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Model manifold analysis suggests the human visual brain is
less like an optimal classifier and more like a feature bank
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Abstract

What do deep neural network (DNN) models tell us about the computational
principles of visual information-processing in the biological brain? A now common
finding in visual neuroscience is that many different kinds of DNN models —
each with different architectures, tasks, and training diets — are all comparably
performant predictors of image-evoked brain activity in the ventral visual cortex.
This relative parity of highly diverse models may at first seem to undermine the
common intuition that we can use these models to infer the key computational
principles that govern the visual brain. In this work, we show to the contrary that
comparable brain-predictivity does not preclude the differentiation of these same
models in terms of the underlying manifold geometries that define them. To do
this, we assess 12 manifold geometry metrics computed across a diverse set of 117
DNN models, curated to include multiple tasks, architectures, and input diets. We
then use these metrics to predict how well each model aligns with occipitotemporal
cortex (OTC) activity from the human fMRI Natural Scenes Dataset. We find
that manifold signal-to-noise ratio (a metric previously associated with few-shot
learning) is a robust predictor of downstream brain-alignment and supersedes
both other manifold geometry metrics (i.e. manifold capacity) and downstream
task-performance (e.g. top-k recognition accuracy) across multiple different image
sets (e.g. ImageNet21K versus Places365) and model comparison probes (e.g.
category-supervised versus self-supervised models). These results add to a growing
body of evidence that the ventral visual stream serves as a basis set (or feature
vocabulary) for object recognition rather than as the actual locus of recognition per
se.

1 Background + Methods

High-level ventral visual cortex has often been considered the primary substrate of object recognition
in the human brain [1;2]. This notion has been further reinforced in recent years by the seminal finding
that deep neural network (DNN) models supporting image classification are the most predictive
models of ventral visual brain activity to date [3]]. One lingering issue with this formulation, however,
is the under-specification of what we mean by the word “recognition” in the context of the biological
brain. What precise computational mechanisms instantiate this process? And how might we use
deep neural network models to elucidate them? In deep neural network models, the computational
mechanisms of ‘recognition’ are explicitly (i.e. algorithmically) defined. Canonical, ‘end-to-end’
image classification models (e.g. AlexNet [4]) ‘recognize’ images by the direct, nonlinear mapping
of a tensorized image onto one-hot-encodings (point indices) of human-defined category labels.
Self-supervised, contrastive-learning models (e.g. SImCLR [3]]) and masked decoding models (e.g.
DINO) also support recognition, but do so first by learning (without labels) the invariances and
selectivities that define the axes of an input image space more generally. ‘Zero-shot’- multimodal
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classifiers (e.g. CLIP [6]) ‘recognize‘ images by way of a top-k similarity score between the language
embeddings of category labels and the vision embeddings of candidate images.

Identifying which of these (and many other) motifs is most brain-like has been somewhat confounded
by the fact that many (if not most) of these models often achieve roughly comparable measures
of ‘representational alignment’ [7]] to human visual cortex as measured by neuroimaging [8] and
neurophysiology [9] alike. In this work, we attempt to better parse the often difficult-to-interpret
differences between better and worse models of the brain by comparing them to the scalar metrics of
representational structure derived from manifold geometry analysis [[10]. In so doing, we attempt
as well to understand how this structure relates to the function of object recognition, and what our
neural network may or may be telling us about the nature of this structure in the visual brain.

Model & metric curation: Our general approach was to first curate N=12 metrics of manifold
geometry curated from two distinct lines of work: N=4 metrics from Chung et al. [11] (derived
from replica mean field theory) and N=8 metrics from Sorscher et al. [[12] (derived from principal
components analysis). We then curated a set of N=117 candidate deep neural network models
spanning different visual diets, architectures, and tasks, based on the work of Conwell et al. [13].
Model-brain-predictivity: Model-to-brain alignment (henceforth, brain-predictivity) was computed
for each model first by computing the average voxelwise encoding score over a 50% train split (N=500)
of the ‘Shared NSD1000’ image set [[14] for each individual layer with field-standard regularized
ridge regression. Models were then compared on the basis of the average encoding scores over the
test split (N=500) images for the most brain-like layer (as determined via nested cross-validation on
the train split). Manifold geometry analysis: Manifold geometry metrics (from both Chung et al.
[L1] and Sorscher et al. [12]] were computed using N=50 ‘concept manifolds’ (the representational
matrices of 50 images from each of 50 category labels from ImageNet-1K/21K [15;116], or Places365
[L7]). To ensure proper evaluation of these metrics, we deployed the exact GitHub source code
associated with the defining works of each: schung039/neural-manifolds-replicaMFT [[L1; 18] and
bsorsch/geometry-fewshot-learning)) [[12].

2 Results + Analysis

Primary Analysis: Explaining Brain-Predictivity with Manifold Geoemetry: How well do
differences in underlying manifold geometries explain downstream brain-alignment? To answer
this, we compute the rank-order correlation (pspearman) between the models’ brain-predictivity
(mean encoding) scores and each of our 12 manifold metrics (e.g. manifold capacity, effective
dimensionality) computed from the N=50 concept manifolds of ImageNet-21K used in [18]; results
from this analysis are shown in Appendix Figure[T|[C and Table 3]

6 / 12 metrics showed significant rank-order correlation with brain-predictivity at p < 0.01. 3/6
of these metrics (manifold signal-to-noise ratio, capacity, and signal) showed significant, positive
correlations. 3/6 (manifold radius, dimensionality, and within-concept radius) showed significant,
negative correlations. The overall strongest predictor of downstream brain-predictivity was the
manifold signal-to-noise ratio from Sorscher et al. [12]], with a strikingly high rank-order correlation
of pspearman [£95%BCI]=0.798 [0.731, 0.895], p = 4.70e-27. Not far behind this, however, was the
negatively correlating manifold radius metric from Chung et al. [L1], at p =-0.724 [-0.857, -0.623],
and the positively correlating manifold capacity metric from Chung et al. [1L1]], at p = 0.616 [0.493,
0.779]. Notable as well in these correlations is a conceptual replication of previous results [[13]
that showed effective dimensionality (1 / 8 metrics from Sorscher et al. [19]) was not a significant
predictor of brain-alignment — with p in this case equal to 0.156, p = 0.093.

The replication of this null effect, however, underscores all the more the significance of the positive
effects evident in the sizable correlations of other metrics. And indeed, the primary takeaway from
this first analysis might simply be that manifold metrics can indeed be the positive predictors of brain-
alignment that theorists and empiricist alike have long proposed they might be [[12; 205 215 225 [23]].

Querying manifold metric robustness & interpretability across experimental subconditions: The
strong, significant correlation of multiple manifold metrics with downstream brain-alignment does,
however, raise new questions. One of these is: When metrics describe otherwise divergent properties
of a manifold’s geometry (but both explain downstream brain-alignment to similar degrees), which
geometry should we take to be more brain-like? In our survey, two metrics in particular — manifold
capacity and manifold signal-to-noise ratio (henceforth SNR) — instantiate a rather palpable case of this
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algorithmic ambiguity. In the extreme (as in the final output layer of an end-to-end trained category-
supervised DNNs), manifold capacity heralds the complete collapse of all category information
into fully separate, single point-estimates of category identity Chung et al. [11]]; Stephenson et al.
[L8]; Chung and Abbott [[10] — in other words, an optimal classifier. In a similar extreme, manifold
signal-to-noise ratio also collapses to perfect point-estimates of category identity (all signal, no noise).
As described by Sorscher et al. [12]], however, mid-to-high range values of signal-to-noise ratio
better describe the conditions of better few-shot learning algorithms (something end-to-end category-
supervised neural classifiers tend notably nof to be). Which of these metrics, then, better describes the
object-recognition-supporting representational motifs instantiated in our DNN models of the ventral
visual stream? To better resolve this ambiguity, we assessed the correlations of manifold capacity and
SNR to downstream brain-predictivity in a series of experimental sub-conditions designed both to test
the robustness of these correlations and to disambiguate the somewhat competing representational
hypotheses they entail.

Experiment 1: Measuring robustness across model (sub)sets: In our first experiment, we assessed
the correlations of manifold capacity and SNR in increasingly smaller, targeted subsets of our
otherwise diversely sampled model set. The first subset we assessed was a subset of models we call
the "high-performing" set: effectively all models above a notable visual elbow in brain-predictivity
first described in [13]], but seen also in our sample (see Figure (left)). As also quantified with a
segmented regression analysis pointing to rank 84 (¢ = 84.1 [72.4, 94.9]) as a notable breakpoint
in an otherwise shallow slope of higher brain-predictivity scores, this set effectively included 84
models with average encoding scores of 7pearson = 0.336 or higher. Here, already, manifold capacity
begins to diffentiate from manifold SNR in terms of its rank-order correlation with brain-predictivity,
with capacity’s p diminishing to the point of non-significance at 0.14, p=0.222 and manifold SNR
remaining subtantial and significant at 0.50, p < .001. In an even smaller subset of purely architectural
variation (the N=53 category-supervised ImageNet-1K-trained models from the Torchvision model
700 [24]), the trend is similar, with p for manifold capacity dimishing to 0.16, p = 0.262 and
manifold SNR remaining high at 0.471, p < 0.001. In short, manifold SNR persists as a predictor
of downstream brain-alignment even in very restricted ranges; manifold capacity does not. (More
detailed results from this experiment are shown in Appendix Table[3])

Experiments 2+3: Layer-wise analysis of category-recognition models To better understand the
difference between manifold capacity and manifold SNR we were observing in this smaller subset,
we next probed variation in the correlation of manifold metric and brain-predictivity in layers beyond
the most brain-predictive layer selected by our initial cross-validation, and in particular, the ‘last
hidden layer’ feeding into the one-hot, category-encoding output. In effect, in this smaller subset of
category-supervised models, this layer instantiates the representation most directly responsible for the
‘recognition’ behavior the model will output for any given input, and by association, is the layer we
might presumably observe the highest covariance between manifold capacity and manifold SNR. And
indeed, what we observe here is that the correlations of both manifold capacity and manifold with
downstream brain-predictivity change dramatically. Here, in this final hidden vector of models trained
to collapse category information onto the single points of the output layer, manifold capacity and
manifold SNR are shown to be strong, significant, negative predictors of downstream brain-alignment,
with p = -0.606, p < .001 and -0.663, respectively. This sign-reversal corresponds to substantial
increases in the scalar values of both metrics relative to the most brain-predictive layers (with shifts
in the max values of manifold capacity increasing 182.17% from .129 to .235 and signal-to-noise
ratio increasing 209.12% from 4.131 to 8.639.) What seems to be happening, in effect, is that the
more the models are successful in collapsing category information to single point-estimates at this
final hidden layer, the less predictive of downstream brain-alignment they will be. Notably, the trend
is similar if as with our manifold metrics, we correlate the ImageNet-1K classification accuracy of
these models with downstream brain-predictivity, a trend we find (in line with recent work, e.g. [25]])
to be strongly negative across our 53 models (p = -0.63, p < .001).

Differential, IID/OOD concept manifold sampling: In a final experiment, we recomputed each
of our manifold metrics with two new sets of N=50 concept manifolds (N=50 test set images each):
one from the object categories of ImageNet1K (versus the ImageNet21K sample we use in our main
analysis, following the protocol and codebase of Stephenson et al. [[18]), and another from the scene
categories of Places365. The logic here is that these instantiate two different levels of ‘generalization*
for our category-supervised ImageNet-1K-trained models, one nearer (in-distribution, IID), one farther
(possibly out-of-distribution, OOD). Manifold capacity, in this regime, should be higher for those
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concepts that are IID (i.e. the ImageNet1K sample) than OOD (the Places365), again instantiating the
progressive tightening of category information towards single point-estimates. Manifold SNR, on the
other hand, will also decrease. But supporting few-shot-learning, as it nominally does, manifold SNR
will also maintain information that bridges the gaps between separable categories. Is this the kind of
information that boosts manifold SNR’s explanatory power for downstream brain-alignment? The
results of this experiment suggest it might be: In the most brain-predictive layers, for example, we
observe that manifold SNR remains a significant, positive predictor of downstream brain-alignment
in both the new ImageNet1K concept manifold sample and in the Places365 sample, with p = 0.457
p <.001 and 0.319, p = .002, respectively. Manifold capacity (as in the ImageNet21K sample) is not
significantly predictive of downstream brain-alignment in either of these cases.

(More detailed results from Experiments 1, 2, 3 are shown in Appendix Tables[3]and 3]

3 Discussion

What factors make for a ‘good‘ neural network model of the visual brain? Since the adoption in visual
neuroscience of the task-optimized deep convolutional neural network model more than a decade ago
[26]], the dominant, and in some ways most defensible answer has largely been ‘prediction’: Better
models of the visual brain are those models whose internal representations most accurately predict the
activity patterns of the biological brain. For those seeking downstream control or causal perturbation
of biological systems [27} 28], this answer may be sufficient. For those seeking ‘understanding’,
the search remains for other form of explanatory variables that supplement raw prediction with the
parsimony of theories articulable in formal or natural language [29; 30; 23]

In this work, we attempt to instrumentalize tools from the emergent field of manifold geometry
[LO] in service of better understanding the underlying structural factors that make certain models of
ventral visual cortex ‘better* (i.e. more predictive of brain activity) than others — in effect, by using
the metric scalars of manifold geometry to more directly link representation to function. Through
this lens, we return to the seminal question of how the representation in ventral visual cortex relates
to the function of object recognition. First validating the second-order predictive power of manifold
geometry metrics (i.e. the raw values of their rank-order correlation with brain-alignment), we
found multiple candidate metrics that nevertheless instantiate divergent hypotheses about the object-
recognition-supporting representations of the ventral stream. Testing these hypotheses in a series
of experimental subconditions, we found that a metric (manifold capacity) whose value scales with
representational convergence toward separable, single point-estimates of category identity is less
robust in predicting downstream brain-alignment than a metric (manifold SNR) that accounts for
more graded forms of invariance and seperability that still subserve recognition, but equally subserve
the few-shot learning of new categories.
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Appendix + Supplementary Information

Manifold Metric Tspearman £ 95% CI  p

Chung et al_ ....................................................................................
Capacity 0.643 [0.527, 0.796] <.001
Correlation -0.077 [-0.266, 0.107] 0.42
Dimensionality -0.594 [-0.747, -0.471] <.001
Radius -0.721 [-0.856, -0.62] <.001
SOFSCHET €F QL ++++++rnrerererereaere ettt ettt ettt eeeeeaees

Signal-to-Noise Ratio 0.774 [0.706, 0.873] <.001
Signal 0.569 [0.445, 0.724] <.001
Between-Concept Dimensionality  0.269 [0.103, 0.45] 0.003
Effective Dimensionality 0.154 [-0.018, 0.336] 0.097
Signal-to-Noise Overlap 0.133 [-0.04, 0.317] 0.153
Within-Concept Dimensionality 0.073 [-0.104, 0.26] 0.433
Within-Concept Radius -0.239 [-0.429, -0.068]  0.009
Bias -0.242 [-0.409, -0.088]  0.009

Table 1: Rank-order correlations between brain-predictivity and manifold geometry metrics, with
bootstrapped 95% confidence intervals shown in brackets; results from the Primary Analysis.

Model Selection

Following the method of Conwell et al. [[13]], we curated a set of 117 deep neural network (DNN)
models spanning different visual input diets (training data), architectures, and tasks. These models
were sourced from the following repositories:

« the Torchvision model zoo [24];
 the VISSL model zoo [32];


https://github.com/facebookresearch/vissl
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://aclanthology.org/2023.acl-demo.3
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Manifold Capacity  Signal-to-Noise Ratio

PSpearman; P PSpearman; P
All Surveyed Models 0.62, p < 0.001 0.80, p < 0.001
High-Performing 0.14,p = 0.222 0.52, p < 0.001
ImageNet1K-Supervised 0.16, p = 0.262 0.47, p < 0.001

Table 2: A comparison of the rank-order correlations between the manifold capacity and manifold
signal-to-noise ratio (SNR) metrics across progressively smaller subsets of models; results from
Experiment 1.

Manifold Capacity Signal-to-Noise Ratio

Range TPearson; P Range TPearsons P

ImageNet1K
Best Layer 0.049-0.129 -0.070,p = 0.637 2.038-4.131 0.457,p < 0.001
Last Layer 0.098 - 0.235 -0.606, p < 0.001 1.622-8.639 -0.663, p < 0.001

ImageNet21K
Best Layer 0.052-0.125 -0.132,p=0.373 2.092-4.062 0.468, p < 0.001
Last Layer 0.095-0.160 -0.515,p < 0.001 1.833-4.467 -0.294,p = 0.032

Places365 (Scenes)

Best Layer 0.047-0.095 -0.145,p =0.327 1.677-3.446 0.319,p = 0.02
Last Layer 0.070-0.108 -0.515,p < 0.001 1.305-2.956 -0.158, p = 0.259

Table 3: Comparisons of manifold capacity and signal-to-noise ratio between the peak (i.e. most
brain-predictive) layer and the last layer in 3 different probe datasets. 7pcqrson 1S the correlation
between the manifold metric value and brain-predictivity (mean encoding score) of each layer; results
from Experiments 2 and 3.

the DINO collection [33]];

the OpenAl CLIP collection [6];

the OpenCLIP model zoo [33l];

the VicReg(-L) collections; [345[35];
the Salesforce-LAVIS model zoo [36];
and Open-IPCL collection [37]]
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Figure 1: An overview of our motivation, methodology, and primary analysis. In A, we schematize the
key factors that define and contrast the two animating frameworks of our model-to-brain comparisons.
With its focus on the influence of input, architecture, and task, neuroconnectionist analysis
seeks to use models as proxies of the design constraints (i.e. ‘pressures’) that could in principle
have shaped the emergence of the representational structure we observe in the biological brain.
Neural manifold geometry [10; [12] seeks to use models as a direct empirical substrate for probing
how the differences in the structure of representation (both within and across models) contribute
to differences in downstream behavior (i.e. classification, or in this case, brain-predictivity). In
B, we schematize our primary method for using manifold geometry to interpret brain-alignment in
high-level ventral visual stream (occipitotemporal cortex, or OTC). We first rank models in terms of
their brain-alignment scores by computing average voxelwise encoding scores with field-standard
cross-validated ridge-regressions for the ‘Shared-NSD1000° [[14]. We then take these same models
and rank them according to each of our curated manifold geometry metrics computed over ‘concept
manifolds’ (representational matrices) composed from ImageNet categories. In C, we show the
primary outcome of this analysis: A rank-order comparison (Spearman’s p correlation) between the
rank of each model according to its brain-predictivity, and the rank of each model according to its
associated manifold geometry metrics. As shown, the trend in the brain-predictivity plot on the left
(with brain-predictivity score in units of Pearson’s r on the y axis, and brain-predictivity rank on the
X axis) is better and worse captured by the various metrics in the subplots on the right (with manifold
metric rank in place of the the brain-predictivity on the x axis), which are sorted from top to bottom
by Spearman’s p.
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