs. The MMD metrics measure
the Maximum Mean Discrepancy between statistics from the test and the generated set, namely the
Degree (Degree) distribution, the Clustering coefficient (Cluster) distribution, the count of orbit
information regarding subgraphs of size four Orbit (Orb.) and the eigenvalues (Spectrum) of the graph
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Figure 4: Overview of DiGress graph transformer.
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Laplacian. The Valid, Unique, and Novel (VUN) metric measures the percentage of valid, unique, and
non-isomorphic graphs to any graph in the training set.

For the MMD metrics, we report ratios between the MDD computed between the generated and the test set,
over the MDD between the train and the test set. In fact, due to the small size of the datasets, the statistics
that we compute vary slightly between the train and the test set. Formally,

r = MMD(generated, test)2

MMD(train, test)2 (7)

Note that we actually compute the MMD squared, following a common practice (Martinkus et al., 2022;
Vignac et al., 2022).

On Planar, we report results using τ = 0.002, i.e. using 500 τ -leaping. We also evaluate our model using 10
corrector steps after each predictor step when t < 0.1T , with τ = 0.002, for 1000 τ -leaping steps. We found
our best results using τc = 0.7.

On SBM, we report results using τ = 0.001, i.e., using 1 000 τ -leaping steps.

D.2 Small molecule generation : QM9

We evaluate our model on QM9 (Wu et al. (2018)) to assess the ability of our model to model attributed
graph distributions. The molecules are kekulized using the RDKit library, and hydrogen atoms are removed,
following the standard preprocessing pipeline for this dataset. Edges can have three types, namely simple
bonds, double bonds, and triple bonds, as well as one additional type for the absence of edges. The atom
types are listed in Table 7.

We use the same split as Vignac et al. (2022), i.e., 100k molecules for training, 13k for testing, and the rest
(20 885 molecules) as a validation set. We choose this split over the one proposed in Jo et al. (2022) because
it leaves a validation set to evaluate the ELBO and select the best checkpoints to minimize this quantity.
In consequence, our training dataset contains roughly 20k molecules, which is less than what most graph
generation works use.

At the sampling stage, we generate 10k molecules. We evaluate four metrics. The Validity is evaluated
by sanitizing the molecules and converting them to SMILES string using the RDKit library. The largest
molecular fragment is selected as a sample if it is disconnected. We then evaluate the Uniqueness among
valid molecules. As stated in Vignac et al. (2022), evaluating novelty on QM9 bears little sense since this
dataset consists of an enumeration of all stable molecules containing the atom above types with size nine or
smaller. We also evaluate the Fréchet ChemNet Distance (FCD), which embeds the generated set and the
test set using the ChemNet neural network and compares the resulting distributions using the Wasserstein-2
distance (Preuer et al. (2018)). Finally, we evaluate the Neighborhood Subgraph Pairwise Distance Kernel
(NSPDK) between the test set and the generated, which measures the structural similarities between those
two distributions.

D.3 Molecule generation on large datasets

We further evaluate Cometh on two large molecule generation benchmarks, MOSES (Polykovskiy et al.,
2020) and GuacaMol (Brown et al., 2019). The molecules are processed the same way as for QM9 and present
the same edge types. The atom types for both datasets are listed in Table 7. The filtration procedure for the
GuacaMol consists of converting the SMILES into graphs and retrieving the original SMILES. The molecules
for which this conversion is not possible are discarded. We use the code of Vignac et al. (2022) to perform
this procedure. We use the standard split provided for each dataset.

Both datasets are accompanied by their own benchmarking libraries. For GuacaMol, we use the distribution
learning benchmark. During the sampling stage, we generate 25k molecules for MOSES and 18k for GuacaMol,
which is sufficient for both datasets, as they evaluate metrics based on 10k molecules sampled from the
generated SMILES provided.

26



Published in Transactions on Machine Learning Research (04/2025)

Table 7: Details of the molecular datasets. The number of molecules for GuacaMol is computed after filtration.
Dataset Number of molecules Size Atom types

QM9 133 885 1 to 9 C, N, O, F
MOSES 1 936 962 8 to 27 C, N, S, O, F, Cl, Br

GuacaMol 1 398 223 2 to 88 C, N, O, F, B, Br, Cl, I, P, S, Se, Si

We then elaborate on the metrics for each dataset. For both datasets, we report Validity, defined in the same
manner as for QM9, the percentage of Valid and Unique (Val. & Uni.) samples, and the percentage of
Valid, Unique, and Novel (VUN) samples. We prefer the latter two metrics over Uniqueness and Novelty
alone, as they better assess a model’s performance compared to separately reporting all three metrics (Validity,
Uniqueness, and Novelty). The MOSES benchmark also computes metrics by comparing the generated set
to a scaffold test set, from which we report the Fréchet ChemNet Distance (FCD), the Similarity to
the nearest neighbor (SNN), which computes the average Tanimoto similarity between the molecular
fingerprints of a generated set and the fingerprints of the molecules of a reference set, and Scaffold similarity
(Scaf), which compares the frequencies of the Bemis-Murcko scaffolds in the generated set and a reference set.
Finally, we report the metrics of the Filters indicating the percentage of generated molecules successfully
passing the filters applied when constructing the dataset. The GuacaMol benchmark computes two scores,
the Fréchet ChemNet Distance (FCD) score and the KL divergences (KL) between the distributions
of a set of physicochemical descriptors in the training set and the generated set.

We report results using τ = 0.002, i.e., 500 denoising steps on both datasets. The predictor-corrector
experiments used τ = 0.004 and 10 corrector steps for 500 denoising steps. For both datasets, we used
τc = 1.5.

D.4 Conditional generation

We perform conditional generation experiments on QM9, targeting two properties, the dipole moment µ
and the highest occupied molecular orbital energy (HOMO). They are well suited for conditional
generation evaluation because they can be estimated using the Psi4 library (Smith et al., 2020). We trained
models sweeping over puncond ∈ {0.1, 0.2}, and explore different values for s in J1, 6K during sampling. We
obtained our best results using puncond = 0.1 and s = 1.

We evaluated our method in the same setting as Vignac et al. (2022) during inference. We sampled 100
molecules from the test set, extracted their dipole moment and HOMO values, and generated 10 molecules
targeting those properties. We estimated the HOMO energy and the dipole moment of the generated
molecules, and we report the Mean Absolute Error (MAE) between the estimated properties and the
corresponding targets.

To efficiently incorporate the conditioner y, we implemented a couple of ideas proposed in Ninniri et al.
(2023). Instead of using y solely as a global feature, we incorporated it as an additional feature for each node
and edge. Additionally, we trained a two-layer neural network to predict the size of the molecule given the
target properties rather than sampling it from the empirical dataset distribution. Our empirical observations
indicate that this approach enhances performance. As of the time of writing, no official implementation has
been released for Ninniri et al. (2023), rendering it impossible to reproduce their results. Additionally, since
they do not report validity in their experiments on QM9, we choose not to include their results as a baseline
to avoid unfair comparisons.

D.5 Compute Ressources

Experiments on QM9, Planar, and SBM were carried out using a single V100 or A10 GPU at the training
and sampling stage. The training time on QM9 is 6 hours, while the training time on SBM and Planar is
approximately 2 days and a half.
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We trained models on MOSES or Guacamol using two A100 GPUs. To sample from these models, we used
a single A100 GPU. The training time on MOSES is approximately two days while training on GuacaMol
requires 4 days.

E Additional Experiments

E.1 Ablation on the number of steps

To demonstrate why the continuous-time approach allows trade sampling quality and efficiency, we perform
an ablation study on τ . Results are presented in Tables 8 to 10. We report the number of model evaluations
equal to 1/τ instead of τ for readability.

Overall, the model achieves decent performance across all datasets with just 50 steps. Increasing the number of
model evaluations to 500-700 enhances performance to a state-of-the-art level. Beyond this point, performance
saturates and models using 1000 steps do not necessarily outperform those with fewer evaluations, as seen
with SBM and Planar.

Table 8: Ablation study on the number of steps for synthetic graphs. We report the mean of 5 runs,
as well as 95% confidence intervals. The best results are highlighted in bold.

Number of steps Degree ↓ Cluster ↓ Orbit ↓ Spectrum ↓ VUN [%] ↑
Planar graphs

10 103.0±6.8 11.0±0.1 305.4±10.6 5.3±0.2 0.0±0.0
50 3.6±1.3 3.3±0.2 12.4±4.5 1.3±0.2 41.5±4.51
100 3.1±1.2 2.3±0.3 5.2±2.5 1.4±0.2 76.0±2.23
300 3.4±1.1 1.7±0.5 6.2±3.9 1.3±0.1 86.5±3.82
500 2.1±1.3 1.5±0.3 3.1±3.0 1.2±0.2 92.5±3.67
700 2.4±1.2 1.5±0.2 2.2±1.2 1.1±0.2 94.0±2.23
1000 1.9±1.0 1.9±0.2 2.7±1.7 1.5±0.2 89.5±3.51

Stochastic block model
10 166.6±16.1 1.8±0.1 3.3±0.2 2.2±0.2 14.0±4.72
50 2.6±0.6 1.5±0.0 1.9±0.2 0.9±0.1 62.0±5.44
100 1.4±0.7 1.5±0.0 1.7±0.2 0.9±0.1 70.5±5.26
300 2.4±0.6 1.5±0.0 1.8±0.3 0.8±0.0 65.5±5.94
500 2.4±1.1 1.5±0.0 1.7±0.2 0.8±0.1 77.0±5.26
700 2.6±0.9 1.5±0.0 1.6±0.1 0.9±0.1 69.0±4.06
1000 1.8±0.7 1.5±0.0 1.7±0.4 0.8±0.1 67.5±3.10

Table 9: Ablation study on the number of steps for QM9. We report the mean of 5 runs, as well as
95% confidence intervals.

Number of steps Validity ↑ Uniqueness ↑ Valid & Unique ↑ FCD ↓ NSPDK ↓
10 88.69±0.36 98.57±0.13 87.42±0.46 0.84±0.02 0.001±0.0
50 99.07±0.05 96.78±0.16 95.88±0.21 0.25±0.01 0.000±0.0
100 99.42±0.06 96.81±0.06 96.24±0.05 0.26±0.01 0.000±0.0
300 99.53±0.02 96.57±0.12 96.12±0.11 0.25±0.01 0.000±0.0
500 99.57±0.07 96.76±0.17 96.34±0.2 0.25±0.01 0.000±0.0
700 99.53±0.05 96.65±0.15 96.2±0.15 0.25±0.01 0.000±0.0
1000 99.57±0.07 96.79±0.08 96.37±0.14 0.25±0.01 0.000±0.0

E.2 Ablation on the noise model

To emphasize the impact of using marginal transitions instead of uniform transitions, we trained models
on Planar and SBM with the uniform noise model (see table 11). While the uniform model performs
competitively with marginal transitions on SBM, the VUN score remains significantly higher with marginal
transitions. On Planar, marginal transitions demonstrate substantially superior performance compared to
uniform transitions.
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Table 10: Ablation study on the number of steps for MOSES We report the mean of five runs, as well
as 95% confidence intervals. The best results are highlighted in bold.

Number of steps Val. ↑ Val. & Uni. ↑ VUN ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
10 26.1±0.2 26.1±0.2 26.0±0.2 59.9±0.6 7.88±0.13 0.36±0.0 8.9±1.1
50 82.9±0.3 82.9±0.3 80.5±0.3 94.6±0.1 1.54±0.01 0.49±0.0 18.4±1.0
100 85.8±0.2 85.7±0.1 82.9±0.2 96.5±0.1 1.43±0.01 0.5±0.0 17.2±0.6
300 86.9±0.2 86.9±0.2 83.8±0.2 97.1±0.1 1.44±0.02 0.51±.0 17.8±1.0
500 87.0±0.2 86.9±0.2 83.8±0.2 97.2±0.1 1.44±0.02 0.51±0.0 15.9±0.8
700 87.2±0.2 87.1±0.2 83.9±0.2 97.2±0.1 1.43±0.02 0.51±0.0 15.9±0.4
1000 87.2±0.2 87.2±0.2 84.0±0.2 97.2±0.1 1.44±0.01 0.51±0.0 17.3±0.9

Table 11: Ablation study on the noise model for synthetic graphs. We report the mean of 5 runs, as
well as 95% confidence intervals.

Noise Model Degree ↓ Cluster ↓ Orbit ↓ Spectrum ↓ VUN [%] ↑
Planar graphs

Marginal 2.1±1.3 1.5±0.3 3.1±3.0 1.2±0.2 92.5±3.67
Uniform 14.3±4.2 3.8±0.6 14.2±6.1 1.7±0.2 32.5±4.4

Stochastic block model
Marginal 2.4±1.1 1.5±0.0 1.7±0.2 0.8±0.1 77.0±5.26
Uniform 1.6±0.3 1.5±0.0 1.8±0.3 0.9±0.1 63.5±6.6

E.3 Ablation on the loss function

To justify our choice to use cross-entropy as our loss function instead of ELBO, we provide the results of our
experiments on QM9 using ELBO as our loss function. Figure 5 presents the validation performance of both
approaches regarding validity over 512 samples. While the cross-entropy loss allows us to reach a near-perfect
validity quickly, the model trained using the ELBO saturates below 80%. The significant performance gap on
a simple dataset like QM9 underscores the inefficiency of using the ELBO as the loss function for Cometh.

Figure 5: Validation results on QM9 using the cross-entropy and ELBO losses.

E.4 Ablation on the noise schedule

We also performed a simple ablation study on QM9 to compare the performance of our cosine noise schedule
against the exponential noise schedule β(t) = αγt log γ, using α = 0.8 and γ = 2. Overall, our cosine schedule
performs better on every metric except the Uniqueness.
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Table 12: Ablation on the noise schedule on QM9. We report the mean of five runs, as well as 95%
confidence intervals. The best results are highlighted in bold.

Model Validity ↑ Uniqueness ↑ Valid & Unique ↑ FCD ↓ NSPDK ↓
Cosine 99.57±0.07 96.76±0.17 96.34±0.2 0.25±0.01 0.000±0.00
Exp 98.28±0.15 97.0±0.13 95.34±0.15 0.31±0.01 0.001±0.00

F Limitations

Although our model advances the state-of-the-art across all considered benchmarks, it still faces quadratic
complexity, a common issue in graph diffusion models. This problem could be alleviated by adapting methods
like EDGE (Chen et al., 2023) used to scale DiGress for large graph generation. Additionally, our approach
does not support the generation of continuous features and is restricted to categorical attributes. It should be
combined with a continuous-state diffusion model to generate continuous features, resulting in an approach
similar to Vignac et al. (2023).

G Samples

Figure 6: Samples from Cometh on Planar (top) and SBM (bottom)

Figure 7: Samples from Cometh on QM9.
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Figure 8: Samples from Cometh on MOSES.

Figure 9: Samples from Cometh on GuacaMol. The samples on this dataset exhibit some failure cases, such
as disconnected molecules or 3-cycles of carbon atoms.
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