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Abstract

What do deep neural network (DNN) models tell us about the computational1

principles of visual information-processing in the biological brain? A now common2

finding in visual neuroscience is that many different kinds of DNN models –3

each with different architectures, tasks, and training diets – are all comparably4

performant predictors of image-evoked brain activity in the ventral visual cortex.5

This relative parity of highly diverse models may at first seem to undermine the6

common intuition that we can use these models to infer the key computational7

principles that govern the visual brain. In this work, we show to the contrary that8

comparable brain-predictivity does not preclude the differentiation of these same9

models in terms of the underlying manifold geometries that define them. To do10

this, we assess 12 manifold geometry metrics computed across a diverse set of 11711

DNN models, curated to include multiple tasks, architectures, and input diets. We12

then use these metrics to predict how well each model aligns with occipitotemporal13

cortex (OTC) activity from the human fMRI Natural Scenes Dataset. We find14

that manifold signal-to-noise ratio (a metric previously associated with few-shot15

learning) is a robust predictor of downstream brain-alignment and supersedes16

both other manifold geometry metrics (i.e. manifold capacity) and downstream17

task-performance (e.g. top-k recognition accuracy) across multiple different image18

sets (e.g. ImageNet21K versus Places365) and model comparison probes (e.g.19

category-supervised versus self-supervised models). These results add to a growing20

body of evidence that the ventral visual stream serves as a basis set (or feature21

vocabulary) for object recognition rather than as the actual locus of recognition per22

se.23

1 Background + Methods24

High-level ventral visual cortex has often been considered the primary substrate of object recognition25

in the human brain [1; 2]. This notion has been further reinforced in recent years by the seminal finding26

that deep neural network (DNN) models supporting image classification are the most predictive27

models of ventral visual brain activity to date [3]. One lingering issue with this formulation, however,28

is the under-specification of what we mean by the word “recognition” in the context of the biological29

brain. What precise computational mechanisms instantiate this process? And how might we use30

deep neural network models to elucidate them? In deep neural network models, the computational31

mechanisms of ‘recognition’ are explicitly (i.e. algorithmically) defined. Canonical, ‘end-to-end’32

image classification models (e.g. AlexNet [4]) ‘recognize’ images by the direct, nonlinear mapping33

of a tensorized image onto one-hot-encodings (point indices) of human-defined category labels.34

Self-supervised, contrastive-learning models (e.g. SimCLR [5]) and masked decoding models (e.g.35

DINO) also support recognition, but do so first by learning (without labels) the invariances and36

selectivities that define the axes of an input image space more generally. ‘Zero-shot’- multimodal37
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classifiers (e.g. CLIP [6]) ‘recognize‘ images by way of a top-k similarity score between the language38

embeddings of category labels and the vision embeddings of candidate images.39

Identifying which of these (and many other) motifs is most brain-like has been somewhat confounded40

by the fact that many (if not most) of these models often achieve roughly comparable measures41

of ‘representational alignment’ [7] to human visual cortex as measured by neuroimaging [8] and42

neurophysiology [9] alike. In this work, we attempt to better parse the often difficult-to-interpret43

differences between better and worse models of the brain by comparing them to the scalar metrics of44

representational structure derived from manifold geometry analysis [10]. In so doing, we attempt45

as well to understand how this structure relates to the function of object recognition, and what our46

neural network may or may be telling us about the nature of this structure in the visual brain.47

Model & metric curation: Our general approach was to first curate N=12 metrics of manifold48

geometry curated from two distinct lines of work: N=4 metrics from Chung et al. [11] (derived49

from replica mean field theory) and N=8 metrics from Sorscher et al. [12] (derived from principal50

components analysis). We then curated a set of N=117 candidate deep neural network models51

spanning different visual diets, architectures, and tasks, based on the work of Conwell et al. [13].52

Model-brain-predictivity: Model-to-brain alignment (henceforth, brain-predictivity) was computed53

for each model first by computing the average voxelwise encoding score over a 50% train split (N=500)54

of the ‘Shared NSD1000’ image set [14] for each individual layer with field-standard regularized55

ridge regression. Models were then compared on the basis of the average encoding scores over the56

test split (N=500) images for the most brain-like layer (as determined via nested cross-validation on57

the train split). Manifold geometry analysis: Manifold geometry metrics (from both Chung et al.58

[11] and Sorscher et al. [12] were computed using N=50 ‘concept manifolds’ (the representational59

matrices of 50 images from each of 50 category labels from ImageNet-1K/21K [15; 16], or Places36560

[17]). To ensure proper evaluation of these metrics, we deployed the exact GitHub source code61

associated with the defining works of each: schung039/neural-manifolds-replicaMFT [11; 18] and62

bsorsch/geometry-fewshot-learning) [12].63

2 Results + Analysis64

Primary Analysis: Explaining Brain-Predictivity with Manifold Geoemetry: How well do65

differences in underlying manifold geometries explain downstream brain-alignment? To answer66

this, we compute the rank-order correlation (ρSpearman) between the models’ brain-predictivity67

(mean encoding) scores and each of our 12 manifold metrics (e.g. manifold capacity, effective68

dimensionality) computed from the N=50 concept manifolds of ImageNet-21K used in [18]; results69

from this analysis are shown in Appendix Figure 1C and Table 3.70

6 / 12 metrics showed significant rank-order correlation with brain-predictivity at p < 0.01. 3/671

of these metrics (manifold signal-to-noise ratio, capacity, and signal) showed significant, positive72

correlations. 3/6 (manifold radius, dimensionality, and within-concept radius) showed significant,73

negative correlations. The overall strongest predictor of downstream brain-predictivity was the74

manifold signal-to-noise ratio from Sorscher et al. [12], with a strikingly high rank-order correlation75

of ρSpearman [±95%BCI] = 0.798 [0.731, 0.895], p = 4.70e-27. Not far behind this, however, was the76

negatively correlating manifold radius metric from Chung et al. [11], at ρ = -0.724 [-0.857, -0.623],77

and the positively correlating manifold capacity metric from Chung et al. [11], at ρ = 0.616 [0.493,78

0.779]. Notable as well in these correlations is a conceptual replication of previous results [13]79

that showed effective dimensionality (1 / 8 metrics from Sorscher et al. [19]) was not a significant80

predictor of brain-alignment – with ρ in this case equal to 0.156, p = 0.093.81

The replication of this null effect, however, underscores all the more the significance of the positive82

effects evident in the sizable correlations of other metrics. And indeed, the primary takeaway from83

this first analysis might simply be that manifold metrics can indeed be the positive predictors of brain-84

alignment that theorists and empiricist alike have long proposed they might be [12; 20; 21; 22; 23].85

Querying manifold metric robustness & interpretability across experimental subconditions: The86

strong, significant correlation of multiple manifold metrics with downstream brain-alignment does,87

however, raise new questions. One of these is: When metrics describe otherwise divergent properties88

of a manifold’s geometry (but both explain downstream brain-alignment to similar degrees), which89

geometry should we take to be more brain-like? In our survey, two metrics in particular – manifold90

capacity and manifold signal-to-noise ratio (henceforth SNR) – instantiate a rather palpable case of this91
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algorithmic ambiguity. In the extreme (as in the final output layer of an end-to-end trained category-92

supervised DNNs), manifold capacity heralds the complete collapse of all category information93

into fully separate, single point-estimates of category identity Chung et al. [11]; Stephenson et al.94

[18]; Chung and Abbott [10] – in other words, an optimal classifier. In a similar extreme, manifold95

signal-to-noise ratio also collapses to perfect point-estimates of category identity (all signal, no noise).96

As described by Sorscher et al. [12], however, mid-to-high range values of signal-to-noise ratio97

better describe the conditions of better few-shot learning algorithms (something end-to-end category-98

supervised neural classifiers tend notably not to be). Which of these metrics, then, better describes the99

object-recognition-supporting representational motifs instantiated in our DNN models of the ventral100

visual stream? To better resolve this ambiguity, we assessed the correlations of manifold capacity and101

SNR to downstream brain-predictivity in a series of experimental sub-conditions designed both to test102

the robustness of these correlations and to disambiguate the somewhat competing representational103

hypotheses they entail.104

Experiment 1: Measuring robustness across model (sub)sets: In our first experiment, we assessed105

the correlations of manifold capacity and SNR in increasingly smaller, targeted subsets of our106

otherwise diversely sampled model set. The first subset we assessed was a subset of models we call107

the "high-performing" set: effectively all models above a notable visual elbow in brain-predictivity108

first described in [13], but seen also in our sample (see Figure 1C (left)). As also quantified with a109

segmented regression analysis pointing to rank 84 (ψ = 84.1 [72.4, 94.9]) as a notable breakpoint110

in an otherwise shallow slope of higher brain-predictivity scores, this set effectively included 84111

models with average encoding scores of rPearson = 0.336 or higher. Here, already, manifold capacity112

begins to diffentiate from manifold SNR in terms of its rank-order correlation with brain-predictivity,113

with capacity’s ρ diminishing to the point of non-significance at 0.14, p=0.222 and manifold SNR114

remaining subtantial and significant at 0.50, p < .001. In an even smaller subset of purely architectural115

variation (the N=53 category-supervised ImageNet-1K-trained models from the Torchvision model116

zoo [24]), the trend is similar, with ρ for manifold capacity dimishing to 0.16, p = 0.262 and117

manifold SNR remaining high at 0.471, p < 0.001. In short, manifold SNR persists as a predictor118

of downstream brain-alignment even in very restricted ranges; manifold capacity does not. (More119

detailed results from this experiment are shown in Appendix Table 3.)120

Experiments 2+3: Layer-wise analysis of category-recognition models To better understand the121

difference between manifold capacity and manifold SNR we were observing in this smaller subset,122

we next probed variation in the correlation of manifold metric and brain-predictivity in layers beyond123

the most brain-predictive layer selected by our initial cross-validation, and in particular, the ‘last124

hidden layer’ feeding into the one-hot, category-encoding output. In effect, in this smaller subset of125

category-supervised models, this layer instantiates the representation most directly responsible for the126

‘recognition’ behavior the model will output for any given input, and by association, is the layer we127

might presumably observe the highest covariance between manifold capacity and manifold SNR. And128

indeed, what we observe here is that the correlations of both manifold capacity and manifold with129

downstream brain-predictivity change dramatically. Here, in this final hidden vector of models trained130

to collapse category information onto the single points of the output layer, manifold capacity and131

manifold SNR are shown to be strong, significant, negative predictors of downstream brain-alignment,132

with ρ = -0.606, p < .001 and -0.663, respectively. This sign-reversal corresponds to substantial133

increases in the scalar values of both metrics relative to the most brain-predictive layers (with shifts134

in the max values of manifold capacity increasing 182.17% from .129 to .235 and signal-to-noise135

ratio increasing 209.12% from 4.131 to 8.639.) What seems to be happening, in effect, is that the136

more the models are successful in collapsing category information to single point-estimates at this137

final hidden layer, the less predictive of downstream brain-alignment they will be. Notably, the trend138

is similar if as with our manifold metrics, we correlate the ImageNet-1K classification accuracy of139

these models with downstream brain-predictivity, a trend we find (in line with recent work, e.g. [25])140

to be strongly negative across our 53 models (ρ = -0.63, p < .001).141

Differential, IID/OOD concept manifold sampling: In a final experiment, we recomputed each142

of our manifold metrics with two new sets of N=50 concept manifolds (N=50 test set images each):143

one from the object categories of ImageNet1K (versus the ImageNet21K sample we use in our main144

analysis, following the protocol and codebase of Stephenson et al. [18]), and another from the scene145

categories of Places365. The logic here is that these instantiate two different levels of ‘generalization‘146

for our category-supervised ImageNet-1K-trained models, one nearer (in-distribution, IID), one farther147

(possibly out-of-distribution, OOD). Manifold capacity, in this regime, should be higher for those148
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concepts that are IID (i.e. the ImageNet1K sample) than OOD (the Places365), again instantiating the149

progressive tightening of category information towards single point-estimates. Manifold SNR, on the150

other hand, will also decrease. But supporting few-shot-learning, as it nominally does, manifold SNR151

will also maintain information that bridges the gaps between separable categories. Is this the kind of152

information that boosts manifold SNR’s explanatory power for downstream brain-alignment? The153

results of this experiment suggest it might be: In the most brain-predictive layers, for example, we154

observe that manifold SNR remains a significant, positive predictor of downstream brain-alignment155

in both the new ImageNet1K concept manifold sample and in the Places365 sample, with ρ = 0.457156

p < .001 and 0.319, p = .002, respectively. Manifold capacity (as in the ImageNet21K sample) is not157

significantly predictive of downstream brain-alignment in either of these cases.158

(More detailed results from Experiments 1, 2, 3 are shown in Appendix Tables 3 and 3.159

3 Discussion160

What factors make for a ‘good‘ neural network model of the visual brain? Since the adoption in visual161

neuroscience of the task-optimized deep convolutional neural network model more than a decade ago162

[26], the dominant, and in some ways most defensible answer has largely been ‘prediction’: Better163

models of the visual brain are those models whose internal representations most accurately predict the164

activity patterns of the biological brain. For those seeking downstream control or causal perturbation165

of biological systems [27; 28], this answer may be sufficient. For those seeking ‘understanding’,166

the search remains for other form of explanatory variables that supplement raw prediction with the167

parsimony of theories articulable in formal or natural language [29; 30; 23].168

In this work, we attempt to instrumentalize tools from the emergent field of manifold geometry169

[10] in service of better understanding the underlying structural factors that make certain models of170

ventral visual cortex ‘better‘ (i.e. more predictive of brain activity) than others – in effect, by using171

the metric scalars of manifold geometry to more directly link representation to function. Through172

this lens, we return to the seminal question of how the representation in ventral visual cortex relates173

to the function of object recognition. First validating the second-order predictive power of manifold174

geometry metrics (i.e. the raw values of their rank-order correlation with brain-alignment), we175

found multiple candidate metrics that nevertheless instantiate divergent hypotheses about the object-176

recognition-supporting representations of the ventral stream. Testing these hypotheses in a series177

of experimental subconditions, we found that a metric (manifold capacity) whose value scales with178

representational convergence toward separable, single point-estimates of category identity is less179

robust in predicting downstream brain-alignment than a metric (manifold SNR) that accounts for180

more graded forms of invariance and seperability that still subserve recognition, but equally subserve181

the few-shot learning of new categories.182
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Appendix + Supplementary Information302

Manifold Metric rSpearman ± 95% CI p

Chung et al. ····················································································
Capacity 0.643 [0.527, 0.796] <.001
Correlation -0.077 [-0.266, 0.107] 0.42
Dimensionality -0.594 [-0.747, -0.471] <.001
Radius -0.721 [-0.856, -0.62] <.001
Sorscher et al. ··············································································

Signal-to-Noise Ratio 0.774 [0.706, 0.873] <.001
Signal 0.569 [0.445, 0.724] <.001
Between-Concept Dimensionality 0.269 [0.103, 0.45] 0.003
Effective Dimensionality 0.154 [-0.018, 0.336] 0.097
Signal-to-Noise Overlap 0.133 [-0.04, 0.317] 0.153
Within-Concept Dimensionality 0.073 [-0.104, 0.26] 0.433
Within-Concept Radius -0.239 [-0.429, -0.068] 0.009
Bias -0.242 [-0.409, -0.088] 0.009

Table 1: Rank-order correlations between brain-predictivity and manifold geometry metrics, with
bootstrapped 95% confidence intervals shown in brackets; results from the Primary Analysis.

Model Selection303

Following the method of Conwell et al. [13], we curated a set of 117 deep neural network (DNN)304

models spanning different visual input diets (training data), architectures, and tasks. These models305

were sourced from the following repositories:306

• the Torchvision model zoo [24];307

• the VISSL model zoo [32];308
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Manifold Capacity Signal-to-Noise Ratio

ρSpearman, p ρSpearman, p

All Surveyed Models 0.62, p < 0.001 0.80, p < 0.001
High-Performing 0.14, p = 0.222 0.52, p < 0.001
ImageNet1K-Supervised 0.16, p = 0.262 0.47, p < 0.001

Table 2: A comparison of the rank-order correlations between the manifold capacity and manifold
signal-to-noise ratio (SNR) metrics across progressively smaller subsets of models; results from
Experiment 1.

Manifold Capacity Signal-to-Noise Ratio

Range rPearson, p Range rPearson, p

ImageNet1K
Best Layer 0.049 - 0.129 -0.070, p = 0.637 2.038 - 4.131 0.457, p < 0.001
Last Layer 0.098 - 0.235 -0.606, p < 0.001 1.622 - 8.639 -0.663, p < 0.001

ImageNet21K
Best Layer 0.052 - 0.125 -0.132, p = 0.373 2.092 - 4.062 0.468, p < 0.001
Last Layer 0.095 - 0.160 -0.515, p < 0.001 1.833 - 4.467 -0.294, p = 0.032

Places365 (Scenes)
Best Layer 0.047 - 0.095 -0.145, p = 0.327 1.677 - 3.446 0.319, p = 0.02
Last Layer 0.070 - 0.108 -0.515, p < 0.001 1.305 - 2.956 -0.158, p = 0.259

Table 3: Comparisons of manifold capacity and signal-to-noise ratio between the peak (i.e. most
brain-predictive) layer and the last layer in 3 different probe datasets. rPearson is the correlation
between the manifold metric value and brain-predictivity (mean encoding score) of each layer; results
from Experiments 2 and 3.

• the DINO collection [33];309

• the OpenAI CLIP collection [6];310

• the OpenCLIP model zoo [33];311

• the VicReg(-L) collections; [34; 35];312

• the Salesforce-LAVIS model zoo [36];313

• and Open-IPCL collection [37]314
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Figure 1: An overview of our motivation, methodology, and primary analysis. In A, we schematize the
key factors that define and contrast the two animating frameworks of our model-to-brain comparisons.
With its focus on the influence of input, architecture, and task, neuroconnectionist analysis [31]
seeks to use models as proxies of the design constraints (i.e. ‘pressures’) that could in principle
have shaped the emergence of the representational structure we observe in the biological brain.
Neural manifold geometry [10; 12] seeks to use models as a direct empirical substrate for probing
how the differences in the structure of representation (both within and across models) contribute
to differences in downstream behavior (i.e. classification, or in this case, brain-predictivity). In
B, we schematize our primary method for using manifold geometry to interpret brain-alignment in
high-level ventral visual stream (occipitotemporal cortex, or OTC). We first rank models in terms of
their brain-alignment scores by computing average voxelwise encoding scores with field-standard
cross-validated ridge-regressions for the ‘Shared-NSD1000’ [14]. We then take these same models
and rank them according to each of our curated manifold geometry metrics computed over ‘concept
manifolds’ (representational matrices) composed from ImageNet categories. In C, we show the
primary outcome of this analysis: A rank-order comparison (Spearman’s ρ correlation) between the
rank of each model according to its brain-predictivity, and the rank of each model according to its
associated manifold geometry metrics. As shown, the trend in the brain-predictivity plot on the left
(with brain-predictivity score in units of Pearson’s r on the y axis, and brain-predictivity rank on the
x axis) is better and worse captured by the various metrics in the subplots on the right (with manifold
metric rank in place of the the brain-predictivity on the x axis), which are sorted from top to bottom
by Spearman’s ρ.
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