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Abstract

What do deep neural network (DNN) models actually tell us about the computational
principles of visual information-processing in the biological brain? A now common finding
in visual neuroscience is that many different kinds of DNNs – with different architectures,
tasks, and training diets – are all comparably performant predictors of image-evoked brain
activity in the ventral visual cortex. This relative parity of highly diverse models may
at first seem to undermine the common intuition that we can use these models to infer
the computational principles that govern the visual brain. In this work, we show to the
contrary that comparable brain-predictivity does not preclude the differentiation of these
same models in terms of the underlying manifold geometries that define them. To do
this, we assess 12 manifold geometry metrics computed across a diverse set of 117 DNN
models, curated to include multiple tasks, architectures, and input diets. We then use
these metrics to predict how well each model aligns with occipitotemporal cortex (OTC)
activity from the human fMRI Natural Scenes Dataset. We find that manifold signal-to-
noise ratio (a metric previously associated with few-shot learning) is a robust predictor
of downstream brain-alignment and supersedes both other manifold geometry metrics (i.e.
manifold capacity) and downstream task-performance (e.g. top-k recognition accuracy)
across multiple different image sets (e.g. ImageNet21K versus Places365) and controlled
model comparisons (e.g. assessments across ImageNet-1K trained architectural variants
only). These results add to a growing body of evidence that the ventral visual stream
serves as a basis set (or feature vocabulary) for object recognition rather than as the actual
locus of recognition per se.

1. Background + Methods

High-level ventral visual cortex is widely considered the primary substrate of object recog-
nition in the human brain [17; 18; 27]. This notion has been further reinforced in recent
years by the now-seminal finding that deep neural network (DNN) models supporting im-
age classification are the most predictive models of ventral visual brain activity to date
[52; 43; 13]. One lingering issue with this formulation, however, is the under-specification
of what we mean by the word “recognition” as implemented by the biological brain. What
precise neural-computational mechanisms instantiate this process? And how might we use
deep neural network models to elucidate them? In models, the computational mechanisms
of ‘recognition’ are explicitly (i.e. algorithmically) defined. Canonical, ‘end-to-end’ image
classification models (e.g. AlexNet [30]) ‘recognize’ images by the direct, nonlinear mapping
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of a tensorized image onto one-hot-encodings (point indices) of human-defined category la-
bels. Self-supervised, contrastive-learning models (e.g. SimCLR [9]) and masked decoding
models (e.g. DINO, [8]) also support recognition, but do so first by learning (without la-
bels) the invariances and selectivities that define the axes of an input image space more
generally. ‘Zero-shot’- multimodal classifiers (e.g. CLIP [40]) ‘recognize’ images by way of
a top-k similarity score between the language embeddings of category labels and the vision
embeddings of candidate images.

Identifying which of these (or many other) motifs is most brain-like has been a process
somewhat confounded by the fact that many (if not most) of these models often achieve
roughly comparable (often high) measures of ‘representational alignment’ [50] to human vi-
sual cortex activity recorded via neuroimaging and neurophysiology alike [13; 49; 24; 38; 14].
One response to this relative parity (inspired by the neuro-connectionist research programme
[19]) has been the use of controlled model comparisons designed to better parse the differ-
ences between models by grouping them in ways empirically isolate the representational
influence of broader computational design principles such as sensory diet (training data),
architecture, and task [15]. In this work, we attempt to better parse the differences between
models more directly by sorting them along scalar axes of representational structure defined
by manifold geometry analysis [12; 11; 46]. In so doing, we attempt as well to more directly
interrogate how this structure relates to the function of object recognition, and what our
neural networks may or may be telling us about the nature of this structure in the human
ventral visual system.

Related work The use of manifold geometrics to understand representational structure
(brain-like or otherwise) is a technique simultaneously steeped in a rich history of theory,
and an actively developing area of interest in modern machine learning and cognitive neu-
roscience [35; 48; 7; 21; 31; 47; 45]. Extended discussion of these related works is available
in Appendix A1.

Model & metric curation Our general approach was to first curate N=12 metrics
of manifold geometry from two distinct lines of work: N=4 metrics from Chung et al. [12]
(derived from replica mean field theory) and N=8 metrics from Sorscher et al. [46] (derived
from principal components analysis). We then curated a set of N=117 candidate deep neural
network models spanning different visual diets, architectures, and tasks, based on the work
of Conwell et al. [15]. (See Appendix A2 for a list of model sources.)

Measuring brain-alignment Model-to-brain predictivity scores (henceforth, brain-
alignment) was computed for each model first by computing the average voxelwise encoding
score over a 50% train split (N=500) of the ‘Shared NSD1000’ image set [1] for each indi-
vidual layer with field-standard regularized ridge regression. Models were then compared
on the basis of the average encoding scores over the test split (N=500) images for the most
brain-like layer (as determined via nested cross-validation on the train split).

Manifold geometry analysis Manifold geometry metrics (from both Chung et al.
[12] and Sorscher et al. [46] were computed using N=50 ‘concept manifolds’ (the repre-
sentational matrices of 50 images from each of 50 category labels from ImageNet-1K/21K
[16; 42], or Places365 [54]). To ensure proper evaluation of these metrics on our candidate
representations, we used the exact GitHub source code associated with the defining works
of each: schung039/neural-manifolds-replicaMFT [12; 48] and bsorsch/geometry-fewshot-
learning [46].
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2. Results + Analysis

Primary analysis: explaining brain-alignment with manifold geometry How well
do differences in underlying manifold geometries explain downstream brain-alignment? To
answer this, we compute the rank-order correlation (ρSpearman) between the models’ brain-
predictivity (mean encoding) scores and each of our 12 manifold metrics (e.g. manifold
capacity, effective dimensionality) computed from the N=50 concept manifolds of ImageNet-
21K used in [48]; results from this analysis are shown in Appendix Figure 1C and Table
1.

6 / 12 metrics showed significant rank-order correlation with brain-predictivity at p <
0.01. 3 of these metrics (manifold signal-to-noise ratio, capacity, and signal) showed sig-
nificant, positive correlations. Three (manifold radius, dimensionality, and within-concept
radius) showed significant, negative correlations. The overall strongest predictor of down-
stream brain-predictivity was the manifold signal-to-noise ratio from Sorscher et al. [46],
with a strikingly high rank-order correlation of ρSpearman [±95%BCI] = 0.798 [0.731, 0.895],
p = 4.70e-27. Not far behind this, however, was the negatively correlating manifold radius
metric from Chung et al. [12], at ρ = -0.724 [-0.857, -0.623], and the positively correlating
manifold capacity metric from Chung et al. [12], at ρ = 0.616 [0.493, 0.779]. In sum, the
primary takeaway from this first analysis is that manifold metrics can indeed be the strong
predictors of brain-alignment that theorists and empiricist alike have proposed they might
be [46; 51; 7; 21; 22].

Querying manifold metric robustness & interpretability across experimental
subconditions The strong, significant correlation ofmultiple manifold metrics with down-
stream brain-alignment does, however, raise new questions. One of these is: When metrics
describe otherwise divergent properties of a manifold’s geometry (but both explain down-
stream brain-alignment to similar degrees), which geometry should we take to be more
brain-like? In our survey, two metrics in particular – manifold capacity and signal-to-noise
ratio (henceforth SNR) – instantiate a rather palpable case of this algorithmic ambigu-
ity. In the extreme (as in the final output layer of end-to-end trained category-supervised
DNNs), high manifold capacity signals the complete collapse of all category information
into fully separate, single point-estimates of category identity [12; 48; 11] – in other words,
an optimal classifier. In a similar extreme, manifold signal-to-noise ratio also collapses to
perfect point-estimates of category identity (all signal, no noise). As described by Sorscher
et al. [46], however, mid-to-high range values of signal-to-noise ratio better describe the con-
ditions of better few-shot learning algorithms (something end-to-end category-supervised
neural classifiers tend notably not to be). Which of these metrics, then, better describes
the object-recognition-supporting representational motifs instantiated in our DNN models
of the ventral visual stream? To better resolve this ambiguity, we assessed the correlations
of manifold capacity and SNR to downstream brain-predictivity in a series of experimental
sub-conditions designed both to test the robustness of these correlations and to disam-
biguate the somewhat competing representational hypotheses they entail. (Details from
Experiments 1, 2 and 3 are shown in Appendix Tables 2 and 3.)

Experiment 1: Measuring robustness across model (sub)sets In our first exper-
iment, we assessed the correlations of manifold capacity and SNR in increasingly smaller,
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targeted subsets of our otherwise diversely sampled model set. The first subset we assessed
was a subset of models we call the ”high-performing” set: effectively all models above a
notable visual elbow in brain-predictivity first described in [15], but seen also in our sample
(see Figure 1C-Left). Quantifying this elbow with a segmented regression analysis yielding a
breakpoint of ψ = 84.1 [72.4, 94.9], we defined this ‘high-performing’ set as the N=84 models
with average encoding scores of rPearson = 0.336 or higher. Here, already, manifold capacity
begins to diverge from manifold SNR in its rank-order correlation with brain-predictivity,
with capacity diminishing to the point of non-significance at ρ = 0.14, p=0.222 and manifold
SNR remaining substantial and significant at ρ = 0.50, p ¡ .001. In an even smaller subset
of models varying only in architecture (the N=53 category-supervised ImageNet-1K-trained
models from the Torchvision model zoo [36]), the trend is similar, with ρ for manifold ca-
pacity dimishing to 0.16, p = 0.262 and manifold SNR remaining high at 0.471, p < 0.001.
In short, manifold SNR persists as a predictor of downstream brain-alignment even in very
restricted ranges; manifold capacity does not.

Experiment 2: Layer-wise analysis of category-recognition models To better
understand the difference between manifold capacity and manifold SNR we were observing
in this smaller subset, we next probed variation in the correlation of manifold metric and
brain-predictivity in layers beyond the most brain-predictive layer selected by our initial
cross-validation, and in particular, the ‘last hidden layer’ feeding into the one-hot, category-
encoding output. In effect, in this smaller subset of category-supervised models, this layer
instantiates the representation most directly responsible for the ‘recognition’ behavior the
model will output for any given input, and by association, is the layer we might presumably
observe the highest covariance between manifold capacity and manifold SNR. And indeed,
what we observe here is that the correlations of both manifold capacity and manifold SNR
with downstream brain-predictivity change dramatically. Here, in this final hidden vector of
models trained to collapse category information onto the single points of the output layer,
manifold capacity and manifold SNR are shown to be strong, significant, negative predictors
of downstream brain-alignment, with ρ = -0.606, p ¡ .001 and -0.663, respectively. This sign-
reversal corresponds to substantial increases in the scalar values of both metrics relative
to the most brain-predictive layers (with shifts in the max values of manifold capacity
increasing 182.17% from .129 to .235 and signal-to-noise ratio increasing 209.12% from
4.131 to 8.639.) What is happening, in effect, is that the more the models are successful in
collapsing category information to single point-estimates at this final hidden layer, the less
predictive of downstream brain-alignment they will be. Notably, the trend is similar if, as
with our manifold metrics, we correlate the ImageNet-1K classification accuracy of these
models with downstream brain-predictivity, a trend we find (in line with recent work, e.g.
[33]) to be strongly negative across our 53 models (ρ = -0.63, p ¡ .001).

Experiment 3: Differential, IID/OOD concept manifold sampling In a final ex-
periment, we recomputed each of our manifold metrics with two new sets of N=50 concept
manifolds (N=50 test set images each): one from the object categories of ImageNet1K
(versus the ImageNet21K sample we use in our main analysis, following the protocol and
codebase of Stephenson et al. [48]), and another from the scene categories of Places365. The
logic here is that these instantiate two different levels of ‘generalization‘ for our category-
supervised ImageNet-1K-trained models, one nearer (in-distribution, IID), one farther (pos-
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sibly out-of-distribution, OOD). Manifold capacity, in this regime, should be higher for
those concepts that are IID (i.e. the ImageNet1K sample) than OOD (the Places365),
again instantiating the progressive tightening of category information towards single point-
estimates. Manifold SNR, on the other hand, will also decrease. But supporting few-shot-
learning, as it nominally does, manifold SNR will also maintain information that bridges
the gaps between separable categories. Is this the kind of information that boosts manifold
SNR’s explanatory power for downstream brain-alignment? The results of this experiment
suggest it might be: In the most brain-predictive layers, for example, we observe that man-
ifold SNR remains a significant, positive predictor of downstream brain-alignment in both
the new ImageNet1K concept manifold sample and in the Places365 sample, with ρ = 0.457
p ¡ .001 and 0.319, p = .002, respectively. Manifold capacity (as in the ImageNet21K sample)
is not significantly predictive of downstream brain-alignment in either of these cases.

3. Discussion

What factors make for a ‘good’ neural network model of the visual brain? Since the adoption
in visual neuroscience of the task-optimized deep convolutional neural network model more
than a decade ago [53], the dominant – and in some ways most empirically defensible answer
– has largely been ‘prediction’: Better models of the visual brain are those models whose
internal representations most accurately predict the activity patterns of the biological brain.
For those seeking downstream control or causal perturbation of biological systems [4; 44],
this answer may be sufficient. For those seeking ‘understanding’, the search remains for
other forms of explanatory variables that supplement raw prediction with the parsimony of
theories articulable in formal or natural language [41; 19; 22].

In this work, we attempt to instrumentalize the emergent framework of neural mani-
fold geometry [11] to better understand the underlying structural factors that make certain
models of ventral visual cortex ‘better‘ (i.e. more predictive of brain activity) than others
– in effect, by using the metric scalars of manifold geometry to more directly link repre-
sentation to function. Through this lens, we return to the seminal question of how the
representation in ventral visual cortex relates to the function of object recognition (i.e. the
‘readout’ of a category label). First validating the second-order predictive power of man-
ifold geometry metrics (i.e. the strength of their rank-order correlation with downstream
brain-alignment), we find multiple candidate metrics that nevertheless instantiate divergent
hypotheses about the object-recognition-supporting representations of the ventral stream.
Testing these hypotheses in a series of experimental subconditions, we find that a metric
(manifold capacity) whose value scales with representational convergence toward separable,
single point-estimates of category identity is less robust in predicting downstream brain-
alignment than a metric (manifold SNR) that accounts for more graded forms of invariance
and separability that still subserve recognition, but equally subserve the few-shot learning of
new categories. Taken together, these results add to a growing body of evidence from across
multiple experimental modalities [34; 26; 5; 6; 20; 10; 37] that suggest the ventral visual
stream may be less like an optimal classifier (i.e. the locus of recognition itself) and more
like a feature bank (i.e. the vocabulary of whatever compositional process of recognition
involves downstream.) Further elaboration of concurrent work as well as the limitations of
the current work are available in Appendix A1.
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4. Code + Data

Source code and data for this work will be made available in our project GitHub:
github.com/ColinConwell/BMM-Geometrics
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Appendix + Supplementary Information

A1. Precedent, Parallel, and Concurrent Work; Limitations

The use of manifold geometrics in cognitive neuroscience and machine learning has recently
resurged, but more generally has been a key methodology in both of these disciplines for
many decades (consider e.g. [35] for a paradigmatic example). More recent work in this
domain has seen manifold geometry analysis applied to speech recognition in (biological and
artificial) auditory neural networks [48]; in theoretical work on the limits or underpinnings
of representational alignment more generally [7; 21]; to the characterizing of task-optimized
models predicting activity in macaque visual cortex [31]; and (most directly relevant to
the current analysis) to the characterizing of brain-like representational structure in human
ventral visual system activity sourced from the Natural Scenes Dataset [47; 45]. St-Yves
et al. [47] in particular is notable for the use of the same manifold signal-to-noise and
dimensionality metrics [46] we leverage in this analysis, deployed in service of characterizing
how geometry varies across different (sub)regions of the ventral and dorsal stream alike.

Our work builds and extends on these approaches by explicitly yoking the more distal,
ecological insights of the neuro-connectionist, many-model / controlled comparisons ap-
proach with the more proximate, structural insights of manifold geometry - and in so doing,
ideally, to get just a little closer to unifying the goals of ‘prediction’ and ‘understanding’
that so often seem in tension in the application of DNN models to neuroscience data [28].

In finding that a metric more in tune with few-shot learning than optimal classification
seems to be a better explanatory variable of a representation’s downstream alignment to
the ventral stream, our work seems to resonate well with recent findings from multiple
other research programmes. Whether it be the finding that the biological ventral stream in
macaques may be more ‘texture-like’ than previously assumed on the basis of shape-based
behavioral biases [26]; the greater impairment to object recognition from damage to medial
temporal lobe than ventral stream in double dissociation neuropsychology experiments [5; 6];
the demonstration of emergent category-like topographic structure from self-organized maps
learned over self-supervised natural image models [20]; or even more simply the now robustly
reproduced finding (inherent to these results as well) that the later layers of category-
recognizing deep neural network models are less brain-predictive than more intermediate
layers [15], the ventral stream seems in many cases to be preserving information in ways
that diverge from the strict motif of category invariance and separability that one might
assume were one to assume the function of this region is the kind of classification subserved
by the models that best predict its activity.

A major limitation of the current work (and similar efforts), of course, is that the infer-
ences we make about the manifold geometry of the brain are inferences we make by proxy
of the brain-predictive models that are the actual targets of our analysis. Increasingly,
however, we have seen that however much ‘proxy’ the inferences we make from models
may be, these inferences are often directly convertible into the kinds of casual / pertur-
bational empiricism an that are the gold standard of scientific understanding for a target
biological system. Concurrent work is already applying manifold geometry analysis and
similar towards the goal of robustifying brain-predictive models through explicit, manifold
metric-guided representational alignment and neural control [45; 39]. Future work should
continue to leverage the structural grip of manifold analysis with the high-throughput de-
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velopment of ever-more competent task-optimized models to accelerate the incisive style of
this empiricism even further.

Figure 1: An overview of our motivation, methodology, and primary analysis. An extended
caption is available in the paragraph below.

Figure 1 extended caption InA, we schematize the key factors that define and contrast
the two animating frameworks of our model-to-brain comparisons. With its focus on the
influence of input, architecture, and task, neuroconnectionist-style analysis [19; 15] seeks
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to use models as proxies of the design constraints (i.e. ‘pressures’) that could in principle
have shaped the emergence of the representational structure we observe in the biological
brain. Neural manifold geometry [11; 46] seeks to use models as a direct empirical sub-
strate for probing how the differences in the structure of representation (both within and
across models) contribute to differences in downstream behavior (i.e. classification, or in
this case, brain-alignment / predictivity). In B, we schematize our primary method for
using manifold geometry to interpret brain-alignment in high-level ventral visual stream
(occipitotemporal cortex, or OTC). We first rank models in terms of their brain-alignment
scores by computing average voxelwise encoding scores with field-standard cross-validated
ridge-regressions for the ‘Shared-NSD1000’ [1]. We then take these same models and rank
them according to each of our curated manifold geometry metrics computed over ‘concept
manifolds’ (representational matrices) composed from ImageNet categories. In C, we show
the primary outcome of this analysis: A rank-order comparison (Spearman’s ρ correlation)
between the rank of each model according to its brain-predictivity, and the rank of each
model according to its associated manifold geometry metrics. As shown, the trend in the
brain-predictivity plot on the left (with brain-predictivity score in units of Pearson’s r on
the y axis, and brain-predictivity rank on the x axis) is better and worse captured by the
various metrics in the subplots on the right (with manifold metric rank in place of the the
brain-predictivity on the x axis), which are sorted from top to bottom by Spearman’s ρ.

A2. Model Selection

Following the method of Conwell et al. [15], we curated a set of 117 deep neural network
(DNN) models spanning different visual input diets (training data), architectures, and tasks.
These models were sourced from the following repositories:

• the Torchvision model zoo [36];
• the VISSL model zoo [23];
• the DINO collection [25];
• the OpenAI CLIP collection [40];
• the OpenCLIP model zoo [25];
• the VicReg(-L) collections; [2; 3];
• the Salesforce-LAVIS model zoo [32];
• and Open-IPCL collection [29]
Additional information in the Project GitHub: ColinConwell/BMM-Geometrics
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Manifold Metric rSpearman ± 95% CI p

Chung et al. ······················································································
Capacity 0.643 [0.527, 0.796] ¡.001
Correlation -0.077 [-0.266, 0.107] 0.42
Dimensionality -0.594 [-0.747, -0.471] ¡.001
Radius -0.721 [-0.856, -0.62] ¡.001
Sorscher et al. ··············································································

Signal-to-Noise Ratio 0.774 [0.706, 0.873] ¡.001
Signal 0.569 [0.445, 0.724] ¡.001
Between-Concept Dimensionality 0.269 [0.103, 0.45] 0.003
Effective Dimensionality 0.154 [-0.018, 0.336] 0.097
Signal-to-Noise Overlap 0.133 [-0.04, 0.317] 0.153
Within-Concept Dimensionality 0.073 [-0.104, 0.26] 0.433
Within-Concept Radius -0.239 [-0.429, -0.068] 0.009
Bias -0.242 [-0.409, -0.088] 0.009

Table 1: Rank-order correlations between brain-predictivity and manifold geometry met-
rics, with bootstrapped 95% confidence intervals shown in brackets; results from
the Primary Analysis.

Manifold Capacity Signal-to-Noise Ratio

ρSpearman, p ρSpearman, p

All Surveyed Models 0.62, p < 0.001 0.80, p < 0.001
High-Performing 0.14, p = 0.222 0.52, p < 0.001
ImageNet1K-Supervised 0.16, p = 0.262 0.47, p < 0.001

Table 2: A comparison of the rank-order correlations between the manifold capacity and
manifold signal-to-noise ratio (SNR) metrics across progressively smaller subsets
of models; results from Experiment 1.
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Manifold Capacity Signal-to-Noise Ratio

Range rPearson, p Range rPearson, p

ImageNet1K
Best Layer 0.049 - 0.129 -0.070, p = 0.637 2.038 - 4.131 0.457, p < 0.001
Last Layer 0.098 - 0.235 -0.606, p < 0.001 1.622 - 8.639 -0.663, p < 0.001

ImageNet21K
Best Layer 0.052 - 0.125 -0.132, p = 0.373 2.092 - 4.062 0.468, p < 0.001
Last Layer 0.095 - 0.160 -0.515, p < 0.001 1.833 - 4.467 -0.294, p = 0.032

Places365 (Scenes)
Best Layer 0.047 - 0.095 -0.145, p = 0.327 1.677 - 3.446 0.319, p = 0.02
Last Layer 0.070 - 0.108 -0.515, p < 0.001 1.305 - 2.956 -0.158, p = 0.259

Table 3: Comparisons of manifold capacity and signal-to-noise ratio between the peak
(i.e. most brain-predictive) layer and the last layer in 3 different probe datasets.
rPearson is the correlation between the manifold metric value and brain-predictivity
(mean encoding score) of each layer; results from Experiments 2 and 3.
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