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ABSTRACT

The goal of this paper is to investigate distributed temporal difference (TD) learn-
ing for a networked multi-agent Markov decision process. The proposed ap-
proach is based on distributed optimization algorithms, which can be interpreted
as primal-dual Ordinary differential equation (ODE) dynamics subject to null-
space constraints. Based on the exponential convergence behavior of the primal-
dual ODE dynamics subject to null-space constraints, we examine the behavior
of the final iterate in various distributed TD-learning scenarios, considering both
constant and diminishing step-sizes and incorporating both i.i.d. and Markovian
observation models. Unlike existing methods, the proposed algorithm does not
require the assumption that the underlying communication network structure is
characterized by a doubly stochastic matrix.

1 INTRODUCTION

Temporal-difference (TD) learning (Sutton, 1988) aims to solve the policy evaluation problem in
Markov decision processes (MDPs), serving as the foundational pillar for many reinforcement
learning (RL) algorithms (Mnih et al., 2015). Following the empirical success of RL in various
fields (Kober et al., 2013; Li et al., 2019), theoretical exploration of TD learning has become an
active area of research. For instance, Tsitsiklis and Van Roy (1996) studied the asymptotic conver-
gence of TD learning, while non-asymptotic analysis has been examined in Bhandari et al. (2018);
Srikant and Ying (2019); Lee and Kim (2022).

In contrast to the single-agent case, the theoretical understanding for TD-learning for networked
multi-agent Markov decision processes (MAMDPs) has not been fully explored so far. In the net-
worked MAMDPs, each agent follows its own policy and receives different local rewards while
sharing their local learning parameters through communication networks. Under this scenario, sev-
eral distributed TD-learning algorithms (Wang et al., 2020; Doan et al., 2019; 2021; Sun et al., 2020;
Zeng et al., 2022) have been developed based on distributed optimization frameworks (Nedic and
Ozdaglar, 2009; Pu and Nedić, 2021).

The main goal of this paper is to provide finite-time analysis of a distributed TD-learning algorithm
for networked MAMDPs from the perspectives of the primal-dual algorithms (Wang and Elia, 2011;
Mokhtari and Ribeiro, 2016; Yuan et al., 2018). The proposed algorithms are inspired by the control
system model for distributed optimization problems Wang and Elia (2011); Lee (2023), and at the
same time, it can also be interpreted as the primal-dual gradient dynamics in (Qu and Li, 2018).
In this respect, we first study finite-time analysis of continuous-time primal-dual gradient dynamics
in (Qu and Li, 2018) with special nullity structures on the system matrix. Based on the analysis of
primal-dual gradient dynamics, we further provide a finite-time analysis of the proposed distributed
TD-learning under both i.i.d. observation and Markov observation models. The main contributions
are summarized as follows:

1. An improved or comparable to the state of art convergence rate for continuous-time primal-
dual gradient dynamics (Qu and Li, 2018) with null-space constraints under specific con-
ditions: the results can be applied to general classes of distributed optimization problems
that can be reformulated as saddle-point problems (Wang and Elia, 2011; Mokhtari and
Ribeiro, 2016; Yuan et al., 2018);
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2. Development of new distributed TD-learning algorithms inspired by (Wang and Elia, 2011;
Lee, 2023);

3. New mean-squared error bounds of the distributed TD-learning under our consideration for
both i.i.d. and Markovian observation models and under various conditions of the step-
sizes: the distributed TD-learning is based on the control system model in (Wang and
Elia, 2011; Lee, 2023) which does not require doubly stochastic matrix corresponding to
its associated network graph. Note that the doubly stochastic assumption is required in
other distributed TD-learning algorithms based on the classical distributed optimization
algorithms (Nedic and Ozdaglar, 2009; Pu and Nedić, 2021);

4. Empirical demonstrations of both the convergence and the rate of convergence of the algo-
rithm studied in this paper.

Related Works. Nedic and Ozdaglar (2009) investigated a distributed optimization algorithm over
a communication network whose structure graph is represented by a doubly stochastic matrix. In this
approach, each agent exchanges information with its neighbors, with the exchange being weighted
by the corresponding element in the doubly stochastic matrix. Wang and Elia (2011); Notarnicola
et al. (2023) provided control system approach to study distributed optimization problem. Another
line of research designs distributed algorithms based on primal-dual approach (Yuan et al., 2018;
Mokhtari and Ribeiro, 2016).

The asymptotic convergence of distributed TD-learning has been studied in Mathkar and Borkar
(2016); Stanković et al. (2023). Doan et al. (2019) provided finite-time analysis of distributed TD-
learning based on the distributed optimization algorithm (Nedic and Ozdaglar, 2009) with i.i.d.
observation model. Doan et al. (2021) extended the analysis of Doan et al. (2019) to the Marko-
vian observation model. Sun et al. (2020) studied distributed TD-learning based on Nedic and
Ozdaglar (2009) with the Markovian observation model using multi-step Lyapunov function (Wang
et al., 2019). Wang et al. (2020) studied distributed TD-learning motivated by the gradient tracking
method (Pu and Nedić, 2021). Zeng et al. (2022) studied finite-time behavior of distributed stochastic
approximation algorithms (Robbins and Monro, 1951) with general mapping including TD-learning
and Q-learning, using Lyapunov-Razumikhin function (Zhou and Luo, 2018). Hairi et al. (2021)
studied distributed actor-critic (Konda and Tsitsiklis, 1999) where the critic update requires the size
of mini-batch to be dependent on the number of agents.

In the context of policy evaluation, Macua et al. (2014); Lee et al. (2018); Wai et al. (2018); Ding
et al. (2019); Cassano et al. (2020) studied distributed versions of gradient-TD (Sutton et al., 2009).
The Gradient-TD method can be reformulated as saddle-point problem (Macua et al., 2014; Lee
et al., 2022), and the aforementioned works can be understood as distributed optimization over a
saddle-point problem (Boyd and Vandenberghe, 2004).

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS

Markov decision process (MDP) consists of five tuples (S,A, γ,P, r), where S := {1, 2, . . . , |S|}
is the collection of states, A is the collection of actions, γ ∈ (0, 1) is the discount factor, P :
S × A × S → [0, 1] is the transition kernel, and r : S × A × S → R is the reward function.
If action a ∈ A is chosen at state s ∈ S, the transition to state s′ ∈ S occurs with probability
P(s, a, s′), and incurs reward r(s, a, s′). Given a stochastic policy π : S ×A → [0, 1], the quantity
π(a | s) denotes the probability of taking action a ∈ A at state s ∈ S . We will denote Pπ(s, s′) :=∑

a∈A P(s, a, s′)π(a | s), and Rπ(s) :=
∑

a∈A
∑

s′∈S P(s, a, s′)π(a | s)r(s, a, s′), which is the
transition probability from state s ∈ S to s′ ∈ S under policy π, and expected reward at state s ∈ S,
respectively. d : S → [0, 1] denotes the stationary distribution of the state s ∈ S under policy π. The
policy evaluation problem aims to estimate the expected sum of discounted rewards following policy
π, the so-called the value function, V π(s) = E

[∑∞
k=0 γ

kr(sk, ak, sk+1)
∣∣s0 = s, π

]
, s ∈ S.

Given a feature function ϕ : S → Rq , our aim is to estimate the value function through learnable
parameter θ, i.e., V π(s) ≈ ϕ(s)⊤θ, for s ∈ S, which can be achieved through solving the optimiza-
tion problem, minθ∈Rq

1
2 ∥R

π + γP πΦθ −Φθ∥2Dπ , where Dπ := diag(d(1), d(2), . . . , d(|S|)) ∈
R|S|×|S|, diag(·) is diagonal matrix whose diagonal elements correspond to elements of the tu-
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ple, P π ∈ R|S|×|S| whose elements are [P π]ij := Pπ(i, j) for i, j ∈ S , Rπ ∈ R|S|, [Rπ]i :=

E [r(s, a, s′)|s = i] for i ∈ S, and Φ := [ϕ(1) ϕ(2) · · · ϕ(|S|)]⊤ ∈ R|S|×q . The solution
of the optimization problem satisfies the so-called projected Bellman equation (Sutton et al., 2009):
Φ⊤DπΦθ = Φ⊤DπRπ + γΦ⊤DπP πΦθ.

Throughout the paper, we adopt the common assumption on the feature matrix, which is widely used
in the literature (Bhandari et al., 2018; Wang et al., 2020).
Assumption 2.1. ∥ϕ(s)∥2 ≤ 1 for all s ∈ S and Φ is full-column rank matrix.

2.2 MULTI-AGENT MDP

Multi-agent Markov decision process (MAMDP) considers a set of agents cooperatively computing
the value function for a shared environment. Considering N agents, each agent can be denoted
by i ∈ V := {1, 2, . . . , N}, and the agents communicate over networks that can be described by
a connected and undirected simple graph G := (V, E), where E ⊂ V × V is the set of edges.
Ni ⊂ V denotes the neighbour of agent i ∈ V , i.e., j ∈ Ni if and only if (i, j) ∈ E for i, j ∈ V .
Each agent i ∈ V has its local policy πi : S × Ai → [0, 1], where Ai is the action space of
agent i, and receives reward following its local reward function ri : S × ΠN

i=1Ai × S → R.
As in the single-agent MDP, MAMDP consists of five tuples (S, {Ai}Ni=1,P, {ri}Ni=1), where P :
S × {Ai}Ni=1 × S → [0, 1] is the Markov transition kernel. The agents share the same state s ∈ S,
and when action a := (a1, a2, . . . , aN ) ∈ ΠN

i=1Ai is taken, the state transits to s′ ∈ S with
probability P(s,a, s′), and for i ∈ V , agent i receives ri(s,a, s′). The aim of the policy evaluation
under MAMDP is to estimate the expected sum of discounted rewards averaged over N agents, i.e.,
V π(s) = E

[∑∞
k=0 γ

k 1
N

∑N
i=1 r

i(sk,a, sk+1)
]
, for s ∈ S. While learning, each agent i ∈ V can

share its learning parameter over the communication network with its neighboring agents j ∈ Ni.

Following the spirit of single-agent MDP, using the set of features Φ, the aim of each agent is now
to compute the solution of the following equation:

Φ⊤DπΦθ = Φ⊤Dπ

(
1

N

N∑
i=1

Rπ
i

)
+ γΦ⊤DπP πΦθ, (1)

where Rπ
i ∈ R|S| for i ∈ V , whose elements are [Rπ

i ]j = E
[
ri(s,a, s′) | s = j

]
for j ∈ S . The

equation (1) admits a unique solution θc, given by

θc = (Φ⊤DπΦ− γΦ⊤DπP πΦ)−1Φ⊤Dπ

(
1

N

N∑
i=1

Rπ
i

)
. (2)

Note that the solution corresponds to the value function associated with the global reward∑∞
k=0 γ

k 1
N

∑N
i=1 r

i. Moreover, for convenience of the notation, we will denote

A := γΦ⊤DπΦ−Φ⊤DπΦ, bi = Φ⊤DπRπ
i , 1 ≤ i ≤ N, (3)

and w := λmin(Φ
⊤DπΦ). The bound on the reward will be denoted by some positive constant

Rmax ∈ R, i.e., |ri(s,a, s′)| ≤ Rmax, 1 ≤ i ≤ N, ∀s,a, s′ ∈ S ×ΠN
i=1Ai × S .

3 ANALYSIS OF PRIMAL-DUAL GRADIENT DYNAMICS

The so-called primal-dual gradient dynamics (Arrow et al., 1958) will be the key tool to derive finite-
time bounds of the proposed distributed TD-learning. The analysis provided in this section will serve
as the foundation for the subsequent analysis in Section 4. This section establishes exponential
convergent behavior of the primal-dual gradient dynamics in terms of the Lyapunov method. To this
end, let us consider the following constrained optimization problem:

min
θ∈Rn

f(θ) such that Mθ = 0n, (4)

where θ ∈ Rn, M ∈ Rn×n and f : Rn → R is a differentiable, smooth, and strongly con-
vex function (Boyd and Vandenberghe, 2004). One of the popular approaches for solving (4)
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is to formulate it into the saddle-point problem (Boyd and Vandenberghe, 2004), L(θ,w) =
minθ∈Rn maxw∈Rn(f(θ) + w⊤Mθ), whose solution, θ∗,w∗ ∈ Rn, exists and is unique when
M has full-column rank (Qu and Li, 2018). When M is rank-deficient, i.e., it is not full-column
rank, there exists multiple w∗ solving the saddle-point problem (Ozaslan and Jovanović, 2023).
Indeed, whether M is rank-deficient or not, θ∗ can be shown to be the optimal solution of (4) by
Karush-Kunh-Tucker condition (Boyd and Vandenberghe, 2004). It is known that its solution θ∗,w∗

can be obtained by investigating the solution θt,wt ∈ Rn of the so-called primal-dual gradient dy-
namics (Qu and Li, 2018), with initial points θ0,w0 ∈ Rn,

θ̇t =−∇f(θt)−M⊤wt, ẇt = Mθt.

Qu and Li (2018) studied exponential stability of the primal-dual gradient dynamics when M is full
column-rank, using the classical Lyapunov approach (Sontag, 2013). As for the case when M is
rank-deficient, Ozaslan and Jovanović (2023); Cisneros-Velarde et al. (2020); Gokhale et al. (2023)
proved exponential convergence to a particular solution θ∗,w∗ using the tools based on singular
value decomposition (Horn and Johnson, 2012). In this paper, we will study the behavior of the
system under the following particular scenarios:

1. ∇f(θt) = Uθt, where U ∈ Rn×n, which is not necessarily symmetric, is a positive
definite matrix, i.e., U +U⊤ ≻ 0;

2. M is symmetric and rank-deficient. Distributed algorithms are typical examples satisfying
such condition and will be elaborated in subsequent sections.

We note that previous works considered general matrix M , not necessarily a symmetric matrix.
Moreover, note that the primal-dual gradient dynamics under such scenarios will appear in the fur-
ther sections as an O.D.E. model of the proposed distributed TD-learning. The corresponding system
can be rewritten as

d

dt

[
θt
wt

]
=

[
−U −M⊤

M 0n×n

] [
θt
wt

]
, θ0,w0 ∈ Rn. (5)

To study its exponential stability, let us introduce the Lyapunov function candidate V (θ,w) =[
θ

MM †w

]⊤
S

[
θ

MM †w

]
, where S ∈ R2n×2n is some symmetric positive definite matrix, and

θ,w ∈ Rn. The candidate Lyapunov function considers projection of the iterate wt to the range
space of M . As in Ozaslan and Jovanović (2023); Cisneros-Velarde et al. (2020), the difficulty com-
ing from singularity of M can be avoided by considering the range space and null space conditions
of M . In particular, Ozaslan and Jovanović (2023) employed a Lyapunov function that involves the
gradient of the Lagrangian function, and considered the projected iterate MM †wt, where MM † is
the projection matrix onto range space of M . Moreover, Cisneros-Velarde et al. (2020) exploited a
quadratic Lyapunov function in (Qu and Li, 2018) for the iterate θt and V wt, where M := TΣV ⊤,
which is the singular value decomposition of M . Gokhale et al. (2023) considered a positive semi-
definite matrix S and used semi-contraction theory (De Pasquale et al., 2023) to prove exponential
convergence of the primal-dual gradient dynamics.

In this paper, we will adopt the quadratic Lyapunov function in (Qu and Li, 2018) with the projected
iterate MM †wt, and leverage the symmetric property of M to show improved or comparable to
the state of art convergence rate under the particular conditions newly imposed in this paper. In
particular, when M is symmetric, the fact that the projection onto the column space of M and row
space of M being identical simplifies the overall bounds. We first present the following Lyapunov
inequality.

Lemma 3.1. Let S :=

[
βIn M
M βIn

]
where β := max

{
2λmax(M)2+2+∥U∥2

2

λmin(U+U⊤)
, 4λmax(M)

}
. Then,

β
2 I2n ≺ S ≺ 2βI2n, and we have, for any θ,w ∈ Rn,[

θ
MM †w

]⊤
S

[
−U −M
M 0n×n

] [
θ

MM †w

]
≤ −min{1, λ+

min(M)2}
∥∥∥∥[ θ

MM †w

]∥∥∥∥2
2

.

The proof is given in Appendix Section A.4. Using the above Lemma 3.1, we can now prove the
exponential stability of the O.D.E. dynamics in (5).
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Theorem 3.2. Let V (θ,w) =

[
θ

MM †w

]⊤
S

[
θ

MM †w

]
. For θ0,w0 ∈ Rn and t ∈ R+, we have

V (θt,wt) ≤ exp

− min{1,λ+
min(M)2}

max

{
2λmax(M)2+2+∥U∥22

λmin(U+U⊤)
,4λmax(M)

} t

V (θ0,w0).

The proof is given in Appendix Section A.5. We show that the above bound enjoys sharper or
comparable to the state of the art convergence rate under particular conditions. With slight modi-
fications, the Lyapunov function becomes identical to that of Gokhale et al. (2023). However, we
directly rely on classical Lyapunov theory (Khalil, 2015) rather than the result from semi-contraction
theory (De Pasquale et al., 2023) used in Gokhale et al. (2023).1 The classical Lyapunov approach
simplifies the proof steps compared to that of semi-contraction theory.The detailed comparative
analysis is in Appendix Section A.6. The fact that M is symmetric and considering the projected
iterate MM †wt, provides improved and comparable bound.

4 DISTRIBUTED TD-LEARNING WITH LINEAR FUNCTION APPROXIMATION

In this section, we propose a new distributed TD-learning algorithm to solve (1) based on the result
in Wang and Elia (2011); Lee (2023). In this scenario, each agent keeps its own parameter estimate
θi ∈ Rq, 1 ≤ i ≤ N , and the goal of each agent is to estimate the value function V π(s) ≈ ϕ(s)⊤θc
satisfying (1) (i.e., the value function associated with the global reward

∑∞
k=0 γ

k 1
N

∑N
i=1 r

i) under
the assumption that each agent has access only to its local reward ri. The parameter of each agent
can be shared over the communication network whose structure is represented by the graph G, i.e.,
agents can share their parameters only with their neighbors over the network to solve the global prob-
lem. The connections among the agents can be represented by graph Laplacian matrix (Anderson Jr
and Morley, 1985), L ∈ R|S|×|S|, which characterizes the graph G, i.e., [L]ij = −1 if (i, j) ∈ E
and [L]ij = 0 if (i, j) /∈ E , and [L]ii = |Ni| for i ∈ V . Note that L is symmetric positive semi-
definite matrix, i.e., x⊤Lx ≥ 0 for x ∈ R|S|, and L1|S| = 0. To proceed, let us first introduce a
set of matrix notations: L̄ := L ⊗ Iq ∈ RNq×Nq, D̄π := IN ⊗ Dπ ∈ RNq×Nq, P̄ π :=

IN ⊗ P π ∈ RNq×Nq, Φ̄ := IN ⊗ Φ ∈ RNq×Nq, θ̄ =
[
θ1⊤ θ2⊤ · · · θN⊤

]⊤
∈

RNq, R̄π =
[
(Rπ

1 )
⊤ (Rπ

2 )
⊤ · · · (Rπ

N )⊤
]⊤ ∈ RNq, Ā = IN ⊗ A ∈ RNq×Nq, b̄ =[

b⊤1 b⊤2 · · · b⊤N
]⊤ ∈ RNq, w̄ =

[
w1⊤ w2⊤ · · · wN⊤

]⊤
∈ RNq, where ⊗ denotes

Kronecker product, and w̄ is another collection of learnable parameters {wi ∈ Rq}Ni=1, where wi

assigned to each agent i for 1 ≤ i ≤ N .

Meanwhile, Wang and Elia (2011) studied distributed optimization algorithms (Tsitsiklis, 1984)
from the control system perspectives in continuous-time domain, which can be represented as an La-
grangian problem (Hestenes, 1969). Compared to other distributed optimization algorithms (Nedic
and Ozdaglar, 2009; Pu and Nedić, 2021), the method in Wang and Elia (2011) does not require any
specific initialization, diminishing step-sizes, and doubly stochastic matrix that corresponds to the
underlying communication graph. Due to these advantages, this framework has been further studied
in Droge and Egerstedt (2014); Shi et al. (2015); Hatanaka et al. (2018); Bin et al. (2022). Inspired
by Wang and Elia (2011), Lee (2023) developed a distributed TD-learning algorithm and provided
an asymptotic convergence analysis based on the O.D.E. method. The analysis relies on Barbalat’s
lemma (Khalil, 2015), which makes extension to the non-asymptotic finite-time analysis difficult.
Moreover, they mostly focus on the deterministic continuous-time algorithms. The corresponding
distributed TD-learning is summarized in Algorithm 1, where each agent updates its local param-
eter using the local TD-error in (6). The updates in (7) and (8) in Algorithm 1 can be obtained by
discretizing the continuous-time O.D.E. introduced in (Wang and Elia, 2011) and implementing it
using stochastic samples.

1 Gokhale et al. (2023) appeared on arxiv nearby the submission of this manuscript.
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Algorithm 1 Distributed TD-learning

Initialize α0 ∈ (0, 1), {θi
0,w

i
0 ∈ Rq}Ni=1, η ∈ (0,∞).

for k = 1, 2, . . . do
for i = 1, 2, . . . , N do

Agent i observes oik := (sk, s
′
k, r

i
k).

Exchange {(θj
k,w

j
k)} with j ∈ Ni and update as follows:

δ(oik;θ
i
k) =rik + γϕ⊤(s′k)θ

i
k − ϕ⊤(sk)θ

i
k (6)

θi
k+1 =θi

k + αk(δ(o
i
k;θ

i
k)ϕ(sk)− η(|Ni|θi

k −
∑

j∈Ni
θj
k)− η(|Ni|wi

k −
∑

j∈Ni
wj

k))

(7)

wi
k+1 =wi

k + αkη(|Ni|θi
k −

∑
j∈Ni

θj
k) (8)

end for
end for

Using the stacked vector representation,
[
θ̄k
w̄k

]
∈ R2Nq, k ∈ N0, the updates in (7) and (8) in

Algorithm 1 can be rewritten in compact form, for k ∈ N0:[
θ̄k+1

w̄k+1

]
=

[
θ̄k
w̄k

]
+ αk

[
Ā− ηL̄ −ηL̄

ηL̄ 0Nq×Nq

] [
θ̄k
w̄k

]
+ αk

[
b̄

0Nq

]
+ αkϵ̄(ok; θ̄k), (9)

where, ok := {oik}Ni=1, and for 1 ≤ i ≤ N , ϵi(oik;θ
i
k) := δ(oik;θ

i
k)ϕ(sk)−Aθi

k − bi ∈ Rq , and

ϵ̄(ok; θ̄k) :=
[
ϵ1(o1k;θ

1
k)

⊤ ϵ2(o2k;θ
2
k)

⊤ · · · ϵN (oNk ;θN
k )⊤ 0⊤

Nq

]⊤ ∈ R2Nq. (10)

Note that the superscript of ϵ̄i corresponds to the superscript of bi. Compared to the algorithm in Lee
(2023), we introduce an additional positive variable η > 0 multiplied with the graph Laplacian
matrix, which results in the factor η multiplied with the mixing part in Algorithm 1 in order to
control the variance of the update. We note that when the the number of neighbors of an agent i ∈ V
is large, then so is the variance of the corresponding updates of the agent. In this case, the variance
can be controlled by adjusting η to be small.

The behavior of stochastic algorithm is known to be closely related to its continuous-time O.D.E.
counterpart (Borkar and Meyn, 2000; Srikant and Ying, 2019). In this respect, the corresponding
O.D.E. model of (9) is given by

d

dt

[
θ̄t
w̄t

]
=

[
Ā− ηL̄ −ηL̄

ηL̄ 0Nq×Nq

] [
θ̄t
w̄t

]
+

[
b̄

0Nq

]
, θ̄0, w̄0 ∈ RNq, (11)

for t ∈ R+. The above linear system is closely related to the primal-dual gradient dynamics in (5).
Compared to (5), the difference lies in the fact that the above system corresponds to the the dynam-
ics of the distributed TD-learning represented by matrix Ā instead of the gradient of a particular
objective function. It is straightforward to check that the equilibrium point of the above system is
1N ⊗ θc and 1

η w̄∞ such that L̄w̄∞ = Ā(1N ⊗ θc) + b̄.

In what follows, we will analyze finite-time behavior of (9) based on the Lyapunov equation in
Lemma 4.1. For the analysis, we will follow the spirit of Srikant and Ying (2019), which provided a
finite-time bound of the standard single-agent TD-learning based on the Lyapunov method (Sontag,
2013). To proceed further, let us consider the coordinate change of θ̃k := θ̄k − 1N ⊗ θc and
w̃k := w̄k − 1

η w̄∞, with which we can rewrite (9) by[
θ̃k+1

w̃k+1

]
=

[
θ̃k
w̃k

]
+ αk

[
Ā− ηL̄ −ηL̄

ηL̄ 0Nq×Nq

] [
θ̃k
w̃k

]
+ αkϵ̄(ok; θ̄k). (12)

We will now derive a Lyapunov inequality (Sontag, 2013) for the above system based on the results
in Lemma 4.1 for (11), To this end, we will rely on the analysis in Qu and Li (2018), which proved
exponential convergence of the continuous-time primal-dual gradient dynamics (Arrow et al., 1958)
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based on the Lyapunov method. However, the newly introduced singularity of L̄ imposes difficulty
in directly applying the results from Qu and Li (2018) which does not allow the singularity. To
overcome this difficulty, we will multiply L̄L̄† to the dual update w̃k+1 in (12), which is the projec-
tion to the range space of L̄. Moreover, the symmetric assumption of L̄ helps construct an explicit

solution of the Lyapunov inequality in Lemma 4.1. In particular, multiplying
[

IN 0Nq×Nq

0Nq×Nq L̄L̄†

]
to (12) leads to[

θ̃k+1

L̄L̄†w̃k+1

]
=

[
θ̃k

L̄L̄†w̃k

]
+ αk

[
Ā− ηL̄ −ηL̄

ηL̄ 0Nq×Nq

] [
θ̃k

L̄L̄†w̃k

]
+ αkϵ̄k(ok; θ̄k), (13)

which can be proved using Lemma A.2 in the Appendix Section A.3. For this modified system, we
now derive the following Lyapunov inequality.

Lemma 4.1. There exists positive symmetric definite matrix G ∈ R2Nq×2Nq such that
8+η+4η2λmax(L̄)2

2η(1−γ)w I2Nq ≺ G ≺ 2 8+η+4η2λmax(L̄)2

η(1−γ)w I2Nq , and for θ̃, w̃ ∈ RNq ,

2

[
θ̃

L̄L̄†w̃

]⊤
G

[
Ā− ηL̄ −ηL̄

ηL̄ 0Nq×Nq,

] [
θ̃

L̄L̄†w̃

]
≤ −min{1, ηλ+

min(L̄)2}
∥∥∥∥[ θ̃

L̄L̄†w̃

]∥∥∥∥2
2

.

The proof is given in Appendix Section A.7. The proof can be done by noting that Ā − ηL̄ is
negative semi-definite and L̄ is rank-deficient, and applying Lemma 3.1.

4.1 I.I.D. OBSERVATION CASE

We are now in position to provide the first main result, a finite-time analysis of Algorithm 1 under
the i.i.d. observation model. We note that the i.i.d. observation model is common in the literature,
and provides simple and clean theoretical insights.

Theorem 4.2. 1. Suppose we use constant step-size α0 = α1 = · · · = αk for k ∈ N0, and

α0 ≤ ᾱ such that ᾱ = O
(

min{1,ηλ+
min(L̄)2}

λmax(L̄)2( 8
η+4ηλmax(L̄)2)

(1− γ)w

)
. Then, we have

1

N
E

[∥∥∥∥[ θ̃k+1

L̄L̄†w̃k+1

]∥∥∥∥2
2

]
= O

(
exp (−α0k) + α0

R2
max

w3(1− γ)3
2 + η2λmax(L̄)2

ηmin{1, ηλmin(L̄)2}

)
.

2. Suppose we have αk = h1

k+h2
for k ∈ N0. There exist h̄1 and h̄2 such that letting h1 =

Θ(h̄1) and h2 = Θ(h̄2) yields

1

N
E

[∥∥∥∥[ θ̃k+1

L̄L̄†w̃k+1

]∥∥∥∥2
2

]
=O

(
1

k

(2 + η2λmax(L̄)2)2

η2 min{1, ηλ+
min(L̄)2}2

R2
max

w4(1− γ)4

)
.

The proof and the exact constants can be found in Appendix Section A.9. Using constant step-size,
we can guarantee exponential convergence rate with small bias term O

(
α0

R2
maxλmax(L̄)
w3(1−γ)3

)
when

η ≈ 1
λmax(L̄)

and λ+
min(L̄)2 ≥ λmax(L̄). Appropriate choice of η allows wider range of step-

size, and this will be clear in the experimental results in Section 5. Furthermore, the algorithm’s
performance is closely tied to the properties of the graph structure. λ+

min(L̄), the smallest non-zero
eigenvalue of graph Laplacian, characterizes the connectivity of the graph Chung (1997), and a
graph with lower connectivity will yield larger bias. λmax(L̄) is the largest eigenvalue of the graph
Laplacian, and it can be upper bounded by twice the maximum degree of the graph (Anderson Jr
and Morley, 1985). That is, a graph with higher maximum degree could incur larger bias. As for
diminishing step-size, we achieve O

(
1
k

)
convergence rate from the second item in Theorem 4.2,

and similar observations hold as in the constant step-size, i.e., the convergence rate depends on the
smallest non-zero and maximum eigenavalue of graph Laplacian. Lastly, as in Wang et al. (2020),
our bound does not explicitly depend on the number of agents, N , compared to the bound in Doan
et al. (2019) and Sun et al. (2020), where the bias term and convergence rate scale at the order of N .
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4.2 MARKOVIAN OBSERVATION CASE

In this section, we consider the Markovian observation model, where the sequence of observations
{(sk, s′k, rk)}Tk=1 follows a Markov chain. Compared to the i.i.d. observation model, the correlation
between the observation and the updated iterates imposes difficulty in the analysis. To overcome
this issue, an assumption on the Markov chain that ensures a geometric mixing property is helpful.
In particular, the so-called ergodic Markov chain can be characterized by the metric called total
variation distance (Levin and Peres, 2017), dTV(P,Q) = 1

2

∑
x∈S |P (x) − Q(x)|, where P and

Q is probability measure on S. A Markov chain is said to be ergodic if it is irreducible and aperi-
odic (Levin and Peres, 2017). An ergodic Markov chain is known to converge to its unique stationary
exponentially fast, i.e., for k ∈ N0, sup1≤i≤|S| dTV(e

⊤
i (P

π)k, µ∞) ≤ mρk, where ei ∈ R|S| for
1 ≤ i ≤ N is the |S|-dimensional vector whose i-th element is one and others are zero, µ∞ ∈ R|S|

is the stationary distribution of the Markov chain induced by transition matrix P π , m ∈ R is a
positive constant, and ρ ∈ (0, 1). The assumption on the geometric mixing property of the Markov
chain is common in the literature (Srikant and Ying, 2019; Bhandari et al., 2018; Wang et al., 2020).
The mixing time of Markov chain is an important quantity of a Markov chain, defined as

τ(δ) := min{k ∈ N | mρk ≤ δ}. (14)

For simplicity, we will use τ := τ(αT ), where T ∈ N0 denotes the total number of iterations, and
αk, k ∈ N0, is the step-size at k-th iteration. If we use the step-size αk = 1

1+k , k ∈ N, the mixing
time τ only contributes to the logarithmic factor, log T in the finite-time bound (Bhandari et al.,
2018). As in the proof of i.i.d. case, using the Lypaunov argument in Lemma 4.1, we can prove
the finite-time bound on the mean-squared error, following the spirit of Srikant and Ying (2019). To
simplify the proof, we will investigate the case η = 1.
Theorem 4.3. 1. Suppose we use constant step-size α0 = α1 = · · · = αT such that α0 ≤ ᾱ where

ᾱ = O
(

min{1,λ+
min(L̄)2}(1−γ)w

τ max
{√

NqRmax
w(1−γ)

,q
}
λmax(L)2

)
. Then, we have, for τ ≤ k ≤ T ,

1

N
E

[∥∥∥∥[ θ̃k+1

L̄L̄†w̃k+1

]∥∥∥∥2
2

]
= O

(
exp (−α0(k − τ)) + α0τ

R2
max

w3(1− γ)3
λmax(L)2

min{1, λ+
min(L)2}

)
.

2. Considering diminishing step-size, with αt =
h1

t+h2
for t ∈ N0, there exits h̄1 and h̄2 such that

for h1 = Θ(h̄1) and h2 = Θ(h̄2), we have for τ ≤ k ≤ T ,

1

N
E

[∥∥∥∥[ θ̃k+1

L̄L̄†w̃k+1

]∥∥∥∥2
2

]
= O

(
τ

k

qR2
max

w4(1− γ)4
λmax(L)5

min{1, λ+
min(L)2}2

)
.

The proof and the exact values can be found in Appendix Section A.11. For the constant step-
size, we can see that the bias term scales at the order of O

(
τα0λmax(L)2

)
, and the bounds have

additional mixing time factors compared to the i.i.d. case. Considering diminishing step-size, the
convergence rate of O

(
τ
k

)
can be verified, incorporating a multiplication by the mixing time τ . As

summarized in Table 1, the proposed distributed TD-learning does not require doubly stochastic
matrix or any specific initializations. The algorithms requiring the doubly stochastic matrix, whose
definition is given in Appendix A.2, face challenges when extending to directed graph and time-
varying graph scenarios. However, our algorithm does not require major modifications. Moreover,
the performance of the algorithm is sensitive to the choice of doubly stochastic matrix as can be seen
in Appendix A.13.

Method Observation model Step-size Requirement Doubly stochastic matrix

Doan et al. (2019) Nedic and Ozdaglar (2009) i.i.d. Constant/ 1√
k+1

Projection ✓

Doan et al. (2021) Nedic and Ozdaglar (2009) Markovian Constant/ h1

k+1 ✗ ✓
Sun et al. (2020) Nedic and Ozdaglar (2009) i.i.d./Markovian Constant ✗ ✓
Zeng et al. (2022) Nedic and Ozdaglar (2009) i.i.d./Markovian Constant ✗ ✓
Wang et al. (2020) Pu and Nedić (2021) i.i.d./Markovian Constant Specific initialization ✓

Ours Wang and Elia (2011) i.i.d./Markovian Constant/ h1

k+h2
✗ ✗

Table 1: Comparison with existing works.
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(a) The result shows mean-squared
error of final iterate with η = 1 af-
ter 40,000 iterations. The experi-
ment was averaged over 50 runs.

(b) The result shows mean-squared
error for the step-size, αk =

N2

N3+k
, k ∈ N, where N stands for

number of agents. The experiment
was averaged over 50 runs.

(c) The result shows mean-squared
error of the iterates of Algorithm 1.
The experiments were averaged
over 50 runs.

Figure 1: Experiment results of Algorithm 1.

5 EXPERIMENTS

This section provides the experimental results of Algorithm 1. To begin, we give an explanation
of the MAMDP setup, where the number of states is three and the dimension of the feature is two.
An agent can transit to every state with uniform probability. The feature matrix is set as Φ⊤ =[
1 0 1
0 1 0

]
, which is a full-column rank matrix. The rewards are generated uniformly random

between the interval (0, 1). The discount factor is set as 0.8.

For each experiment with N ∈ {23, 24, 25} number of agents, we construct a cycle, i.e., a graph
G consisting of V := {1, 2, . . . , N} and E := {(i, i + 1)}N−1

i=1 ∪ {(N, 1)} (West, 2020). The
smallest non-zero eigenvalue of graph Laplacian corresponding to a cycle with even number of
vertices decreases as the number of vertices increases, while maximum eigenvalue remains same.
The smallest non-zero eigenvalue is 2−2 cos

(
2π
N

)
, and the largest eigenvalue is four (Mohar, 1997).

As N gets larger, the smallest non-zero eigenvalue gets smaller, which becomes 0.59, 0.15, 0.04 for
N = 23, 24, 25, respectively. Therefore, as number of agents increases, the bias in the final error
term will be larger as expected in Theorem 4.2, and this can be verified in the plot in Figure (1a).
The plot shows the result for constant step-size α0 ∈ {2−3, 2−4, 2−5}. To investigate the effect of
λmax(L̄), we construct a star graph, where one vertex has degree N − 1 and the others have degree
one. The maximum eigenvalue of star graph is N and the smallest non-zero eigenvalue is one (Nica,
2016). As N gets larger, we expect the bias term to be larger from the bound in Theorem 4.2. The
result is further discussed in Appendix Section A.12.

To verify the effect of η, we construct a random graph model (Erdős et al., 1960), where among
possible N(N−1)/2 edges, (N−3)(N−4)/2 edges are randomly selected. The plot in Figure (1c)
shows the evolution of the mean squared error for N = 32, and step-size 0.1 with different η
values. When η = 0.5 or η = 1, the algorithm diverges. Moreover, the bias gets smaller around√

2
λmax(L) ≈ 0.046. This implies that appropriate choice of η can control the variance when the
number of neighbors is large but if η is too small or large, Algorithm 1 may cause divergence or
large bias. This matches the result of the bound in Theorem 4.2. Further results can be found in
Appendix Section A.12.

6 CONCLUSION

In this study, we have studied primal-dual gradient dynamics subject to some null-space constraints
and its application to a distributed TD-learning. We have derived finite-time error bounds for both the
gradient dynamics and the distributed TD-learning. The results have been experimentally demon-
strated. Potential future studies include extending the study to finite-time bounds of distributed
TD-learning with nonlinear function approximation.
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gradient-descent methods for temporal-difference learning with linear function approximation. In
Proceedings of the 26th annual international conference on machine learning, pages 993–1000,
2009.

J. Tsitsiklis and B. Van Roy. Analysis of temporal-diffference learning with function approximation.
Advances in neural information processing systems, 9, 1996.

J. N. Tsitsiklis. Problems in decentralized decision making and computation. PhD thesis, Mas-
sachusetts Institute of Technology, 1984.

H.-T. Wai, Z. Yang, Z. Wang, and M. Hong. Multi-agent reinforcement learning via double averag-
ing primal-dual optimization. Advances in Neural Information Processing Systems, 31, 2018.

G. Wang, B. Li, and G. B. Giannakis. A multistep lyapunov approach for finite-time analysis of
biased stochastic approximation. arXiv preprint arXiv:1909.04299, 2019.

G. Wang, S. Lu, G. Giannakis, G. Tesauro, and J. Sun. Decentralized td tracking with linear function
approximation and its finite-time analysis. Advances in Neural Information Processing Systems,
33:13762–13772, 2020.

J. Wang and N. Elia. A control perspective for centralized and distributed convex optimization.
In 2011 50th IEEE conference on decision and control and European control conference, pages
3800–3805. IEEE, 2011.

D. B. West. Combinatorial mathematics. Cambridge University Press, 2020.

R. Xin and U. A. Khan. A linear algorithm for optimization over directed graphs with geometric
convergence. IEEE Control Systems Letters, 2(3):315–320, 2018.

K. Yuan, B. Ying, X. Zhao, and A. H. Sayed. Exact diffusion for distributed optimization and
learning—part ii: Convergence analysis. IEEE Transactions on Signal Processing, 67(3):724–
739, 2018.

S. Zeng, T. T. Doan, and J. Romberg. Finite-time convergence rates of decentralized stochastic
approximation with applications in multi-agent and multi-task learning. IEEE Transactions on
Automatic Control, 2022.

B. Zhou and W. Luo. Improved razumikhin and krasovskii stability criteria for time-varying stochas-
tic time-delay systems. Automatica, 89:382–391, 2018.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 NOTATIONS

R: set of real numbers; R+: set of positive real numbers ; N: set of natural numbers; N0: union
of set of natural numbers and element zero; diag(A1,A2, . . . ,An) ∈ Rm×m : block diagonal
matrix constructed from A1 ∈ Rd1×d1 ,A2 ∈ Rd2×d2 , . . . ,An ∈ Rdn×dn where m =

∑n
i=1 di;

1p ∈ Rp : p-dimensional vector whose elements are all one; 0N ∈ RN : N -dimensional vector
whose elements are all zero; 0m×n ∈ Rm×n : m × n-dimensional matrix whose elements are all
zero; In ∈ Rn×n: n × n-dimensional identity matrix; A† ∈ Rn×n: Moore-Penrose inverse of
A ∈ Rn×n; A ⪰ B for A,B ∈ Rn×n: A−B is positive semi-definite matrix; ∥x∥2Q for positive-
semi definite matrix Q ∈ Rn×n and x ∈ Rn: x⊤Qx ;[v]i, 1 ≤ i ≤ n for v ∈ Rn: i-th element
of v; [A]ij , 1 ≤ i, j ≤ n for A ∈ Rn×n: i-th row and j-th column element of A; λmax(A) for
A ∈ Rn×n: maximum eigenvalue of A; λmin(A) for A ∈ Rn×n: minimum eigenvalue of A;
λ+
min(A) for A ∈ Rn×n: minimum non-zero eigenvalue of A; σ(C): sigma algebra generated by a

family of sets C.

A.2 DOUBLY STOCHASTIC MATRIX

Definition A.1 (Doubly stochastic matrix (Doan et al., 2019)). A doubly stochastic matrix W ∈
RN×N is a stochastic matrix of which the row sum and column sum equal one, i.e.,

∑N
i=1[W ]ji = 1

and
∑N

i=1[W ]ij = 1 for 1 ≤ j ≤ N . A doubly stochastic corresponding to a graph G := (V, E)
requires additional assumption that [W ]ii > 0 for i ∈ V , and [W ]uv = 0 for (u, v) /∈ E .

One of the key advantage of our algorithm over other distributed TD algorithms is that we do not
require doubly stochastic matrix corresponding to the graph network. We have outlined several
reasons highlighting the importance of removing the requirement on doubly stochastic matrix:

To begin, constructing a doubly stochastic matrix in directed graph scenario is known to be more
challenging than the undirected case, or may not be possible (Xin and Khan, 2018). However, our
algorithm can be extended to the directed graph setting without major modifications.

Moreover, when dealing with a time-varying graph, whenever the graph changes, the doubly stochas-
tic matrix needs to be constructed again. However, our analysis can be easily extended to the time-
varying graph setting without any modifications.

Lastly, as from our experiment, the performance of distributed TD algorithms using doubly stochas-
tic matrix is quite sensitive to the choice of doubly stochastic matrix, and the results can be found in
Appendix A.13 in the revised version.

A.3 TECHNICAL LEMMAS

Lemma A.2 ( Pavlı́ková and Ševčovič (2023), p. 2). For real symmetric matrix A ∈ Rn, and its
Moore-Penrose pseudo inverse A†, the following holds:

AA† = A†A, AA†A = A.

Lemma A.3 (Schur complement and symmetric positive definite matrices, Theorem 1.12 in Horn
and Zhang (2005)). Let H ∈ R(n+m)×(n+m) be a symmetric matrix partitioned as

H :=

[
H11 H12

H⊤
12 H22

]
,

where H11 ∈ Rn×n,H12 ∈ Rn×m,H22 ∈ Rm×n. Then, the following holds:

H ≻ 0 ⇐⇒ H11 ≻ 0, and H22 −H⊤
12H

−1
11 H12 ≻ 0.

Lemma A.4 (Proposition 4.5 in Levin and Peres (2017)). Let µ and ν be two probability distribu-
tions on X . For f : X → R, the total variation distance can be represented as

dTV(µ, ν) :=
1

2
sup

f :supx∈X |f(x)|≤1

∣∣∣∣∣∑
x∈X

f(x)µ(x)− f(x)ν(x)

∣∣∣∣∣ .
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Lemma A.5. Consider the Markov chain in Section 4.2. Let Y := (sk+τ , sk+τ+1) for k, τ ∈ N0,
and (sk+τ , sk+τ+1) ∈ S × S. For bounded function f : S × S → R, i.e., supx∈S×S |f(x)| < ∞ ,
we have

|E[f(Y ) | sk]− E[f(Y )]| ≤ 2 sup
x∈S×S

|f(x)|mρτ .

Moreover, for v : S × S → RNq , whose elements are bounded, we have

∥E[v(Y ) | sk]− E[v(Y )]∥2 ≤ 2
√

Nq sup
x∈S×S

∥v(x)∥∞ mρτ .

For M : S × S → RNq×Nq , whose elements are bounded, we have

∥E[M(Y ) | sk]− E[M(Y )∥2 ≤ 2Nq sup
x∈S×S

max
1≤i,j≤Nq

|[M(x)]ij |mρτ .

Proof. Let the probability measure P (Y ∈ ·) = P[Y ∈ · | sk] and Q(Y ∈ ·) = P[Y ∈ ·]. For
simplicity of the proof, let f∞ := 2 supx∈S×S |f(x)|. Then, we have

|E[f(Y ) | sk]− E[f(Y )]|

=

∣∣∣∣∫ f(Y )dP −
∫

f(Y )dQ

∣∣∣∣
=2f∞

∣∣∣∣∫ f

2f∞
dP −

∫
f

2f∞
dQ

∣∣∣∣
≤2f∞dTV(P[Y ∈ · | sk],P[Y ∈ ·])

=f∞
∑

s,s′∈S×S
|P[sk+τ = s, sk+τ+1 = s′ | sk]− P[sk+τ = s, sk+τ+1 = s′]|

=f∞
∑

s,s′∈S×S
|P[sk+τ+1 = s′ | sk, sk+τ = s]P[sk+τ = s | sk]− P[sk+τ+1 = s′ | sk+τ = s]P[sk+τ = s]|

=f∞
∑
s′∈S

∑
s∈S

|P[sk+τ+1 = s′ | sk+τ = s]P[sk+τ = s | sk]− P[sk+τ+1 = s′ | sk+τ = s]P[sk+τ = s]|

≤f∞
∑
s′∈S

∑
s∈S

|P[sk+τ+1 = s′ | sk+τ = s]||P[sk+τ = s | sk]− P[sk+τ = s]|

=f∞
∑
s∈S

|P[sk+τ = s | sk]− P[sk+τ = s]|
∑
s′∈S

|P[sk+τ+1 = s′ | sk+τ = s]|

=2f∞dTV(P[sk+τ = s | sk],P[sk+τ = s]).

The first inequality follows from the definition of total variation distance in Lemma A.4. The last
equality follows from the fact that

∑
s′∈S |P[sk+τ+1 = s′ | sk+τ = s]| = 1. We obtain the desired

result from the ergodicity of the Markov chain.

For the second item, we have

∥E[v(Y ) | sk]− E[v(Y )]∥2 =

√√√√Nq∑
i=1

(E[vi(Y ) | sk]− E[vi(Y )])2,

where vi denotes the i-th element of v. The rest of the proof follows as in the proof of first item.

For the third item, we have

∥E [M(Y ) | sk]− E [M(Y )]∥2 ≤∥E [M(Y ) | sk]− E [M(Y )]∥F

=

√√√√Nq∑
i=1

Nq∑
j=1

(E[M(Y )]ij | sk]− E[M(Y )]ij)2,

where ∥B∥F =
√∑n

i=1

∑n
j=1[B]2ij for B ∈ Rn×n. The rest of the proof follows as in the proof

of first item.

14
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The following lemma provides similar bound as in Lemma 7 in Bhandari et al. (2018):

Lemma A.6. Consider θc in (2). We have

∥θc∥2 ≤ Rmax

(1− γ)w
,

where w = λmin(Φ
⊤DπΦ).

Proof. From (2), θc satisfies

Φ⊤DπΦθc − γΦ⊤DπP πΦθc =
1

N

N∑
i=1

bi,

where A and bi are defined in (3). Multiplying θc on both sides of the equations, we have

θ⊤
c (Φ

⊤DπΦ− γΦ⊤DπP πΦ)θc =θ⊤
c

(
1

N

N∑
i=1

bi

)
≤∥θc∥2 Rmax,

where the inequality follows from Cauchy-Schwartz inequality. From Lemma A.7 in the Appendix
Section A.3, we have

(−A−A⊤) ⪰ 2(1− γ)Φ⊤DπΦ,

which leads to

(1− γ)w ∥θc∥22 ≤ ∥θc∥2 Rmax.

Therefore, we have

∥θc∥2 ≤ Rmax

(1− γ)w
.

The negative definiteness of A and upper bound on norm of A are established in the following
lemma, which resembles that of Lemma 3 and 4 in Bhandari et al. (2018):

Lemma A.7. We have

A⊤ +A ⪯ 2(1− γ)Φ⊤DπΦ, ∥A∥2 ≤ 2.

Proof. We will first prove the negative definiteness of A. For any v ∈ R|S|, we have

∥P πv∥Dπ =

√√√√√ |S|∑
i=1

d(i)

 |S|∑
j=1

Pπ(i, j)[v]j

2

≤

√√√√ |S|∑
i=1

d(i)

|S|∑
j=1

Pπ(i, j)[v]2j

=

√√√√ |S|∑
j=1

[v]2j

|S|∑
i=1

d(i)Pπ(i, j)

=

√√√√ |S|∑
j=1

[v]2jd(j)

= ∥v∥Dπ ,

15



Under review as a conference paper at ICLR 2024

where the first inequality follow from Jensen’s inequality and the second last equality follows from
the fact that d(s), s ∈ S is the stationary distribution of Markov chain induced by Pπ . Therefore,
we get

v⊤Av =γv⊤Φ⊤DπP πΦv − v⊤Φ⊤DπΦv

≤γ ∥Φv∥Dπ ∥P πΦv∥Dπ − v⊤Φ⊤DπΦv

≤γ ∥Φv∥2Dπ − ∥Φv∥2Dπ

=(γ − 1)v⊤Φ⊤DπΦv

Now, we will prove the upper bound on ∥A∥2. First, note that the following holds:

∥∥Φ⊤DπΦ
∥∥
2
=

∥∥∥∥∥∥
|S|∑
i=1

d(i)ϕ(i)ϕ(i)⊤

∥∥∥∥∥∥
2

≤
|S|∑
i=1

d(i) ∥ϕ(i)∥22

≤
|S|∑
i=1

d(i)

=1,

where the first inequality follows from triangle inequality, and the second inequality follows from
the assumption that ∥ϕ(s)∥2 ≤ 1 for s ∈ S. Now, we have

∥A∥2 =

∥∥∥∥∥∑
s∈S

d(s)ϕ(s)

(
−ϕ(s)⊤ + γ

∑
s′∈S

Pπ(s, s′)ϕ(s′)⊤

)∥∥∥∥∥
2

≤

∥∥∥∥∥∑
s∈S

d(s)ϕ(s)ϕ(s)⊤

∥∥∥∥∥
2

+ γ

∥∥∥∥∥∑
s∈S

d(s)
∑
s′∈S

Pπ(s, s′)ϕ(s)ϕ(s′)⊤

∥∥∥∥∥
2

≤
∑
s∈S

d(s) + γ
∑
s∈S

d(s)
∑
s′S

Pπ(s, s′)

≤2.

The first inequality follows from triangle inequality. Then second inequality follows from the as-
sumption that ∥ϕ(s)∥2 ≤ 1 for s ∈ S.

Lemma A.8. For 1 ≤ i ≤ N , consider bi in (3). We have

∥bi∥2 ≤ Rmax.

Proof. For 1 ≤ i ≤ N , we have

∥bi∥2 =

∥∥∥∥∥∑
s∈S

ϕ(s)dπ(s)[Rπ
i ]s

∥∥∥∥∥
2

≤
∑
s∈S

dπ(s)Rmax

=Rmax,

where the first inequality follows from ∥ϕ(s)∥2 ≤ 1 for s ∈ S and boundedness on the reward.

Lemma A.9. We have ∥∥∥∥[Ā− L̄ −L̄
L̄ 0Nq×Nq

]∥∥∥∥
2

≤ 2 + 2λmax(L̄).
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Proof. Applying triangle inequality, we have∥∥∥∥[Ā− L̄ −L̄
L̄ 0Nq×Nq

]∥∥∥∥
2

=

∥∥∥∥[ Ā− L̄ 0Nq×Nq

0Nq×Nq 0Nq×Nq

]
+

[
0Nq×Nq −L̄

L̄ 0Nq×Nq

]∥∥∥∥
2

≤
∥∥Ā− L̄

∥∥
2
+
∥∥L̄∥∥

2

≤2 + 2λmax(L̄).

The last inequality follows again from triangle inequality and Lemma A.7.

Lemma A.10. For k ∈ N0, consider a sequence of observations {oi}ki=1. Then, we have∥∥ϵ̄(ok; θ̄k)∥∥2 ≤ 6
∥∥∥θ̃k∥∥∥

2
+

9
√
NRmax

(1− γ)w
.

In particular, if {oi}ki=1 is sampled from i.i.d. distribution, we have

E
[∥∥ϵ̄(ok; θ̄k)∥∥22] ≤ 16

∥∥∥θ̃k∥∥∥2 + 32NR2
max

w2(1− γ)2
. (15)

Proof. First, consider that for 1 ≤ i ≤ N , we have∥∥ϵi(oik;θi
k)
∥∥2
2

=
∥∥(rik + γϕ⊤(s′k)θ

i
k − ϕ⊤(sk)θ

i
k)ϕ(sk)−Aθi

k − bi
∥∥2
2

≤2
∥∥(rik + γϕ⊤(s′k)θ

i
k − ϕ⊤(sk)θ

i
k)ϕ(sk)

∥∥2
2
+ 2

∥∥Aθi
k + bi

∥∥2
2

≤4
∥∥rikϕ(sk)∥∥22 + 4

∥∥(γϕ⊤(s′k)θ
i
k − ϕ⊤(sk)θ

i
k)ϕ(sk)

∥∥2
2
+ 4σmax(A)2

∥∥θi
k

∥∥2
2
+ 4R2

max

≤
(
4σmax(A)2 + 16

) ∥∥θi
k

∥∥2
2
+ 8R2

max, (16)

where ϵi(oik;θ
i
k) is defined in (10). The second inequality follows from Lemma A.8. The last

inequality follows from the assumption that ∥ϕ(s)∥2 ≤ 1 for s ∈ S in Assumption 2.1, and
∥a+ b∥22 ≤ 2 ∥a∥22 + 2 ∥b∥22 for a, b ∈ RNq .

Now, we have

∥∥ϵ̄(ok; θ̄k)∥∥2 =

∥∥∥∥∥∥∥∥∥∥


ϵ1(o1k;θ

1
k)

ϵ2(o2k;θ
2
k)

...
ϵN (oNk ;θN

k )
0Nq


∥∥∥∥∥∥∥∥∥∥
2

=

√√√√ N∑
i=1

∥∥ϵi(oik;θi
k)
∥∥2
2

≤

√√√√ N∑
i=1

(4σmax(A)2 + 16)
∥∥θi

k

∥∥2
2
+ 8R2

max

≤
√
(4σmax(A)2 + 16)

√√√√ N∑
i=1

∥∥θi
k

∥∥2
2
+
√
8NR2

max

≤6
∥∥θ̄k∥∥2 + 3

√
NRmax (17)

≤6
∥∥∥θ̃k∥∥∥

2
+ 6 ∥1N ⊗ θc∥2 + 3

√
NRmax

≤6
∥∥∥θ̃k∥∥∥

2
+ 6

√
N

Rmax

(1− γ)w
+ 3

√
NRmax

≤6
∥∥∥θ̃k∥∥∥

2
+

9
√
NRmax

(1− γ)w
.
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The second equality follows from the definition of Euclidean norm. The first inequality follows
from (16). The third inequality follows from bound on σmax(A) in Lemma A.7. The fourth in-
equality follows from triangle inequality. The second last inequality follows from Lemma A.6.

We will now prove the inequality (15). For simplicity of the proof, let

δ̄(ok; θ̄k) :=


δ(o1k;θ

1
k)ϕ(sk)

δ(o2k;θ
2
k)ϕ(sk)
...

δ(oNk ;θN
k )ϕ(sk)

 ∈ RNq,

where δ(oik;θ
i
k), 1 ≤ i ≤ N is defined in (6). Since E

[
δ̄(ok; θ̄k)

∣∣Fk−1

]
= Āθ̄k + b̄, we have

E
[∥∥ϵ̄(ok; θ̄k)∥∥22∣∣∣Fk−1

]
=E

[∥∥∥∥[δ̄(ok; θ̄k)0Nq

]
−
[
Āθ̄k + b̄
0Nq

]∥∥∥∥2
2

∣∣∣∣∣Fk−1

]

=E
[∥∥δ̄(ok; θ̄k)∥∥22∣∣∣Fk−1

]
− 2E

[[
δ̄(ok; θ̄k)

0Nq

]⊤∣∣∣∣∣Fk−1

] [
Āθ̄k + b̄
0Nq

]
+ E

[∥∥∥∥[Āθ̄k + b̄
0Nq

]∥∥∥∥2
2

]

=E
[∥∥δ̄(ok; θ̄k)∥∥22∣∣∣Fk−1

]
− E

[∥∥∥∥[Āθ̄k + b̄
0Nq

]∥∥∥∥2
2

]
≤E

[∥∥δ̄(ok; θ̄k)∥∥22∣∣∣Fk−1

]
.

Taking total expectation, we get

E
[∥∥ϵ̄(ok; θ̄k)∥∥22] ≤E

[∥∥δ̄(ok; θ̄k)∥∥22]
=E

[
N∑
i=1

∥∥δ(ok;θi
k)ϕ(sk)

∥∥2
2

]

=E

[
N∑
i=1

∥∥(rik + γϕ⊤(s′k)θ
i
k − ϕ⊤(sk)θ

i
k)ϕ(sk)

∥∥2
2

]

≤E

[
N∑
i=1

(
2
∥∥rikϕ(sk)∥∥22 + 2

∥∥γϕ(sk)ϕ⊤(sk)− ϕ(sk)ϕ(sk)
⊤∥∥2

2

∥∥θi
k

∥∥2
2

)]

≤E

[
2

N∑
i=1

(
R2

max + 4
∥∥θi

k

∥∥2
2

)]
=2NR2

max + 8
∥∥θ̄k∥∥22 .

The second last inequality follows from the fact that ∥a+ b∥22 ≤ 2 ∥a∥22 + 2 ∥b∥22 for a, b ∈ RNq .
The last inequality follows from the assumption that ∥ϕ(s)∥2 ≤ 1 for s ∈ S in Assumption 2.1.
Using triangle inequality, we get
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E
[∥∥ϵ̄(ok; θ̄k)∥∥22] ≤2NR2

max + 8
∥∥θ̄k − 1N ⊗ θc + 1N ⊗ θc

∥∥2
2

≤2NR2
max + 16 ∥1N ⊗ θc∥22 + 16

∥∥∥θ̃k∥∥∥2
≤2NR2

max + 16N ∥θc∥22 + 16
∥∥∥θ̃k∥∥∥2

≤2NR2
max + 16N

(
Rmax

w(1− γ)

)2

+ 16
∥∥∥θ̃k∥∥∥2

=
32NR2

max

w2(1− γ)2
+ 16

∥∥∥θ̃k∥∥∥2 .
The second inequality follows from the fact that ∥a+ b∥22 ≤ 2 ∥a∥22 + 2 ∥b∥22 for a, b ∈ RNq . The
last inequality follows from Lemma A.6.

A.4 PROOF OF LEMMA 3.1

We will consider the following positive definite matrix:

S =

[
βIn M
M βIn

]
∈ R2n×2n, (18)

where the choice of positive constant β ∈ R in the statement of Lemma 3.1 will be deferred.
Using the Schur complement in Lemma A.3 in the Appendix Section A.3, we can see that if
β > 2λmax(M), the following holds:

[
β
2 In 0n×n

0n×n
β
2 In

]
≺ S ≺

[
2βIn 0n×n

0n×n 2βIn

]
.

Now, we have the following relation:

2

[
θ

MM †w

]⊤
S

[
−U −M
M 0n×n

] [
θ

MM †w

]
=

[
θ

MM †w

]⊤ [
βIn M
M βIn

] [
−U −M
M 0n×n

] [
θ

MM †w

]
+

[
θ

MM †w

]⊤ [−U⊤ M
−M 0n×n

] [
βIn M
M βIn

] [
θ

MM †w

]
=

[
θ

MM †w

]⊤ [ −βU +M2 −βM
−MU + βM −M2

] [
θ

MM †w

]
+

[
θt

MM †w

]⊤ [−βU⊤ +M2 −U⊤M + βM
−βM −M2

] [
θ

MM †w

]
=

[
θ

MM †w

]⊤ [−β(U +U⊤) + 2M2 −U⊤M
−MU −2M2

] [
θ

MM †w

]
,

where the first equality follows from plugging in S in (18). Expanding the terms, we get

2

[
θ

MM †w

]⊤
S

[
−U −M
M 0n×n

] [
θ

MM †w

]
=

[
θ

MM †w

]⊤ [−β(U +U⊤) + 2M2 −U⊤M
−MU −2M2

] [
θ

MM †w

]
=θ⊤(−β(U +U⊤) + 2M2)θ −w⊤MUθ − θ⊤U⊤Mw − 2w⊤M2w

=

[
θ

Mw

]⊤ [−β(U +U⊤) + 2M2 −U⊤

−U −2In

] [
θ

Mw

]
,
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where the second last equality follows from the axiom of Moore-Penrose pseudo inverse of sym-
metric matrices in Lemma A.2 in the Appendix Section A.3, i.e., MM †M = MMM † =
M †MM = M .

Now, it is enough to choose β > 0 that satisfies following relation:[
−β(U +U⊤) + 2M2 −U⊤

−U −2In

]
≺ −

[
In 0n×n

0n×n In

]
⇐⇒

[
−β(U +U⊤) + 2M2 + In −U⊤

−U −In

]
≺ 02n×2n.

The above relation can be shown using Schur’s complement Lemma A.2 in the Appendix Sec-
tion A.3,

−β(U +U⊤) + 2M2 + In +UU⊤ ≺ 0,

which holds when β satisfies

βλmin(U +U⊤) > 2λmax(M)2 + 1 + ∥U∥22

⇐⇒ β >
2λmax(M)2 + 1 + ∥U∥22

λmin(U +U⊤)
.

Therefore, we get

[
θ

Mw

]⊤ [−β(U +U⊤) + 2M2 U⊤

U −2I

] [
θ

Mw

]
≤−

[
θ

Mw

]⊤ [
θ

Mw

]
≤− ∥θ∥22 − ∥Mw∥22

≤−min{1, λ+
min(M)2}

∥∥∥∥[ θ
MM †w

]∥∥∥∥2
2

,

where the last inequality follows from the inequality that
∥∥MM †w

∥∥
2

=
∥∥M †Mw

∥∥
2

≤∥∥M †
∥∥
2
∥Mw∥2 ≤ 1

λ+
min(M)

∥Mw∥2. Hence, it is sufficient to choose β =

max
{

2λmax(M)2+2+∥U∥2
2

λmin(U+U⊤)
, 4λmax(M)

}
.

A.5 PROOF OF THEOREM 3.2

Proof. Let us consider the quadratic Lyapunov function candidate V (θ,w) =[
θ

MM †w

]⊤
S

[
θ

MM †w

]
where S ∈ R2n×2n is symmetric positive definite matrix in

Lemma 3.1. The time derivative of V (θt,wt) along the solution of (5) becomes

d

dt
V (θt,wt) =2

(
d

dt

[
θt

MM †wt

])⊤

S

[
θ

MM †w

]
=2

[
−Uθt −Mwt

MM †Mθt

]⊤
S

[
θt

MM †wt

]
=2

[
−Uθt −MMM †wt

Mθt

]⊤
S

[
θt

MM †wt

]
=2

[
θt

MM †wt

]⊤ [−U −M
M 0n×n

]⊤
S

[
θt

MM †wt

]
≤− 2min{1, λ+

min(M)2}
∥∥∥∥[ θt

MM †wt

]∥∥∥∥2
2

≤− 2min{1, λ+
min(M)2} 1

λmax(S)
V (θt,wt),

20



Under review as a conference paper at ICLR 2024

where the second last inequality comes from Lemma 3.1. The last inequality follows from the fact

that V (θt,wt) ≤ λmax(S)

∥∥∥∥[ θt
MM †wt

]∥∥∥∥2
2

. From the Lyapunov method, this inequality results in

V (θt,wt) ≤ exp

− min{1, λ+
min(M)2}

max
{

2λmax(M)2+2+∥U∥2
2

λmin(U+U⊤)
, 4λmax(M)

} t
V (θ0,w0).

This completes the proof.

A.6 COMPARISON WITH THE RESULT OF OZASLAN AND JOVANOVIĆ (2023);
CISNEROS-VELARDE ET AL. (2020); GOKHALE ET AL. (2023)

We will consider f(x) = 1
2 ∥x∥

2
B where x ∈ Rn and B ∈ Rn×n is symmetric pos-

itive definite matrix. Then, ∇2f(x) = B, and f(x) is λmin(B)-strongly convex and
λmax(B)-smooth. Theorem 8 in Gokhale et al. (2023) states exponential convergence rate of

O
(
exp

(
−min

{
λ+
min(M)2

λmax(U) ,
λ+
min(M)2

λmax(M)2λmin(U)
}
t
))

. When λ+
min(M)2

λmax(M)2 is the dominant term, the

bound yields the convergence rate O
(
exp

(
− λ+

min(M)2

λmax(M)2 t
))

. Our bound in Theorem 3.2 also results

to the convergence rate of O
(
exp

(
− λ+

min(M)2

λmax(M)2 t
))

when λ+
min(M) is small.

Letting V (θt,wt) = ∥θt∥22+
∥∥MM †wt −w∗

∥∥2
2
, the result of Theorem 2 in Ozaslan and Jovanović

(2023) leads to

V (θt,wt)

≤2 exp

(
− 2λmin(B)min{λmin(B)2, λ+

min(M)2}
(λmax(B)2 + λmax(M)2 + 1)(1 + 2λmin(B)λmax(B))

t

)(
∥∇L(θ0,w0)∥22 + V (θ0,w0)

)
.

When λmin(B) → 0, the above convergence rate becomes O(exp(−λmin(B)3t)). Whereas, from
Theorem 3.2, our result states O (exp(−λmin(B)t) convergence rate under the same condition,
which implies tighter convergence rate.

Cisneros-Velarde et al. (2020) proved exponential convergence rate for
[

θt
Rwt

]
, where M :=

RΣR⊤ is the singular value decomposition of M . Theorem 4 in Cisneros-Velarde et al. (2020)
leads to the following convergence rate:

O

(
exp

(
− λmin(B)

λmax(M)2 + 3
4λmax(M)λ+

min(M)2 + λmax(B)2
λmax(M)λ+

min(M)2

λmax(M) + 1
t

))
.

When λmax(M) ≈ λ+
min(M) → 0, the bound implies

O
(
exp

(
−λmax(M)λ+

min(M)2t
))

,

where as our bound in Theorem 3.2 implies tighter convergence rate of

O
(
exp

(
−λ+

min(M)2t
))

.

The overall comparison with Ozaslan and Jovanović (2023); Cisneros-Velarde et al. (2020) is sum-
marized in the Table 1.

A.7 PROOF OF LEMMA 4.1

We will consider the following positive definite matrix:

G :=

[
βINq L̄
L̄ βINq

]
∈ R2Nq×2Nq, (19)

21



Under review as a conference paper at ICLR 2024

Convergence rate Condition

Ozaslan and Jovanović (2023) O
(
exp

(
−λmin(U)3t

))
λmin(U) → 0Ours O (exp (−λmin(U)t))

Cisneros-Velarde et al. (2020) O
(
exp

(
−λ+

min(M)3t
))

λmax(M) ≈ λ+
min(M) → 0

Ours O
(
exp

(
−λ+

min(M)2t
))

Table 2: t ≥ 0 stands for time.

where the choice of positive constant β ∈ R will be deferred. Using the Schur complement in
Lemma A.3 in the Appendix Section A.3, we can see that if β > 2λmax(L̄), the following holds:[

β
2 I 0Nq×Nq

0Nq×Nq
β
2 I

]
≺ G ≺

[
2βI 0Nq×Nq

0Nq×Nq 2βI

]
.

Now, we have the following relation:

2

[
θ̃

L̄L̄†w̃

]⊤
G

[
Ā− ηL̄ −ηL̄

ηL̄ 0Nq×Nq

] [
θ̃

L̄L̄†w̃

]
=

[
θ̃

L̄L̄†w̃

]⊤
G

[
Ā− ηL̄ −ηL̄

ηL̄ 0Nq×Nq,

] [
θ̃

L̄L̄†w̃

]
+

[
θ̃

L̄L̄†w̃

]⊤ [
Ā⊤ − ηL̄ ηL̄
−ηL̄ 0Nq×Nq,

]
G

[
θ̃

L̄L̄†w̃

]
=

[
θ̃

L̄L̄†w̃

]⊤ [
β(Ā+ Ā⊤ − 2ηL̄) + 2ηL̄2 (Ā⊤ − ηL̄)L̄

L̄(Ā− ηL̄) −2ηL̄2

] [
θ̃

L̄L̄†w̃

]
,

where the last equality follows from plugging the choice of G in (19). Expanding the terms, we get[
θ̃

L̄L̄†w̃

]⊤ [
β(Ā+ Ā⊤ − 2ηL̄) + 2ηL̄2 (Ā⊤ − ηL̄)L̄

L̄(Ā− ηL̄) −2ηL̄2

] [
θ̃

L̄L̄†w̃

]
=θ̃⊤(β(Ā+ Ā⊤ − 2ηL̄) + 2ηL̄2)θ̃ + θ̃⊤(Ā⊤ − ηL̄)L̄L̄L̄†w̃

+ w̃⊤L̄†L̄L̄(Ā− ηL̄)θ̄ − 2ηw̃⊤L̄†L̄L̄2L̄L̄†w̃

=θ̃⊤(β(Ā+ Ā⊤ − 2ηL̄) + 2ηL̄2)θ̃ + θ̃(Ā⊤ − ηL̄)L̄w̃

+ w̃⊤L̄(Ā− ηL̄)θ̄ − 2η
∥∥L̄w̃

∥∥2
2

=

[
θ̃

L̄w̃

]⊤ [
β(Ā+ Ā⊤ − 2ηL̄) + 2ηL̄2 Ā⊤ − ηL̄

Ā− ηL̄ −2ηI

] [
θ̃

L̄w̃

]
, (20)

where the second last equality follows from the axiom of Moore-Penrose axiom of symmetric ma-
trices in Lemma A.2 in the Appendix Section A.3, i.e., L̄L̄†L̄ = L̄L̄L̄† = L̄†L̄L̄ = L̄.

Now, it is enough to choose c that satisfies following relation:[
β(Ā+ Ā⊤ − 2ηL̄) + 2ηL̄2 Ā⊤ − ηL̄

Ā− ηL̄ −2ηI

]
⪯ −

[
INq 0Nq×Nq

0Nq×Nq ηINq

]
(21)

⇐⇒
[
β(Ā+ Ā⊤ − 2ηL̄) + 2ηL̄2 Ā⊤ − ηL̄

Ā− ηL̄ −2ηI

]
+

[
INq 0Nq×Nq

0Nq×Nq ηINq

]
⪯ 02Nq×2Nq.

Using the result Ā+ Ā⊤ ⪯ 2(γ − 1)w from Lemma A.7, we have

[
β(Ā+ Ā⊤ − 2ηL̄) + 2ηL̄2 Ā⊤ − ηL̄

Ā− ηL̄ −2ηI

]
+

[
INq 0Nq×Nq

0Nq×Nq ηINq

]
⪯
[
(2β(γ − 1)w + 1 + 2ηλmax(L̄)2)INq Ā⊤ − ηL̄

Ā− ηL̄ −ηI

]
.
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The inequality follows from the fact that L̄2 is positive semi-definite matrix. To make the above
matrix negative definite, according to the Schur complement argument in Lemma A.3, we need

(2β(γ − 1)w + 1 + 2ηλmax(L̄)2)INq +
1

η
(Ā− ηL̄)(Ā⊤ − ηL̄) ≺ 0, (22)

which can be satisfied if the following holds for c:

(2β(γ − 1)w + 1 + 2ηλmax(L̄)2) +
1

η

∥∥Ā− ηL̄
∥∥2
2
< 0

⇐⇒
1
η

∥∥Ā− ηL̄
∥∥2
2
+ 1 + 2ηλmax(L̄)2

2(1− γ)w
< β.

Since
∥∥Ā∥∥2

2
≤ 4 from Lemma A.7, and a2 + b2 ≥ 2ab for a, b ∈ R, it suffices to satisfy

β >
8 + η + 4η2λmax(L̄)2

2η(1− γ)w
.

Therefore, choosing

β =
8 + η + 4η2λmax(L̄)2

η(1− γ)w

suffices to satisfy (22). Note that β ≥ 1
(1−γ)w + 8

η(1−γ)w + 4ηλmax(L̄)2

(1−γ)w > 4λmax(L̄) 1
(1−γ)w ≥

4λmax(L̄). Applying the relation (21) to (20) yields the following result:

[
θ̃

L̄w̃

]⊤ [
β(Ā+ Ā⊤ − 2ηL̄) + 2ηL̄2 Ā⊤ − ηL̄

Ā− ηL̄ −2ηI

] [
θ̃

L̄w̃

]
≤−

[
θ̃

L̄w̃

]⊤ [
INq 0Nq×Nq

0Nq×Nq ηINq

] [
θ̃

L̄w̃

]
=−

∥∥∥θ̃∥∥∥2
2
− η

∥∥L̄w̃
∥∥2
2

≤−
∥∥∥θ̃∥∥∥2

2
− ηλ+

min(L̄)2
∥∥L̄†L̄w̃

∥∥2
2

=−min
{
1, ηλ+

min(L̄)2
}∥∥∥∥[ θ̃

L̄†L̄w̃

]∥∥∥∥2
2

,

where the last inequality follows from the following relation:∥∥L̄†L̄w̃
∥∥
2
≤
∥∥L̄†∥∥

2

∥∥L̄w̃
∥∥
2
=

1

λ+
min(L̄)

∥∥L̄w̃
∥∥
2
.

A.8 STOCHASTIC RECURSIVE UPDATE : I.I.D. OBSERVATION MODEL

In this section, we will consider the i.i.d. observation model of the sequence {ok}k∈N0
and ok ∈

S × S × ΠN
i=1I where I is the closed interval [−Rmax, Rmax] in R. We consider the following

general stochastic recursive update (Robbins and Monro, 1951), for k ∈ N0 and z0 ∈ R2Nq:

zk+1 = zk + αk(Ezk + ξ(ok; zk)), (23)

where E ∈ R2Nq×2Nq , ξ(·; z) : S×S×ΠN
i=1I → R2Nq is a function parameterized by z ∈ R2Nq ,

and αk ∈ (0, 1).
Assumption A.11. 1. For k ∈ N0, ξ(ok; zk) has the following bound:

E
[
∥ξ(ok; zk)∥22

]
≤ C1E

[
∥zk∥22

]
+ C2

2. For k ∈ N0, {oi}ki=1 is sampled from i.i.d. distribution, and

E [ξ(ok; zk)|Fk−1] = 0,

where Fk := σ(o1, o2, . . . , ok) for k ∈ N.
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3. There exists a positive symmetric definite matrix Q ∈ R2Nq×2Nq and positive real constant
κ such that, for k ∈ N0,

z⊤
k EQzk ≤ −κ ∥zk∥2 .

We will introduce one lemma:.
Lemma A.12. Under the Assumption A.11, for k ∈ N0, we have

E
[
(zk+1 − zk)

⊤Q(zk+1 − zk)
]
≤ 2α2

k ∥Q∥2
((

∥E∥22 + C1

)
E
[
∥zk∥22

]
+ C2

)
.

Proof. We will first consider the conditional expectation:

E
[
(zk+1 − zk)

⊤Q(zk+1 − zk)
]

≤∥Q∥2 E
[
∥zk+1 − zk∥22

]
= ∥Q∥2 E

[
∥αkEzk + αkξ(ok; zk)|∥22

]
≤2α2

k ∥Q∥2
(
E
[
∥E∥22 ∥zk∥

2
2

]
+ E

[
∥ξ(ok; zk)∥22

])
≤2α2

k ∥Q∥2
((

∥E∥22 + C1

)
E
[
∥zk∥22

]
+ C2

)
.

The first inequality follows from positive definiteness of Q. The first equality follows from the
update in (23). The second inequality follows from the relation ∥a+ b∥22 ≤ 2 ∥a∥22 + 2 ∥b∥22 for
a, b ∈ R2Nq . The last inequality follows from the first item in Assumption A.11.

Theorem A.13. Suppose Assumption A.11 holds, and let V (z) := z⊤Qz for z ∈ R2Nq .

1. Suppose we use constant step-size, i.e., α0 = α1 = · · · = αk, and α0 ≤
κλmin(Q)

2λmax(Q)∥Q∥2(E
2+C1)

, where ∥E∥2 ≤ E. For k ∈ N0, we have

E [V (zk+1)] ≤ exp

(
− κ

λmax(Q)
kα0

)
V (x0) + 2α0C2 ∥Q∥2

λmax(Q)

κ
+ 2α2

0 ∥Q∥2 C2.

2. Suppose we have αt = h1

t+h2
for t ∈ N0 and h1 ≥ max{2, 2λmax(Q)

κ } and

max

{
2, h1, h1

2λmax(Q)∥Q∥2(E
2+C1)

κλmin(Q)

}
≤ h2. Then, we have

E [V (zk+1)] ≤
(

h2

k + h2

) h1κ

λmax(Q)

V (x0) +
2 ∥Q∥2 C2h

2
1

(k − 1 + h2)

2
2h1κ

λmax(Q)

h1κ
λmax(Q) − 1

+ 2α2
k ∥Q∥2 C2.

Proof. From simple algebraic manipulation in Srikant and Ying (2019), we have the following de-
composition:

E [V (zk+1)− V (zk)]

=E
[
(zk+1 − zk)

⊤Q(zk+1 − zk)
]
+ E

[
2z⊤

k Qzk+1

]
− 2E [V (zk)]

=E
[
(zk+1 − zk)

⊤Q(zk+1 − zk)
]
+ E

[
2z⊤

k Q(zk+1 − zk)
]

=E
[
(zk+1 − zk)

⊤Q(zk+1 − zk)
]︸ ︷︷ ︸

I1

+E
[
2z⊤

k Q(zk+1 − zk − αkEzk)
]︸ ︷︷ ︸

I2

+2αkE
[
z⊤
k QEzk

]︸ ︷︷ ︸
I3

.

(24)

To bound I1, the result in Lemma A.12 yields

E
[
(zk+1 − zk)

⊤Q(zk+1 − zk)
]
≤ 2α2

k ∥Q∥2
((

∥E∥22 + C1

)
E
[
∥zk∥22

]
+ C2

)
.
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The term I2 becomes zero due to the second item in Assumption A.11, which leads to
E
[
2z⊤

k Q(zk+1 − zk − αkEzk)
]
= αkE

[
2z⊤

k QE [ξ(ok; zk)|Fk−1]
]
= 0. Finally we can apply

the third item in Assumption A.11 to bound I3. Collecting the terms to bound (24), we get

E[V (zk+1)− V (zk)] ≤2α2
k ∥Q∥2

((
∥E∥22 + C1

)
E
[
∥zk∥22

]
+ C2

)
− 2καk ∥zk∥22

≤2α2
k ∥Q∥2

(
∥E∥22 + C1

λmin(Q)
E [V (zk)] + C2

)
− 2

κ

λmax(Q)
αkE [V (zk)]

=

(
2α2

k ∥Q∥2
∥E∥22 + C1

λmin(Q)
− 2

κ

λmax(Q)
αk

)
E [V (zk)] + 2α2

k ∥Q∥2 C2.

(25)

The second inequality follows from λmin(Q) ∥z∥22 ≤ ∥z∥2Q ≤ λmax(Q) ∥z∥22. Moreover, the step-
size conditions for both constant step-size and diminishing step-size leads to

2 ∥Q∥2
∥E∥22 + C1

λmin(Q)
α2
k − 2

κ

λmax(Q)
αk ≤ 2 ∥Q∥2

E2 + C1

λmin(Q)
α2
k − 2

κ

λmax(Q)
αk ≤ − κ

λmax(Q)
αk.

Applying the above result to (25), we get

E[V (zk+1)]

≤
(
1− κ

λmax(Q)
αk

)
E [V (zk)] + 2α2

k ∥Q∥2 C2

≤Πk
i=0

(
1− κ

λmax(Q)
αi

)
E [V (z0)] + 2

k−1∑
i=0

α2
i ∥Q∥2 C2Π

k
j=i+1

(
1− κ

λmax(Q)
αj

)
+ 2α2

k ∥Q∥2 C2

≤ exp

(
− κ

λmax(Q)

k∑
i=0

αi

)
E [V (z0)] + 2

k−1∑
i=0

α2
i ∥Q∥2 C2 exp

− κ

λmax(Q)

k∑
j=i+1

αj

+ 2α2
k ∥Q∥2 C2,

(26)
where the last inequality follows from the relation 1− x ≤ exp(−x) for x ∈ R.

1. First, we will consider the case for the constant step-size. Using the fact that the step-size
is constant, we can rewrite in (26) into
E [V (zk+1)]

≤ exp

(
− κ

λmax(Q)
kα0

)
E [V (z0)]

+ 2

k−1∑
i=0

α2
0 ∥Q∥2 C2 exp

(
− κ

λmax(Q)
α0(k − i)

)
+ 2α2

0 ∥Q∥2 C2

≤ exp

(
− κ

λmax(Q)
kα0

)
E [V (z0)] + 2α2

0 ∥Q∥2 C2

exp
(
− κ

λmax(Q)α0

)
1− exp

(
− κ

λmax(Q)α0

) + 2α2
0 ∥Q∥2 C2.

The second inequality follows from summation of geometric series. Since exp(x)− 1 ≥ x
for x > 0, we have 1

exp(x)−1 ≤ 1
x , and this leads to

E [V (zk+1)] ≤ exp

(
− κ

λmax(Q)
kα0

)
E [V (z0)] + 2α2

0C2 ∥Q∥2
1

κ
λmax(Q)α0

+ 2α2
0 ∥Q∥2 C2

=exp

(
− κ

λmax(Q)
kα0

)
E [V (z0)] + 2α0C2 ∥Q∥2

λmax(Q)

κ
+ 2α2

0 ∥Q∥2 C2.
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2. The result for diminishing step-size becomes

E [V (zk+1)]

≤ exp

(
− κ

λmax(Q)

k∑
i=0

αi

)
V (z0)

+ 2

k−1∑
i=0

α2
i ∥Q∥2 C2 exp

− κ

λmax(Q)

k−1∑
j=i+1

αj

+ 2α2
k ∥Q∥2 C2

≤ exp

(
− h1κ

λmax(Q)
log

(
k + h2

h2

))
E[V (z0)]

+ 2

k−1∑
i=0

h2
1

(i+ h2)2
∥Q∥2 C2 exp

(
− h1κ

λmax(Q)
log

(
k − 1 + h2

i+ 1 + h2

))
+ 2α2

k ∥Q∥2 C2

≤
(

h2

k + h2

) h1κ

λmax(Q)

V (z0) + 2

k−1∑
i=0

h2
1

(i+ h2)2
∥Q∥2 C2

(
i+ 1 + h2

k − 1 + h2

) h1κ

λmax(Q)

+ 2α2
k ∥Q∥2 C2,

The second inequality follows from
∫ k

t=0
h1

t+h2
dt ≤

∑k
i=0 αi. From the choice of step-size,

we have h1κ
λmax(Q) ≥ 2, which leads to

E [V (zk+1)] ≤
(

h2

k + h2

) h1κ

λmax(Q)

V (z0)

+ 2 ∥Q∥2 C2

k−1∑
i=0

h2
1

(i+ h2)2

(
i+ 1 + h2

k − 1 + h2

) h1κ

λmax(Q)

+ 2α2
k ∥Q∥2 C2

≤
(

h2

k + h2

) h1κ

λmax(Q)

V (z0)

+
2 ∥Q∥2 C2h

2
1

(k − 1 + h2)
h1κ

λmax(Q)

2
h1κ

λmax(Q)

k−1∑
i=0

(i+ h2)
h1κ

λmax(Q)
−2 + 2α2

k ∥Q∥2 C2

≤
(

h2

k + h2

) h1κ

λmax(Q)

V (z0)

+
2 ∥Q∥2 C2h

2
1

(k − 1 + h2)
h1κ

λmax(Q)

2
h1κ

λmax(Q)

∫ k

0

(s+ h1)
h1κ

λmax(Q)
−2ds+ 2α2

k ∥Q∥2 C2

≤
(

h2

k + h2

) h1κ

λmax(Q)

V (z0)

+
2 ∥Q∥2 C2h

2
1

(k − 1 + h2)
h1κ

λmax(Q)

2
h1κ

λmax(Q)

h1κ
λmax(Q) − 1

(k + h1)
h1κ

λmax(Q)
−1 + 2α2

k ∥Q∥2 C2

≤
(

h2

k + h2

) h1κ

λmax(Q)

V (z0)

+
2 ∥Q∥2 C2h

2
1

(k − 1 + h2)

22
h1κ

λmax(Q)

h1κ
λmax(Q) − 1

+ 2α2
k ∥Q∥2 C2

The second inequality follows from the fact that i+ h2 + 1 ≤ 2i+ 2h2 for i ∈ N. The last
inequality follows from the fact that k + h1 ≤ 2k − 2 + 2h2.
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A.9 PROOF OF THEOREM 4.2

Let us prove the first item in Theorem 4.2, which is the constant step-size case. To this end, we
will apply Theorem A.13 in the Appendix Section A.8, and it is enough to check the conditions in

Assumption A.11 in the Appendix Section A.8. Let zk :=

[
θ̃k

L̄L̄†w̃k

]
. The first item in Assump-

tion A.11 follows from Lemma A.10 in the Appendix Section A.8. That is, the constants in the first
item in Assumption A.11 becomes

C1 = 16, C2 =
32NR2

max

w2(1− γ)2
, E = 2 + 2λmax(L̄).

The second item in Assumption A.11 is straightforward from the fact that (sk, s′k, rk) is sampled
from i.i.d. distribution.

The third item in Assumption A.11 is satisfied by letting κ = min
{
1, ηλ+

min(L̄)2
}
/2, which fol-

lows from Lemma 4.1. Therefore, from the first item in Theorem A.13, letting the constant step-size
to satisfy

α0 ≤
min

{
1, ηλ+

min(L̄)2
}

4(20 + 8λmax(L̄) + 4λmax(L̄)2)

λmin(G)

λmax(G)2
,

Hence, there exists ᾱ such that

ᾱ =O

 min
{
1, ηλ+

min(L̄)2
}(

20 + 8λmax(L̄) + 4λmax(L̄)2
) ( 8+η+4η2λmax(L̄)2

η(1−γ)w

)


=O

 min
{
1, ηλ+

min(L̄)2
}

λmax(L̄)2
(

8
η + 4ηλmax(L̄)2

) (1− γ)w

 ,

since ∥G∥2 = Θ
(

λmax(L)2

(1−γ)w

)
. Letting x0 :=

[
θ̄0 − 1N ⊗ θc

L̄L̄†
(
w̄0 − 1

η w̄∞

)], This leads to the following

result for the convergence rate:

E
[∥∥∥θ̃k+1

∥∥∥2
2
+
∥∥L̄L̄†w̃k+1

∥∥2
2

]
≤λmax(G)

λmin(G)
exp

(
− κ

λmax(G)
kα0

)
∥x0∥22

+
∥G∥2

λmin(G)
2α0C2

λmax(G)

κ
+

1

λmin(G)
2α2

0 ∥G∥2 C2

≤4 exp

−
min

{
1, ηλ+

min(L̄)2
}

2
(

8+η+4η2λmax(L̄)2

η(1−γ)w

)kα0

 ∥x0∥22

+ 16α0

(
32NR2

max

w2(1− γ)2

)
8 + η + 4η2λmax(L̄)2

η(1− γ)w

1

min{1, ηλmin(L̄)2}

+ 8α2
0

(
32NR2

max

w2(1− γ)2

)
=O

(
exp

(
−(1− γ)w

min{1, ηλ+
min(L̄)2}

8
η + 4ηλmax(L̄)2

kα0

)
∥x0∥22 + α0

NR2
max

w3(1− γ)3
2 + η2λmax(L̄)2

ηmin{1, ηλmin(L̄)2}

)
,

where the second inequality follows from Lemma 4.1. Dividing by the number of agents, N , leads
to the desired result.
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Similarly we can derive the second item in Theorem 4.2, which corresponds to the diminishing
step-size case. From the second item in Theorem A.13, the step-size parameters have the following
constraints:

h1 ≥ max

{
2λmax(G)

κ
, 2

}
≥ max

{
8 + η + 4η2λmax(L̄)2

η(1− γ)w

2

min{1, ηλ+
min(L̄)2}

, 2

}
,

h2 ≥ max

2, h1, h1

2 8+η+4η2λmax(L̄)2

η(1−γ)w

(
(2 + 2λmax(L̄))2 + 16

)
min{1, ηλ+

min(L̄)2}

 .

It suffices to choose h1 and h2 to have the following order:

h1 =Θ

(
2 + η2λmax(L̄)2

η(1− γ)wmin{1, ηλ+
min(L̄)2}

)
,

h2 =Θ

(
2 + η2λmax(L̄)2

η(1− γ)wmin{1, ηλ+
min(L̄)2}

λmax(L̄)2h1

)
=Θ

( (
2 + η2λmax(L̄)2

)2
λmax(L̄)2

η2(1− γ)2w2 min{1, ηλ+
min(L̄)2}2

)
.

Therefore, the convergence rate becomes

E
[∥∥∥θ̃k+1

∥∥∥2
2
+
∥∥L̄L̄†w̃k+1

∥∥2
2

]
≤λmax(G)

λmin(G)

(
h2

k + h2

)2

∥x0∥22

+
8h2

1

k − 1 + h2

32NR2
max

w2(1− γ)2
4

h1κ

λmax(G)

h1κ
λmax(G) − 1

+ 16

(
h1

k + h2

)2
32NR2

max

w2(1− γ)2

=O
(
1

k

(1 + η2λmax(L̄)2)2

η2 min{1, ηλ+
min(L̄)2}2

NR2
max

w4(1− γ)4

)
.

Dividing by the number of agents, N , completes the proof.

A.10 MARKOVIAN OBSERVATION MODEL

We will consider a general stochastic recursive model with Markovian observation samples, for
k ∈ N0:

zk+1 = zk + αk(Ezk + ξ(ok; zk)), (27)

where E ∈ R2Nq×2Nq , zk ∈ R2Nq and ξ(ok; zk) := W (ok)zk+w(ok) for W : S×S×ΠN
i=1I →

R2Nq×2Nq , where I is closed interval [−Rmax, Rmax] in R, and w : S × S ×ΠN
i=1I → R2Nq . We

assume that the the sequence {ok ∈ S × S ×ΠN
i=1I}k∈N is generated by an ergodic Markov chain.

The proof follows the spirit of (Srikant and Ying, 2019). We will denote T ∈ N as the total number
of iterations and the mixing time τ := τ(αT ) will be defined as in (14). We first introduce a set of
assumptions:
Assumption A.14. 1. For any o ∈ S × S ×ΠN

i=1I , we have

∥W (o)∥2 ≤ C1, ∥w(o)∥2 ≤ C2.

2. For k ≥ τ , there exists a positive constant Ξ such that

∥E [ξ(ok; zk−τ )|Fk−τ ]∥2 ≤ ΞαT (∥zk−τ∥2 + 1),

where Fk−τ = σ(o1, o2, . . . , ok−τ ).

3. For k ∈ N0, there exists a positive definite matrix Q ∈ R2Nq×2Nq and a positive constant
κ such that

2z⊤
k EQzk ≤ −κ ∥zk∥2 .
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For simplicity of the proof, we will denote E1 := C1+E where ∥E∥2 ≤ E. We first present several
useful lemmas.

Lemma A.15. 1. For k ≥ τ and k − τ + 1 ≤ s ≤ k − 1, using constant step-size, i.e.,
α0 = α1 = · · · = αT such that τα0E1 ≤ ln 2, we have

∥zs+1∥2 ≤ 2 ∥zk−τ∥2 +
4C2

E1
.

2. For k ≥ τ and k − τ + 1 ≤ s ≤ k − 1, using diminishing step-size, i.e., αt = h1

t+h2
for

t ∈ N0 such that τ−1+21/E1h1

21/E1h1−1
≤ h2, we have

∥zs+1∥2 ≤ 2 ∥zk−τ∥2 + 4C2ταk−τ .

Proof. Applying triangle inequality to the recursion in (27), we get

∥zs+1∥2 ≤ (1 + αsE1) ∥zs∥2 + αsC2.

Recursive formula leads to

∥zs+1∥2 ≤ Πs
j=k−τ (1 + αjE1) ∥zk−τ∥2 +

s−1∑
i=k−τ

C2αiΠ
s
j=i+1(1 + αjE1) + αsC2

≤ exp

(
s∑

i=k−τ

αiE1

)
∥zk−τ∥2 +

s−1∑
i=k−τ

C2αi exp

 s∑
j=i+1

αjE1

+ αsC2, (28)

where the last inequality follows from the relation 1 + x ≤ exp(x) for x ∈ R.

1. We will first prove the case when the step-size is constant. Using the fact that α0 = α1 =
· · · = αs, we can rewrite (28) as follows:

∥zs+1∥2 ≤ exp (τα0E1) ∥zk−τ∥2 +
s−1∑

i=k−τ

C2α0 exp(α0E1(s− i)) + α0C2

≤ exp (τα0E1) ∥zk−τ∥2 + C2α0
exp((τ − 1)α0E1)

1− exp(−α0E1)
+ αsC2

=exp (τα0E1) ∥zk−τ∥2 + C2α0
exp(τα0E1)

exp(α0E1)− 1
+ αsC2

≤2 ∥zk−τ∥2 + C2
2

E1
+ α0C2

≤2 ∥zk−τ∥2 +
4C2

E1
.

The second last inequality follows from the condition on the step-size, τα0E1 ≤ ln 2, and
the fact that exp(x) ≥ x+ 1 for x ∈ R.

29



Under review as a conference paper at ICLR 2024

2. We will prove the case for diminishing step-size. Plugging in αt =
h1

t+h2
for t ∈ N to (28),

we have

∥zs+1∥2 ≤ exp

(
E1h1

∫ s

k−τ−1

1

t+ h2
dt

)
∥zk−τ∥2

+ C2

s−1∑
i=k−τ

αi exp

(
E1h1

∫ s

i

1

t+ h2
dt

)
+ αsC2

≤
(

s+ h2

k − τ − 1 + h2

)E1h1

∥zk−τ∥2 + C2

s−1∑
i=k−τ

αi

(
s+ h2

i+ h2

)E1h1

+ αsC2

≤ 2 ∥zk−τ∥2 + C2

k−1∑
i=k−τ

2αi + αsC2 (29)

≤ 2 ∥zk−τ∥2 + 2C2ταk−τ + αsC2

≤ 2 ∥zk−τ∥2 + 4C2ταk−τ .

The first inequality follows from the fact that
∑b

i=a
1

t+h2
≤
∫ b

a−1
1

t+h2
dt for a, b ∈ N0.

The inequality in (29) follows from the following relation that for k ≥ τ , k− τ + 1 ≤ s ≤
k − 1 and k − τ ≤ i ≤ s− 1, the condition τ−1+21/E1h1

21/E1h1−1
≤ h2 leads to(

s+ h2

i+ h2

)E1h1

≤
(

s+ h2

k − τ − 1 + h2

)E1h1

≤
(

k − 1 + h2

k − τ − 1 + h2

)E1h1

≤ 2.

The last inequality follows since k−1+h2

k−τ−1+h2
is decreasing function in k and it suffices to

satisfy the inequality when k = τ . This completes the proof.

The following lemma shows that the difference between zk and zk−τ for k ≥ τ will not be large:
Lemma A.16. 1. Considering constant step-size, i.e., α0 = α1 = · · · = αT , with α0 ≤

1
100τ max{E1,C2} , for k ≥ τ , we have

∥zk − zk−τ∥2 ≤4E1α0τ ∥zk∥2 + 10C2α0τ,

∥zk − zk−τ∥22 ≤E1α0τ ∥zk∥22 + C2α0τ.

2. Considering diminishing step-size, i.e., αt = h1

t+h2
for t ∈ N such that

max
{

τ−1+21/E1h1

21/E1h1−1
, 32τE1h1, 32τC2h1

}
≤ h2, for k ≥ τ , we have

∥zk − zk−τ∥2 ≤ 4E1αk−ττ ∥zk∥2 + 4C2αk−ττ, (30)

∥zk − zk−τ∥22 ≤ E1αk−ττ ∥zk∥22 + C2αk−ττ. (31)

Proof. We have the following relation:

∥zk − zk−τ∥2 ≤
τ−1∑
i=0

∥zi+1+k−τ − zi+k−τ∥

=

τ−1∑
i=0

αi+k−τ ∥Ezi+k−τ + ξ(oi+k−τ ; zi+k−τ )∥2

≤
τ−1∑
i=0

αi+k−τ (E1 ∥zi+k−τ∥2 + C2) (32)

The first inequality follows from triangle inequality. The first equality follows from the update
in (27). The last inequality follows from the first item in Assumption A.14.
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1. Considering the constant step-size, we have

∥zk − zk−τ∥2 ≤α0

τ−1∑
i=0

(
E1

(
2 ∥zk−τ∥2 +

4C2

E1

)
+ C2

)

=α0

τ−1∑
i=0

(2E1 ∥zk−τ∥2 + 5C2)

=2E1α0τ ∥zk−τ∥2 + 5C2α0τ.

The first inequality follows applying Lemma A.15 to (32). Since we have E1α0τ ≤ 1
4 ,

using triangle inequality we get
∥zk − zk−τ∥2 ≤2E1α0τ ∥zk − zk−τ∥2 + 2E1α0τ ∥zk∥2 + 5C2α0τ,

∥zk − zk−τ∥2 ≤4E1α0τ ∥zk∥2 + 10C2α0τ.

Moreover, using the relation (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R, we have

∥zk − zk−τ∥22 ≤2(4E1α0τ)
2 ∥zk−τ∥22 + (10C2α0τ)

2

≤E1α0τ ∥zk−τ∥22 + C2α0τ.

The last inequality follows from the step-size condition that α0 ≤ 1
100τ max{E1,C2} .

2. Considering diminishing step-size, applying Lemma A.15 to (32), we get

∥zk − zk−τ∥2 ≤ αk−τ

τ−1∑
i=0

(E1 (2 ∥zk−τ∥2 + 4C2ταk−τ ) + C2)

= αk−τ

(
2τE1 ∥zk−τ∥2 + 4E1C2τ

2αk−τ + C2τ
)

≤ αk−τ (2τE1 ∥zk−τ∥2 + 2C2τ)

= 2E1αk−ττ ∥zk−τ∥2 + 2C2αk−ττ.

The first inequality follows from the second item in Lemma A.15. The condition h2 ≥
32E1τh1 leads to the last inequality. Moreover, since αk−τ ≤ 1

4τE1
for k ≥ τ , we have:

∥zk − zk−τ∥2 ≤ 2E1αk−ττ ∥zk−τ − zk∥2 + 2E1αk−ττ ∥zk∥2 + 2αk−τC2τ

≤ 4E1αk−ττ ∥zk∥2 + 4C2αk−ττ.

The first inequality follows triangle inequality. Furthermore, using the relation (a+ b)2 ≤
2a2 + 2b2 for a, b ∈ R, we have

∥zk − zk−τ∥22 ≤2(4E1αk−ττ)
2 ∥zk∥22 + 2(4C2αk−ττ)

2

≤E1αk−ττ ∥zk∥22 + C2αk−ττ.

The last inequality follows from the step-size condition max {32τE1h1, 32τC2h1} ≤ h2.

Lemma A.17. 1. Considering constant step-size, i.e., α0 = α1 = · · · = αT , with α0 ≤
min

{
1

100τ max{E1,C2} ,
C1

2Ξ

}
, for k ≥ τ , we have

E[z⊤
k Q(ξ(ok; zk))]

≤∥Q∥2
(
(4Ξ + 13C1E1 + 20C1C2 + 4E1C2)α0τE

[
∥zk∥22

]
+
(
25C1C2 + 10C2

2 + 2Ξ + 4E1C2

)
α0τ

)
.

2. Considering diminishing step-size, i.e., αt = h1

t+h2
for t ∈ N such that

max
{

τ−1+21/E1h1

21/E1h1−1
, 32τE1h1, 32τC2h1,

Ξh1

2C1

}
≤ h2, for k ≥ τ , we have

E[z⊤
k Q(ξ(ok; zk))]

≤∥Q∥2
(
(4Ξ + 13E1C1 + 8C1C2 + 4C2E1)E

[
∥zk∥22

]
+(13C1C2 + 4C2

2 + 2Ξ + 4C2E1)
)
αk−ττ.
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Proof. Following the spirit of Srikant and Ying (2019) we can decompose the cross term in to
follows four terms:

E[z⊤
k Q(zk+1 − zk − αkEzk)]

=αkE[z⊤
k Q(w(ok) +W (ok)zk))]

=αk

E[z⊤
k−τQ(w(ok) +W (ok)zk−τ )]︸ ︷︷ ︸

I1

+E[(zk − zk−τ )
⊤Q(w(ok) +W (ok)(zk − zk−τ ))]︸ ︷︷ ︸

I2

+E[(zk − zk−τ )
⊤QW (ok)zk−τ ]︸ ︷︷ ︸
I3

+E[z⊤
k−τQW (ok)(zk − zk−τ )]︸ ︷︷ ︸

I4

 .

The term I1 can be bounded from the second item in Assumption A.14, which uses the geometric
mixing property of the Markov chain.

E
[
z⊤
k−τQ(w(ok) +W (ok)zk−τ )

]
=E

[
z⊤
k−τQE [(W (ok)zk−τ +w(ok))|Fk−τ ]

]
≤E [∥zk−τ∥2 ∥Q∥2 ∥E [(W (ok)zk−τ +w(ok))|Fk−τ ]∥2]
≤E [∥zk−τ∥2 ∥Q∥2 ΞαT (∥zk−τ∥2 + 1)]

≤∥Q∥2 ΞαT

(
2E
[
∥zk−τ∥22

]
+ 1
)

≤∥Q∥2 ΞαTE
[
(4 ∥zk − zk−τ∥22 + 4 ∥zk∥22 + 2)

]
.

The first inequality follows from Cauchy-Schwartz inequality. The second inequality follows from
the second item in Assumption A.14. The third inequality follows from the relation a ≤ a2 + 1 for
a ∈ R. The last inequality follows from the relation (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R.

The term I2 can be bounded as follows:

E
[
(zk − zk−τ )

⊤Q(ξ(ok; zk − zk−τ ))
]

≤E [∥zk − zk−τ∥2 ∥Q∥2 ∥ξ(ok; zk − zk−τ )∥2]
≤E [∥zk − zk−τ∥2 ∥Q∥2 (C1 ∥zk − zk−τ∥2 + C2)]

=E
[
∥Q∥2 C1 ∥zk − zk−τ∥22 + ∥Q∥2 C2 ∥zk − zk−τ∥2

]
.

The first inequality follows from Cauchy-Schwartz inequality. The second inequality follows from
the first item in Assumption A.14.

The term I3 can be bounded as follows:

E
[
(zk − zk−τ )

⊤QW (ok)zk−τ

]
≤E [∥zk − zk−τ∥2 ∥Q∥2 (C1 ∥zk−τ∥2)]

≤E
[
C1 ∥Q∥2 ∥zk − zk−τ∥22

]
+ E [C1 ∥Q∥2 ∥zk − zk−τ∥2 ∥zk∥2] .

The first inequality follows from Cauchy-Schwartz inequality and the first item in Assumption A.14.
The second inequality follows from triangle inequality.

The term I4 can be bounded as

E
[
z⊤
k−τQW (ok)(zk − zk−τ ))

]
≤E [∥zk−τ∥2 ∥Q∥2 (C1 ∥zk − zk−τ∥2)]

≤E
[
C1 ∥Q∥2 (∥zk − zk−τ∥22 + ∥zk − zk−τ∥2 ∥zk∥2)

]
.

The first inequality follows from Cauchy-Schwartz inequality and the first item in Assumption A.14.
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Collecting the terms to bound I1, I2, I3 and I4, we get

E[z⊤
k Q(ξ(ok; zk))]

≤∥Q∥2
(
4ΞαTE

[
∥zk∥22

]
+ (3C1 + 4ΞαT )E

[
∥zk − zk−τ∥22

]
+2C1E [∥zk − zk−τ∥2 ∥zk∥2] + C2E [∥zk − zk−τ∥2] + 2ΞαT )

≤∥Q∥2
(
4ΞαTE

[
∥zk∥22

]
+ 5C1E

[
∥zk − zk−τ∥22

]
(33)

+2C1E [∥zk − zk−τ∥2 ∥zk∥2] + C2E [∥zk − zk−τ∥2] + 2ΞαT ) . (34)

The last inequality follows from the step-size condition that 2ΞαT ≤ C1.

1. For constant step-size case, we have

E[z⊤
k Q(ξ(ok; zk))]

≤∥Q∥2
(
4Ξα0E

[
∥zk∥22

]
+ 5C1

(
E
[
E1α0τ ∥zk∥22 + C2α0τ

])
+ 2C1

(
E
[
4E1α0τ ∥zk∥22 + 10C2α0τ ∥zk∥2

])
+ C2 (E [4E1α0τ ∥zk∥2 + 10C2α0τ)]) + 2Ξα0)

≤∥Q∥2
(
(4Ξα0 + 13C1E1α0τ)E

[
∥zk∥22

]
+(20C1C2 + 4E1C2)α0τE [∥zk∥2] +

(
5C1C2 + 10C2

2 + 2Ξ
)
α0τ

)
≤∥Q∥2

(
(4Ξ + 13C1E1 + 20C1C2 + 4E1C2)α0τE

[
∥zk∥22

]
+
(
25C1C2 + 10C2

2 + 2Ξ + 4E1C2

)
α0τ

)
.

The first inequality follows from applying Lemma A.16 to (33) and (34). The last inequality
follows from the relation a ≤ a2 + 1 for a ∈ R.

2. Considering diminishing step-size, we get

E[z⊤
k Q(ξ(ok; zk))]

≤∥Q∥2
(
4ΞαTE

[
∥zk∥22

]
+ 5C1

(
E
[
E1αk−ττ ∥zk∥22 + C2αk−ττ

])
+ 2C1

(
E
[
4E1αk−ττ ∥zk∥22 + 4C2αk−ττ ∥zk∥2

])
+C2(4E1αk−ττ ∥zk∥2 + 4C2αk−ττ) + 2ΞαT )

≤∥Q∥2
(
(4ΞαT + 13E1C1αk−ττ)E

[
∥zk∥22

]
+ (8C1C2 + 4C2E1)αk−ττE [∥zk∥2]
+(5C1C2αk−ττ + 4C2

2αk−ττ + 2ΞαT )
)

≤∥Q∥2
(
(4Ξ + 13E1C1 + 8C1C2 + 4C2E1)αk−ττE

[
∥zk∥22

]
+(13C1C2 + 4C2

2 + 2Ξ + 4C2E1)αk−ττ
)
.

The first inequality follows from applying Lemma A.16 to (33) and (34). The last inequality
follows from the relation a ≤ a2 + 1 for a ∈ R.

Lemma A.18. For k ∈ N0, we have

(zk+1 − zk)
⊤Q(zk+1 − zk) ≤ 2α2

k ∥Q∥2 (E
2
1 ∥zk∥

2
2 + C2

2 ).
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Proof. We have
(zk+1 − zk)

⊤Q(zk+1 − zk) ≤∥Q∥2 ∥zk+1 − zk∥22
= ∥Q∥2 ∥αkEzk + αkξ(ok; zk)∥22
≤α2

k ∥Q∥2 (E1 ∥zk∥2 + C2)
2

≤2α2
k ∥Q∥2 (E

2
1 ∥zk∥

2
2 + C2

2 ).

The first inequality follows from Cauchy-Schwartz inequality, and the second inequaltiy follows
from the relation ∥a+ b∥22 ≤ 2 ∥a∥22 + 2 ∥b∥22 for a, b ∈ R2Nq .

Theorem A.19. 1. Considering constant step-size, i.e., α0 = α1 = · · · = αT , with α0 ≤
min

{
1

100τ max{E1,C2} ,
C1

2Ξ ,
κλmin(Q)

(4E2
1+4K1τ)λmax(Q)∥Q∥2

}
, we have, for τ ≤ k,

E
[
∥zk+1∥22

]
≤λmax(Q)

λmin(Q)
exp

(
−α0

κ

2λmax(Q)
(k − τ + 1)

)(
2 ∥z0∥22 +

4C2

E1

)
+

2 ∥Q∥2 (C2
2 +K2τ)

λmin(Q)

(
α0

2λmax(Q)

κ
+ α2

0

)
,

where
K1 :=4Ξ + 13C1E1 + 20C1C2 + 4E1C2, K2 := 25C1C2 + 10C2

2 + 2Ξ + 4E1C2.

2. Considering diminishing step-size, i.e., αt = h1

t+h2
for t ∈ N such that

max
{

τ−1+21/E1h1

21/E1h1−1
, 32τE1h1, 32τC2h1,

Ξh1

2C1
, h1

2∥Q∥2λmax(Q)(2E2
1+2L1τ)

κλmin(Q)

}
≤ h2 and

max
{

4λmax(Q)
κ , 2

E1

}
≤ h1, for τ ≤ k ≤ T , we have

E
[
∥zk+1∥22

]
≤λmax(Q)

λmin(Q)

(
τ + h2

k + h2

)h1
κ

2λmax(Q)

(2 ∥z0∥2 + 4C2τα0)

+
1

λmin(Q)

16 ∥Q∥2 (L2τ + C2
2 )h

2
1

k − 1 + h2

2h1
κ

2λmax(Q)
−1

h1
κ

2λmax(Q) − 1

+
2 ∥Q∥2
λmin(Q)

(
L2ταk−ταk + C2

2α
2
k

)
,

where
L1 :=4Ξ + 13E1C1 + 8C1C2 + 4C2E1, L2 := 13C1C2 + 4C2

2 + 2Ξ + 4C2E1.

Proof. Let V (z) = z⊤Qz for z ∈ R2Nq . From simple algebraic manipulation in Srikant and Ying
(2019), we have the following decomposition:

E [V (zk+1)− V (zk)]

=E
[
(zk+1 − zk)

⊤Q(zk+1 − zk)
]
+ E

[
2z⊤

k Qzk+1

]
− 2E [V (zk)]

=E
[
(zk+1 − zk)

⊤Q(zk+1 − zk)
]
+ E

[
2z⊤

k Q(zk+1 − zk)
]

=E
[
(zk+1 − zk)

⊤Q(zk+1 − zk)
]︸ ︷︷ ︸

I1

+E
[
2z⊤

k Q(zk+1 − zk − αkEzk)
]︸ ︷︷ ︸

I2

+2αkE
[
z⊤
k QEzk

]︸ ︷︷ ︸
I3

.

(35)

1. We will first consider the case using constant step-size. The term I1 can be bounded using
Lemma A.18, the term I2 can be bounded using the first item in Lemma A.17, and the
bound on I3 follows from the third item in Assumption A.14, which yields

E[V (zk+1)− V (zk)] ≤2α2
0 ∥Q∥2

(
E2

1E
[
∥zk∥22

]
+ C2

2

)
+ 2α0 ∥Q∥2 K1α0τE

[
∥zk∥22

]
+ 2α0 ∥Q∥2 K2τα0

− α0κE
[
∥zk∥22

]
.
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Considering that λmin(Q) ∥zk∥22 ≤ ∥zk∥2Q ≤ λmax(Q) ∥zk∥22, we get

E [V (zk+1)− V (zk)] ≤
∥Q∥2

λmin(Q)

(
2E2

1α
2
0 + 2K1α

2
0τ
)
E [V (zk)]− α0

κ

λmax(Q)
E [V (zk)]

+ 2 ∥Q∥2 (C
2
2 +K2τ)α

2
0.

The condition on the step-size that

∥Q∥2
λmin(Q)

(
2E2

1α
2
0 + 2K1α

2
0τ
)
− α0

κ

λmax(Q)
≤ −α0

κ

2λmax(Q)

⇐⇒ α0 ≤ κλmin(Q)

(4E2
1 + 4K1τ)λmax(Q) ∥Q∥2

,

leads to

E [V (zk+1)] ≤
(
1− α0

κ

2λmax(Q)

)
E [V (zk)] + 2 ∥Q∥2 (C

2
2 +K2τ)α

2
0.

Recursively expanding the terms, we get

E [V (zk+1)]

≤Πk
i=τ

(
1− α0

κ

2λmax(Q)

)
E [V (zτ )]

+

k−1∑
i=τ

2 ∥Q∥2 (C
2
2 +K2τ)α

2
0Π

k
j=i+1

(
1− α0

κ

2λmax(Q)

)
+ 2 ∥Q∥2 (C

2
2 +K2τ)α

2
0

≤ exp

(
−α0

κ

2λmax(Q)
(k − τ + 1)

)
E [V (zτ )]

+

k−1∑
i=τ

2 ∥Q∥2 (C
2
2 +K2τ)α

2
0 exp

(
−α0

κ

2λmax(Q)
(k − i)

)
+ 2 ∥Q∥2 (C

2
2 +K2τ)α

2
0

≤ exp

(
−α0

κ

2λmax(Q)
(k − τ + 1)

)
E [V (zτ )]

+ 2 ∥Q∥2 (C
2
2 +K2τ)α

2
0

exp
(
−α0

κ
2λmax(Q)

)
1− exp

(
−α0

κ
2λmax(Q)

) + 2 ∥Q∥2 (C
2
2 +K2τ)α

2
0

=exp

(
−α0

κ

2λmax(Q)
(k − τ + 1)

)
E [V (zτ )]

+ 2 ∥Q∥2 (C
2
2 +K2τ)α

2
0

1

exp
(
α0

κ
2λmax(Q)

)
− 1

+ 2 ∥Q∥2 (C
2
2 +K2τ)α

2
0

≤ exp

(
−α0

κ

2λmax(Q)
(k − τ + 1)

)
E [V (zτ )]

+ 2 ∥Q∥2 (C
2
2 +K2τ)α

2
0

2λmax(Q)

α0κ
+ 2 ∥Q∥2 (C

2
2 +K2τ)α

2
0

=exp

(
−α0

κ

2λmax(Q)
(k − τ + 1)

)
E [V (zτ )]

+ 4 ∥Q∥2
(
C2

2 +K2τ
)
α0

λmax(Q)

κ
+ 2 ∥Q∥2 (C

2
2 +K2τ)α

2
0.

The second inequality follows from the fact that 1 − x ≤ exp(−x) for x ∈ R. From the
first item in Lemma A.15, we can bound E [V (zτ )], which leads to
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E
[
∥zk+1∥22

]
≤λmax(Q)

λmin(Q)
exp

(
−α0

κ

2λmax(Q)
(k − τ + 1)

)(
2 ∥z0∥22 +

4C2

E1

)
+

2 ∥Q∥2 (C2
2 +K2τ)

λmin(Q)

(
α0

2λmax(Q)

κ
+ α2

0

)
.

2. We will now consider the case using diminishing step-size. In (35), the term I1 can
be bounded using Lemma A.18, the term I2 can be bounded using the second item in
Lemma A.17, and the bound on I3 follows from the third item in Assumption A.14, which
yields

E[V (zk+1)− V (zk)] ≤2 ∥Q∥2 α
2
k

(
E2

1E
[
∥zk∥22

]
+ C2

2

)
+ 2αk ∥Q∥2 L1αk−ττE

[
∥zk∥22

]
+ 2αk ∥Q∥2 L2αk−ττ

− αkκE
[
∥zk∥22

]
,

where

L1 :=4Ξ + 13E1C1 + 8C1C2 + 4C2E1, L2 := 13C1C2 + 4C2
2 + 2Ξ + 4C2E1.

Considering that λmin(Q) ∥zk∥22 ≤ ∥zk∥2Q ≤ λmax(Q) ∥zk∥22, we get

E [V (zk+1)− V (zk)] ≤
∥Q∥2

λmin(Q)

(
2E2

1α
2
k + 2L1αkαk−ττ

)
E [V (zk)]− αk

κ

λmax(Q)
E [V (zk)]

(36)

+ 2 ∥Q∥2 C
2
2α

2
k + 2 ∥Q∥2 L2ταkαk−τ .

The condition on the step-size that h2 ≥ h1
2∥Q∥2λmax(Q)(2E2

1+2L1τ)

κλmin(Q) implies

∥Q∥2
λmin(Q)

(
2E2

1α
2
k + 2L1αkαk−ττ

)
− αk

κ

λmax(Q)
≤ −αk

κ

2λmax(Q)
.

Applying the above relation to (36) results to

E [V (zk+1)] ≤ E
[(

1− κ

2λmax(Q)
αk

)
V (zk)

]
+ 2 ∥Q∥2 C

2
2α

2
k + 2 ∥Q∥2 L2ταkαk−τ .
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Recursively expanding the terms, we get

E [V (zk+1)]

≤
(
1− κ

2λmax(Q)
αk

)
E [V (zk)] + 2 ∥Q∥2 L2ταk−ταk + 2 ∥Q∥2 C

2
2α

2
k

≤Πk
i=τ

(
1− κ

2λmax(Q)
αi

)
E [V (zτ )] + 2 ∥Q∥2

k−1∑
i=τ

(L2ταi−ταi + α2
iC

2
2 )Π

k−1
j=i+1

(
1− κ

2λmax(Q)
αj

)
+ 2 ∥Q∥2 L2ταk−ταk + 2 ∥Q∥2 C

2
2α

2
k

≤ exp

(
− κ

2λmax(Q)

k∑
i=τ

αi

)
E [V (zτ )] + 2 ∥Q∥2

k−1∑
i=τ

(L2ταi−ταi + α2
iC

2
2 ) exp

− κ

2λmax(Q)

k−1∑
j=i+1

αj


+ 2 ∥Q∥2 L2ταk−ταk + 2 ∥Q∥2 C

2
2α

2
k

≤
(
τ + h2

k + h2

)h1
κ

2λmax(Q)

E [V (zτ )] + 2 ∥Q∥2
k−1∑
i=τ

(L2ταi−ταi + α2
iC

2
2 )

(
i+ 1 + h2

k − 1 + h2

)h1
κ

2λmax(Q)

+ 2 ∥Q∥2 L2ταk−ταk + 2 ∥Q∥2 C
2
2α

2
k

≤
(
τ + h2

k + h2

)h1
κ

2λmax(Q)

E [V (zτ )] +
2 ∥Q∥2 (L2τ + C2

2 )h
2
1

(k − 1 + h2)
h1

κ
2λmax(Q)

k−1∑
i=τ

8 (i+ 1 + h2)
h1

κ
2λmax(Q)

−2

(37)

+ 2 ∥Q∥2 L2ταk−ταk + 2 ∥Q∥2 C
2
2α

2
k

≤
(
τ + h2

k + h2

)h1
κ

2λmax(Q)

E [V (zτ )] +
16 ∥Q∥2 (L2τ + C2

2 )h
2
1

(k − 1 + h2)
h1

κ
2λmax(Q)

∫ k

τ

(t+ 1 + h2)
h1

κ
2λmax(Q)

−2
dt

(38)

+ 2 ∥Q∥2 L2ταk−ταk + 2 ∥Q∥2 C
2
2α

2
k

≤
(
τ + h2

k + h2

)h1
κ

2λmax(Q)

E [V (xτ )] +
16 ∥Q∥2 (L2τ + C2

2 )h
2
1

(k − 1 + h2)
h1

κ
2λmax(Q)

1

h1
κ

2λmax(Q) − 1
(k + 1 + h2)

h1
κ

2λmax(Q)
−1

+ 2 ∥Q∥2 L2ταk−ταk + 2 ∥Q∥2 C
2
2α

2
k

≤
(
τ + h2

k + h2

)h1
κ

2λmax(Q)

E [V (zτ )] +
16 ∥Q∥2 (L2τ + C2

2 )h
2
1

k − 1 + h2

2h1
κ

2λmax(Q)
−1

h1
κ

2λmax(Q) − 1
(39)

+ 2 ∥Q∥2 L2ταk−ταk + 2 ∥Q∥2 C
2
2α

2
k.

The inequality (37) follows from the fact that αi−τ ≤ 2αi for τ ≤ i, which holds since
τ−1+21/E1h1

21/E1h1−1
≤ h2 and 2 ≤ E1h1. Moreover, i+1+h2

i+h2
≤ 2 for i ≥ 0. This follows from

the condition h2 > 2τ , which can be checked from h2 ≥ τ−1+21/E1h1

21/E1h1−1
and h1E1 ≥ 2. The

inequality (38) holds since 4λmax(Q)
κ ≤ h1. The inequality (39) follows from the fact that

k+1+h2 ≤ 2k− 2+2h2, which when holds h2 ≥ 3 and it is satisfied by the inequalities
h2 ≥ τ−1+21/E1h1

21/E1h1−1
and h1E1 ≥ 2. We can bound E [V (zτ )] from Lemma A.15, which

results to

E
[
∥zk+1∥22

]
≤λmax(Q)

λmin(Q)

(
τ + h2

k + h2

)h1
κ

2λmax(Q)

(2 ∥z0∥2 + 4C2τα0)

+
1

λmin(Q)

16 ∥Q∥2 (L2τ + C2
2 )h

2
1

k − 1 + h2

2h1
κ

2λmax(Q)
−1

h1
κ

2λmax(Q) − 1

+
2 ∥Q∥2
λmin(Q)

(
L2ταk−ταk + C2

2α
2
k

)
.
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This completes the proof.

A.11 PROOF OF THEOREM 4.3

We will provide several building blocks for the main proof. First, for o ∈ S × S ×ΠN
i=1I , let

w(o) :=


r1(s,a, s′)ϕ(s)− b1

r2(s,a, s′)ϕ(s)− b2

...
rN (s,a, s′)ϕ(s)− bN

+
(
Iq ⊗ (γϕ(s)ϕ⊤(s′)− ϕ(s)ϕ(s)⊤)− Ā

)
1N ⊗ θc,

W (o) := Iq ⊗ (γϕ(s)ϕ⊤(s′)− ϕ(s)ϕ(s)⊤)− Ā.

Note that ϵ̄(ok; θ̄k) defined in (10) can be expressed as

ϵ̄(ok; θ̄k) =

[
W (ok)θ̃k +w(ok)

0Nq

]
.

Lemma A.20. For o ∈ S × S ×ΠN
i=1I , we have

∥W (o)∥2 ≤ 6, ∥w(o)∥2 ≤ 9
√
NRmax

(1− γ)w
.

Proof. First, we have

∥W (o)∥ =
∥∥Iq ⊗ (γϕ(s)ϕ⊤(s′)− ϕ(s)ϕ(s)⊤)− Ā

∥∥
2

≤
∥∥γϕ(s)ϕ⊤(s′)− ϕ(s)ϕ(s)⊤ −A

∥∥
2

≤6.

The last inequality follows from Lemma A.7 and the assumption that ∥ϕ(s)∥2 ≤ 1 for all s ∈ S.

Moreover, we have

∥w(o)∥2 = ∥ϵ̄(o;1N ⊗ θc)∥2
≤6 ∥1N ⊗ θc∥2 + 3

√
NRmax

≤6
√
N

Rmax

(1− γ)w
+ 3

√
NRmax

≤9
√
NRmax

(1− γ)w
,

where the first equality follows from the definition of ϵ̄ in (10). The first inequality follows from (17).
The second inequality follows from Lemma A.6.

Lemma A.21. For k ≥ τ , we have∥∥E [ϵ̄(ok; θ̄k−τ )
∣∣Fk−τ

]∥∥
2
≤max

{
4Rmax

√
Nq

w(1− γ)
, 2q

}
αT (

∥∥θ̄k−τ − 1N ⊗ θc
∥∥
2
+ 1).

Proof. Applying triangle inequality to (10), we get∥∥E [ϵ̄(ok; θ̄k−τ )
∣∣Fk−τ

]∥∥
2
≤ ∥E [w(ok) | Fk−τ ]∥2︸ ︷︷ ︸

I1

+
∥∥E [W (ok)(θ̄k−τ − 1N ⊗ θc)

∣∣Fk−τ

]∥∥
2︸ ︷︷ ︸

I2

.
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We will check the conditions to apply Lemma A.5 to bound I1 and I2 separately. Considering I1,
note that we have∥∥∥∥∥∥∥∥


r1kϕ(sk)
r2kϕ(sk)

...
rNk ϕ(sk)

+
(
Iq ⊗ (γϕ(sk)ϕ

⊤(s′k)− ϕ(sk)ϕ(sk)
⊤)
)
1N ⊗ θc

∥∥∥∥∥∥∥∥
∞

≤ max
1≤i≤N

∥∥rikϕ(sk)∥∥∞ +
∥∥(Iq ⊗ (γϕ(sk)ϕ

⊤(s′k)− ϕ(sk)ϕ(sk)
⊤)
)
1N ⊗ θc

∥∥
∞

≤Rmax +
∥∥Iq ⊗ (γϕ(sk)ϕ

⊤(s′k)− ϕ(sk)ϕ(sk)
⊤)
∥∥
2
∥1N ⊗ θc∥∞

≤Rmax +
2Rmax

(1− γ)w

≤ 4Rmax

w(1− γ)
.

The second inequality follows from the assumption that |rik| ≤ Rmax for 1 ≤ i ≤ N, k ∈ N0, and
∥ϕ(s)∥2 ≤ 1 for s ∈ S. The third inequality follows from Lemma A.6.

Furthermore, we have, for 1 ≤ i ≤ N ,

E
[
rikϕ(sk)

]
=
∑
s∈S

d(s)ϕ(s)
∑
s′∈S

∑
a∈ΠN

i=1Ai

π(a|s)P(s,a, s′)ri(s,a, s′)

=
∑
s∈S

d(s)ϕ(s)[Rπ
i ]s

= Φ⊤DπRπ
i ,

and it is straightforward to check that E
[
ϕ(sk)ϕ

⊤(s′k)− ϕ(sk)ϕ
⊤(sk))

]
= A. Therefore, from

Lemma A.5, we get

∥E [w(ok)|Fk−τ ]∥2 ≤ 4Rmax

√
Nq

w(1− γ)
αT .

Now, we will bound I2. Consider the following relations:

∥E [W (ok)|Fk−τ ]∥2 =
∥∥E [γϕ(sk)ϕ⊤(s′k)− ϕ(sk)ϕ

⊤(sk)−A
∣∣Fk−τ

]∥∥
2

and

max
1≤i,j≤q

∣∣∣[(γϕ(sk)ϕ⊤(s′k)− ϕ(sk)ϕ(sk)
⊤)
]
ij

∣∣∣ ≤∥∥γϕ(sk)ϕ⊤(s′k)− ϕ(sk)ϕ
⊤(sk))

∥∥
2
≤ 2,

where the second inequality follows from the assumption that ∥ϕ(s)∥2 ≤ 1 for s ∈ S.

From the third item in Lemma A.5, we have

∥E [W (ok)|Fk−τ ]∥2 ≤ 2qαT .

Hence, we have∥∥E [W (ok)(θ̄k−τ − 1N ⊗ θc)
∣∣Fk−τ

]∥∥
2
=
∥∥E [W (ok)|Fk−τ ] (θ̄k−τ − 1N ⊗ θc)

∥∥
2

≤∥E [W (ok)|Fk−τ ]∥2
∥∥θ̄k−τ − 1N ⊗ θc

∥∥
2

≤2qαT

∥∥θ̄k−τ − 1N ⊗ θc
∥∥
2
.

Collecting the bounds on I1 and I2, we get∥∥E [ϵ̄(ok; θ̄k−τ )
∣∣Fk−τ

]∥∥
2
≤4Rmax

√
Nq

w(1− γ)
αT + 2qαT

∥∥θ̄k−τ − 1N ⊗ θc
∥∥
2

≤max

{
4Rmax

√
Nq

w(1− γ)
, 2q

}
αT (

∥∥θ̄k−τ − 1N ⊗ θc
∥∥
2
+ 1).

This completes the proof.
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Now, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. To this end, we will apply Theorem A.19 in the Appendix Section A.10. Let

zk :=

[
θ̃k

L̄L̄†w̃k

]
. Hence, it is enough to check the conditions in Assumption A.14 in the Appendix

Section A.10. The first item in Assumption A.14 can be checked from Lemma A.20, we have

C1 := 6, C2 :=
9
√
NRmax

w(1− γ)
, E1 := 8 + 2λmax(L̄).

From Lemma A.21, we have

Ξ := max

{
4Rmax

√
Nq

w(1− γ)
, 2q

}
,

which satisfies the second assumption in Assumption A.14. The third item in Assumption A.14
follows from Lemma 4.1.

1. For constant step-size, K1 and K2 in Theorem A.19 becomes

K1 =4max

{
4Rmax

√
Nq

w(1− γ)
, 2q

}
+ 624 + 152

9
√
NRmax

w(1− γ)
+ 13 · 12λmax(L̄) +

72
√
NRmax

w(1− γ)
λmax(L̄)

=O
(
max

{√
NqRmax

w(1− γ)
λmax(L̄), q

})
,

K2 =2max

{
4Rmax

√
Nq

w(1− γ)
, 2q

}
+ 810

NR2
max

w2(1− γ)2
+ 182

9
√
NRmax

w(1− γ)
+

72
√
NRmax

w(1− γ)
λmax(L̄),

which leads to

Ω

(
NR2

max

w2(1− γ)2

)
≤ K2 ≤ O

(
max

{
N
√
qR2

max

w2(1− γ)2
λmax(L̄), 2q

})
.

Note that from Lemma 4.1, we have ∥G∥2 = Θ
(

λmax(L̄)2

(1−γ)w

)
. Therefore, from the step-size

condition in the first item in Theorem A.19, we need

α0

≤min

 1

900τ max
{√

NRmax

w(1−γ) , 10λmax(L̄)
} , 6

2max
{

4Rmax

√
Nq

w(1−γ) , 2q
} , min

{
1, λ+

min(L̄)2
}
λmin(G)

(400λmax(L̄)2 + 4K1τ)λmax(G) ∥G∥2


Hence, there exists ᾱ such that

ᾱ = O

 min
{
1, λ+

min(L̄)2
}
(1− γ)w

τ max
{√

NqRmax

w(1−γ) , q
}
λmax(L̄)4

 .

Therefore, the first item in Theorem A.19 leads to

1

N

(
E
[∥∥∥θ̃k+1

∥∥∥2
2

]
+
∥∥L̄L̄†w̃k+1

∥∥2
2

)
=O

(
exp

(
− (1− γ)wmin{1, λ+

min(L)2}
λmax(L)2

α0(k − τ − 1)

)
+α0τ max

{√
qR2

maxλmax(L̄)

w3(1− γ)3
,

2q

N(1− γ)w

}
λmax(L)2

min{1, λ+
min(L)2}

)
.
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2. For diminishing step-size, we get

L1 =4max

{
4Rmax

√
Nq

w(1− γ)
, 2q

}
+ 624 + 80

9
√
NRmax

w(1− γ)
+ 13 · 12λmax(L̄) +

72
√
NRmax

w(1− γ)
λmax(L̄)

=O
(
max

{
Rmax

√
Nq

w(1− γ)
λmax(L̄), 2q

})
,

L2 =2max

{
4Rmax

√
Nq

w(1− γ)
, 2q

}
+ 110

9
√
NRmax

w(1− γ)
+ 4

81NR2
max

w2(1− γ)2
+

72
√
NRmax

w(1− γ)
λmax(L̄),

which leads to

Ω

(
NR2

max

w2(1− γ)2

)
≤ L2 ≤ O

(
max

{
N
√
qR2

max

w2(1− γ)2
λmax(L̄), q

})
.

Following the second item in Theorem A.19, the choice of step-size satisfying

h1 =Θ

(
λmax(L)2

(1− γ)wmin{1, λ+
min(L̄)2}

)
h2 =Θ

(
max

{
1 +

τ

21/E1h1 − 1
, h1τ

√
NRmax

(1− γ)w
, h1

λmax(L̄)4τ

min{1, λ+
min(L̄)2}

max

{
Rmax

√
Nq

w2(1− γ)2
,

2q

w(1− γ)

}})
,

yields

1

N

(
E
[∥∥∥θ̃k+1

∥∥∥2
2

]
+
∥∥L̄L̄†w̃k+1

∥∥2
2

)
= O

(
τ

k

qR2
max

w4(1− γ)4
λmax(L)5

min{1, λ+
min(L)2}2

)
.

This completes the proof.

A.12 EXPERIMENTS

(a) Mean-squared error for Algo-
rithm 1, N = 16, α = 0.1. When
η = 1, the algorithm diverges.

(b) Mean squared error of Algo-
rithm 1 on star graph after 5000 it-
erations. We set η = 1. We omit-
ted the plot when the algorithm di-
verges.

(c) Mean squared error of Algo-
rithm 1 on star graph with dimin-
ishing step-size, αk = N2/(N3 +
k), k ∈ N, where N stands for
number of agents.

Figure 2: Additional experiment results of Algorithm 1

Figure (2a) shows the result for different η on random graph model explained in Section 5 with
number of agents , N = 16. When N = 16, λmax(L̄) ≈ 14.5, and

√
2

λmax(L̄)
≈ 0.1. The algorithm

diverges when η = 1. Moreover, as can be seen in Figure (2a), when η is too big or too small
compared to

√
2

λmax(L) , the algorithm diverges or shows large bias.

Figure (2b) shows the result for the star graph. For star graph, maximum eigenvalue of the graph
Laplacian becomes 23, 24, 25 for number of agents 23, 24, 25 respectively. Hence, from Theorem 4.2,
the bias term has the tendency to larger as N increases since λmax(L̄) scales at the order of N , and
this can be verified in Figure (2b). Moreover, the convergence result using diminishing step-size can
be verified in Figure (2c).
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(a) Number of agents 8 (b) Number of agents 16 (c) Number of agents 32

Figure 3: The doubly stochastic matrix was constructed by solving a least squares problem (Bai
et al., 2007). We did not plot the result of Wang et al. (2020), since it diverges. The step-size was
chosen as 1/23.

(a) Number of agents 8 (b) Number of agents 16 (c) Number of agents 32

Figure 4: The doubly stochastic matrix was constructed by Sinkhorn-Knobb algorithm (Knight,
2008). The step-size was chosen as 1/23.

A.13 COMPARISON WITH OTHER ALGORITHMS

To compare the performance with other algorithms, we have experimented under the setting in Sec-
tion 5, where the results are given in Figure (3) and Figure (4). Note that the performance of dis-
tributed TD algorithms in Wang et al. (2020) and Doan et al. (2019) depend on the choice of doubly
stochastic matrix. For example, when the doubly stochastic matrix was constructed by least squares
method (Bai et al., 2007), there are divergent cases as can be seen from Figure (3).

A.14 ADDITIONAL RESULTS

(a) Full plot for Figure (1a) with step-size 1/25. (b) Full plot for Figure (2b) with step-size 1/25.

Figure 5: Full plots for the result in Figure (1a) and Figure (2b).
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