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Abstract

Uncovering cause-and-effect mechanisms from data is fundamental to scientific
progress. While large language models (LLMs) show promise for enhancing
causal discovery (CD) from unstructured data, their application to the increasingly
prevalent multimodal setting remains a critical challenge. Even with the advent
of multimodal LLMs (MLLMs), their efficacy in multimodal CD is hindered
by two primary limitations: (1) difficulty in exploring intra- and inter-modal
interactions for comprehensive causal variable identification; and (2) insufficiency
to handle structural ambiguities with purely observational data. To address these
challenges, we propose MLLM-CD, a novel framework for multimodal causal
discovery from unstructured data. It consists of three key components: (1) a
novel contrastive factor discovery module to identify genuine multimodal factors
based on the interactions explored from contrastive sample pairs; (2) a statistical
causal structure discovery module to infer causal relationships among discovered
factors; and (3) an iterative multimodal counterfactual reasoning module to refine
the discovery outcomes iteratively by incorporating the world knowledge and
reasoning capabilities of MLLMs. Extensive experiments on both synthetic and
real-world datasets demonstrate the effectiveness of the proposed MLLM-CD in
revealing genuine factors and causal relationships among them from multimodal
unstructured data. The implementation code and data are available at https:
//github.com/JinLi-i/MLLM-CD.

1 Introduction

Causal discovery (CD), which aims to infer the underlying causal structures from the data, is a
fundamental task across numerous real-world scenarios, including healthcare [1, 2], finance [3], and
machine perception [4–6], playing a vital role in advancing scientific inquiry and human cognition.
As data generation and collection technologies [7–9] continue to evolve, real-world scenarios are
increasingly characterized by multimodal and unstructured data, such as the combination of texts,
images, and/or audio, making CD particularly crucial yet challenging in practice. Effectively tackling
CD in such cases typically involves two key steps: (1) identifying potential causal variables (factor
discovery) and their values from the raw unstructured data, and (2) inferring the causal relationships
among these variables (structure discovery). Traditional CD methods [10–12], though successful on
structure discovery [13], heavily rely on predefined causal variables in structured data and lack the
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Figure 1: Illustration of MLLM-CD in lung cancer diagnosis. It first employs contrastive factor
discovery with MLLMs to identify potential causal variables and form structured data. Then, a CD
algorithm is performed to infer causal structures. To further reduce ambiguities, it leverages MLLM’s
world knowledge to generate multimodal counterfactual samples for iterative refinement.

inherent capability to perform factor discovery. As such, they are ill-equipped to handle unstructured
data that lacks predefined variables, let alone the more complex multimodal unstructured data.

Identifying genuine causal variables from unstructured data is challenging and costly, as it often
requires extensive manual feature engineering and domain expertise [14]. This makes it difficult
to scale with the increasing volume and complexity of modern data. Recently, the advent of large
language models (LLMs) [15–19] offers a promising opportunity to bridge this gap. With their
remarkable capabilities in understanding context and processing natural language, LLMs can be
leveraged to automate factor discovery from raw textual data [20, 21], paving the way for the following
structure discovery. Integrating LLMs into CD pipelines holds significant potential to broaden the
scope and applicability of conventional CD, yet this direction remains largely under-explored.

To the best of our knowledge, COAT [20] is the only existing work that explicitly targets CD
from unstructured data using LLMs, marking a significant step forward in this direction. It first
extracts causal variables via LLMs and then infers the causal relationships with traditional CD
methods. However, it is limited to unimodal data, typically text. In contrast, the rapid proliferation of
multimedia content necessitates CD methods capable of effectively handling multimodal information
[22, 23] across various domains, such as medical diagnosis [24], where clinical notes, medical images,
and lab results collectively inform causal understanding [25–27]. While it may seem feasible to adapt
unimodal approaches like COAT to multimodal scenarios using multimodal LLMs (MLLMs) [28],
our findings suggest that such a naive adaptation falls short. As shown in Figure 2, the adapted COAT
struggles with two critical limitations on multimodal unstructured data: (1) it uncovers only a small
set of causal factors, and (2) the inferred causal edges remain undirected.
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Figure 2: Results on MAG dataset1. (a)
Ground truth. (b) Causal graph discov-
ered by COAT. Visual and verbal causal
variables are presented in blue and black.

Such limitations stem from two key challenges (CHs) in-
herent to multimodal CD which can not be addressed by
simple adaptations. CH1. Probing Intra- and Inter-
modal Interactions. Causal variables are often embed-
ded in different modalities, and become identifiable only
when interactions between them are probed (e.g., the ob-
served interaction “smaller apples (image) have lower tar-
get scores (text)” helps reveal the variable of size). With-
out guidance from such cross-modal interactions, existing
methods tend to identify only the most salient factors (e.g.,
taste, aroma, and defects), while overlooking more
implicit yet equally important ones (e.g., nutrition).
CH2. Handling Structural Ambiguities. Inferring accu-

1Results are based on Gemini 2.0. Please see Section 4.1 and Appendix D.3 for detailed experimental
settings.
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rate causal structures from observational data alone is inherently challenging [29], as multiple causal
structures can yield the same statistical dependencies [13], leading to undesired ambiguity. This issue
is further amplified in multimodal settings since they typically involve more causal variables while
the number of possible causal structures grows exponentially with the number of variables.

To overcome these pressing challenges, we introduce MLLM-CD, a novel framework that integrates
the strengths of MLLMs with conventional CD methods. As illustrated in Figure 1, MLLM-CD is
devised with three key modules. First, a contrastive factor discovery module is introduced for multi-
modal factor identification. It encourages the MLLM to explore intra- and inter-modal interactions
through variations in semantically contrastive sample pairs, helping reveal implicit variables hidden
in multimodal inputs. Second, causal structure discovery is employed to infer the causal structure
among the identified factors. Third, a novel iterative multimodal counterfactual reasoning module is
proposed to refine the inferred causal structures by reducing structural ambiguities. Specifically, by
performing counterfactual reasoning on factors with uncertain relationships, it generates hypothetical
yet causally consistent multimodal samples for iterative refinement. In this way, MLLMs offer
counterfactual evidence beyond the observational data to mitigate structural ambiguities through their
world knowledge and reasoning capabilities. Our main contributions are summarized as follows:

• We propose MLLM-CD, to the best of our knowledge, the first work for causal discovery
in multimodal unstructured data with a novel framework that integrates MLLMs into CD
pipelines. This significantly extends the scope of CD beyond structured and/or unimodal
data settings for practical use.

• We introduce an innovative contrastive factor discovery module that encourages MLLMs to
capture the intra- and inter-modal interactions for accurate factor identification under the
multimodal unstructured context.

• We design a novel iterative multimodal counterfactual reasoning module to iteratively refine
the inferred causal structures by generating multimodal counterfactuals.

• We establish the first benchmark work for multimodal unstructured causal discovery with
synthetic and real-world datasets. Extensive experiments demonstrate the superior perfor-
mance of MLLM-CD in both factor discovery and causal structure discovery.

2 Related Work
Causal Discovery [11, 30] aims to uncover the graphical structures, e.g., directed acyclic graph
(DAG), with a causal interpretation from observational data. Traditional causal discovery methods
largely fall into two categories: constraint-based [31–34] and score-based approaches [35–37].
Constraint-based methods, such as PC [31] and FCI [31, 32], learn the causal graph structure by
performing a series of conditional independence tests on the data. They rely on assumptions like
the causal Markov condition and faithfulness [13] to link conditional independence relations to
the graph structure. Score-based methods, like GES [38] and NOTEARS [36], search for a graph
structure that maximizes a defined scoring function (e.g., Bayesian Information Criterion [39]). While
powerful under ideal conditions, these methods face challenges in real-world applications, where
data is typically unstructured and multimodal. Our work builds upon these foundational statistical
CD methods and addresses their inherent limitations in multimodal and unstructured contexts by
integrating the multimodal understanding and reasoning capabilities of MLLMs.
LLM for Causal Discovery [40–47] has recently shown great potential in supporting conventional
CD pipelines. One of the main approaches is to leverage the general and domain-specific knowledge
of LLMs to refine the discovery results [48–58] from statistical CD methods. However, as a post-
refinement of conventional CD methods, these approaches also suffer from limitations in unstructured
and multimodal data. Motivated by the advanced capabilities of LLMs in understanding natural
language descriptions, another line of work focuses on using LLMs to identify causal factors [20] and
structures [29, 59–61] from unstructured data. For instance, Liu et al. [20] introduce a LLM-driven
CD framework, which uses LLMs to identify the Markov blanket of the target variable from natural
language descriptions. To test the effectiveness of LLMs in causal relationship discovery, Kiciman
et al. [29] propose a pairwise prompting method and find that LLMs can be a good candidate for
identifying relationships between a pair of variables. Vashishtha et al. [60] further extend this idea to a
more accurate and robust triplet-based prompting to resolve the issue of multiple cycles. Nevertheless,
these methods are not devised to handle the multimodal nature of data, thus limiting their effectiveness
and applicability. Moreover, integrating the contextual understanding and reasoning capabilities
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of LLMs into statistical CD pipelines—without compromising their statistical rigor—remains a
non-trivial challenge. These limitations motivate the development of our proposed approach.

Causal Representation Learning (CRL) [62–64] aims to extract high-level representations and
causal dependencies from low-level observational data, such as images or videos. Much of the work
in this area is related to disentangled representation learning [65–68], which tries to map distinct
factors of variation in the data to separate latent variables. In addition to observational data, using
data generated under interventions or multiple environments has also been explored to learn more
robust and causally meaningful representations [69–71]. While CRL has shown promise in providing
provable identifiability of latent causal variables under certain assumptions, it remains a developing
field with open challenges [69, 72, 73] in practical use. In this paper, we aim to identify human-
interpretable causal variables and corresponding causal structures from multimodal unstructured data
by leveraging the contextual understanding and reasoning capabilities of MLLMs.

3 Multimodal Causal Discovery
3.1 Problem Definition
We consider a dataset D = {X1,X2, · · · ,Xn}, where each sample Xk ∈ X comprises observations
from multiple modalities. Let Xk = (xk1,xk2, · · · ,xkm), where xkj represents the j-th modality
(e.g., text, image, video) of the k-th sample. We assume there exists a set of true, unobserved potential
factors (i.e., causal variables) V∗ = {V ∗

1 , V
∗
2 , · · · , V ∗

d′} that, along with a target variable Y , govern
the data generation process. The true causal relationships among V∗ ∪ {Y } are represented by an
unknown true causal directed acyclic graph (DAG) G∗ = (V∗∪{Y },E∗). To discover the true causal
graph, two main tasks need to be accomplished: (1) identifying potential factors from multimodal
unstructured data, and (2) inferring the causal structure among these factors as a causal graph.

Factor Identification. This task involves identifying the relevant set of causal variables V from
multimodal unstructured data D. Crucially, it also requires annotating the value vkj for each variable
Vj ∈ V corresponding to each sample Xk ∈ D. This process essentially transforms the unstructured
multimodal data D = {(xk1, · · · ,xkm)}nk=1 into a structured dataset DS = {(vk1, · · · , vkd)}nk=1.
Moving beyond solely unimodal factor discovery [20], this step must consider the multimodal nature
of the data, and handle: (1) Intra-modal complexity to extract high-level semantic concepts within
each modality (e.g., identifying the lesion in a medical image); (2) Inter-modal dependencies to
recognize how concepts span or relate across different modalities (e.g., linking the lesion in medical
images to the examination findings in clinical notes).

Causal Structure Discovery. Given the identified variables V and their annotated values in DS,
the goal is to infer causal relationships among V and the target variable Y , forming a causal graph
G = (V ∪ {Y },E) that best explains the statistical dependencies observed in DS. However, even
with the identified variables, this task remains challenging due to issues like Markov equivalence
classes [13], where multiple DAGs encode the same conditional independencies.

Our proposed MLLM-CD framework aims to address the challenges in these tasks by leveraging the
advanced understanding and reasoning capabilities of MLLMs. It consists of three key components:
(1) a contrastive factor discovery (CFD) module, which probes intra- and inter-modal interactions
using contrastive signals, facilitating accurate factor identification; (2) a causal structure discovery
module to infer causal structures based on statistical dependencies; and (3) an iterative multimodal
counterfactual reasoning (MCR) module to iteratively refine the CD and reduce ambiguities by
incorporating both observational data and counterfactual samples generated from the world knowledge
of MLLMs. The overall framework is illustrated in Figure 1.

3.2 Contrastive Factor Discovery
We propose a CFD module to identify potential causal factors V(t) and annotate corresponding values
in the t-th round. This module adopts an MLLM, denoted as Ψ, to explore the intra- and inter-modal
interactions with contrastive signals, from which it can identify the underlying factors.

Semantic Representation: We begin by obtaining semantically aligned multimodal representations
for each sample. As a common practice [74], we utilize pre-trained multimodal foundation models,
such as CLIP [75], known for their ability to extract consistent embeddings from heterogeneous
modalities. By adopting appropriate foundation models [76–78] as fi(·), we can effectively extract
semantic representations for the k-th sample in i-th modality eki = fi(xki).
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Intra-modal Contrastive Exploration: To uncover factors embedded within i-th modality, we
select the top-K pairs of samples Pi = {(xai,xbi)o}Ko=1 with the maximum distance d(a, b) =
1− sim(eai, ebi), where sim(eai, ebi) = eai · ebi/(∥eai∥∥ebi∥) measures cosine similarity, and ∥ · ∥
is the Euclidean norm. These samples are then presented to Ψ with a prompt pintra (see Appendix D.2)
to analyze the underlying intra-modal interactions and identify the contributing factors.

Inter-modal Contrastive Exploration: To highlight the inter-modal interactions, we construct cross-
modal contrastive pairs of samples with the maximum misalignment. We quantify this mismatch
using a combined score s(a, b) = (1 − sim(eai, ebj)) + (|yi − yj |) that considers both semantic
distance in subspace and the difference in their scores of the target variable Y . We present the top-K
pairs Px with the highest mismatch scores to the model, along with a prompt pinter (see Appendix
D.2) that highlights the potential contradiction across modalities. This encourages reasoning about the
expected correspondence across modalities and helps pinpoint specific attributes or concepts where
this correspondence breaks down, thereby revealing factors governing inter-modal relationships.

Factor Consolidation and Annotation: The contrastive analyses generate multiple sets of candidate
factors, which may contain redundancies or overlap with previously identified factors V(t−1). For
deduplication, we prompt Ψ with pm to merge similar factors and produce a final factor set V(t).
Then, we use the model with prompt pa to annotate corresponding values, forming a structured
dataset D(t)

S for causal structure discovery. The overall process of the CFD module is summarized as:

V(t) := Ψ(Ψ({Pi}mi=1,pintra),Ψ(Px,pinter),V
(t−1),pm), D(t)

S := Ψ(D(t),V(t),pa). (1)

3.3 Causal Structure Discovery

With the identified factors V(t) and their annotated values in D(t)
S , we adopt a statistical CD method

C (e.g., FCI or PC [31]) to infer the causal structure into a causal graph:

G(t) = C(D(t)
S ,V(t) ∪ {Y }). (2)

Given the potential presence of unobserved confounders in real-world scenarios, algorithms robust to
latent variables, such as FCI algorithm [31] or its variants (e.g., RFCI [79]), are particularly relevant.
In this work, we instantiate our framework with the standard FCI algorithm. However, it can be easily
adapted with other algorithms [31] for different causal assumptions and data types [80].

While statistical methods provide a principled foundation for structure learning, they rely solely
on observational data and thus struggle to address ambiguities [29]. This motivates the need for
integrating additional knowledge and reasoning capabilities to refine the discovered structure.

3.4 Multimodal Counterfactual Reasoning

The causal graph G(t) inferred by statistical methods from the derived datasets D(t)
S often contains

ambiguity (e.g., represented by undirected edges in a partial ancestral graph) due to potential
limitations of finite and noisy observational data. To alleviate this issue, we introduce the MCR
module, which leverages the implicit world knowledge and reasoning capabilities of an MLLM Ψ to
refine the causal graph iteratively.

The core idea is to use the MLLM to explore “what if ” scenarios regarding the uncertainty in
G(t), thereby generating counterfactuals to support genuine causal relationships. By simulating
interventions on specific factors and predicting how other factors are affected and how the sample
changes, we generate counterfactual samples that implicitly encode causal assumptions derived
from MLLM’s knowledge. Once validated for plausibility and consistency, they are combined with
observational data to provide complementary evidence supporting statistical discovery.

Counterfactual Generation: We first identify the uncertain relationships in the inferred graph
G(t). This typically includes factors connected with ambiguous endpoints, indicating uncertainty
about the direction of causation or the possibility of latent confounders. These factors then become
candidates for counterfactual intervention. For an uncertain factor Va, we prompt Ψ with pMCR to
perform counterfactual reasoning based on selected samples P(t) = {P(t)

i }mi=1 ∪ P
(t)
x . The model

predicts the counterfactual values v′
k = [v′k1, · · · , v′kd] for Xk ∈ P(t) under the hypothetical scenario
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Va = v′ka. Based on the reasoning results, it generates the corresponding multimodal samples
X′

k. For instance, it revises the original text xkt minimally to reflect the changes in factor values,
producing a counterfactual text x′

kt. For visual counterfactuals, it generates a brief description of the
image modifications and leverages an image generation model Φ (e.g., Gemini 2.0) to produce x′

ki.
If no changes are needed, then x′

ki = xki. Formally, this process is summarized as:

(X′
k,v

′
k, y

′
k) := Ψ(Xk,vk, Va = v′ka,pMCR; Φ). (3)

Since MLLMs may suffer from hallucination issues [81], we also need to validate the generated
counterfactual samples for plausibility and consistency. We mainly apply the following two checks.

Semantic Plausibility: We ensure the generated counterfactual sample S′
k = (X′

k,v
′
k, y

′
k) is

semantically coherent and not drastically different from the original sample. This is approximated by
measuring the similarity between the original and counterfactual embeddings:

Isem(S
′
k) = I[

1

m

m∑
i=1

(sim(eki, e
′
ki)) ≥ τsem], (4)

where I[·] is the indicator function, and τsem is a threshold.

Causal Consistency: This check verifies if the changes in factor values from vk to v′
k are consistent

with the causal structure implied by G(t). A key principle is that an intervention on Va should
ideally not cause changes in its causal non-descendants, assuming no confounding paths are activated
in unexpected ways by the MLLM’s reasoning. To assess this, we first identify the set of non-
descendants of the intervened variable Va in G(t), denoted as NonDesc(Va,G(t)). Then, we calculate
the proportion of non-descendant nodes that exhibit a significant change. Let ∆vkj = |v′kj − vkj | for
Vj ∈ NonDesc(Va,G(t)), we have

Rindep(S
′
k, Va,G(t)) =

ΣVj∈NonDesc(Va,G(t))I[∆vkj ≥ ϵ]

|NonDesc(Va,G(t))|
. (5)

The counterfactual S′
k is considered causally consistent if the proportion of changed non-descendants

is below a threshold τcausal, i.e.,

Icausal(S
′
k, Va,G(t)) = I[Rindep(S

′
k, Va,G(t)) ≤ τcausal]. (6)

Note that, since the current graph G(t) used for the check is not ground truth and may contain errors,
a non-zero threshold τcausal is necessary. This threshold serves as a trade-off between injecting
MLLM’s knowledge and maintaining consistency with a potentially improvable graph. The validated
samples D(t)

CF with Isem ∧ Icausal = 1 are included for the next round as D(t+1) = D(t) ∪ D(t)
CF.

In this way, the observational dataset is effectively augmented using the MLLM’s knowledge and
reasoning capabilities, facilitating the iterative refinement of causal factor and structure discovery.
The overall process of MLLM-CD is summarized in Algorithm 1 (Appendix C).

Despite the promise of modern MLLMs in demonstrating high-level general knowledge and reasoning
capabilities [15], it is important to acknowledge that they may still fall short in challenging scenarios
requiring cross-domain or domain-specific expertise. In such cases, we recommend applying stricter
validation to filter out noisy counterfactuals and integrating with strategies like retrieval-augmented
generation (RAG) [82, 83] or knowledge graph (KG) grounding [84, 85] to enhance the model’s
knowledge base and reasoning capabilities.

4 Experiments
We evaluate both the causal factor and structure discovery performance of MLLM-CD on both
synthetic and real-world multimodal datasets, based on state-of-the-art multimodal LLMs including
GPT-4o [86], Gemini 2.0 [87], LLaMA 4 Maverick [88], and Grok-2v [89]. Due to the space limit,
full comparison results and detailed analyses, including more ablation studies, parameter analysis,
time complexity and scalability analysis, and case studies, are provided in Appendix D.

4.1 Experimental Setup
We construct two multimodal datasets for evaluation: (1) Multimodal Apple Gastronome (MAG)
dataset, which is a synthetic dataset with 200 samples with 9 high-level factors, and (2) Lung Cancer
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Table 1: Causal factor identification and structure discovery performance on the MAG dataset.2
LLM Method NP ↑ NR ↑ NF ↑ AP ↑ AR ↑ AF ↑ ESHD ↓

GPT-4o

META 0.45± 0.08 0.52± 0.06 0.48± 0.07 0.72± 0.05 0.37± 0.06 0.49± 0.04 24.33± 3.51
Pairwise - - - 0.56± 0.10 0.33± 0.11 0.41± 0.11 43.33± 6.43
Triplet - - - 0.33± 0.06 0.37± 0.06 0.35± 0.06 61.67± 5.77
COAT 0.78± 0.19 0.37± 0.13 0.49± 0.15 0.37± 0.32 0.19± 0.17 0.25± 0.22 18.67± 2.52
MLLM-CD 0.83± 0.11 0.85± 0.06 0.84± 0.09 0.69± 0.05 0.41± 0.06 0.51± 0.04 15.33± 2.31

Gemini 2.0

META 0.71± 0.07 0.63± 0.06 0.67± 0.07 0.69± 0.08 0.41± 0.13 0.51± 0.11 18.67± 2.31
Pairwise - - - 0.49± 0.09 0.56± 0.11 0.51± 0.06 30.00± 2.00
Triplet - - - 0.41± 0.02 0.59± 0.13 0.48± 0.05 32.00± 2.00
COAT 0.85± 0.13 0.41± 0.06 0.51± 0.09 0.69± 0.10 0.26± 0.06 0.37± 0.05 16.00± 1.00
MLLM-CD 0.86± 0.05 0.89± 0.00 0.87± 0.03 0.76± 0.08 0.52± 0.13 0.60± 0.06 14.00± 3.46

LLaMA 4

META 0.51± 0.06 0.41± 0.06 0.45± 0.05 0.81± 0.17 0.26± 0.06 0.39± 0.07 21.67± 0.58
Pairwise - - - 0.50± 0.17 0.30± 0.06 0.36± 0.04 34.67± 6.66
Triplet - - - 0.66± 0.32 0.30± 0.06 0.38± 0.04 34.33± 7.77
COAT 1.00± 0.00 0.41± 0.06 0.58± 0.07 0.89± 0.19 0.30± 0.06 0.44± 0.10 14.67± 1.15
MLLM-CD 1.00± 0.00 0.85± 0.06 0.92± 0.04 0.62± 0.08 0.59± 0.06 0.60± 0.04 13.33± 0.58

Grok-2v

META 0.56± 0.11 0.44± 0.00 0.49± 0.04 0.75± 0.00 0.33± 0.00 0.46± 0.00 20.33± 3.06
Pairwise - - - 0.35± 0.02 0.33± 0.00 0.34± 0.01 28.33± 11.37
Triplet - - - 0.32± 0.02 0.33± 0.00 0.33± 0.01 30.33± 12.34
COAT 1.00± 0.00 0.37± 0.17 0.53± 0.18 0.17± 0.29 0.07± 0.13 0.10± 0.18 16.33± 1.15
MLLM-CD 1.00± 0.00 0.85± 0.06 0.92± 0.04 0.79± 0.21 0.44± 0.00 0.56± 0.06 11.00± 2.65

Average

META 0.56± 0.12 0.50± 0.10 0.52± 0.10 0.74± 0.10 0.34± 0.09 0.46± 0.07 21.25± 3.11
Pairwise - - - 0.47± 0.12 0.38± 0.13 0.40± 0.09 34.08± 8.76
Triplet - - - 0.43± 0.20 0.40± 0.14 0.39± 0.07 39.58± 15.00
COAT 0.91± 0.14 0.39± 0.10 0.53± 0.11 0.53± 0.36 0.20± 0.13 0.29± 0.19 16.42± 2.02
MLLM-CD 0.92± 0.10 0.86± 0.05 0.89± 0.06 0.72± 0.12 0.49± 0.10 0.57± 0.06 13.42± 2.68

dataset, which is a real-world dataset with 60 samples with 5 high-level factors. Please refer to
Appendix D.3 for more details on the experimental settings and environment information.

Multimodal Apple Gastronome: Following the practice in work [20], we generate a multimodal
version of the Apple Gastronome dataset with 200 samples, where 3 visual factors (i.e., color, size,
and defects) and 5 verbal factors (i.e., aroma, taste, juiciness, nutrition, and recmd). Each
sample represents an apple with a specific combination of these attributes. The target variable is the
overall score of the apple, which is influenced by the other factors as shown in the ground truth causal
graph in Figure 3 (a). The visual factors (shown as blue nodes) are represented by images of apples,
which are generated by Stable Diffusion 3.5 [90], while the verbal factors (shown as black nodes) are
represented by a review text generated by Gemini 2.0 [87].

Lung Cancer: We construct a real-world multimodal dataset for lung cancer diagnosis. The samples
are collected from the MedPix® database 3. We select 60 representative lung cancer cases (e.g.,
Non-Small Cell Lung Cancer [91]) with 5 high-level factors. (1) verbal factors: gender and age
from the demographic data; smoking from the history data; and (2) visual factors: lesion from
the medical images (e.g., CT scans). The target variable is the diagnosis of lung cancer, which is
affected by other factors in the way of the causal graph shown in Figure 4 (a). More details on the
dataset construction are provided in Appendix D.1.

Baselines: META [20] performs zero-shot factor and structure proposal given only contextual
information to LLM; Pairwise [29] and Triplet [60] use LLM to infer causal relationships among
pairwise or triplet variables; COAT [20] is the state-of-the-art LLM-driven unstructured CD method
and MLLMs are used to adapt it to multimodal settings. The original implementation of COAT only
focuses on the discovery of Markov Blanket. We extend it to discovering the entire causal graph for
fair comparison. Note that while other LLM-driven CD methods exist, e.g., [41, 48–55, 57, 92–97],
they only focus on structural CD and cannot be directly adapted to unstructured multimodal data.

Metrics: Following the common practice in CD [30], we evaluate the performance of both factor
identification and causal structure discovery with commonly used metrics. For factor identification,
we use: (1) Node Precision (NP), (2) Node Recall (NR), and (3) Node F1-score (NF). For causal
structure discovery, we adopt (1) Adjacency Precision (AP), (2) Adjacency Recall (AR), and (3)
Adjacency F1-score (AF). To jointly evaluate both perspectives, we use an extended Structural

2Pairwise and Triplet do not involve the step of factor identification, thus metrics related to factor identification
are not applicable. Instead, we use the factors discovered by META for their structure discovery.

3https://medpix.nlm.nih.gov/home
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Hamming Distance [98] (ESHD), which incorporates additional penalization for mismatched nodes
and edges. More details are offered in Appendix D.3.

4.2 Analysis with Multimodal Apple Gastronome Dataset
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Figure 3: Discovered graphs on MAG dataset.

The empirical results of causal discovery on the
MAG dataset are shown in Table 1 and Figure 3.
The full comparison results are available in Ap-
pendix D.4. MLLM-CD overall outperforms base-
lines in most cases.

Factor Identification: MLLM-CD achieves the
most accurate and comprehensive factor identifi-
cation in terms of quantitative metrics (NP, NR,
NF) and qualitative results (Figure 3 (f)). This is
attributed to the contrastive factor discovery, which
effectively guides the MLLM to identify factors
by exploring intra-modal and inter-modal interac-
tions. Meanwhile, we observe that MLLM-CD can
achieve satisfactory factor identification performance in the first iteration, indicating the efficiency of
the CFD module. In contrast, COAT fails to identify sufficient factors and has a lower recall rate.

Structure Discovery: MLLM-CD achieves the highest adjacency evaluation scores (AP, AR, AF) in
most cases and has the lowest ESHD score, indicating that the discovered causal graph is closer to
the ground truth. The improvement is mainly due to the multimodal counterfactual reasoning module,
which refines the causal structure by leveraging the MLLM’s knowledge and reasoning capabilities.
COAT, on the other hand, can hardly determine certain causal relationships. Although META has
lower factor identification performance, it successfully identifies several correct and certain causal
relationships based on its general knowledge, showing the potential of causal reasoning in MLLMs.

4.3 Analysis with Lung Cancer Dataset
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Figure 4: Discovered causal graphs on Lung
Cancer dataset.

Apart from the synthetic dataset, we also evaluate
the performance of MLLM-CD on the real-world
Lung Cancer dataset. The results are shown in
Table 2 and Figure 4. Consistent with the results
on the MAG dataset, MLLM-CD achieves the best
quantitative performance in most cases, especially
in terms of ESHD, showing the overall improve-
ment of MLLM-CD over the baselines. The qual-
itative results show that MLLM-CD accurately
identifies the causal relationships between all the
factors and the target variable. COAT achieves
comparable performance but includes incorrect di-
rections and noisy/missing factors. Since META,
Pairwise, and Triplet solely rely on MLLM’s knowledge, the generated causal graphs are certain
but often overly complex with multiple redundant edges. The results indicate that MLLM-CD is
capable of effectively identifying the causal factors and structures in real-world multimodal datasets,
demonstrating its practical applicability.

4.4 Ablation Study

We conduct an ablation study to evaluate the effectiveness of each module in MLLM-CD. We compare
the full MLLM-CD with the following variants: (1) MLLM-CD w/o Contrastive Factor Discovery
(w/o CFD): This variant does not perform contrastive factor discovery, and instead, only uses a simple
method, similar to [20], for factor identification. (2) MLLM-CD w/o Counterfactual Reasoning
(w/o CR): This variant only uses the contrastive factor discovery module and the causal structure
discovery module. (3) MLLM-CD w/o Both (w/o Both): This variant only uses a simple factor
identification prompt from [20] and then performs causal structure discovery without any multimodal
reasoning. The performance of these variants with Gemini 2.0 on two datasets is shown in Table 3.
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Table 2: Causal factor identification and structure discovery performance on the Lung Cancer dataset.2
LLM Method NP ↑ NR ↑ NF ↑ AP ↑ AR ↑ AF ↑ ESHD ↓

GPT-4o

META 0.33± 0.05 0.60± 0.00 0.42± 0.04 1.00± 0.00 0.50± 0.00 0.67± 0.00 21.67± 4.62
Pairwise - - - 0.67± 0.00 0.50± 0.00 0.57± 0.00 36.33± 10.21
Triplet - - - 0.67± 0.00 0.50± 0.00 0.57± 0.00 47.33± 14.98
COAT 0.47± 0.18 0.40± 0.00 0.42± 0.07 0.33± 0.58 0.08± 0.14 0.13± 0.23 11.67± 3.06
MLLM-CD 0.89± 0.10 1.00± 0.00 0.94± 0.05 0.92± 0.14 0.58± 0.14 0.69± 0.05 5.00± 0.00

Gemini 2.0

META 0.43± 0.07 0.73± 0.12 0.54± 0.08 0.92± 0.14 0.67± 0.14 0.76± 0.10 16.00± 0.00
Pairwise - - - 0.56± 0.10 0.67± 0.14 0.59± 0.02 33.33± 3.51
Triplet - - - 0.56± 0.10 0.67± 0.14 0.59± 0.02 40.00± 8.19
COAT 0.75± 0.25 0.47± 0.12 0.56± 0.11 1.00± 0.00 0.33± 0.14 0.49± 0.15 8.67± 2.08
MLLM-CD 0.94± 0.10 1.00± 0.00 0.97± 0.05 0.92± 0.14 0.83± 0.14 0.87± 0.13 4.67± 0.58

LLaMA 4

META 0.41± 0.08 0.67± 0.12 0.50± 0.04 0.72± 0.25 0.42± 0.14 0.52± 0.17 19.33± 5.03
Pairwise - - - 0.76± 0.21 0.58± 0.14 0.63± 0.05 32.33± 17.24
Triplet - - - 0.61± 0.10 0.58± 0.14 0.58± 0.02 36.67± 20.40
COAT 0.81± 0.17 0.47± 0.12 0.58± 0.08 1.00± 0.00 0.25± 0.00 0.40± 0.00 7.67± 0.58
MLLM-CD 0.82± 0.02 0.93± 0.12 0.87± 0.06 0.92± 0.14 0.67± 0.14 0.76± 0.10 5.67± 0.58

Grok-2v

META 0.29± 0.04 0.40± 0.00 0.33± 0.03 1.00± 0.00 0.25± 0.00 0.40± 0.00 20.00± 5.29
Pairwise - - - 1.00± 0.00 0.25± 0.00 0.40± 0.00 28.00± 8.89
Triplet - - - 1.00± 0.00 0.25± 0.00 0.40± 0.00 31.00± 8.00
COAT 0.56± 0.21 0.47± 0.23 0.51± 0.22 0.67± 0.58 0.17± 0.14 0.27± 0.23 9.67± 1.53
MLLM-CD 0.87± 0.12 0.80± 0.00 0.83± 0.05 1.00± 0.00 0.25± 0.00 0.40± 0.00 6.00± 1.00

Average

META 0.36± 0.08 0.60± 0.15 0.45± 0.09 0.91± 0.17 0.46± 0.18 0.59± 0.17 19.25± 4.27
Pairwise - - - 0.74± 0.20 0.50± 0.18 0.55± 0.10 32.50± 9.97
Triplet - - - 0.71± 0.19 0.50± 0.18 0.54± 0.08 38.75± 13.36
COAT 0.65± 0.23 0.45± 0.12 0.52± 0.13 0.75± 0.45 0.21± 0.14 0.32± 0.21 9.42± 2.31
MLLM-CD 0.88± 0.09 0.93± 0.10 0.90± 0.07 0.94± 0.11 0.58± 0.25 0.68± 0.19 5.33± 0.78

Table 3: Ablation Study of MLLM-CD on the
MAG and Lung Cancer datasets.

Dataset Variant NF ↑ AF ↑ ESHD ↓

MAG

w/o CFD 0.73± 0.07 0.47± 0.09 15.00± 0.00
w/o CR 0.81± 0.09 0.52± 0.06 15.67± 3.51

w/o Both 0.54± 0.08 0.41± 0.08 16.33± 2.08
MLLM-CD 0.87± 0.03 0.60± 0.06 14.00± 3.46

Lung

w/o CFD 0.62± 0.04 0.36± 0.34 8.00± 1.00
w/o CR 0.94± 0.05 0.38± 0.04 5.33± 1.53

w/o Both 0.55± 0.11 0.13± 0.23 9.67± 2.31
MLLM-CD 0.97± 0.05 0.87± 0.13 4.67± 0.58

Please refer to Appendix D.6 for the full results. One
can observe that excluding either the contrastive fac-
tor discovery or the counterfactual reasoning module
leads to a significant drop in performance. In spe-
cific, contrastive factor discovery shows more impact
on the accuracy and completeness of factor identi-
fication. The counterfactual reasoning module, on
the other hand, shows more effectiveness in refining
the causal structure, as we can see from the compar-
ison of MLLM-CD w/o CR and the full MLLM-CD.
Meanwhile, it contributes to larger improvements on the relatively smaller dataset (Lung Cancer)
than the larger one (MAG). This indicates the importance of introducing plausible counterfactuals
based on the MLLM’s knowledge and reasoning capabilities to alleviate the data scarcity issue and
possible data noise. By combining both modules, they jointly contribute to the improvement of causal
factor and structure discovery, demonstrating the effectiveness of MLLM-CD.

Table 4: Ablation Study of the CFD module
on the MAG and Lung Cancer datasets.

Dataset Variant NP ↑ NR ↑ NF ↑

MAG

Random 0.94± 0.10 0.60± 0.06 0.73± 0.07
Simple Pair 0.79± 0.14 0.70± 0.13 0.75± 0.14
Intra-modal 0.88± 0.13 0.78± 0.11 0.82± 0.12
Inter-modal 0.67± 0.19 0.59± 0.17 0.63± 0.18
MLLM-CD 0.86± 0.05 0.89± 0.00 0.87± 0.03

Lung

Random 0.65± 0.09 0.60± 0.00 0.62± 0.04
Simple Pair 0.50± 0.00 0.60± 0.00 0.55± 0.00
Intra-modal 0.80± 0.00 0.80± 0.00 0.80± 0.00
Inter-modal 0.53± 0.12 0.53± 0.12 0.53± 0.12
MLLM-CD 0.94± 0.10 1.00± 0.00 0.97± 0.05

In addition, we further evaluate the effectiveness of
different sampling strategies used in our contrastive
factor discovery module. We compare the following
variants: (1) Random Sampling (Random): This
variant randomly samples data points from each cat-
egory of the target variable. (2) Simple Pairwise
Sampling (Simple Pair): This variant pairs samples
with the largest difference in the target variable. (3)
Intra-modal Contrastive Sampling (Intra-modal):
This variant only considers intra-modal contrastive
pairs within each modality. (4) Inter-modal Con-
trastive Sampling (Inter-modal): This variant only
considers inter-modal contrastive pairs across differ-
ent modalities for sampling. The key quantitative results are shown in Table 4, and we have the
following observations: (1) Incorporating finer-grained signals by finding semantic-level contrastive
pairs within each modality, the intra-modal contrastive sampling further improves the completeness of
factor discovery. However, it often overlooks the cross-modal interactions. (2) Inter-modal contrastive
sampling acts as an ideal complement to intra-modal strategy, as it examines across modalities and
can effectively identify factors missed by intra-modal. Using inter-modal only has lower quantitative
results, because it is prompted to emphasize factors tied to cross-modal interactions, as a complement
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to intra-modal strategy, rather than aiming to discover all factors. (3) By combining both intra-modal
and inter-modal strategies, MLLM-CD achieves the best overall performance in factor discovery,
demonstrating the effectiveness of our contrastive factor discovery module.

5 Conclusion
This paper presents MLLM-CD, a novel framework for multimodal causal discovery that leverages
the multimodal understanding and reasoning capabilities of MLLMs. MLLM-CD consists of three
main components: (1) a contrastive factor discovery module to identify accurate and comprehensive
causal factors from multimodal unstructured data in a novel multimodal contrastive manner, (2) a
causal structure discovery module to learn the causal relationships among the identified factors, and
(3) a multimodal counterfactual reasoning module to refine the discovered results by generating
and validating counterfactual samples. We conduct extensive experiments on both synthetic and
real-world multimodal datasets, demonstrating the superior performance in causal factor and structure
discovery and the practical applicability of MLLM-CD.

Limitations. While promising, our approach faces several limitations. A primary challenge is
the scarcity of large-scale, diverse benchmark datasets for multimodal causal discovery. While the
datasets used in this work are thoughtfully curated, they are constrained by small sample sizes,
and their ground truth causal graphs depend on domain expert knowledge. Secondly, the range
of modalities MLLM-CD can effectively process is bound by the capabilities of the core MLLM,
presenting challenges for integrating specialized modalities like sensor data or genomic sequences.
Finally, the overall effectiveness of the proposed framework is dependent on the sophisticated
reasoning and generation capabilities of MLLMs, which may still exhibit hallucinations, reflect biases
from their training data, or fail to capture subtle causal nuances, despite recent advancements in
model alignment.

Future Work. These limitations open several avenues for future research. A crucial direction is
the development of larger, more diverse, and rigorously annotated benchmark datasets, potentially
using semi-automated annotation or simulation-based approaches, which will also allow for exploring
the scalability of MLLM-CD. We will also focus on enhancing the framework to handle a wider
range of modalities by developing more sophisticated multimodal fusion and cross-modal reasoning
mechanisms. To address the reliance on MLLM capabilities, we plan to develop methods to rigorously
validate and improve MLLM outputs within the causal discovery pipeline. This includes integrating
with interventional analysis, designing uncertainty quantification for generations, and exploring
techniques to mitigate biases and hallucinations specifically for causal reasoning.

Please refer to Appendix B for more discussions on limitations and future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the end of the Introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5 and Appendix B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4.1 and Appendix D for detailed experimental settings and see
Abstract for the link of implementation code and data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See Abstract for the link to the implementation code and data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.1 and Appendix D for detailed experimental settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Standard deviations are included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix D for details of experimental environment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Authors follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No sensitive or risky content is included in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix D for the license and terms of use of the datasets used in this
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See Appendix D for the details of the constructed datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: LLMs were used solely for minor editing and language refinement. They did
not impact the core methodology, scientific rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Table of Notations

Notation Description

D The raw multimodal unstractured dataset.
DS The structured multimodal dataset.

D(t)
S The structured multimodal dataset at the t-th iteration.

D(t)
CF The validated counterfactual samples at the t-th iteration.
Xk The k-th multimodal sample in the dataset D.
X′

k The generated counterfactual multimodal sample of Xk.
xki The i-th modality of the k-th multimodal sample Xk.
x′
ki The generated counterfactual of the i-th modality of X′

k.
C The statistical causal discovery algorithm.
V∗ The set of ground truth factors.
V The set of discovered factors.
Vj The j-th discovered factor.
V ∗
j The j-th ground truth factor.

vkj The annotated value of the j-th factor in the k-th multimodal sample.
v′kj The counterfactual value of the j-th factor in the k-th multimodal sample.
vk The factor values of the multimodal sample Xk.
v′
k The counterfactual factor values of the k-th multimodal sample.

V(t) The set of discovered factors at the t-th iteration.
Y The target variable.
yk The value of the target variable of the k-th multimodal sample.
y′k The counterfactual value of the target variable of the k-th multimodal sample.
G∗ The ground truth causal graph.
G The discovered causal graph.
E∗ The ground truth edges in G∗.
E The discovered edges in G.
eki The semantic representation of xki.
e′ki The semantic representation of the generated counterfactual x′

ki.
fi(·) The foundation model used for extracting semantic representations of i-th modality.
Ψ The MLLM for contrastive factor discovery and multimodal counterfactual reasoning.
Φ The image generation model for visual counterfactual generation.
Pi The set of intra-modal contrastive pairs in the i-th modality.
Px The set of inter-modal contrastive pairs.
P(t) The union set of selected intra- and inter-modal contrastive pairs at the t-th iteration.
pintra The prompt for intra-modal contrastive exploration.
pinter The prompt for inter-modal contrastive exploration.
pm The prompt for factor consolidation.
pa The prompt for factor annotation.

pMCR The prompt for multimodal counterfactual reasoning.
τsem The threshold for semantic plausibility check.
τcausal The threshold for causal consistency check.
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B Limitations and Future Opportunities

While MLLM-CD demonstrates significant promise in revealing causality from multimodal unstruc-
tured data, several limitations present avenues for future research and development.

B.1 Data Availability, Scale and Quality

Limitation: Multimodal unstructured causal discovery is still in its early stages, with a limited
availability of benchmark datasets. In particular, there is a notable lack of large-scale, diverse,
and publicly accessible unstructured multimodal datasets tailored for causal discovery. While the
datasets used in this work are thoughtfully curated, they are constrained by small sample sizes, and
their ground truth causal graphs depend on domain expert knowledge [91, 99–101], which can be
subjective, incomplete, and costly to scale.

Future Opportunity: Developing larger, more diverse, and rigorously annotated benchmark datasets
for multimodal unstructured causal discovery. This could involve semi-automated annotation meth-
ods [102], leveraging simulations with known causal grounds, or creating platforms for community-
driven dataset creation and ground truth curation. Additionally, exploring the scalability of MLLM-
CD to larger datasets is a crucial direction for future research. Please refer to Section D.9 for a
detailed discussion on the time complexity and scalability of MLLM-CD.

B.2 Modality Coverage

Limitation: The range of modalities effectively processed by MLLM-CD is principally guided by
the capabilities of the leveraged MLLMs. While current MLLMs support an expanding array of
common modalities (e.g., text, image, audio), future advancements in MLLM architectures will be
beneficial for seamlessly integrating a wider spectrum of specialized (e.g., sensor data, genomic
sequences, tabular data embedded within reports) or highly heterogeneous data types. This will
enable MLLM-CD to tackle an even broader range of real-world problems.

Future Opportunity: Future work could explore techniques for more sophisticated multimodal
fusion and cross-modal reasoning, facilitating the discovery of causal relations spanning more diverse
modalities.

B.3 MLLM Capabilities and Assumptions

Limitation: As we discussed in the theoretical analysis, the effectiveness of MLLM-CD is affected
by the sophisticated reasoning and generation capabilities inherent in MLLMs. These could include
faithful interpretation, consistent logical reasoning, accurate generation of causally plausible counter-
factuals across modalities, and robust understanding of intra- and inter-modal interactions. Despite
the rapid advancements in alignment research [103, 104], MLLMs may still hallucinate, exhibit
biases present in their training data, or fail to capture subtle causal nuances.

Future Opportunity: Developing methods to rigorously validate, calibrate, and enhance MLLM out-
puts within the causal discovery pipeline. This includes designing more robust prompting strategies,
incorporating uncertainty quantification for MLLM-derived factors and relationships, and exploring
techniques to mitigate MLLM biases and hallucinations specifically in the context of causal reasoning.
Investigating how to formally verify if MLLM reasoning aligns with established causal principles is a
crucial area.
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C Algorithm

Algorithm 1 The MLLM-CD Framework

Require: Multimodal unstructured dataset D; MLLM Ψ; Image generation model Φ; Statistical CD
method C; Target Y ; Maximum number of iterations T ; Prompts pintra,pinter,pm,pa,pMCR;
Thresholds τsem, τcausal, ϵ; Number of contrastive pairs K.

Ensure: Final discovered causal factors V(T ); Final discovered causal graph G(T ).
1: Initialization: t← 1, D(1) ← D, V(0) ← ∅.
2: while not converged and t ≤ T do
3: // Contrastive Factor Discovery
4: Extract semantic representations {eki} for all samples Xk ∈ D(t) using fi(·).
5: For each modality i = 1, · · · ,m:
6: Select top-K intra-modal contrastive pairs P(t)

i = {(xai,xbi)o}Ko=1 from D(t).
7: Candidate factors from intra-modal contrastive exploration V

(t)
intra ← Ψ({P(t)

i }mi=1,pintra).
8: Select top-K cross-modal contrastive pairs P(t)

x from D(t).
9: Candidate factors from inter-modal contrastive exploration V

(t)
inter ← Ψ(P(t)

x ,pinter).
10: Consolidate factors: V(t) ← Ψ(V

(t)
intra,V

(t)
inter,V

(t−1),pm).
11: Annotate values: D(t)

S ← Ψ(D(t),V(t),pa).
12: // Causal Structure Discovery
13: Infer causal graph: G(t) ← C(D(t)

S ,V(t) ∪ {Y }).
14: // Multimodal Counterfactual Reasoning
15: Initialize set of validated counterfactuals D(t)

CF ← ∅.
16: Identify candidate factors connected with ambiguous endpoints in G(t).
17: Let the set of candidate samples for counterfactual reasoning be P(t) ← {P(t)

i }mi=1 ∪ P
(t)
x .

18: for each sample Xk in P(t) do
19: for each uncertain factor Va do
20: Generate counterfactual: (X′

k,v
′
k, y

′
k)← Ψ(Xk,vk, yk, Va = v′ka,pMCR; Φ).

21: Extract embeddings e′ki for X′
k.

22: Isem(S
′
k)← I

[
1
m

∑m
j=1(sim(ekj , e

′
kj)) ≥ τsem

]
.

23: Rindep(S
′
k, Va,G(t))←

Σ
Vj∈NonDesc(Va,G(t))

I[∆vkj≥ϵ]

|NonDesc(Va,G(t))| .

24: Icausal(S
′
k, Va,G(t))← I[Rindep(S

′
k, Va,G(t)) ≤ τcausal].

25: if Isem(S′
k) ∧ Icausal(S

′
k, Va) = 1 then

26: D(t)
CF ← D

(t)
CF ∪ {X′

k}. ▷ Store multimodal counterfactual samples
27: end if
28: end for
29: end for
30: D(t+1) ← D(t) ∪ D(t)

CF. ▷ Augment multimodal dataset
31: t← t+ 1.
32: end while
33: return V(T ),G(T ).
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D More Details about Experiments

D.1 Details on Dataset Construction

Multimodal Apple Gastronome (MAG): Following [20], we construct a multimodal version of
the Apple Gastronome dataset [20]. We consider several key factors from different modalities to
contribute to the target variable, i.e., the overall rating score of the apple by gastronomes. These
factors include 3 visual features (i.e., color, size, and defects) and 5 verbal features (i.e., aroma,
taste, juiciness, nutrition, and recmd). The ground truth definitions of these factors are as
follows:

• color: The color of the apple, which can be bright red (positive), or greenish (negative).

• size: The size of the apple, which can be large (positive), or small (negative).

• defects: The presence of defects on the apple’s surface, which can be “free of defects”
(positive), or “with noticeable defects” (negative).

• aroma: The aroma of the apple, which can be strong (positive), or musty/rotten (negative).

• taste: The taste of the apple, which can be sweet (positive), or sour (negative).

• juiciness: The juiciness of the apple, which can be “abundant and refreshing moisture“
(positive), or “dry and lacking moisture” (negative).’

• nutrition: The nutritional value of the apple, which can be “highly nutritious with
essential nutrients” (positive), or “relatively low in nutritional value” (negative).

• recmd: The market potential of the apple, which can be “has significant market potential
and deserves wider recognition” (positive), or “might not bring the expected returns and
could even lead to losses” (negative).

We use the Apple Gastronome construction script from the COAT project 4 to randomly generate
200 samples, each representing a different combination of factor values. These samples constitute
the ground truth structured data and are generated according to the causal relationships defined in
Figure 5 (a). We also show the faithful causal graph discovered by the FCI algorithm [31] in Figure 5
(b), inferred directly from the ground truth structured data. Then, we use the Gemini 2.0 model [87] to
generate the review text for each sample to present verbal features. The image modality is generated
by Stable Diffusion 3.5 [90] to present visual features. The generated review text and images are
combined to form the final multimodal unstructured dataset.

Examples of the MAG dataset are given in Figure 6. The prompts used for generating review texts
and images are shown in Prompts D.1 and D.2. This dataset will be open-sourced under CC-BY 4.0.

Lung Cancer: This is a real-world dataset collected from the MedPix® database 5 under Open
Database License. We select 60 representative lung cancer cases (e.g., Non-Small Cell Lung
Cancer [91]). Each case involves four factors, i.e., gender, age, smoking, and lesion (image
modality), which jointly contribute to the likelihood of lung cancer diagnosis, i.e., the target variable
diagnosis. The definitions of these factors are as follows:

• gender: The patient’s gender, which is extracted from the demographic information and
can be male (positive) or female (negative). Gender differences in lung cancer incidence
have been observed [99, 100], with males historically showing higher rates, lower survival
rates at one and five years, and significantly increased risk of mortality.

• age: The patient’s age, which is extracted from the demographic information and can be
“≥ 60” (positive) or “< 60” (negative). Lung cancer incidence increases with age, with most
cases occurring in individuals aged 60 or older [100, 101].

• smoking: The patient’s smoking history, which is extracted from the medical history and
can be “smoker” (positive) or “non-smoker” (negative). Smoking remains the main risk
factor for lung cancer [91].

4https://causalcoat.github.io/
5https://medpix.nlm.nih.gov/home
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(a) Ground truth (b) FCI results

Figure 5: Ground truth and faithful (via FCI algorithm) causal graphs in the MAG dataset.

Review

Image

Score: -3 Score: -1 Score: 1

While boasting a high nutritional profile, 
this apple presents significant drawbacks. 
Its musty odor, predominantly sour taste, 
and dry texture render it commercially 
unviable, likely resulting in poor returns 
and potential financial losses.

This apple presents a concerning profile 
with its limited nutritional value and 
off-putting musty aroma, exacerbated by 
an overwhelmingly sour flavor. While its 
moisture content is appreciable, these 
significant flaws strongly suggest it will 
likely underperform financially and risks 
generating negative feedback.

This apple presents a strong, enticing 
aroma, though its decidedly sour profile 
and somewhat dry texture may not 
appeal to all palates. Despite this, its 
distinct character and significant market 
potential suggest it deserves greater 
visibility and wider appreciation.

Figure 6: Examples of the MAG dataset.

• lesion: The presence of a lesion in the lung, which is extracted from the medical imaging
(e.g., CT scans) and can be “with lesion” (positive) or “no clear lesion” (negative). Lesions
often present the early visible signs of lung cancer, and imaging techniques such as X-ray,
CT, and PET scans are among the most widely used tools for its detection and diagnosis [91].

These factors contribute to the target variable diagnosis in the way as shown in the ground truth
causal graph in Figure 7 (a). The faithful causal graph discovered by the FCI algorithm [31] is shown
in Figure 7 (b). These factors and the causal relationships are carefully curated based on evidence
from established medical literature [91, 99–101].

Examples of the Lung Cancer dataset are given in Figure 8.

gender

diagnosis

age smoking lesion gender

diagnosis

age smoking lesion

(a) Ground truth (b) FCI results
Figure 7: Ground truth and faithful (via FCI algorithm) causal graphs in the Lung Cancer dataset.

30



Patient
Info

Image

Diagnosis: 2 Diagnosis: 3 Diagnosis: 5

48 year old male with recent 
history of headache and 
unsteady gait.

47 y/o black male with 30 
year smoking history, 
complains of dyspnea on 
exertion.

An 83-year-old male smoker, COPD on 2L 
home oxygen, presents to the emergency depart-
ment with worsening dyspnea on exertion. He 
had a mild dry cough with an 8 lb weight loss 
over the past month with no change in appetite. 
He reported no history of fevers or chills.

Figure 8: Examples of the Lung Cancer dataset.

D.2 Details on Prompts

In this section, we provide examples of prompts used in our experiments, including:

• Generating review texts for the MAG dataset (Prompt D.1)

• Generating images for the MAG dataset (Prompt D.2)

• Intra-modal contrastive exploration (Prompt D.3)

• Inter-modal contrastive exploration (Prompt D.4)

• Factor consolidation (Prompt D.5)

• Annotation (Prompt D.6)

• Counterfactual generation (Prompt D.7)

Prompt D.1: Generating Review Texts for MAG Dataset

You are a picky gastronome on apples. You are ready to **evaluate apples and write reviews**.
Your writing should be **clear, solid and convincing to suppliers and customers**.

## Task

Please write a short review about the evaluation results for a given apple.

Evaluation Results: {apple feature}

Requirement:
- Combine all of those evaluation results into a more detailed review comment.
- Single paragraph; No quotation marks; The review comments should be complete.
- Modern English.
- No more than 60 words.
- Only output the review comment content directly without any other format or content.

Prompt D.2: Generating Images with Stable Diffusion for MAG Dataset

A {size} apple, that is {color}, and {defects}, white background, centred, fully in frame, well-lit,
realistic photo.

Negative Prompt: cropped, partial view, out of frame, low quality, low resolution.
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Prompt D.3: An Example of Intra-modal Contrastive Exploration Prompt pintra

# Intra-modal Contrastive Analysis

I’m showing you pairs of samples with significant differences.

## Pair 1
### Sample A (ID: {sample A ID}):
- **Score**: {score A}
- **Review**: {review A}
### Sample B (ID: {sample B ID}):
- **Score**: {score B}
- **Review**: {review B}
...

Based on these contrastive pairs, analyze the underlying interactions among potential factors that
lead to the observed differences.

# Task: Factor Identification

You are an expert food analyst specializing in apple evaluation. Based on the contrasting pairs and
interaction analysis:
1. Identify the key factors that differentiate these samples
2. Focus on factors that can be clearly observed. Each factor should focus on one concrete aspect
without overlap with {factors identified in previous iterations}
3. Create factors that have clear positive, neutral, and negative criteria

# Output Format

**Part 1**: Explain your analysis about the key differences between each sample pair.
**Part 2**: List the discovered factors using this exact template:

**Factor Name**
- 1: [Positive Criterion]
- 0: [Otherwise; or not mentioned]
- -1: [Negative Criterion]
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Prompt D.4: An Example of Inter-modal Contrastive Exploration Prompt px

# Inter-modal Mismatch Analysis

I’m showing you samples where the textual description (review) and visual appearance (image) of
samples seem to contradict each other.

## Pair 1
### Text from Sample A (ID: {sample A ID}):
- **Score**: {score A}
- **Review**: {review A}
### Image from Sample B (ID: {sample B ID}):
- **Score**: {score B}
- **Image**: {image B}
...

Notice the potential mismatch between what the review describes and what the image shows.
Analyze the underlying interactions among potential factors that could lead to this mismatch.

# Task: Identify Factors that Explain Text-Image Discrepancies

You are an expert food analyst specializing in apple evaluation. Based on the contrastive pairs and
interaction analysis:
1. Identify key factors where the textual reviews contradict what’s visible in the paired images
2. Each factor should focus on one concrete aspect without overlap{factors identified in previous
iterations}
3. Create factors that can explain these discrepancies with clear positive, neutral, and negative
criteria

# Output Format

**Part 1**: Explain your observations about the mismatches of each pair of textual and visual
information.
**Part 2**: List factors that explain these discrepancies using this exact template:

**Factor Name**
- 1: [Positive Criterion]
- 0: [Otherwise; or not mentioned]
- -1: [Negative Criterion]
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Prompt D.5: An Example of Factor Consolidation Prompt pm

# Factor Deduplication and Refinement

Below is a list of factors identified from different contrastive analyses:

Factor 1: {factor 1}
- 1: [Positive Criterion]
- 0: [Neutral Criterion]
- -1: [Negative Criterion]
...

Please:
1. Identify and merge similar factors; Each factor should be distinct and not overlap with others
and be specific to one aspect; Avoid general factors like "overall quality"
2. Refine factor definitions for clarity and precision
3. Output a consolidated list of the most important and non-overlapping factors

Only output the final results using this exact format for each factor:

**Factor Name**
- 1: [Positive Criterion]
- 0: [Otherwise; or not mentioned]
- -1: [Negative Criterion]

Prompt D.6: An Example of Annotation Prompt pa

# Factor Annotation

Please annotate the following samples based on these factors:

## Factor 1: {factor 1}
- 1: [Positive Criterion]
- 0: [Neutral Criterion]
- -1: [Negative Criterion]
...

# Samples to Annotate

## Sample 1:
- **Score**: {score 1}
- **Review**: {review 1}
- **Image**: {image 1}
...

# Task: For each sample, assign a value (-1, 0, or 1) to each factor based on the criteria above.

# Output Format

Please format your response strictly as follows:

**Sample [ID]**:
- Factor 1 ([factor1 name]): [Value]
- Factor 2 ([factor2 name]): [Value]
...

Repeat for all samples.
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Prompt D.7: An Example of Counterfactual Generation Prompt pMCR

# Refining Causal Factors and Relationships

I’m analyzing factors that affect sample scores based on reviews and images. I need your help to
refine my understanding of causal relationships.

## Data

### Sample 1:
- **Score**: {score 1}
- **Review**: {review 1}
- **Image**: {image 1}
...

## Current Factors
{Factor information}

## Annotated Factors
{Annotated factor values}

## Uncertain Causal Relationships
I’ve identified these causal factors, but there is uncertainty in the causal relationships of the
following factors:
{Uncertain factor information}

# Task: Counterfactual Reasoning

For each uncertain relationship above, please create a counterfactual scenario: "If factor X were
different (i.e., value being reversed if the factor is mentioned and skip the sample if the factor is
not mentioned for this sample), how would other factors be affected?" Based on this assumption
and your knowledge of apples, predict the values of other factors. Only create counterfactual
scenarios that support the valid and reasonable causal relationships and directions. Specifically,
there are two types of factors, verbal and visual factors. If the verbal factor is modified, revise
the review text directly with minimum changes to reflect the new scenario. If the visual factor
is modified, state a short instruction of the changes that need to be applied to the image, e.g.,
"Change the color of the apple to red." If no visual changes, please state ‘N/A’.

# Output Format

Please structure your response in the following format and respectively list the values of all the
factors for each sample in each counterfactual scenario:

## Counterfactual Scenario 1: [Changed Factor Name]
**Sample 1**:
- Factor 1: [Value]
- Factor 2: [Value]
...
- Factor N: [Value]
- Review: [Modified Review Text]
- Image: [Image Modification Description] (If applicable, otherwise ‘N/A’)

**Sample 2**:
...

## Counterfactual Scenario 2: [Changed Factor Name]
...
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D.3 Experimental Settings and Environment

D.3.1 Implementation Details

We detail the implementation of MLLM-CD as follows.

In the contrastive factor discovery module, we use the pretrained CLIP model [75] with the ViT-
B/32 checkpoint from OpenAI’s official release to extract textual and visual embeddings from the
multimodal samples in the MAG and Lung Cancer datasets. For intra- and inter-modal contrastive
exploration, we choose the top K = 5 pairs of samples with the prompts in Section D.2 for factor
identification and annotation.

In the causal structure discovery module, we adopt the FCI algorithm [31] to infer the causal structure
from the annotated factors. Additional discussion on different CD methods can be found in Section
D.7. We use the FCI implementation from the causal-learn library [12], available at the website 6.

In the multimodal counterfactual reasoning module, we set the threshold parameters as τsem = 0.7
and τcausal = 0.4 for consistency validation. ϵ is a small constant set to 10−6 to highlight any changes
in the non-descendant nodes. Following [20], the maximum number of iterations is set to T = 3.
Further analysis of parameter choices is discussed in Section D.8. The MLLMs used in experiments
are accessed via API calls, and all experiments are conducted on a server with two Intel Xeon 6346
CPUs, 256GB RAM, and two NVIDIA A40 GPUs.

D.3.2 Baselines

We provide a detailed list of the representative baselines used in our experiments, including:

• META is a strategy from [20] that identifies both causal factors and causal relationships
using only the knowledge encoded in MLLMs, guided by contextual information and task
descriptions.

• Pairwise [29] leverages the knowledge of MLLMs to identify potential causal relationships
between the given pairs of factors. Note that, this method only focuses on predicting
causal relationships based on given factors, and cannot directly uncover causal factors from
unstructured data. In our experiments, we use the factors identified by META as input to
this method.

• Triplet [60] extends the Pairwise method by using triplet-based queries and a robust aggre-
gation strategy to improve causal relation identification. Similar to Pairwise, it does not
involve causal factor discovery, and we use the factors discovered by META as input.

• COAT [20] is the most closely related work to ours and, to the best of our knowledge, the
only method specifically designed for causal discovery from unstructured data. We use the
official implementation of COAT 1 and adapt it to discover the full causal graph using FCI
algorithm [31]. Following the original setup [20], we set the number of iterations to T = 3.

D.3.3 Evaluation Metrics

Two major steps are involved in causal discovery from multimodal unstructured data, i.e., factor
identification and structure discovery. To validate the effectiveness of both steps, we adopt the
following widely used metrics [30]:

1) Factor Identification: We assess the accuracy and comprehensiveness of identified causal factors
using precision (NP), recall (NR), and F1 score (NF). Note that, the identified factor names may vary
across different methods and models. For evaluation, we manually align semantically correct factors
with the ground truth names to ensure consistency.

2) Structure Discovery: The quality of the discovered causal structure is evaluated using adjacency
precision (AP), adjacency recall (AR), and their F1 score (AF).

3) Combination: Different from conventional CD settings where all methods operate on the same
predefined set of factors, methods designed for unstructured data may identify different sets of
factors, leading to subgraphs that differ in coverage of the ground truth. For a fair and comprehensive

6https://causal-learn.readthedocs.io/en/latest/index.html
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Table 6: The full results for factor identification and structure discovery on the MAG dataset.7

MLLM Method NP ↑ NR ↑ NF ↑ AP ↑ AR ↑ AF ↑ ESHD ↓

GPT-4o

META 0.45± 0.08 0.52± 0.06 0.48± 0.07 0.72± 0.05 0.37± 0.06 0.49± 0.04 24.33± 3.51

Pairwise - - - 0.56± 0.10 0.33± 0.11 0.41± 0.11 43.33± 6.43

Triplet - - - 0.33± 0.06 0.37± 0.06 0.35± 0.06 61.67± 5.77

COAT 0.78± 0.19 0.37± 0.13 0.49± 0.15 0.37± 0.32 0.19± 0.17 0.25± 0.22 18.67± 2.52

MLLM-CD 0.83± 0.11 0.85± 0.06 0.84± 0.09 0.69± 0.05 0.41± 0.06 0.51± 0.04 15.33± 2.31

Gemini 2.0

META 0.71± 0.07 0.63± 0.06 0.67± 0.07 0.69± 0.08 0.41± 0.13 0.51± 0.11 18.67± 2.31

Pairwise - - - 0.49± 0.09 0.56± 0.11 0.51± 0.06 30.00± 2.00

Triplet - - - 0.41± 0.02 0.59± 0.13 0.48± 0.05 32.00± 2.00

COAT 0.85± 0.13 0.41± 0.06 0.51± 0.09 0.69± 0.10 0.26± 0.06 0.37± 0.05 16.00± 1.00

MLLM-CD 0.86± 0.05 0.89± 0.00 0.87± 0.03 0.76± 0.08 0.52± 0.13 0.60± 0.06 14.00± 3.46

LLaMA 4

META 0.51± 0.06 0.41± 0.06 0.45± 0.05 0.81± 0.17 0.26± 0.06 0.39± 0.07 21.67± 0.58

Pairwise - - - 0.50± 0.17 0.30± 0.06 0.36± 0.04 34.67± 6.66

Triplet - - - 0.66± 0.32 0.30± 0.06 0.38± 0.04 34.33± 7.77

COAT 1.00± 0.00 0.41± 0.06 0.58± 0.07 0.89± 0.19 0.30± 0.06 0.44± 0.10 14.67± 1.15

MLLM-CD 1.00± 0.00 0.85± 0.06 0.92± 0.04 0.62± 0.08 0.59± 0.06 0.60± 0.04 13.33± 0.58

Grok-2v

META 0.56± 0.11 0.44± 0.00 0.49± 0.04 0.75± 0.00 0.33± 0.00 0.46± 0.00 20.33± 3.06

Pairwise - - - 0.35± 0.02 0.33± 0.00 0.34± 0.01 28.33± 11.37

Triplet - - - 0.32± 0.02 0.33± 0.00 0.33± 0.01 30.33± 12.34

COAT 1.00± 0.00 0.37± 0.17 0.53± 0.18 0.17± 0.29 0.07± 0.13 0.10± 0.18 16.33± 1.15

MLLM-CD 1.00± 0.00 0.85± 0.06 0.92± 0.04 0.79± 0.21 0.44± 0.00 0.56± 0.06 11.00± 2.65

Average

META 0.56± 0.12 0.50± 0.10 0.52± 0.10 0.74± 0.10 0.34± 0.09 0.46± 0.07 21.25± 3.11

Pairwise - - - 0.47± 0.12 0.38± 0.13 0.40± 0.09 34.08± 8.76

Triplet - - - 0.43± 0.20 0.40± 0.14 0.39± 0.07 39.58± 15.00

COAT 0.91± 0.14 0.39± 0.10 0.53± 0.11 0.53± 0.36 0.20± 0.13 0.29± 0.19 16.42± 2.02

MLLM-CD 0.92± 0.10 0.86± 0.05 0.89± 0.06 0.72± 0.12 0.49± 0.10 0.57± 0.06 13.42± 2.68

evaluation, we adapt the standard SHD metric [98] to our scenarios, and present the extended SHD
(ESHD) metric to evaluate the overall performance of causal factor and structure discovery. Apart
from the computation of standard SHD on the matched subgraph, it also accounts for missing and
spurious factors, as well as the corresponding missing and spurious edges associated with those
factors. A lower ESHD value indicates that the discovered graph more closely matches the ground
truth, thereby reflecting better overall performance in both factor and structure discovery.

D.4 The Full Results on MAG Dataset

The full quantitative results for factor identification and structure discovery on the MAG dataset are
shown in Table 6. Here, we also illustrate the visual comparison of causal graphs discovered by
different methods and MLLM backbones on the MAG dataset. The results are shown in Figures 9,
10, 11 and 12. Several key observations can be made:

1. META, Pairwise, and Triplet infer causal relationships directly from the inherent knowledge of
MLLMs. While this leads to non-ambiguity, the resulting graphs tend to be overly complex, often
containing numerous redundant edges (e.g., Figure 10 (b)-(d)).

2. COAT identifies only a limited subset of causal factors and relationships. Moreover, the inferred
relationships often remain uncertain.

3. MLLM-CD produces a more comprehensive set of causal factors and relationships. Compared to
COAT, the structural ambiguities are reduced, and the resulting graph aligns more closely with the
ground-truth causal graph and the faithful graph shown in Figure 5 (b).

7Pairwise and Triplet do not involve the step of factor identification, thus metrics related to factor identification
are not applicable. Instead, we use the factors discovered by META for their structure discovery.
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Figure 9: Causal graphs discovered with Gemini 2.0 on the MAG dataset.
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Figure 10: Causal graphs discovered with GPT-4o on the MAG dataset.

38



score

recmd

nutrition

color size

defects

aroma taste

juiciness

(a) Ground truth (b) META (c) Pairwise

(e) COAT(d) Triplet (f) MLLM-CD

score

aroma

recmd

taste

colortexture

nutrition

consistency

score

taste aroma

juiciness

score

taste colorjuiciness

freshness origin

preparation

preparation

color

taste

score

juiciness

freshness

origin

origin

color

score

taste

juiciness

preparation

freshness

Figure 11: Causal graphs discovered with LLaMA 4 on the MAG dataset.
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D.5 The Full Results on Lung Cancer Dataset

The detailed results of different methods using various MLLM backbones on the Lung Cancer dataset
are presented in Table 7. Consistent with the findings on the MAG dataset, MLLM-CD demonstrates
superior performance in both causal factor identification and causal structure discovery in most cases.
Qualitative comparisons of discovered causal graphs are shown in Figures 13, 14, 15 and 16. Among
all methods, MLLM-CD consistently produces high-quality causal graphs that closely align with the
ground truth and the faithful causal graphs illustrated in Figure 7 (b), for example, see Figure 13 (f).

Table 7: Causal factor identification and structure discovery performance on the Lung Cancer dataset.7

LLM Method NP ↑ NR ↑ NF ↑ AP ↑ AR ↑ AF ↑ ESHD ↓

GPT-4o

META 0.33± 0.05 0.60± 0.00 0.42± 0.04 1.00± 0.00 0.50± 0.00 0.67± 0.00 21.67± 4.62

Pairwise - - - 0.67± 0.00 0.50± 0.00 0.57± 0.00 36.33± 10.21

Triplet - - - 0.67± 0.00 0.50± 0.00 0.57± 0.00 47.33± 14.98

COAT 0.47± 0.18 0.40± 0.00 0.42± 0.07 0.33± 0.58 0.08± 0.14 0.13± 0.23 11.67± 3.06

MLLM-CD 0.89± 0.10 1.00± 0.00 0.94± 0.05 0.92± 0.14 0.58± 0.14 0.69± 0.05 5.00± 0.00

Gemini 2.0

META 0.43± 0.07 0.73± 0.12 0.54± 0.08 0.92± 0.14 0.67± 0.14 0.76± 0.10 16.00± 0.00

Pairwise - - - 0.56± 0.10 0.67± 0.14 0.59± 0.02 33.33± 3.51

Triplet - - - 0.56± 0.10 0.67± 0.14 0.59± 0.02 40.00± 8.19

COAT 0.75± 0.25 0.47± 0.12 0.56± 0.11 1.00± 0.00 0.33± 0.14 0.49± 0.15 8.67± 2.08

MLLM-CD 0.94± 0.10 1.00± 0.00 0.97± 0.05 0.92± 0.14 0.83± 0.14 0.87± 0.13 4.67± 0.58

LLaMA 4

META 0.41± 0.08 0.67± 0.12 0.50± 0.04 0.72± 0.25 0.42± 0.14 0.52± 0.17 19.33± 5.03

Pairwise - - - 0.76± 0.21 0.58± 0.14 0.63± 0.05 32.33± 17.24

Triplet - - - 0.61± 0.10 0.58± 0.14 0.58± 0.02 36.67± 20.40

COAT 0.81± 0.17 0.47± 0.12 0.58± 0.08 1.00± 0.00 0.25± 0.00 0.40± 0.00 7.67± 0.58

MLLM-CD 0.82± 0.02 0.93± 0.12 0.87± 0.06 0.92± 0.14 0.67± 0.14 0.76± 0.10 5.67± 0.58

Grok-2v

META 0.29± 0.04 0.40± 0.00 0.33± 0.03 1.00± 0.00 0.25± 0.00 0.40± 0.00 20.00± 5.29

Pairwise - - - 1.00± 0.00 0.25± 0.00 0.40± 0.00 28.00± 8.89

Triplet - - - 1.00± 0.00 0.25± 0.00 0.40± 0.00 31.00± 8.00

COAT 0.56± 0.21 0.47± 0.23 0.51± 0.22 0.67± 0.58 0.17± 0.14 0.27± 0.23 9.67± 1.53

MLLM-CD 0.87± 0.12 0.80± 0.00 0.83± 0.05 1.00± 0.00 0.25± 0.00 0.40± 0.00 6.00± 1.00

Average

META 0.36± 0.08 0.60± 0.15 0.45± 0.09 0.91± 0.17 0.46± 0.18 0.59± 0.17 19.25± 4.27

Pairwise - - - 0.74± 0.20 0.50± 0.18 0.55± 0.10 32.50± 9.97

Triplet - - - 0.71± 0.19 0.50± 0.18 0.54± 0.08 38.75± 13.36

COAT 0.65± 0.23 0.45± 0.12 0.52± 0.13 0.75± 0.45 0.21± 0.14 0.32± 0.21 9.42± 2.31

MLLM-CD 0.88± 0.09 0.93± 0.10 0.90± 0.07 0.94± 0.11 0.58± 0.25 0.68± 0.19 5.33± 0.78

risk

smoking

lesion

response

cancer

environment

diagnosis

age

diagnosis

gender lesion age smoking

(a) Ground truth
(b) META (c) Pairwise

(d) Triplet (e) COAT (f) MLLM-CD

diagnosis

risk

cancer

smoking environment lesion age

response

diagnosis

lesion

smoking

symptom

gender

diagnosis

age smoking lesion

environment

diagnosis

response

cancer

lesion

age

smoking

risk

Figure 13: Causal graphs discovered with Gemini 2.0 on the Lung Cancer dataset.
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Figure 14: Causal graphs discovered with GPT-4o on the Lung Cancer dataset.

(a) Ground truth
(b) META

(c) Pairwise

(d) Triplet (e) COAT (f) MLLM-CD

gender

diagnosis

age smoking lesion

diagnosis

gender

lesion

smoking age

symptoms

diagnosis

smoking symptoms

lesion

diagnosis

smoking

lesion

history exposure symptoms

smoking

symptoms

diagnosis

lesion

exposure

history

diagnosis

history

smoking

lesion

symptoms

exposure

Figure 15: Causal graphs discovered with LLaMA 4 on the Lung Cancer dataset.
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D.6 The Full Results on Ablation Study

As a complement to Section 4.4, we present additional ablation study results on the MAG and Lung
Cancer datasets using two representative MLLMs, i.e., GPT-4o and Gemini 2.0. The detailed results
are shown in Table 8 and Table 9, respectively.

Table 8: Ablation study of MLLM-CD on the MAG dataset.
LLM Method NP ↑ NR ↑ NF ↑ AP ↑ AR ↑ AF ↑ ESHD ↓

GPT-4o

w/o CFD 0.83± 0.15 0.67± 0.11 0.73± 0.10 0.63± 0.32 0.22± 0.11 0.30± 0.10 17.00± 2.00

w/o CR 0.87± 0.14 0.74± 0.17 0.80± 0.15 0.68± 0.30 0.30± 0.23 0.36± 0.20 16.00± 2.65

w/o Both 0.79± 0.26 0.48± 0.32 0.58± 0.34 0.30± 0.26 0.15± 0.13 0.20± 0.17 16.33± 2.08

MLLM-CD 0.83± 0.11 0.85± 0.06 0.84± 0.09 0.69± 0.05 0.41± 0.06 0.51± 0.04 15.33± 2.31

Gemini 2.0

w/o CFD 0.94± 0.10 0.60± 0.06 0.73± 0.07 0.75± 0.23 0.37± 0.13 0.47± 0.09 15.00± 0.00

w/o CR 0.84± 0.08 0.78± 0.11 0.81± 0.09 0.74± 0.07 0.41± 0.06 0.52± 0.06 15.67± 3.51

w/o Both 0.81± 0.17 0.41± 0.06 0.54± 0.08 1.00± 0.00 0.26± 0.06 0.41± 0.08 16.33± 2.08

MLLM-CD 0.86± 0.05 0.89± 0.00 0.87± 0.03 0.76± 0.08 0.52± 0.13 0.60± 0.06 14.00± 3.46

Table 9: Ablation study of MLLM-CD on the Lung Cancer dataset.
LLM Method NP ↑ NR ↑ NF ↑ AP ↑ AR ↑ AF ↑ ESHD ↓

GPT-4o

w/o CFD 0.61± 0.05 0.73± 0.12 0.66± 0.06 0.33± 0.58 0.17± 0.29 0.22± 0.38 9.67± 1.53

w/o CR 0.83± 0.00 1.00± 0.00 0.91± 0.00 0.72± 0.25 0.42± 0.14 0.49± 0.09 5.33± 0.58

w/o Both 0.56± 0.10 0.53± 0.31 0.52± 0.22 0.33± 0.58 0.17± 0.29 0.22± 0.38 9.67± 2.08

MLLM-CD 0.89± 0.10 1.00± 0.00 0.94± 0.05 0.92± 0.14 0.58± 0.14 0.69± 0.05 5.00± 0.00

Gemini 2.0

w/o CFD 0.65± 0.09 0.60± 0.00 0.62± 0.04 1.00± 0.00 0.33± 0.14 0.36± 0.34 8.00± 1.00

w/o CR 0.89± 0.10 1.00± 0.00 0.94± 0.05 0.83± 0.29 0.25± 0.00 0.38± 0.04 5.33± 1.53

w/o Both 0.58± 0.14 0.53± 0.12 0.55± 0.11 0.33± 0.58 0.08± 0.14 0.13± 0.23 9.67± 2.31

MLLM-CD 0.94± 0.10 1.00± 0.00 0.97± 0.05 0.92± 0.14 0.83± 0.14 0.87± 0.13 4.67± 0.58

D.7 MLLM-CD with Different Causal Discovery Algorithms

Since MLLM-CD is designed as a general framework for causal discovery from multimodal un-
structured data, it can be implemented with various causal discovery algorithms. In this section, we
evaluate the performance of MLLM-CD when combined with different algorithms and compare its
effectiveness against the state-of-the-art unstructured causal discovery method, COAT. We select three
representative causal discovery algorithms from different categories: (1) PC [31] (constraint-based),
(2) GES [105] (score-based), and (3) CAM-UV [106] (functional causal model-based with latent
variable handling). Using Gemini 2.0 as the MLLM backbone, we evaluate the structure discovery
performance on both the MAG and Lung Cancer datasets. The results, presented in Table 10, show
that MLLM-CD achieves overall superior performance than COAT across various causal discovery
algorithms, demonstrating its robustness and adaptability.

D.8 Parameter Analysis

In this section, we analyze the impact of different parameters on the performance of MLLM-CD. We
mainly focus on the following parameters: (1) the number of iterations T ; (2) the number of pairs K;
(3) the semantic plausibility threshold τsem; and (4) the causal consistency threshold τcausal.

Iteration Number T . Following [20], we set the maximum number of iterations to 3. As shown in
Table 11, the performance of MLLM-CD improves notably from 1 to 2 iterations, while it remains
relatively stable between 2 and 3 iterations. In most cases, using 2 iterations provides a good trade-off
between performance and computational efficiency.

Figure 17 further illustrates the structural refinement achieved from iteration 1 to iteration 2. Notably,
the structure becomes more accurate and less ambiguous, yielding results that more closely align
with the faithful causal graph identified by FCI, as shown in Figure 7 (b).

Pair Number K. We explore the impact of the number of contrastive pairs K on the performance
of MLLM-CD. As shown in Figures 18 (a) and 19 (a), the performance of MLLM-CD improves
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Table 10: Causal structure discovery results of COAT and MLLM-CD with different causal discovery
algorithms on the MAG and Lung Cancer datasets.

Dataset CD Method AP ↑ AR ↑ AF ↑ ESHD ↓

MAG

PC
COAT 1.00 0.22 0.36 19.00
MLLM-CD 0.89 0.56 0.68 14.00

GES
COAT 0.67 0.22 0.33 16.00
MLLM-CD 0.75 0.33 0.46 16.00

CAM-UV
COAT 1.00 0.11 0.20 16.00
MLLM-CD 0.50 0.22 0.31 13.00

Lung

PC
COAT 1.00 0.50 0.67 8.00
MLLM-CD 0.75 0.75 0.75 2.00

GES
COAT 1.00 0.25 0.40 11.00
MLLM-CD 0.75 0.75 0.75 3.00

CAM-UV
COAT 1.00 0.25 0.40 10.00
MLLM-CD 0.60 0.75 0.67 3.00

Table 11: The performance of MLLM-CD with different iteration numbers on the MAG and Lung
Cancer datasets.

Dataset T NP ↑ NR ↑ NF ↑ AP ↑ AR ↑ AF ↑ ESHD ↓

MAG

1 0.84 0.78 0.81 0.74 0.41 0.52 15.67
2 0.86 0.89 0.87 0.76 0.52 0.60 14.00
3 0.89 0.89 0.89 0.80 0.44 0.57 13.00

Lung

1 0.89 1.00 0.94 0.83 0.25 0.38 5.33
2 0.94 1.00 0.97 0.92 0.83 0.87 4.67
3 0.94 1.00 0.97 1.00 0.75 0.86 4.00

with increasing K at first, but it diminishes slightly after reaching a certain point. This implies that
using too few pairs may fail to capture sufficient contrastive information for effective factor discovery,
while an excessive number of pairs could dilute the guidance signal and reduce model focus. Based
on our findings, we choose K = 5 as a balanced and effective setting for both datasets and adopt this
value in all experiments.

Semantic Plausibility Threshold τsem. This parameter determines how many counterfactual samples
are retained based on their semantic plausibility. A high threshold risks discarding many poten-
tially useful samples, thereby limiting the benefits of counterfactual reasoning in causal discovery.
Conversely, a low threshold may admit low-quality or hallucinated samples, introducing noise. As
shown in Figures 18 (b) and 19 (b), MLLM-CD achieves optimal and stable performance when
τsem = 0.7 on both datasets. We therefore set this value in our experiments. In addition, we observe
that MLLM-CD is relatively insensitive to variations in τsem, indicating robustness to this parameter.

Causal Consistency Threshold τcausal. This parameter controls the stringency of the causal consis-
tency check. As observed in Figures 18 (c) and 19 (c), setting a low threshold results in overly strict
filtering, which can reduce the number of usable counterfactuals and hinder performance. On the
other hand, a high threshold may allow too many causally inconsistent samples, introducing noise.
We find that τcausal = 0.4 offers a strong performance regarding factor identification and causal
structure discovery across both datasets, and we use this value in our experiments.
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Figure 18: The performance of MLLM-CD with different parameters of K, τsem, and τcausal on the
MAG dataset. (The lower the ESHD, the better the performance.)

D.9 Discussion on the Time Complexity and Scalability

Assume there are n samples, m modalities, d factors, K contrastive pairs, and T iterations. Assume
the cost of a single MLLM query as CΨ and an image generation query as CΦ. The number of
samples can grow in each iteration due to counterfactual augmentation; let Nt be the number of
samples in the t-th iteration. We first analyze the complexity of one iteration t.

Contrastive Factor Discovery: In intra-modal contrastive exploration, it requires O(m · N2
t ) to

find top-K intra-modal contrastive pairs, and O(m ·K · CΨ) for the MLLM query. In inter-modal
contrastive exploration, it requires O(N2

t ) for pair selection and O(K · CΨ) for the MLLM query. It
also requires O(CΨ) for factor consolidation and O(Nt · CΨ) for factor annotation. Therefore, the
total complexity for this module is O(m ·N2

t +m ·K · CΨ +Nt · CΨ).

Causal Structure Discovery: The complexity depends heavily on the chosen causal discovery
algorithm C, Nt, and d. We denote the complexity as O(CCSD(Nt, d)).

Multimodal Counterfactual Generation: It requires O(NCFt
· (CΨ + CΦ)) for counterfactual

generation, where NCFt
is the number of generated counterfactual samples in t-th iteration. For

semantic plausibility validation and causal consistency validation, it typically requires O(NCFt
·m)

and O(NCFt
· d). Thus, the total complexity for this module is O(NCFt

· (CΨ + CΦ + d)).

Overall Complexity: Let Nmax be the maximum Nt, we have the following rough upper bound for
the time complexity of the overall MLLM-CD:

O(T · (mN2
max +NmaxCΨ + CCSD(Nmax, d) +NCFt

· (CΨ + CΦ + d))). (D.7)

Scalability: The scalability of MLLM-CD with respect to the dataset size is primarily challenged by
two aspects:

1) The CFD module exhibits a quadratic complexity (O(mN2
max)), which can become computation-

ally expensive for large datasets. However, this can be mitigated by using strategies such as negative
sampling [107, 108] for contrastive pair selection.

2) The statistical causal discovery algorithm often involves a polynomial complexity in Nmax and
exponential complexity in d. Learning causal structures over a large number of samples and factors
remains an open problem in the literature [109].

In the future, as we briefly discussed in B.1, we will construct larger-scale multimodal unstructured
datasets for causal discovery and improve the scalability and efficiency of MLLM-CD by leveraging
advanced sampling techniques [107, 108] and more efficient causal discovery algorithms, such as
ENCO [109] and ETCD [110].
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Figure 19: The performance of MLLM-CD with different parameters of K, τsem, and τcausal on the
Lung Cancer dataset. (The lower the ESHD, the better the performance.)

This apple presents a concerning 
profile, marked by a disappointingly 
low nutritional value and an off-put-
ting musty aroma indicative of decay. 
Its predominantly sour taste and dry 
texture further detract from any appeal, 
suggesting it is unlikely to meet 
consumer expectations and risks signifi-
cant financial losses.

This apple presents with a concerning 
profile: a discernible musty aroma 
precedes a distinctly sour flavor and 
unpleasantly dry texture. Coupled with 
its low nutritional value, this specimen 
is unlikely to meet customer expecta-
tions, posing a significant risk of poor 
sales and potential financial losses.

Despite a concerning musty aroma 
indicating potential storage issues that 
need addressing, this apple boasts a 
notably high nutritional profile and 
pleasing sweetness, suggesting signifi-
cant market appeal that warrants 
greater attention and distribution.
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Figure 20: Examples of selected intra-modal and inter-modal contrastive pairs on the MAG dataset.

D.10 Case Study

We present a case study to illustrate how MLLM-CD contributes to the multimodal unstructured
causal discovery process.

Contrastive Factor Discovery: We first show some examples of intra-modal and inter-modal
contrastive pairs selected by MLLM-CD on the MAG dataset in Figure 20. For intra-modal contrastive
exploration, MLLM-CD effectively constructs contrastive pairs that highlight several key variations,
such as the differences in nutritional profiles, taste, and the presence of defects. By analyzing
the underlying intra-modal interactions, the model successfully identifies a largely accurate and
comprehensive set of factors. For inter-modal contrastive exploration, MLLM-CD selects mismatched
pairs to expose contradictions between modalities. This encourages the model to uncover more subtle
factors governing inter-modal interactions. Notably, it identifies the factor color, which was not
captured by the intra-modal analysis. This demonstrates the strength and necessity of the CFD module
in enhancing factor identification from multimodal unstructured data.

Multimodal Counterfactual Reasoning: To demonstrate the effectiveness of the MCR module in
generating meaningful counterfactual samples, we present both textual and visual counterfactuals
generated by MLLM-CD on the MAG and Lung Cancer datasets, as shown in Figures 21 and 22,
respectively. The generated counterfactuals are both semantically plausible and causally consistent.
For instance, in Figure 21, when reasoning about the counterfactual scenario “what if nutritional
profile were different”, the model generates a new review comment that aligns semantically and
causally with the original context. More importantly, it captures the latent causal relationship between
the nutritional profile and market potential (as shown in the ground truth causal graph in Figure 5(a))
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Original

Counterfactual Generation

Different Nutrition?

Counterfactuals

This apple boasts a remarkable nutri-
tional profile, a captivating aroma, and 
a pleasingly sweet yet refreshing flavor, 
complemented by its abundant mois-
ture; its significant market potential 
clearly warrants broader attention and 
availability.

This apple presents a concerning nutri-
tional profile, a captivating aroma, and a 
pleasingly sweet yet refreshing flavor, 
complemented by its abundant moisture; 
its limited market potential suggests it 
requires further improvements to gain 
broader attention and availability.

Counterfactual Generation

Having Defects?

Figure 21: Examples of counterfactual samples generated by MLLM-CD on the MAG dataset.

Original

Counterfactual Generation

Different Gender?

Counterfactuals

54 y/o female with report of abnormal 
chest radiograph at another institution. 
A prior routine chest radiograph from 
four years earlier was reportedly 
normal.

54 y/o male with report of abnormal 
chest radiograph at another institution. A 
prior routine chest radiograph from four 
years earlier was reportedly normal.

Counterfactual Generation

Reduce Lesion?

Figure 22: Examples of counterfactual samples generated by MLLM-CD on the Lung Cancer dataset.

based on its knowledge and appropriately modifies the market potential in response to changes in
the nutritional profile. Similarly, in the visual domain, the counterfactual samples accurately reflect
causal changes. In Figure 22, for instance, the generated image clearly shows a reduction in lesion
area, reflecting the intended counterfactual condition. These results highlight the capability of the
MCR module to produce high-quality, causally informative counterfactual samples that contribute
meaningfully to the causal discovery process.

Overall Causal Discovery Process: We further illustrate the overall causal discovery process of
MLLM-CD using an example from the MAG dataset, as shown in Figure 23. Given a multimodal,
unstructured input, MLLM-CD first identifies the factors nutrition, color, defects, aroma,
taste, juiciness, sentiment, recmd, along with the target variable score. For clarity, some of
these factors are highlighted directly within the original sample. The model then annotates the values
of these factors to construct the structured data as input for causal structure discovery. Once an initial
causal graph is inferred, MLLM-CD applies the MCR module for iterative refinement, enhancing the
accuracy and reducing structural ambiguity.

E Broader Impacts

This work aims to advance causal discovery by extending it to multimodal unstructured data, leverag-
ing the understanding and reasoning capabilities of multimodal large language models (MLLMs).
The goal is to enable broader applications and societal benefits, such as accelerating scientific dis-
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This apple presents a concerning profile 
with its low nutritional value, 
off-putting musty aroma, and over-
whelmingly sour, dry flesh. Such 
characteristics strongly suggest it will 
fail to meet consumer expectations, 
likely resulting in poor sales and poten-
tial financial losses.

Score: -5
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Figure 23: An example of the causal discovery process of MLLM-CD on the MAG dataset.

covery, enhancing multimodal decision-making, and enhancing medical diagnosis systems. This
study does not involve any human subjects or raise new ethical concerns. Dataset usage adheres to
public availability and anonymization principles. The proposed method is intended for beneficial
applications and does not introduce specific risks related to harmful insights, privacy, security, legal
compliance, or research integrity, beyond the general considerations for MLLM technologies.
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