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ABSTRACT

Audiovisual segmentation (AVS) is a challenging task that aims to segment visual1

objects in videos based on their associated acoustic cues. With multiple sound2

sources involved, establishing robust correspondences between audio and visual3

contents poses unique challenges due to its (1) intricate entanglement across sound4

sources and (2) frequent shift among sound events. Assuming sound events occur5

independently, the multi-source semantic space (which encompasses all possible6

semantic categories) can be represented as the Cartesian product of single-source7

sub-spaces. This motivates us to decompose the multi-source audio semantics8

into single-source semantics, enabling more effective interaction with visual con-9

tent. Specifically, we propose a semantic decomposition method based on product10

quantization, where the multi-source semantics can be decomposed and repre-11

sented by several quantized single-source semantics. Furthermore, we introduce12

a global-to-local quantization mechanism, which distills knowledge from stable13

global (clip-level) features into local (frame-level) ones, to handle the constant14

shift of audio semantics. Extensive experiments demonstrate that semantically15

quantized and decomposed audio representation significantly improves AVS per-16

formance, e.g., +21.2% mIoU on the most challenging AVS-Semantic benchmark.17

1 INTRODUCTION18

Recently, audiovisual segmentation (AVS) (Zhou et al., 2022) is introduced to explore audiovisual19

correlations at the pixel level. Specifically, AVS aims to segment sounding object(s) in video frames20

with the associated audio. Audiovisual semantic segmentation (AVSS) (Zhou et al., 2023) extends21

AVS by additionally identifying the categories of sound sources. As shown in Fig. 1 (a), in contrast22

to the visual domain, where each pixel has a unique semantic label, multi-source audio is tempo-23

rally entangled, leading to ambiguity when associating the hybrid audio with semantically distinct24

visual contents. This motivates us to explore suitable representations of multi-source audio for more25

effective audiovisual interactions.26

Let us commence by exploring the simplest scenario (left of Fig. 1 (a)), involving a single sound27

source. In this scenario, each visual pixel or acoustic timestep is only associated with one semantic28

label. Here, we denote the set containing all possible semantic labels for pixels as visual semantic29
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Figure 1: (a) Audiovisual semantic interaction. (b) Semantic decomposition. Multi-source audio
semantic space can be assumed as a Cartesian product of single-source semantics, which can be
decomposed via product quantization. The red points represent the quantized semantics.
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space and those for acoustic timesteps as acoustic semantic space, respectively. In this example, we30

can find that both visual and acoustic single-source semantic spaces share the same semantic labels31

as {Guitar (G), Singing (S)}. Let us consider the two-source moment (right of Fig. 1 (a)). The32

visual semantics remain the same as in previous frames, but the size of possible two-source audio33

semantics presents a quadratic increase ({GG, GS, SG, SS}). This not only increases the difficulty34

in modeling larger semantic spaces but also complicates the alignment between visual and acoustic35

semantic spaces. The complexity further intensifies as more sources come into play.36
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Figure 2: Semantic decomposition via product quantiza-
tion (with sharing codebook for subspaces).

Unlike previous methods (Zhou et al.,37

2023; 2022) that directly interact entan-38

gled multi-source audio representation39

with visual contents, we intend to dis-40

entangle the multi-source audio seman-41

tics into several single-source semantics42

for further more effective audiovisual43

interaction. We simplify the problem44

by assuming independent sound events,45

which allows us to represent the multi-46

source semantic space as a Cartesian47

product of identical single-source se-48

mantic spaces. In specific, we intro-49

duce a product quantization-based (PQ-50

based) method to decompose the multi-source semantics. Product quantization aims to represent51

a complex space through the product of several subspaces. In the multi-source case, single-source52

semantics can serve as subspaces. We show the semantic decomposition of a two-source example53

in Fig. 1 (b) where the single-source semantic subspaces share identical semantics {G, S}. Specif-54

ically, product quantization can be easily achieved by learning separate transforms of multi-source55

semantics and then quantizing them utilizing a shared codebook as shown in Fig. 2. We interact the56

decomposed single-source semantics with visual features for effective alignment.57

Furthermore, considering that active sound events may continually change over time, another chal-58

lenge for AVS is to extract frame-level audio semantics which is typically not as robust as extracting59

from clip-level audio. To improve the frame-level audio representation, we propose a global-to-local60

mechanism, which distills knowledge from robust global (clip-level) audio representations into lo-61

cal (frame-level) ones. Specifically, we build an effective codebook for semantic quantization with62

clip-level visual-enriched audio features and then apply this codebook to perform local quantization63

on each frame without updating it. Thereby, the local semantic tokens are calibrated to the more64

robust and representative clip-level feature in the codebook.65

In summary, our contribution is three-fold:66

• An effective approach of multi-source audio semantic decomposition via product quanti-67

zation, addressing the challenge of interacting visual and audio features in multiple object68

scenarios.69

• A global-to-local distilling mechanism for frame-level audio semantic enhancement, ad-70

dressing the ineffectiveness of frame-level audio feature extraction.71

• Extensive experiments are conducted to verify the effectiveness of the proposed method,72

which significantly outperforms previous state-of-the-art methods on three AVS bench-73

marks, especially for multi-object datasets (+5.4% mIoU for AVS-Objec-Multi and +21.2%74

mIoU for AVS-Semantic).75

2 RELATED WORK76

Audiovisual segmentation and localization. Audiovisual segmentation (AVS), which was recently77

introduced (Zhou et al., 2022), aims to segment the objects that produce sound at the time of the78

image frame. Zhou et al. (Zhou et al., 2022) proposed a method with cross-modal attention to79

locate the sound source, making it the pioneering work in AVS. Recently, an extended task of AVS,80

audiovisual semantic segmentation (AVSS), is proposed by Zhou et al. (Zhou et al., 2023) which81

aims to not only segment the mask of sound sources but also predict the category of each sound82
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source. Due to the semantic entanglement in audio, tackling multi-source AVSS is more challenging83

than AVS task. Zhou et al. (Zhou et al., 2023) follows the TPAVI module in (Zhou et al., 2022)84

to conduct audiovisual interaction. Sound source localization (SSL) (Mo & Morgado, 2022a;b;85

Senocak et al., 2018; Hu et al., 2019; Qian et al., 2020; Chen et al., 2021; Afouras et al., 2020) is86

a related problem to AVS that aims to locate the regions of sounds in the visual frame. Common87

SSL methods (Arandjelovic & Zisserman, 2018; 2017; Cheng et al., 2020; Senocak et al., 2018)88

leverage cross-modal correspondence between audio and visual features to locate sounds, which are89

then displayed as heatmaps. For instance, Mo et al. (Mo & Morgado, 2022a) leverage multi-level90

audiovisual contrastive learning to effectively locate the objects. Different from previous methods91

primarily designed for single-source scenarios, our objective is to address the semantic entanglement92

present in multi-source audios and explore methods for effective interaction between multi-source93

audios and videos.94

Audio-visual learning. Audio-visual learning has been explored in many works (Aytar et al., 2016;95

Arandjelovic & Zisserman, 2017; Korbar et al., 2018; Senocak et al., 2018; Zhao et al., 2018; 2019;96

Gan et al., 2020; Georgescu et al., 2022) which aims to learn audio-visual correspondence from97

paired audio-visual data. Most methods maximize the mutual information between corresponding98

audio and video pairs by several proxy tasks. Constructing negative samples (Zhao et al., 2018;99

2019; Gan et al., 2020) and learning to push them away while closing positive ones is a common100

goal. Recently, another track (Georgescu et al., 2022; Gong et al., 2022) masks information in101

audio-visual pairs and tries to reconstruct incomplete information in one modality by conditioning102

on the other. The learned correspondence can be leveraged for several tasks, such as audio-visual103

source localization (Mo & Morgado, 2022a;b; Senocak et al., 2018; Hu et al., 2019; Qian et al.,104

2020; Chen et al., 2021; Afouras et al., 2020), audio-visual separation (Gao & Grauman, 2019;105

Morgado et al., 2018; 2020; Chen et al., 2020a), audio-visual parsing (Wu & Yang, 2021; Mo &106

Tian, 2022; Lin et al., 2021; Tian et al., 2020). In this work, we focus on how to effectively construct107

correspondence between multi-source audio and video for fine-grained audiovisual segmentation108

which is more challenging due to the entanglement of semantics in audio.109

3 METHOD110

In this section, we first present the formulation of the product quantization-based (PQ-based) method111

for multi-source audio semantic decomposition. Then, we outline the pipeline that utilizes the quan-112

tized and decomposed audio representation to improve the audiovisual segmentation tasks.113

3.1 PQ-BASED MULTI-SOURCE SEMANTIC DECOMPOSITION.114

The core of the PQ-based decomposition is to concisely represent the multi-source semantic space115

Xm with the product of multiple single-source semantic spaces Xs.116

Given a codebook containing a finite set of codewords C = {ei}Ki=1, the vector quantizer VQ(·)117

maps a feature x ∈ X to a codeword ei = argminei∈C ∥x − ei∥p that minimizes the distance118

between x and ei in the p-norm sense. As the single-source audio is semantically unique for each119

time step, for single-source space with K sound event categories, a codebook Cs with Ks = K120

codewords can sufficiently encode the space Xs without losing information. Nevertheless, for a N -121

source semantic space, a combination of sound events can appear for each time step. Therein, to122

fully represent the space, a codebook Cm of size Km = KN is required.123

We assume a N -source semantic space Xm is a Cartesian product of several identical single-source124

semantic spaces Xs as125

Xm = Xs × · · · × Xs︸ ︷︷ ︸
N

. (1)

Specifically, we can obtain the product quantization of x ∈ Xm through an order-invarient operation,126

i.e., concatenation, on separately quantized xi = fi(x), where fi(·) is a transform applied on x:127

PQ(x) = VQs(x1)⊕ · · · ⊕VQs(xN ), w.r.t VQs ∼ Cs. (2)

VQs ∼ Cs denotes the VQs(·) is associated with codebook Cn and ⊕ denotes channel-wise concate-128

nation. As the codebook Cs is shared with all VQs(·), the codebook for the multi-source semantic129
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Figure 3: Method overview. The global semantic quantization module decomposes multi-source
audio features and enables interaction between the decomposed single-source audio feature and
visual features. The local semantic calibration module distills knowledge from global (clip-level)
audio features to local (frame-level) audio features by utilizing a shared codebook, which stores
quantized audio representation during semantic quantization.

space Cm is reduced to be the same as Cs. By constraining the size of the single-source codebook130

Ks ≪ KN , we can force the transform fi(·) to decompose the multi-source semantics x.131

3.2 NETWORK OVERVIEW132

We present the proposed framework with Semantically Quantized and Decomposed (SQD) audio133

representation consisting of three main components: feature encoding, global semantic quantization134

and local semantic calibration, as illustrated in Fig. 3.135

(1) First, we extract visual features Fv = {fv,t}Tt=1 and acoustic features Fa = {fa,t}Tt=1 by sepa-136

rate encoders. (2) Then, to decompose semantics in multi-source audio features, we use a global137

semantic decomposition module to map the audio query into a set of semantic tokens {gi}Ni=1. We138

then learn a semantic codebook to quantize them. The quantized tokens are further employed to139

modulate the visual features to inject information about corresponding sound sources. (3) After-140

wards, to obtain frame-level audio features to query object masks, we utilize a local semantic141

decomposition module for each time step, which uses the global codebook to decouple local audio142

semantics. Each quantized local semantic token VQ(li,t) serves as a query to segment a frame-level143

mask with the semantic-guided mask decoder. Overall, the proposed SQD boosts AVS by enhancing144

the audiovisual semantic interaction.145

3.3 GLOBAL SEMANTIC QUANTIZATION146

To tackle the mixture of multi-source audio queries and effectively conduct audiovisual fusion, we147

propose global semantic quantization to decompose audio semantics, which consists of two steps:148

global semantic decomposition and audiovisual semantic recombination. The detailed structure of149

the modules is illustrated in Fig. 4.150

Global semantic decomposition. Global semantic decomposition aims to decompose multi-source151

audio semantics into single-source semantics. Specifically, the audio feature Fa is first fused with152

video feature Fv to be F ′
a, taking the form:153

F ′
a = LN(FFN(ha) + ha),

ha =LN(MCA(Fa, Fv) + Fa),
(3)

where MCA denotes Multi-head Cross-Attention, LN denotes Layer Normalization, and FFN de-154

notes Feed-Fordward Network. After that, we transform the audio feature F ′
a to N decomposed155

semantic tokens {gi}Ni=1 with a global audio semantic decoder (global ASD):156

gi = TrDglobal(pi|F ′
a) (4)

by querying a set of learnable semantic prototypes {pi}Ni=1 to the feature Fa, with a transformer157

decoder TrDglobal. Each semantic token is then quantized to be ei = VQ(gi) with the shared158

codebook C = {ek}Kk=1, imposing that all semantic tokens to share an identical feature subspace159
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learnable semantic prototypes {pi}. (b) The semantic-guided mask decoder contains a transformer
decoder TrDsegm to align audiovisual features and computes dynamic filters θi,t. The final mask
Mi,t is generated by a dynamic convolution between the visual feature fout

v,t and θi,t.

with low cardinality. Note that we set the codebook size K ≪ DN
semantic to force the network to160

learn decomposed semantics, where DN
semantic is the number of sound event categories Dsemantic161

to the power of N .162

Audiovisual semantic recombination. Audiovisual semantic recombination aims to leverage the163

decomposed audio feature to interact with visual features. After obtaining quantized global semantic164

tokens {ei}Ni=1, which encode N groups of decomposed semantics, we aim to interact them with165

visual features while preserving the original function of the multi-source audio input. A set of166

dynamic filters {wi ∈ RCv}Ni=1 are first learned from global semantic tokens {gi}Ni=1 by two linear167

layers. After that, we utilize channel-wise attention to modulate video features by each filter to168

interact the visual feature with the content referred by different semantic tokens, which is given by:169

F ′
v = BN(φ(wiFv ⊕ · · · ⊕ wNFv) + Fv), (5)

where φ denotes a convolution layer to reduce channel from N ×Cv to Cv , BN denotes Batch Nor-170

malization, and ⊕ denotes concatenation among channels. By incorporating channel-wise attention,171

the visual features can be more effectively concentrated on the relevant audio content. Furthermore,172

through channel-wise concatenation, the decomposed audio semantics can be reintegrated, produc-173

ing hybrid semantics that refers to the holistic contents of the original audio input.174

3.4 LOCAL SEMANTIC CALIBRATION175

Since the audio query is time-variant, global semantic tokens cannot be accurately aligned with176

visual features at the frame level. To segment audio-queried contents in each frame, we propose the177

local semantic calibration, consisting of a local semantic decomposition stage and a semantic-guided178

mask decoding stage.179

Local semantic decomposition. Local semantic decomposition module aims to decompose the180

semantics encoded in each audio frame. Similar to the global semantic decoder, the local semantic181

decoder (Local ASD) decodes frame-level semantics with a transformer decoder TrDlocal and a set182

of semantic prototypes {pi}Ni=1. The local semantic tokens li,t are given by183

li,t = TrDlocal(pi|fa,t). (6)

The local semantic tokens do not build their own codebook but utilize the global codebook C, that184

is, they do not update C but are committed to being close to the vectors in C. In this way, the local185

semantic tokens distill knowledge from the global ones. Further explanation regarding supervision186

will be provided in Section 3.5.187

Semantic-guided mask decoding. We utilize the semantic-guided mask decoder to decode visual188

features into masks that correspond to decomposed local audio semantics, with detailed structure189

illustrated in Fig. 4 (b). Pyramid video features F out
v = {fout

v,t }Tt=1 are obtained with the feature190

pyramid network (Lin et al., 2017a). We leverage a shared multimodal transformer decoder TrDsegm191

to generate dynamic filters θi,t = ϕsegm(TrDsegm(VQ(li,t)|ft)) for each timestep, where ϕsegm is192

a two-layer fully-connected network. The final mask segmentation can be obtained by:193

Mi,t = fout
t ∗ θi,t, (7)
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Method Backbone AVS-Object-Single AVS-Object-Multi AVS-Sementic
J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑ mIoU↑

ResNet Backbone
LVS (Chen et al., 2021) ResNet-18 44.5 37.9 51.9 31.3 29.5 33.0 -
MSSL (Qian et al., 2020) ResNet-18 55.6 44.9 66.3 31.4 26.1 36.3 -
3DC (Mahadevan et al., 2020) 3DC 66.5 57.1 75.9 43.6 36.9 50.3 17.3
AOT (Yang et al., 2021) ResNet-50 - - - - - - 25.4
AVS (Zhou et al., 2023) ResNet-50 78.8 72.8 84.8 53.6 47.9 57.8 20.2
Bi-Gen (Hao et al., 2023) ResNet-50 79.8 74.1 85.4 50.9 50.0 56.8 -
AVSegFormer (Gao et al., 2023) ResNet-50 81.2 76.5 85.9 56.2 49.5 62.8 24.9
SQD (Ours) ResNet-50 81.8 77.6 86.0 61.6 59.6 63.5 46.6

Transformer Backbone
iGAN (Mao et al., 2021) Swin-Base∗ 69.7 61.6 77.8 48.7 42.9 54.4 -
SST (Duke et al., 2021) SSL 73.2 66.3 80.1 49.9 42.6 57.2 -
LGVT (Zhang et al., 2021) Swin-Base∗ 81.1 74.9 87.3 50.0 40.7 59.3 -
AVS (Zhou et al., 2023) PVT-v2-Base 83.3 78.7 87.9 59.3 54.0 64.5 29.8
SQD (Ours) Swin-Tiny 83.9 79.5 88.2 64.0 61.9 66.1 53.4
SQD (Ours) V-Swin-Tiny 84.7 80.7 88.7 65.4 63.7 67.0 54.7

Table 1: Quantitative comparison to AVS and AVSS methods. Swin-Base∗ denotes modified
Swin-Base Transformer (Liu et al., 2021). SSL is Sparse Spatiotemporal Transformers (Duke et al.,
2021). PVT-v2 (Wang et al., 2022) is a strong Pyramid Vision Transformer. V-Swin-Tiny is the
Video Swin Transformer (Liu et al., 2022). ↑ indicates the larger the better.

where ∗ denotes the dynamic convolution (Chen et al., 2020b). Each filter represents semantics of194

a decomposed single-source audio, contributing to the segmentation of the single sounding object.195

Additional class probability prediction Pi,t and bounding box prediction Bi,t for each mask Mi,t are196

performed by two two-layer fully connected networks from the output of TrDsegm(VQ(li,t)|ft).197

3.5 LOSS FUNCTION198

The overall loss function is given by199

L = λquantLquant + Lsegm, (8)

where Lquant and Lsegm are the loss for semantic quantization and semantic segmentation, respec-200

tively. λquant is a constant.201

Loss for semantic quantization. The quantizer is shared with both global and local semantic de-202

composition, while the local semantic tokens do not update the codebook. The loss is given by203

Lquant =

N∑
i=1

∥VQ(gi)− sg[gi]∥22

+λcom∥sg[VQ(gi)]− gi∥22 + λcom∥sg[VQ(li)]− li∥22,

(9)

where sg [·] stands for stop-gradient operation. VQ(·) denotes the vector quantization function,204

where VQ(x) = ei = argminei ∥x − ei∥2 ∈ C and C = {ei}Ki=1 is the shared codebook. The first205

term aims to update the codebook. The second and third terms aim to minimize the quantization206

error by forcing the input vector to be quantized to its closest vector in the codebook.207

Loss for semantic segmentation. Let the predictions of the network be y = {yi}Ni=1 where208

yi = {Bi,t, Pi,t,Mi,t}Tt=1. Bi,t, Pi,t and Mi,t denote bounding box, class probability and mask209

predictions respectively. We denote the ground-truth as ŷ = {ŷj}Nj=1 (padded with ∅ (Cheng et al.,210

2021a)) where ŷj = {B̂j,t, Ĉj,t, M̂j,t}Tt=1. Cj,t is the ground-truth class for the j-th sounding object211

in the video at t frame. We search for an assignment σ ∈ PN with the highest similarity where PN212

is a set of permutations of N elements . The similarity can be computed as213

Lmatch(yi, ŷj) = λboxLbox + λclsLcls + λmaskLmask, (10)

where λbox, λcls, and λmask are weights to balance losses. We leverage a combination of Dice (Li214

et al., 2019) and BCE loss as Lmask, focal loss (Lin et al., 2017b) as Lcls, and GIoU (Rezatofighi215

et al., 2019) and L1 loss as Lbox. The best assignment σ̂ is solved by the Hungarian algorithm (Kuhn,216

1955). Given the best assignment σ̂, the segmentation loss between ground-truth and predictions is217

defined as Lsegm = Lmatch(yi, ŷσ̂(j)).218
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Figure 5: Qualitative comparison to Zhou et al. (Zhou et al., 2023) on AVS-Semantic. Each color
represents a semantic category. Note that the class labels in the first row serve as references but are
not given in the input.

4 EXPERIMENTS219

Dataset. We conduct experiments on AVS-Object (Zhou et al., 2022) for AVS task and AVS-220

Semantic (Zhou et al., 2023) for AVSS task.221

• AVS-Object: AVS-Object dataset contains 5,356 short videos with corresponding audios in222

which 4,932 audios contain single-source and 424 audios contain multiple sources. Class-223

agnostic masks are given as annotations for AVS task. Typically, it is evaluated separately224

for single- and multi-source audios as AVS-Object-Single and AVS-Object-Multi.225

• AVS-Semantic: AVS-Semantic is an extended dataset from AVS-Object which contains226

12,356 videos with 70 classes. Semantic segmentation is annotated for AVSS task. Both227

single- and multi-source audio cases exist in the AVS-Semantic.228

Metrics. For AVS task, the convention is to compute region similarity J and contour accuracy F229

as defined in (Pont-Tuset et al., 2017). Note that we follow the video segmentation convention to230

use the region similarity J , which is equivalent to mIoU in the binary AVS setting. For AVSS, we231

follow the semantic segmentation convention to evaluate the model using mIoU which is defined as232

the intersection over union averaged among all classes.233

Implementation Detail. We implement our method in PyTorch (Paszke et al., 2019). We train our234

model for 13 epochs and 16 epochs with a learning rate multiplier of 0.1 at the 11th and 14th epochs235

for AVS-Object and AVS-Semantic datasets, respectively. The initial learning rate is 1e-4, and a236

learning rate multiplier of 0.5 is applied to the backbone. We adopt batchsize = 4 and an AdamW237

(Loshchilov & Hutter, 2017) optimizer with weight decay 5× 10−4. Multi-scale training is adopted238

to obtain a strong baseline, and if no specification, all images are resized to have the longest side239

224 during evaluation. More details are available in the supplementary materials.240

4.1 MAIN RESULTS241

Quantitative comparison on AVS-Object. Our method outperforms the previous state-of-the-art242

(SOTA) method AVSegFormer (Gao et al., 2023) by 0.6 and 5.4 of J&F score on AVS-Object-243

Single and AVS-Object-Multi datasets respectively (with ResNet-50 backbone). We notice that244

the improvement on the multi-source setting is much larger than the single-source setting. This is245

because single-source audios contain simple and disentangled semantics and can be easily aligned246

with visual features while, for multi-source audios, the complex semantic space makes the alignment247

to visual contents much more difficult.248

Quantitative comparison on AVS-Semantic. Compared to the AVS-Object task, our method249

demonstrates greater improvement in the AVS-Semantic task. As shown in the Table 1, our method250

eclipses the previous SOTA AVSS method AOT (Yang et al., 2021) by a remarkable 21.2 mIoU251

with ResNet-50 backbone. The improvement in the AVSS task can be attributed to several factors.252

First, the task itself involves the semantic prediction of sound sources. However, due to mixed audio253
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Module AVS-Object-Multi AVS-Sementic
J&F ↑ J ↑ F ↑ mIoU↑

Baseline 52.9 50.1 55.7 33.5
+GSD 56.7 54.5 58.8 38.4
+GSD+AVSR 58.6 56.5 60.6 40.9
+GSD+AVSR+LSD 60.1 58.2 61.9 44.5
+GSD+AVSR+LSD+SC 61.6 59.6 63.5 46.6

Table 2: Component analysis. GSD: global semantic decomposition; AVSR: audiovisual semantic
recombination; LSD: local semantic decomposition; SC: sharing codebook.

Codebook Object-M Sementic
Size J&F ↑ mIoU↑

1 52.7 24.8
32 61.4 31.5
64 60.0 43.2
128 61.6 46.6
256 60.6 46.1

Table 3: Ablation on code-
book size.

Token Object-M Sementic
Number J&F ↑ mIoU↑

1 59.7 40.2
3 61.0 43.5
5 61.6 46.6
7 61.6 45.9
9 61.2 46.3

Table 4: Ablation on decom-
posed token number.

Decomp. Object-M Sementic
Domain J&F ↑ mIoU↑

Time 56.2 38.9
Semantic 61.6 46.6

Table 5: Ablation on
sound decomposition do-
main.

signals, aligning visual content accurately becomes challenging, leading to difficulties in classifi-254

cation. Secondly, the number of sound sources and categories of AVS-Semantic dataset are larger255

than AVS-Object, which will result in a larger complex semantic space. When the mixed seman-256

tics are not decomposed, the network struggles to handle the numerous mixed semantics effectively.257

Thirdly, in the AVS-Semantic dataset, sound event changes occur more frequently. As a result, a258

more robust frame-level audiovisual correspondence is required. Our proposed global-to-local dis-259

tilling mechanism addresses this challenge by enhancing the capture of local semantic information,260

enabling accurate object segmentation.261

Qualitative comparison. As shown in Fig. 5, we qualitatively compare our method to the method262

proposed by Zhou et al. (Zhou et al., 2022) on AVS-Semantic. Our method achieves better results on263

both segmenting quality and class prediction accuracy. Since the method (Zhou et al., 2022) directly264

fuses mixed audio features with video features, we notice that it suffers from object incorrectness265

when multiple sound sources are present. Meanwhile, due to the lack of frame-level audiovisual cal-266

ibration, (Zhou et al., 2022) cannot effectively handle the audio semantic changes. More qualitative267

results on the AVS-Object dataset are available in the Appendix.268

4.2 ABLATION STUDY269

Module Effectiveness. We conduct experiments to validate the effectiveness of our proposed mod-270

ules. We first construct a baseline with unimodal encoders and the semantic-guided mask decoder,271

and then add other modules step-by-step. As shown in Table 2, each of the proposed modules ben-272

efits the performance. For AVS-Semantic, both global semantic decomposition (GSD) and local273

semantic decomposition (LSD) bring obvious gains; for AVS-object, the LSD only slightly im-274

proves the performance. This could be attributed to the longer duration of videos in AVS-Semantic275

compared to AVS-Object, which allows for a greater number of semantic changes within each clip.276

Finally, with all components, our method achieves the gains of 10.5 J&F and 13.1 mIoU on AVS-277

Object-Multi and AVS-Semantic respectively when compared to the baseline.278

Semantic token number. We ablate the semantic token number for the global-ASD and local-ASD279

in Table 4. We observe that a token number of 5 yielded the best performance. This can be attributed280

to the fact that the maximum number of mixed sound sources for the audio-visual dataset is 5.281

Codebook size. The cardinality of the codebook is essential to our semantic decomposition. Ideally,282

we aim to constrain the cardinality of the codebook to be close to the semantic category number. We283

ablate on codebook size from 1 to 256. When the codebook size equals 1, all the decomposed audio284

tokens are the same, resulting in all the same segmentation results. As shown in Table 3, we notice285

even a codebook size of 1 achieves 24.8 mIoU on AVS-Semantic. A codebook of size=128 achieves286

the best performance. Please note that a codebook size slightly larger than the category number,287

e.g.128, will not hamper the semantic decomposition capability of our method, since 128 ≪ 70N288

where N > 1 is the maximum sound source number, and 70 is the category number.289
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(a) Entangled Audio Semantic Space (b) Disentangled Audio Semantic Space
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Figure 6: Visualization comparison between en-
tangled and our disentangled audio semantic
space. “M” and “S” notations denote multi-
source and single-source inputs.

Figure 7: Comparison of training w. and w./o.
single-source data.

4.3 ANALYSIS290

Visualization of decomposed semantic space. As shown in Fig. 6, we visualize the semantic291

space with and without semantic decomposition on the AVS-Semantic dataset using t-SNE (Van der292

Maaten & Hinton, 2008). Three types of single-source audios (“man”, “guitar”, “piano”) and two293

types of multi-source audios (“man+guitar”, “man+piano”) are enrolled. Without decomposition,294

the multi-source features are highly entangled, presenting fewer evidences related to single-source295

semantics. However, after performing semantic decomposition, the “man+guitar” feature presents296

clear evidences related to its corresponding single-source (“man” and “guitar”) semantics. This is297

reflected in the proximity of the ”man+guitar” feature to the centroids of its corresponding single-298

source features. The same applies to the ”man+piano” feature. Note that, we omit the “background”299

feature in the visualization.300

Importance of the single-source audio on the semantic decomposition of multi-source audio301

representation. We present empirical evidence that the single-source audio samples significantly302

contribute to the success of semantic decomposition. To demonstrate this, we compare the perfor-303

mance of our model trained on two training sets with the same number of samples: one contains304

solely multi-source audio samples, and the other contains single- and multi-source audio samples305

with the ratio of 1:1. As illustrated in Fig. 7, the model trained solely on multi-source audio samples306

exhibits inferior performance compared to the model trained on both types of samples, regardless of307

the token number and codebook size. We conjecture that the single-source samples serve as infor-308

mative anchors that assist the model in learning the correct distributions of the decomposed simplex309

spaces for multi-source samples. In the absence of single-source samples, the decomposition task310

could be more difficult due to the absence of such informative anchors.311

Ablation on audio decomposition domain. We conducted an experiment to demonstrate the bene-312

fits of conducting audio decomposition at the semantic domain instead of the time domain. Specifi-313

cally, we decomposed the multi-source audio with a commonly used sound source separation model314

(Chen et al., 2022) and then performed audiovisual segmentation for each decomposed audio using315

our proposed model. The results in Table 5 clearly show that our semantic-level decomposition316

mechanism outperforms the time-domain decomposition approach. We attribute this improvement317

to two factors: 1) the imperfection of sound source separation and 2) the conflicts that arise when318

combining the masks for each source in the time domain without considering visual content during319

separation. In contrast, our semantic-domain approach does not suffer from these issues and can320

effectively leverage the information contained in both audio and visual modalities.321

5 CONCLUSION322

This paper presents an approach to address the challenges in audiovisual segmentation by proposing323

semantic decomposition of complex semantic spaces that encode multi-source audios, followed by324

their interaction with visual features. This reduces the semantic ambiguity in multi-source audio-325

visual interaction. To handle sound event changes, we propose local semantic calibration to align326

audio and video on a per-frame basis. Our method also incorporates a codebook sharing mechanism327

to enhance local audio features by distilling knowledge from that at the global level. The proposed328

approach is evaluated on three AVS benchmarks and the results demonstrate its superiority and ef-329

fectiveness over previous state-of-the-art methods.330
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A MORE EXPERIMENTS522

frame number Object-M Sementic
J&F mIoU

3 60.9 45.4
5 61.6 46.6
7 - 46.6

Table 6: Ablation on the input frame number.

Frame number. We ablate the influence of input frame number during training. As shown in523

Table 6, we notice a frame number of five achieves the best performance. For the AVS-Object524

dataset, since the maximum clip length is five, we do not experiment with larger frame number.525

Please note that the frame number is only fixed during training and the model can accept arbitrary526

frame numbers during inference.527

layer number Object-M Sementic
J&F mIoU

1 61.3 45.6
3 61.6 46.6
5 61.0 46.0

Table 7: Ablation on transformer decoder layer number.

Transformer decoder layer number. We conduct an ablation study on transformer decoder layer528

numbers in semantic decoders. As shown in Table 7, a transformer decoder layer of 3 achieves the529

best performance. We notice that even a single-layer transformer decoder for semantic decomposi-530

tion can lead to a good performance.531

frame resolution Sementic
mIoU

224× 46.6
640× 49.2

Table 8: Ablation on input frame resolution.

Input Resolution. The default setting of AVSBench is 224×224 (following the sound source local-532

ization convention) for both AVS-Object and AVS-Semantic datasets. While AVS-Semantic actually533

provides high-resolution (720p) frames. We conduct experiments to ablate the input resolution to534

facilitate future comparison. Following the semantic segmentation convention, we scale the input535

frames to the longest side 224 or 640. The results are illustrated in Table 8. We only conduct ablation536

on AVS-Semantic since the resolution of AVS-Object is low-resolution (224× 224). The results are537

reported with the ResNet-50 backbone.538

Per-class IOU analysis. As is shown in Fig. 8, we show the per-class iou score on the AVS-Semantic539

dataset. Our model demonstrates strong audio-guided segmentation capabilities for common head540

classes such as ’background’, ’train’, ’airplane’, ’hair-dryer’ and ’clock’. These classes are accu-541

rately segmented with a high level of precision and reliability. The model effectively distinguishes542

the ’background’ class, providing a solid foundation for identifying and isolating foreground objects.543

It accurately segments transportation-related classes like ’train’, ’airplane’, and ’bus’ capturing their544

intricate details and boundaries. Similarly, it excels in segmenting objects such as ’hair-dryer’,545

’clock’ and ’tabla,’ effectively separating them from the background. Even for more complex and546

nuanced classes like ’wolf,’ our model demonstrates commendable segmentation performance, ac-547

curately delineating the contours and shape of the subject. Overall, our model showcases its ability548

to segment these common head classes with high accuracy and proficiency, making it a reliable549

choice for various segmentation tasks.550

However, the scarcity of data samples for tail classes like ’utv’, ’parrot’, ’missile-rocket’, ’harmon-551

ica’, ’clipper’, ’boy’ and ’ax’ in the presence of a long tail distribution can significantly impact the552
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Figure 8: Per-class IOU Analysis. Our model demonstrates strong audio-guided segmentation
capabilities for common head classes, accurately capturing ’background’, ’train’, ’airplane’, ’hair-
dryer’, and ’clock’ with high precision. However, the limited data samples for tail classes like
’utv’, ’parrot’, ’missile-rocket’, ’harmonica’, ’clipper’, ’boy’, and ’ax’ due to a long tail distribution
adversely affect the model’s segmentation performance, hindering accurate identification and delin-
eation of these classes.

performance of our model, specifically in the task of segmentation. With limited examples to learn553

from, the model finds it challenging to capture the intricate patterns and unique characteristics asso-554

ciated with these classes. Consequently, the accuracy and reliability of segmentation results for the555

tail classes may be compromised, leading to suboptimal performance in accurately identifying and556

delineating these objects or entities of interest.557

B MORE RELATED WORKS558

Audiovisual segmentation also closely relates to video object segmentation (VOS) Yang et al.559

(2018); Jain et al. (2017); Cheng et al. (2021b); Seong et al. (2020); Hu et al. (2021); Cheng et al.560

(2021c); Seong et al. (2021); Yang et al. (2021) and video semantic segmentation (VSS) Li et al.561

(2018); Sun et al. (2022); Zhuang et al. (2022); Hu et al. (2020); Paul et al. (2020). AVS requires562

understanding the visual contents and then corresponding them with the audio semantics to segment563

objects. Specifically, the most closely related task in the video segmentation domain is the referring564

video object segmentation (RVOS) Botach et al. (2022); Wu et al. (2022); Seo et al. (2020) which565

aims to segment objects in the visual frames given a linguistic expression. For each expression,566

RVOS only refers to one object while the AVS task permits audio query to refer to multiple objects567

which makes AVS task more challenging.568
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Figure 9: Qualitative comparison to Zhou et al. Zhou et al. (2023) on AVS-Object. Our method
outperforms Zhou et al.’s approach by consistently and accurately segmenting the correct objects
throughout the entire video clip, showcasing superior performance and better mask quality. These
results emphasize the effectiveness and robustness of our approach in achieving accurate object
segmentation in audio-visual scenes.

C MORE VISUALIZATION & VIDEO DEMO569

More qualitative results on AVS-Object. In our study, we provide visualizations of the qualitative570

results on AVS-Object, as shown in Fig. 9. We compare our method with the approach proposed571

by Zhou et al. Zhou et al. (2023) and observe a notable difference in performance. Specifically, in572

the third frame of the video clip, the method proposed by Zhou et al. suffers from the false-positive573

problem, incorrectly segmenting objects. In contrast, our method consistently and accurately seg-574

ments the correct objects throughout the entire video clip, demonstrating superior performance. Ad-575

ditionally, our method showcases better mask quality, with more precise and detailed segmentation576

boundaries. These results highlight the effectiveness and robustness of our approach in achieving577

accurate object segmentation in audio-visual scenes.578

More qualitative results on AVS-Semantics. As is shown in Fig. 10, Fig. 11, Fig. 12 and Fig. 13,579

our model exhibits exceptional proficiency in accurately segmenting both multiple and tiny sound-580

ing objects, showcasing its versatility and robustness in audio-guided segmentation tasks. Through581

the implementation of a decomposed and discretized audio representation, our model effectively582

captures the distinct acoustic characteristics of various objects, enabling precise delineation of mul-583

tiple simultaneous sound sources. Furthermore, the model demonstrates remarkable capability in584

capturing the intricate details and nuances of tiny sounding objects, ensuring accurate segmentation585

outcomes even for the smallest entities.586

Video demo (with audio). We strongly recommend viewing the demo video provided in the sup-587

plementary materials, ensuring that you enable audio playback. Watching the video with audio will588

provide a comprehensive understanding of our audio-visual segmentation application, showcasing589

how our model utilizes a decomposed and discretized representation to achieve precise audio-visual590

segmentation results.591
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D MORE IMPLEMENTATION DETAILS592

We set the λcls = 2, λL1 = 5, λgiou = 2, λdice = 2, λfocal = 5, λcom = 0.5 and λquant = 1 during593

all training process. A mask confidence threshold of 0.5 and a class confidence threshold of 0.1 is594

leveraged to filter out low-confident predictions. Cv = Ce = Cq = 256 is utilized. The positional595

embedding added in the transformers is the standard triangle positional embedding used in Vaswani596

et al. (2017). We set the layer number to three for all the transformers decoders (including local597

ASD, global ASD and TrDsegm in mask decoder).598

D.1 ENCODERS599

Visual encoder. The visual encoder consists of a visual backbone and a deformable transformer600

encoder Zhu et al. (2020). We extract frame-level visual features from each frame It with a shared601

backbone. The T extracted features are then fed into the deformable transformer encoder to further602

conduct temporal aggregation. Let us denote the extracted visual features as Fv = {ft}Tt=1, where603

ft ∈ RCv×H×W , and Cv , H , W denote the channel, height, width of the feature.604

Acoustic encoder. We use VGGish Hershey et al. (2017) to extract audio features. Let the extracted605

audio feature be Fa ∈ RCa×La where Ca is the dimension of acoustic feature space, and La is the606

audio clip length. Note that audio and video frames are already synchronized, thus the length of the607

audio clip is the same as the length of the video clip.608

E MORE DETAILS ABOUT INFERENCE609

To tackle scenarios where queried content keeps changing, we perform per-frame inference. For610

each time t, we assign a class to the pixel at [h,w] by611

argmax
C∈{1,··· ,K}

N∑
i=1

Pi,t[C]Mi,t[h,w], (11)

where Pi,t[C] is the probability of class C. Note that argmax does not include the “empty” category612

(∅) as AVS requires each output pixel to belong to one semantic category.613
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Figure 10: Qualitative comparison to Zhou et al. Zhou et al. (2023) on AVS-Semantic. Each color
represents a semantic category. Our model excels in accurately segmenting multiple sounding
objects, showcasing its proficiency in audio-guided segmentation. This success can be attributed
to the effective utilization of a decomposed and discretized audio representation, which enables
the model to capture and analyze the distinct acoustic features of each object, resulting in precise
segmentation outcomes.
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Figure 11: Qualitative comparison to Zhou et al. Zhou et al. (2023) on AVS-Semantic. Each color
represents a semantic category. Our model excels in accurately segmenting multiple sounding
objects, showcasing its proficiency in audio-guided segmentation. This success can be attributed
to the effective utilization of a decomposed and discretized audio representation, which enables
the model to capture and analyze the distinct acoustic features of each object, resulting in precise
segmentation outcomes.
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Figure 12: Qualitative comparison to Zhou et al. Zhou et al. (2023) on AVS-Semantic. Each color
represents a semantic category. Our model excels in accurately segmenting multiple sounding
objects, showcasing its proficiency in audio-guided segmentation. This success can be attributed
to the effective utilization of a decomposed and discretized audio representation, which enables
the model to capture and analyze the distinct acoustic features of each object, resulting in precise
segmentation outcomes.
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Figure 13: Qualitative comparison to Zhou et al. Zhou et al. (2023) on AVS-Semantic. Each color
represents a semantic category. Our model demonstrates remarkable proficiency in accurately seg-
menting tiny sounding objects, owing to the implementation of a decomposed and discretized audio
representation. By leveraging this technique, our model effectively captures the intricate acoustic
details and nuances of these small-sized objects, resulting in precise and reliable segmentation out-
comes.
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