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ABSTRACT

In this paper, we propose a novel exploration strategy for reinforcement learn-
ing in continuous action spaces by controlling the sampling strategy of stochastic
policies. The proposed method, Inherent Exploration via Sampling (IES), en-
hances exploration by diversifying actions through the selection of varied Gaus-
sian inputs. IES leverages the inherent stochasticity of policies to improve ex-
ploration without relying on external bonuses. Furthermore, it integrates seam-
lessly with existing exploration methods, introducing negligible computational
overhead. Theoretically, we prove that IES achieves O

(
ϵ−3

)
sample complex-

ity under the actor-critic framework in continuous action spaces. Experimentally,
we evaluate IES on Gaussian policies (e.g., Soft Actor-Critic, Proximal Policy
Optimization) and consistency-based policies for continuous control benchmarks
mujoco, dm control and isaacgym. The results demonstrate that IES effec-
tively enhances the exploration capabilities of different policies, thereby improv-
ing the convergence of various reinforcement learning algorithms.

1 INTRODUCTION

Reinforcement Learning (RL) focuses on learning policies that maximize the expected cumulative
reward through interaction with an environment (Sutton, 2018). Unlike Supervised Learning (SL),
RL faces two key challenges. First, in RL, data collection is sequential and follows a Markovian
process, where future states depend on the current state and action taken, violating the i.i.d. assump-
tion inherent in SL. Second, the objective function—expected cumulative return—is not directly
observable and therefore requires careful estimation and approximation.

Exploration (Ladosz et al., 2022; Hao et al., 2023) plays a pivotal role in addressing key challenges
in Reinforcement Learning (RL). Effective exploration enables the agent to gather high-quality data,
which is essential for both policy evaluation and policy improvement. By obtaining better data, the
agent can achieve more accurate estimations of the RL objective, thereby enhancing the performance
of RL algorithms.

Current exploration strategies can be broadly classified into three categories. Noise Injection. Ex-
ploration in continuous action spaces can be achieved by perturbing actions with state-dependent
noise (Rückstieß et al., 2008), or by introducing temporally correlated noise (Lillicrap, 2015). State-
dependent noise injection (Rückstieß et al., 2008) modulates exploration magnitude based on state
uncertainty estimates. Temporally correlated noise via Ornstein-Uhlenbeck processes (Lillicrap,
2015) enables structured exploration in physical control tasks. Another approach is injecting noise
into the parameter space(Plappert et al., 2017), which perturbs policy network weights to induce
diverse behavior while maintaining action smoothness. Exploration Bonus. An exploration bonus
can be added to the reward function to promote exploration. Maximum entropy regularization

∗Corresponding author

1



ICLR 25 Workshop: The Frontiers in Probabilistic Inference

(Haarnoja et al., 2018) encourages diverse actions by maximizing policy entropy. Information-
theoretic bonuses (Houthooft et al., 2016) quantify epistemic uncertainty through variational infer-
ence. Pseudocount-based methods (Tang et al., 2017) estimate state novelty using density models.
Flip exploration (Lobel et al., 2023) induces diverse trajectories through action sequence inversion.
Curiosity-driven exploration (Pathak et al., 2017) rewards prediction errors in learned dynamics
models. Wasserstein optimistic exploration (Likmeta et al., 2023) constructs confidence bounds in
Wasserstein space for safe exploration. Policy Distribution. Several works have explored more
complex policy distributions to enhance exploration. These include normalizing flows (Ward et al.,
2019), diffusion models (Ren et al., 2024), and consistency models (Ding & Jin, 2023; Chen et al.,
2023). There are some other approaches that are not exactly categorized by these categories. For ex-
ample, Random Latent Exploration (RLE) (Mahankali et al., 2024) conditions the policy by random
goal vector to encourage exploration.

However, we argue that most existing approaches do not fully exploit the inherent stochasticity of
the policies. In this work, we focus on developing a novel exploration strategy that leverages the full
potential of this inherent stochasticity by controlling the sampling strategy. The contributions of this
work are threefold:

1. We propose a novel exploration strategy, Inherent Exploration via Sampling (IES), specif-
ically designed for reinforcement learning in continuous action spaces. This method ef-
fectively controls the sampling behavior of stochastic policies to enhance exploration effi-
ciency.

2. We provide a theoretical analysis of IES and prove that it achieves a sample complexity of
O(ϵ−3).

3. We empirically evaluate IES on continuous control tasks across three distinct reinforce-
ment learning algorithms, comparing its performance with other state-of-the-art exploration
strategies. The results show that IES enhances exploration efficiency and can be seamlessly
integrated with existing exploration techniques to achieve further improvements.

2 PRELIMINARY

The Markov decision process in reinforcement learning can be formalized as a tuple M :=
(S,A, P,R, γ, ρ0). Where S represents a bounded ds dimensional continuous state space, A rep-
resents a bounded da dimensional continuous action space. P : S × A → P(S) represents the
probability transition function, where P(S) represents a set of distribution on the state space S.
R : S × A → [0, 1] represented the reward function. γ ∈ (0, 1) represents the discount factor, and
ρ0 represent a initial distribution over state space.

The policy π : S → P(A) maps a state to a distribution over the action space. In the context
of continuous control, the policy can often be represented by a sampling function: a = f(s, z),
where z ∼ N (0, Ida

) is a da-dimensional sample from a standard Gaussian distribution. In deep
reinforcement learning, this sampling function a = fϕ(s, z) is parameterized by a neural network
with parameters ϕ ∈ Φ, where Φ represents the entire parameter space of the policy network. We
denote the policy corresponding to the sampling function a = fϕ(s, z) as πϕ : S → P(A). This
general formulation encompasses a variety of policy types, including Gaussian policies (Haarnoja
et al., 2018), diffusion policies (Chi et al., 2023), and consistency policies (Chen et al., 2023), among
others.

The state action value function Qπ(s, a) denotes the expected cumulative reward starting from state
s0 and action a0 and following policy π.

Qπ(s, a) = E

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
, (1)

where the expectation is taken with respect to st+1 ∼ P (· | st, at) and at ∼ π(· | st).
In the context of actor-critic algorithms, the goal of reinforcement learning is to maximize the ex-
pected cumulative return

J(ϕ) = Es0∼ρ0,a∼πϕ(·|s) [Q
πϕ(s, a)] , (2)
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Figure 1: Illustration of the Inherent Exploration via Sampling (IES) method. First, we gener-
ate Gaussian samples for each timestep using the quasi-Monte Carlo method. Secondly, at each
timestep, we randomly select one Gaussian sample z without replacement, and use the selected
Gaussian sample to compute the action via a = fϕ(s, z).

where ρ0 denotes the initial state distribution.

The discounted state visitation measure is defined as

d
πϕ
ρ0 (·) := (1− γ)

∞∑
t=0

γtPρ0,πϕ
(st ∈ ·) (3)

where γ ∈ [0, 1) is the discount factor, and Pρ0,πϕ
(st ∈ ·) represents the probability of the state

st being in the set · under the state distribution ρ0 and the policy πϕ. And let ζπϕ
ρ0 (·) denote the

stationary state-action distribution starts from initial state distribution ρ0 and follows policy πϕ.

3 INHERENT EXPLORATION VIA SAMPLING

Inherent Exploration via Sampling (IES) encourages exploration in online reinforcement learning
environments by directly controlling the policy’s sampling behavior. Specifically, it selects the
Gaussian input zi at timestep i before passing it to the policy sampling function, ai = f(si, zi).
By carefully selecting the Gaussian input to be both diverse and representative, IES ensures that the
actions are diverse while maintaining the unbiasedness of policy evaluation and policy improvement.

The main process of Inherent Exploration via Sampling (IES) consists of two steps. First, we gener-
ate ne diverse and representative Gaussian samples, denoted as {zki }

ne

k=1, for each timestep i. Sec-
ond, at each timestep i during an episode, we select one Gaussian sample, zi, from the set {zki }

ne

k=1
without replacement and use the policy sampling function ai = f(si, zi) to compute the action. This
action is then used in the online interaction. When all Gaussian samples at timestep i are exhausted,
new samples {zki }

ne

k=1 are generated.

3.1 GENERATE GAUSSIAN SAMPLES VIA QUASI-MONTE CARLO

The first step of IES is to generate sufficiently representative Gaussian samples. Those samples will
be stored and used in online interactions later.

In this work, we utilize randomized quasi-Monte Carlo (QMC) methods (Niederreiter, 1992; Owen,
2004; 2008) to generate evenly distributed Gaussian samples. QMC methods, commonly used for
numerical integration, rely on low-discrepancy sequences such as the Faure, Sobol’, and Halton se-
quences (see (Caflisch et al., 1997; Niederreiter, 1992; Owen, 2013)) to achieve a faster convergence
rate of O(n−1+ϵ), where ϵ > 0 is an arbitrarily small constant. This enhanced convergence rate is
derived from the Koksma-Hlawka inequality (Hlawka & Mück, 1972), which relates the integration
error to two factors: the variation of the integrand (measured in the Hardy-Krause sense) and the
uniformity of the sample points, characterized by their star discrepancy.
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As shown in Figure 2, quasi-Monte Carlo (QMC) samples form a more structured and uniform
pattern than Monte Carlo (MC) samples for a 2D Gaussian distribution. This structure enables more
efficient action diversification by better leveraging policy stochasticity without external guidance.

Figure 2: Monte Carlo and Quasi-Monte Carlo Sampling.

3.2 CONTROL SAMPLES IN ONLINE INTERACTION

In online interaction at timestep i, IES randomly picks one Gaussian sample zi from the pre-
generated Gaussian samples{zi}n

e

i=0 without replacement. The selected Gaussian sample is then
passed to the policy function to get action ai = fϕ(si, zi). Then the action ai is used in the interac-
tion with the environment.

Algorithm 1 Inherent Exploration via Sampling (IES)

1: Initialize Gaussian samples {zi}n
e

i=0 via randomized quasi-Monte Carlo method.
2: for each iteration do
3: for each environment step t do
4: if {zi}n

e

i=0 are all selected then
5: Generate new Gaussian samples {zi}n

e

i=0.
6: end if
7: Randomly select a Gaussian input zt from the generated Gaussian samples {zi}n

e

i=0 with-
out replacement.

8: Compute action at = f(st, zt).
9: Observe st+1, rt from the environment after executing at.

10: Store transition (st, at, rt, st+1) in replay buffer.
11: end for
12: for each gradient step do
13: Critic update and policy update.
14: end for
15: end for

The no-replacement strategy encourages the agent to explore new actions while still keeping the
objective function unchanged. After the {zi}n

e

i=0 samples are all used, there is a new round of
generation of {zi}n

e

i=0 quasi-Monte Carlo samples.

It is worth noticing that IES only affects the sampling in the action computation. Thus it can
be applied to many existing exploration methods such as noise injection (Lillicrap, 2015) and
bonus (Haarnoja et al., 2018), etc.

4 THEORETICAL ANALYSIS

In this section, we analyze the behavior of Inherent Exploration via Sampling and provide a global
convergence guarantee under common assumptions. The analysis is highly inspired by the frame-
work of actor-critic algorithms under neural network approximation (Gaur et al., 2024).
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Policy Regularity (Liu et al., 2020)

Assumption 4.1. Let ϕ, ϕ1, ϕ2 ∈ Φ and (s, a) ∈ S ×A. The following hold:

∥∇ϕ log(πϕ1(a | s))−∇ϕ log(πϕ2(a | s))∥ ≤ l1∥ϕ1 − ϕ2∥,
∥∇ϕ log(πϕ(a | s))∥ ≤ Mg,

where l1 > 0 and Mg > 0 are constants.

This assumption is a standard assumption regarding policy regularity, and it has been widely used in
prior works such as (Liu et al., 2020; Fatkhullin et al., 2023; Gaur et al., 2024). It assumes that the
gradient of the log-policy satisfies the Lipschitz continuity property and the norm of the gradient of
the log-policy is bounded. Gaussian policies are proven to fulfill this assumption (Liu et al., 2020).

Fisher-non-degenerate Policy (Zhang et al., 2020)

Assumption 4.2. Let (s, a) ∈ (S ×A) and ϕ ∈ Φ. The following conditions hold:

E
(s,a)∼d

πϕ1
ρ0

(
∇ϕ log πϕ1

(a | s) · ∇ϕ log πϕ1
(a | s)⊤

)
⪰ µfId,

where µf ≥ 0 and Id is the identity matrix of dimension d.

This is a common assumption in the literature (Fatkhullin et al., 2023). It is shown to be satisfied by
Gaussian policies under specific parameterization(Fatkhullin et al., 2023).

Ergodicity (Xu et al., 2020)

Assumption 4.3. Let ϕ ∈ Φ and πϕ be the corresponding policy. We assume the following:
There exists a positive integer p such that for every positive integer k, for any measurable set
· ∈ S × A, and for any initial state s ∈ S, the total variation distance satisfies:

dTV

(
P
(
(sk, ak) ∈ · | s0 = s

)
, ζ

πϕ
ρ0 (·)

)
≤ pρk,

where ρ ∈ [0, 1) and dTV denotes the total variation distance.

This ergodicity assumption is standard in reinforcement learning under Markovian sampling (Bhan-
dari et al., 2018; Xu et al., 2020; Gaur et al., 2024).

Compatible Policy Representation (Fatkhullin et al., 2023)

Assumption 4.4. There exists ϵbias ≥ 0 such that for every ϕ ∈ Φ, the estimation error
satisfies:

E
[(
Aπϕ(s, a)−

(
(1− γ)w∗(ϕ)⊤∇ϕ log πϕ(a | s)

))2]
≤ ϵbias,

where Qπϕ(s, a) is the state-action value function, and w∗(ϕ) is defined as:

w∗(ϕ) := Fρ(ϕ)
†∇ϕJ(ϕ),

where Fρ0
(ϕ)† is the pseudo-inverse of the Fisher information matrix Fρ0

(ϕ). The expecta-
tion is taken over s ∼ dπ

∗

ρ0
and a ∼ π∗(· | s), where π∗ is the optimal policy that maximizes

J(ϕ).

This assumption is widely used in reinforcement learning works with last iterate convergence anal-
ysis (Fatkhullin et al., 2023; Gaur et al., 2024)
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Critic Approximation (Gaur et al., 2024)

Assumption 4.5. For any fixed ϕ ∈ Φ, we have:

min
θ∈Θ′

E
s,a∼ζ

πϕ
ρ0

(Qθ(s, a)−Qπϕ(s, a))
2 ≤ ϵapprox,

where Tπϕ is the Bellman operator associated with policy πϕ, ζπϕ
ρ0 is the stationary state-

action distribution, and ϵapprox represents the approximation error.

4.1 MAIN THEOREM

Theorem 1 (Global Convergence of IES)

Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Then we have:

J∗ − J(ϕT ) ≤ O
(
1

T

)
+

1

T 2

T−1∑
t=1

(t+ 1)
16√
µ′ [∥∇J(ϕt)− dt∥] ,

≤ O
(
1

T

)
+O

(
1√
n

)
,

Where the J∗ denotes the optimal expected return and J(ϕT ) denotes the expected return
for πϕT

, n denotes the number of samples collected by IES method in one gradient update,

µ′ =
µ2
F

2M2
g

, ∇J(ϕt) denotes the ground truth gradient, dt denotes the estimated gradient,

and Õ(·) represents asymptotic complexity. Thus the sample complexity is O(ϵ−3).

5 EXPERIMENTAL RESULTS

In this section, we experiment with Inherent Exploration via Sampling (IES) for continuous control.
First, we demonstrate that the stochasticity in policies is an abundant resource that can be leveraged
for exploration. Second, we show that IES can significantly enhance exploration compared to other
baseline methods. Third, we provide an extensive evaluation of IES across three major continuous
control environments: mujoco, dm control, and isaacgym. IES is tested on several reinforce-
ment learning algorithms, including Proximal Policy Optimization (PPO) (Schulman et al., 2017),
Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and Consistency Policy Q Learning (CPQL) (Chen
et al., 2023). Finally, we offer additional discussions regarding the proposed methods. The imple-
mentation of the proposed method will be made publicly available upon acceptance.

Table 1: Performance comparison of different methods across MuJoCo v4 environments.
Method Swimmer HalfCheetah Ant Humanoid Humanoid-Standup

PPO 110 1497 850 632 148889
SAC 48 11334 1821 5194 157336
CPQL 113 9491 3598 4911 136646
PPO + IES (Ours) 116 1524 1398 520 138246
SAC + IES (Ours) 56 11407 5011 5621 159396
CPQL + IES (Ours) 106 9807 4048 5268 122673

5.1 STOCHASTICITY IN POLICIES

First, we show that policies can contain great stochasticity. The following Figure 3 shows the action
distribution learned by consistency policy q learning (CPQL) (Chen et al., 2023). We trained CPQL
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Table 2: Performance comparison across dm control environments. Abbreviations: A-S
(Acrobot-Swingup), C-S (Cartpole-Swingup), F-S (Finger-Spin), F-TE (Finger-TurnEasy), F-TH
(Finger-TurnHard), H-H (Hopper-Hop), W-R (Walker-Run).

Method A-S C-S Cheetah F-S F-TE F-TH H-H W-R

PPO 34.4 760.7 560.4 369.9 275.2 5.0 2.2 131.7
SAC 33.2 781.4 530.9 825.4 371.4 344.8 270.9 445.9
PPO + IES (Ours) 80.2 744.7 340.6 646.0 219.0 93.6 27.2 100.6
SAC + IES (Ours) 18.0 867.3 796.5 969.3 727.2 990.0 607.9 672.5

in mujoco Swimmer environment for 1 million steps. Then we randomly select a state s in the state
space, generate ne quasi-Monte Carlo samples (Figure 3 left), and pass them to the policy function
to get ne action samples (Figure 3 right). The actions are transformed by the PCA method for
visualization purposes. It can be shown that the stochastic policy can model complex non-Gaussian
distribution in high-dimensional action space.

Figure 3: Actions sampled from stochastic policies learned by CPQL (Chen et al., 2023) in the
mujoco Swimmer environment. Each subfigure represents action samples for a random state in the
Swimmer environment.

(a) AllegroHand (b) FrankaCabinet (c) FrankaCabinetTimeOut

(d) Humanoid (e) Quadcopter (f) Anymal

Figure 4: Performance visualization on IsaacGym environments: (a) AllegroHand, (b) FrankaCabi-
net, (c) FrankaCabinetTimeOut, (d) Humanoid, (e) Quadcopter, and (f) Placeholder.

5.2 EXPERIMENTS RESULTS ON ONLINE ENVIRONMENTS

In this section, we show the experiment results for IES in online reinforcement learning tasks in
continuous control environments.

Environments. We evaluate IES on 3 major environments for continuous control:
mujoco (Todorov et al., 2012), dm control (Tunyasuvunakool et al., 2020), and
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IssacGym (Makoviychuk et al., 2021). These environments provide diverse and complex bench-
marks for robotic locomotion and manipulation.

Backbone Algorithms. We consider 3 reinforcement learning algorithms as backbone algorithms
for exploration: Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and Proximal Policy Optimiza-
tion (Schulman et al., 2017) are using Gaussian policies, and Consistency Policy Q Learning
(CPQL) (Chen et al., 2023) is using simplified consistency policies. The backbone implementa-
tion of SAC and PPO is based on CleanRL (Huang et al., 2022) project and the implementation of
CPQL follows the CPQL original paper (Chen et al., 2023).

Exploration Baselines. Exploration baselines include Random Network Distillation (Burda et al.,
2018), and Random Latent Exploration (Mahankali et al., 2024).

Does IES improve the performance of Backbone algorithms? First, we compare the performance
of the backbone algorithms (PPO, SAC, CPQL) with the backbone algorithms enhanced by IES
(PPO-IES, SAC-IES, CPQL-IES). Each algorithm is trained for 1 million steps across 3 random
seeds. Evaluation is performed every 10,000 steps, and we report the evaluation return curve during
training in Figure 6. The line represents the mean and the shaded area represents the minimum and
maximum returns across different seeds.

Table 1 reports the evaluation mean after training for 1 million steps in MuJoCo. The results indi-
cate that IES improves the performance of most backbone algorithms across various environments.
Table 2 provides the evaluation mean for dm control, where each IES algorithm is trained for
50k steps using 3 random seeds, and the results of PPO and SAC are taken from the CPQL pa-
per (Chen et al., 2023). SAC + IES consistently achieves the highest returns in complex tasks such
as Finger-TurnHard and Walker-Run, highlighting its superior exploration capabilities. PPO + IES
shows notable improvements in environments like Acrobot-Swingup. However, it is worth noting
that the performance improvement of IES for SAC is relatively larger than for PPO. While PPO
generally benefits from IES, there are occasional cases where its performance slightly decreases.

How Does IES Compare to Other Exploration Algorithms? Secondly, we compare the perfor-
mance of IES with other exploration strategies in IsaacGym environments. The results in Table 3
and the training curve in Figure 4 highlight the effectiveness of PPO-IES compared to other meth-
ods. PPO-IES achieves the highest returns in challenging environments such as FrankaCabinet,
Humanoid, and FrankaCabinetTimeout, demonstrating its ability to enhance exploration and im-
prove policy performance. While PPO-RND performs well in ShadowHand, and PPO achieves the
best result in BallBalance, PPO-IES consistently outperforms in more complex and diverse tasks,
validating its robustness and adaptability across different IsaacGym environments.

6 DISCUSSION

Computational Cost The only additional computational cost is the generation of quasi-Monte Carlo
Gaussian samples. The following action computation, online interaction, and learning follow the
same procedure as regular reinforcement learning algorithms. The additional computational cost is
negligible. Applicability The IES method only affects the action computation step. It can be applied
to any policy class in the form of sampling function a = f(s, z). These include Gaussian policies,
and many generative models. Furthermore, it can be easily applied to existing online exploration
methods like noise injection or bonus exploration. Limitations and Future Directions. In this
work, we have focused on sampling, future research could explore other active sampling strategies
to further enhance exploration. Additionally, our current experiments are limited to simulation en-
vironments, and future work could involve testing the proposed methods on real robotic platforms
to validate their performance in practical scenarios.

7 CONCLUSION

We introduced Inherent Exploration via Sampling (IES), a novel exploration strategy tailored for
reinforcement learning in continuous action spaces. Our theoretical analysis demonstrates that IES
achieves a sample complexity of O(ϵ−3). Empirical evaluations across multiple algorithms and tasks
confirm that IES enhances exploration efficiency and integrates seamlessly with existing methods to
achieve superior performance.
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A RELATED WORKS

A.1 STOCHASTIC POLICIES

In the context of continuous action space reinforcement learning, policies are typically repre-
sented as stochastic distributions. Common examples of stochastic policies include Gaussian poli-
cies (Haarnoja et al., 2018; Schulman et al., 2017), Diffusion Policies (Chi et al., 2023), and Con-
sistency Policies (CP) (Ding & Jin, 2023). Gaussian policies, widely adopted in algorithms like
Soft Actor-Critic (Haarnoja et al., 2018) and Proximal Policy Optimization (Schulman et al., 2017),
model actions through mean and variance parameters. Diffusion Policies (Chi et al., 2023) utilize it-
erative denoising processes inspired by generative models to generate temporally consistent actions.
Consistency Policies (CP) (Ding & Jin, 2023) employ consistency models that enable single-step
policy evaluation while maintaining multi-step training benefits within actor-critic architectures.
Consistency Policy Q Learning (CPQL) (Chen et al., 2023) simplifies CP training through a modi-
fied Q-learning objective that bypasses complex consistency constraints.

A.2 QUASI-MONTE CARLO

Efficient numerical integration is crucial in statistics, finance, and reinforcement learning, where
computing expectations is common. Given an integral E[f(Z)] with Z ∼ U [0, 1]d, the standard
Monte Carlo (MC) estimator is:

În =
1

n

n∑
i=1

f(yi),

where {yi}ni=1 are i.i.d. samples from U [0, 1]d. The MC method achieves a convergence rate of
O(n−1/2) due to the central limit theorem.

In contrast, Quasi-Monte Carlo (QMC) methods replace random sampling with low-discrepancy
sequences, such as Sobol’, Faure, and Halton sequences, to improve integration accuracy. The error
bound follows the Koksma-Hlawka inequality (Hlawka & Mück, 1972):∣∣∣∣∣

∫
f(y)dy − 1

n

n∑
i=1

f(yi)

∣∣∣∣∣ ≤ VHK(f)D
∗
n,

where VHK(f) measures function variation, and D∗
n denotes the star discrepancy, quantifying the

uniformity of sample distribution. QMC sequences reduce discrepancy to O(n−1(log n)d), outper-
forming MC in convergence speed when VHK(f) is finite.

Randomized Quasi-Monte Carlo (RQMC) further enhances QMC by introducing controlled ran-
domness while maintaining low discrepancy. Methods such as scrambling and random shift-
ing ensure that points remain uniformly distributed while preserving deterministic structure.
RQMC retains a convergence rate of O(n−1+ϵ) and, under smooth conditions, can achieve
O(n−3/2+ϵ) (Owen, 2008).

B THEORY

B.1 LEMMAS

Lemma B.1 (Relaxed weak gradient domination, (Ding et al., 2022)). Let Assumptions 1-(ii), 2,
and 4 hold. Then

∀ϕ ∈ Rd, ϵ′ + ∥∇J(ϕ)∥ ≥
√

2µ′ (J∗ − J(ϕ)) , (4)

where

ϵ′ =
µF

√
ϵbias

Mg(1− γ)
and µ′ =

µ2
F

2M2
g

. (5)

Lemma B.2 (Relaxed Descent Lemma for Policy Gradient, (Fatkhullin et al., 2023; Gaur et al.,
2024)). Let Assumptions 1, 2, 3, and 4 hold. Let J(ϕt) denote the expected return for the policy

12
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parameterized by ϕt at iteration t. Under the smoothness property of the expected return J(ϕ), the
following holds:

−J(ϕt+1) ≤ −J(ϕt)−
αt

3
∥∇J(ϕt)∥+

8αt

3
∥et∥+ LJ∥ϕt+1 − ϕt∥2, (6)

where αt is the step size at iteration t, et is the error term defined as et = dt −∇J(ϕt), and LJ is
the smoothness constant of J(ϕ).
Lemma B.3 (Recursion Lemma, (Fatkhullin et al., 2023) Lemma 12, (Stich, 2019) Lemma 7.).
Let a be a positive real number, τ a positive integer, and let {rt}t≥0 be a non-negative sequence
satisfying for every integer t ≥ 0:

rt+1 − rt ≤ −aαtrt + βt, (7)
where {αt}t≥0 and {βt}t≥0 are non-negative sequences and aαt ≤ 1 for all t. Then, for αt =

2
a(t+τ) , we have for every integer t0, T ≥ 1:

rT ≤ (t0 + τ − 1)2rt0
(T + τ − 1)2

+

∑T−1
t=t0

βt(t+ τ)2

(T + τ − 1)2
. (8)

Lemma B.4 (Bounded Gradient Error Lemma). Let dt be the estimated gradient at gradient step t,
and let n denote the number of state action pairs used in the gradient estimation. Suppose that all
the state action pairs are collected by policy πϕt under the IES method. Then we have,

∥∇J(ϕt)− dt∥ = ∥∇J(ϕt)−
1

n

n∑
i=1

∇logπϕt
(ai|si)Qθt(ai, si)∥ (9)

≤ O(
1√
n
) (10)

B.2 PROOFS

Proof of theorem 1.

Proof. Under Assumptions 4.1, 4.2, 4.3, and 4.4, plugging the inequality of Lemma B.1 into the
inequality of Lemma B.2, we get:

−J(ϕt+1) ≤ −J(ϕt)−
αt

√
µ′

3
(J∗ − J(ϕt)) +

8αt

3
∥∇J(ϕt)− dt∥

+ LJ∥ϕt+1 − ϕt∥2 +
αt

3
ϵ′,

J∗ − J(ϕt+1) ≤ J∗ − J(ϕt)−
αt

√
µ′

3
(J∗ − J(ϕt)) +

8αt

3
∥∇J(ϕt)− dt∥

+ LJ∥ϕt+1 − ϕt∥2 +
αt

3
ϵ′,

δϕt+1
≤

(
1− αt

√
µ′

3

)
δϕt

+
8αt

3
∥∇J(ϕt)− dt∥

+ LJ∥ϕt+1 − ϕt∥2 +
αt

3
ϵ′,

where we denote δϕt
= J∗ − J(ϕt).

We begin by considering the update rule for δϕt
at timestep t:

δϕt+1
≤

(
1− αt

√
µ′

3

)
δϕt

+
8αt

3
∥∇J(ϕt)− dt∥+ LJ∥ϕt+1 − ϕt∥2 +

αt

3
ϵ′. (11)

Define βt = 8αt

3 ∥∇J(ϕt) − dt∥ + αt

3 ϵ′ + LJ∥ϕt+1 − ϕt∥2. Using the recursive inequality, we
expand for T steps:

δϕT
≤ δϕt0

T−1∏
t=t0

(1− aαt) +

T−1∑
t=t0

βt

T−1∏
k=t+1

(1− aαk) , (12)
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where a =
√
µ′

3 . Let αt =
2

t+τ .

δϕT
≤ (t0 + τ − 1)2

(T + τ − 1)2
δϕt0

+
1

T 2

T−1∑
t=t0

(t+ τ)2βt. (13)

The term βt can be expanded and summed:

1

T 2

T−1∑
t=t0

(t+ τ)2βt =
1

T 2

T−1∑
t=t0

[
8

3
αt∥∇J(ϕt)− dt∥+

αt

3
ϵ′ + LJα

2
t

]
. (14)

δϕT
≤ (t0 + τ − 1)2

(T + τ − 1)2
δϕt0

+
1

T 2

T−1∑
t=t0

(t+ τ)2
[
8

3
αt∥∇J(ϕt)− dt∥+

αt

3
ϵ′ + LJα

2
t

]
. (15)

Breaking it into individual components: - The term 8
3αt∥∇J(ϕt)−dt∥ scales as 1

T . - The term αt

3 ϵ′

scales as ϵ′

T . - The term LJα
2
t scales as LJ

T 2 .

With the step size choice αt =
2

a(t+τ) where a =
√
µ′

3 , τ = 1, and t0 = 1:

δϕT
≤ 1

T 2
δϕ1

+
1

T 2

T−1∑
t=1

(t+ 1)2
[
8

3
αt∥∇J(ϕt)− dt∥+

αt

3
ϵ′ + LJα

2
t

]
(16)

Expand each component of βt:

• Gradient error term:

8

3
αt∥∇J(ϕt)− dt∥ =

16√
µ′(t+ 1)

∥∇J(ϕt)− dt∥

• Bias term ϵ′:
2ϵ′

3
√
µ′T 2

T−1∑
t=1

(t+ 1) = O
(
ϵ′

T

)
• Squared step size term:

36LJ

µ′T 2

T−1∑
t=1

1 = O
(
1

T

)

Combine all terms and applying lemma B.4:

J∗ − J(ϕt) ≤
1

T 2
(J∗ − J(ϕ1))︸ ︷︷ ︸
O(1/T 2)

+
1

T 2

T−1∑
t=1

(t+ 1)
16√
µ′

[
8

3
∥∇J(ϕt)− dt∥

]
+O

(
ϵ′

T

)
+O

(
1

T

)
︸ ︷︷ ︸

O(1/T )

(17)

≤ O
(
1

T

)
+

1

T 2

T−1∑
t=1

(t+ 1)
16√
µ′ [∥∇J(ϕt)− dt∥] , (18)

≤ O
(
1

T

)
+O

(
1√
n

)
, (19)
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Figure 5: Heatmap of state visitation density of PPO (left) and PPO-IES (right). Yellow denotes
high density and Blue denotes low density.

C EXPERIMENTS

C.1 EXPLORATION VIA IES

In this section, we visualize the sampled policy trajectories under IES and standard Monte Carlo
sampling. Multiple trajectories are collected from policies trained using standard PPO and those
trained with IES. The trajectories are presented as state visitation heatmaps. To enable compari-
son, we transform the high-dimensional state space using PCA (Principal Component Analysis) and
discretize the space to compute visitation counts.

As shown in Figure 5, the state visitation patterns for PPO exhibit a concentration around a nar-
row region, while IES leads to more diverse and spread-out state visitation, suggesting enhanced
exploration and trajectory diversity. This indicates that IES encourages the agent to explore a wider
portion of the state space compared to standard Monte Carlo sampling.

C.2 ADDITIONAL EXPERIMENTS

Additionally, we provide the training curve for Mujoco v4 environments and the evaluation return
table for IssacGym environments. It is shown that IES performs better than other exploration
strategy in many environments.

(a) Swimmer-v4 (b) Ant-v4

Figure 6: Performance on MuJoCo.

Table 3: Performance comparison of different methods across IsaacGym environments. A-Hand
denotes AllegroHand, S-Hand denotes ShadowHand, B-Balance denotes BallBalance, F-C denotes
FrankaCabinet, Franka-C-T denotes FrankaCabinetTimeout.

Method A-Hand S-Hand Ball-B Franka-C Humanoid Franka-C-T Anymal

PPO 200 15 345 1799 2641 824 28
PPO-RND 201 35 317 1644 824 972 31
PPO-RLE 192 18 306 1334 886 1370 37
PPO-IES (Ours) 204 25 328 2084 2897 2081 39

15


	Introduction
	Preliminary
	Inherent Exploration via Sampling
	Generate Gaussian Samples via Quasi-Monte Carlo
	Control Samples in online interaction

	Theoretical Analysis
	Main Theorem

	Experimental Results
	Stochasticity in Policies
	Experiments Results on Online Environments

	Discussion
	Conclusion
	Related Works
	Stochastic Policies
	Quasi-Monte Carlo

	Theory
	Lemmas
	Proofs

	Experiments
	Exploration via IES
	Additional Experiments


