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ABSTRACT

A major challenge in the field of computational de novo protein design is the ex-
ploration of uncharted areas within protein structural space, i.e., generating “des-
ignable” protein structures that nature has not explored. However, the large de-
grees of freedom of protein structural backbones complicate the sampling process
during protein design. In this work, we propose a new coarse grained protein
structure representation method DiffTopo - an E(3) Equivariant 3D conditional
diffusion model, which greatly increases the sampling efficiency. Combined with
the RFdiffusion framework, novel protein folds can be generated rapidly, allowing
for efficient exploration of the designable topology space. This opens up possi-
bilities to solve the problem of generating new folds as well to functionalize de
novo proteins through motif scaffolding, where functional or enzymatic sites can
be introduced into novel protein frameworks.

1 INTRODUCTION

Proteins govern vital biological functions, including enzyme catalysis, molecular transport, and cel-
lular activity modulation. The intricate relationship between protein function and three-dimensional
architecture is essential. One of the most important goals of the field of de novo protein design
involves the computational generation of novel and realistic protein structures that fulfill specific
structural and/or functional requirements (Pan & Kortemmel 2021} Kuhlman & Bradleyl 2019).

Much work has been done to address the problem of computationally generating new protein struc-
tures, but has often encountered challenges in creating diverse and realistic folds. Traditional meth-
ods typically apply heuristics to assemble protein fragments into structures, which are limited by
expert knowledge and available data (Simons et al.l [1997; [Minami et al., 2023; Mackenzie et al.,
2016; Jacobs et al., 2016). Recently, deep generative models have been proposed to address these
issues. Generative models rely on complex equivariant network architectures or loss functions to
learn to generate 3D coordinates or internal torsion angles that describe protein structures (Anand
et al., 2019; |/Anand & Achim, 2022} |[Lin & AlQuraishi, 2023 |Luo et al., 2022; [Trippe et al., 2023;
Yim et al., |2023bfa; [Eguchi et al.| 2022} Watson et al.| [2023). Equivariant architecture (Satorras
et al.} 2022;|Jing et al., 2021} |[Fuchs et al., 2020) ensures that the probability density of protein struc-
ture sampling remains constant under translation and rotation. RFdiffusion (Watson et al.| 2023) and
Framediff (Yim et al.| [2023b) have successfully learned the complex distribution of protein back-
bones and can generate designable protein backbones. However, these methods still encounter some
obstacles in the goal of generating novel, previously unseen structures. For example, when gen-
erating backbones with a length less than 200 amino acids (AA), the resulting backbones are very
similar to natural structures. The reason is when the length of the amino acid increases, the degree
of freedom of the backbone increases exponentially. This is addressed in the work of [Taylor et al.
(2008) and Harteveld et al.| (2022); [Yang et al.| (2020) where protein structure is conceptualized as
a spatial stacking of standard secondary structures, significantly reducing the degree of freedom in
the protein fold space.

Motivated by recent advances, we investigated the feasibility of utilizing deep learning models to
explore the protein fold space condensed protein rerpesentations. In this work, we introduce a pro-
tein representation based on a coarse-grained (CG) topology representation (depicted in Figure 1
top row). We have established a pipeline (Figure 1 bottom row) that utilizes a simple secondary
structure string description as conditional input to autonomously generate a plausible CG topology.
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Our approach involves training a diffusion model named DiffTopo, which learns the relative spatial
position distribution of plausible secondary structures. From this model, we sample and generate
CG topology representations with reasonable secondary structures. We then construct the standard
secondary structure at the positions specified by CG topology, resulting in what we term a “’protein
sketch.” This Protein Sketch serves as direct input to RFdiffusion, to generate designable back-
bones consistent with the input. Notably, our method avoids direct sampling using explicit atomic
representations, ensuring a fast and efficient sampling process. Difftopo’s sampling is oriented to-
wards exploring diverse protein folds, while RFdiffusion is subsequently employed to identify the
corresponding designable backbone. This dual-stage approach contributes to the effectiveness and
efficiency of our sampling methodology. The detailed description of the methodology is presented
in the appendix A.1.
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Figure 1: Overview of the DiffTopo de novo protein design pipeline. The first step is to convert the
secondary structure into a CG topology representation, followed by transforming the non-redundant
backbones in the entire CATH database into CG topology to create a dataset. Then we develop
the DiffTopo-RFdiffusion framework for de novo protein design. DiffTopo is the diffusion model
to generate CG topology, which can be converted to protein sketches guiding RFdiffusion in the
generation of protein backbones.

2 RESULTS

2.1 DIFFTOPO CAPTURES THE DISTRIBUTIONS OF NATIVE PROTEIN STRUCTURES

Standardize metrics are not available to assess the quality of the generated topological sketches. In
backbone generation tasks, evaluation often relies on geometric features like Ramachandran distri-
bution and bond length, angle. Based on the sketch level representation, our evaluation focuses on
the diffusion model’s ability to estimate data probability density, checking alignment with authentic
data distribution. We defined several geometric descriptors for the topological features of (Figure
2A). The DiffTopo generated CG topologies yield a similar distribution to the features observed
in natural structures (Figure 2B, 2C). The results indicate that the diffusion model adequately ap-
proximates the distribution of real data, despite with a tendency to smoothing discrete high-density
peaks.

2.2  SIMILARITY OF SKETCH AND BACKBONES

To confirm that the CG topology accurately represents the fold of the real protein, and to verify that
the backbone generated by RFdiffusion has the same protein fold as the CG topology, we assess the
similarity between protein sketches constructed from CG topology and backbones — both real and
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Figure 2:  Structural representation and distribution of real and generated data. (A) Local and
pairwise geometric features to describe spatial relative positions of SSEs, including internal angles
within one SSE, distance between centroids of two SSEs and dihedrals between two SSEs. (B)
Local geometric feature distributions of generated (red) and real data (blue). (C) Pairwise geometric
feature distributions of generated (red) and real data (blue)

randomly generated by RFdiffusion. Here, we calculate TMscore (Zhang & Skolnick} 2004} [Xu &
and RMSD metrics to compare native backbones with protein sketches derived from
their CG topology. The TMscore and RMSD between sketches generated from CG topology and
the corresponding backbones are also calculated. As depicted in Figure 3A and 3B, the arrangement
of most Secondary Structure Elements (SSEs) in protein sketches is similar to their corresponding
backbones, with TMscores surpassing 0.5 and RMSD below 3A. The consistently high TMscores
and low RMSD values confirm the agreement between the generated backbones and their sketch
inputs. This supports the confident classification of these generated backbones and their associated
protein sketches as representing the same protein fold.

2.3 DESIGNABILITY, NOVELTY AND DIVERSITY

To test the designability of the generated backbones backbones, we designed amino acid sequences
for the backbone and predicted whether these sequences can fold back into the target topology. The
designability of the backbone is evaluated through self-consistency assessment. Drawing inspiration
from the research of FrameDiff 12023b) and ProtDiff (Trippe et al.l [2023)), we quantify
self-consistency using Ca RMSD (scRMSD, lower values are better) and predicted local distance
difference test (pLDDT, higher values are better). To assess the novelty of the backbone, we pick
generated backbones with high designability (SCRMSD <3 Aand pLDDT >90) and search them
in the entire CATH database and report their highest TMscore, referred to as Max PDB TMscore.
To quantify diversity, we utilize the clustering function of FoldSeek (van Kempen et al.l [2023) to
cluster the sampled backbones with a 0.5 TMscore threshold. The TMscore between backbones
and the number of clusters obtained are reported. We used RFdiffusion random sampling of back-
bones with lengths ranging from 40 to 200 as a comparative benchmark. Two types of random
sampling were performed: random sampling of CG topology generated backbones using random
lengths of SSE strings as input, and random sampling of CG topology using SSE strings with low
occurrence frequency in the database. Figures 3C and 3D illustrate that, while there was a trade-off
in designability compared to using RFdiffusion alone, many designs still maintained scRMSD val-
ues below 3A. However, Figure 3D highlights that, when employing SSE strings with low frequency
in the database for random sampling, our approach yielded significantly higher novelty in obtaining
highly designable backbones compared to RFdiffusion. Figure 3E shows the diversity in spatial
arrangements of secondary structures sampled by our method. We sampled 500 highly designable
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Figure 3: Features of protein sketches and generated backbones. (A) TM-score between sketches
and native structures (green) and generated backbones at different lengths (yellow). (B) RMSD
between sketches and native structures (green) and generated backbones at various lengths (yellow).
(C) Designability of generated backbones: scRMSD based on 1000 samples for each length range
(40-100, 100-150, 150-200) in different methods. Purple: RFdiffusion random sample (baseline),
Yellow: our pipeline’s random sampling of SSE strings, Green: our pipeline’s sampling of low-
probability SSE strings in the database. (D) Novelty of generated backbones: color of box represents
the same as in (C). (E) Diversity of generated backbones: heatmap of TM scores between each
backbone after hierarchical clustering. Displaying structures from the top 5 largest clusters.

backbones for the sequence "EEEHHEHE” and calculated the TM score between each structure,
resulting in a total of 109 clusters. Here, we present the representative structures of the 5 largest
clusters.

3 APPLICATION FOR PROTEIN DESIGN

3.1 NOVEL FOLD EXPLORATION AND SCAFFOLD GENERATION FOR FUNCTIONAL MOTIF

In order to showcase the model’s exploration capabilities across different folds, we selected three
distinct secondary structure compositions: «, all-3, and mixed a-3, for protein fold exploration.
Figure 4 illustrates the novel folds with high designability that we discovered in each of these sec-
ondary structure compositions. Our pipeline demonstrates remarkable versatility by uncovering
novel folds that do not exist in various secondary structure combinations, including all-, all-/3, and
mixed -3 folds. We also present the most similar structures to these folds that can be found with
FoldSeek (van Kempen et al., [2023)). Interestingly, the closest structures are not of the same fold as
tose that were generated, demonstrating the novelty of our structures. Notably, even in the presence
of 394 distinct 7-helix folds within the CATH database, our approach successfully identifies new
and unique folds. By evaluating the sequence-to-structure quality of these main chains, we observe
that the DiffTopo-RFdiffusion framework can sample novel folds and generate high-quality main
chain structures.

In addition to random sampling of main chain structures, we explored another application of
DiffTopo—generating scaffolds for existing secondary structure motifs. Here, we attempted to
design a new scaffold for the DBL1_03 protein binder that binds to PD-L1 (complex PDB id:
7XYQ) (Gainza et al} 2023). The A1-A20 helical portion of DBL1_03 forms the interacting in-
terface with PD-L1. We developed a motif scaffolding pipeline (in Appendix A.1.4). The best-
designed structure, predicted using Alphafold multimer, is shown in the right panel of Figure B.1 in
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Figure 4: Explorations of novel folds using DiffTopo. Results for novel fold exploration in all-
a(top), mixed a-B(middle) and all-4 (bottom) folds. The plots show TM-scores between generated
backbones and Alphafold2 predictions against predicted pIDDT. Red points indicate sequences with
high designability (TM-score >0.8, pIDDT >80). The second column displays DiffTopo-generated
protein sketches. The third column presents backbone alignment with Alphafold2 predictions, and
the last column compare the closest structure found by Foldseek.

the Appendix. The predicted binding positions by Alphafold align well with the ground truth. This
demonstrates the potential of our method in constructing scaffolds for tasks involving the creation
of motifs with existing secondary structures.

4 DISCUSSION

We show that a new representation termed CG topology is able to capture the three-dimensional fea-
tures of protein folds correctly using very few data points, reducing the sampling space for protein
design. With our generative diffusion model, DiffTopo, we not only learn the distribution of relative
positions of secondary structures but also sample diverse topologies. By passing protein sketches
to RFdiffusion, we are able to generate designable protein backbones in 3D space and explore the
protein fold space with fewer degrees of freedom. Comparing with RFdiffusion only as benchmark,
and using ProteinMPNN and AlphaFold2 as an orthogonal test, our framework improves the diver-
sity of protein space exploration while still maintaining good designability. Our model also shows
the capability in motif scaffolding problem when motifs with secondary structures are available.

Our results demonstrate that the DiffTopo+RFdiffusion framework is capable of designing new pro-
teins and explore novel folds non-existent in nature. Compared to all other backbone atom level
models like RFdiffusion and Framediff, our framework can massively sample topological space
with different secondary structure arrangements in a short time. On the other hand, compared to
Form and GENESIS(Harteveld et al., 2022), we can make protein topology sampling automatically
instead of manually construct it. Our work provides a new perspective on protein structure rep-
resentation and we believe there is much to explore in the space of this representation to improve
performance in protein universe searching and protein design. For example, our method can be
leveraged to generate customized protein backbones exhibiting highly regular patterns, similar to
nanomaterials. Moreover, our approach holds the potential to create novel scaffolds for existing
functional motifs, offering applications in de novo enzyme and antibody design.
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A APPENDIX

A.1 METHOD

A.1.1 COARSE-GRAINED TOPOLOGY REPRESENTATION

Inspired by the Form representation (Taylor et al., |2008)) and protein sketches (Harteveld et al.,
2022), where protein structures are built by the assembly of their secondary structures, we adopt a
simplified representation referred to as a ”"Coarse-grained topology (CG topology)”. The topology
reduces the intricate protein structure into a stacked arrangement of Secondary Structure Elements
(SSEs), achieved by representing secondary structures with three carbon alpha centroids, as illus-
trated in Figure 1A. CG topology involves capturing the geometric position of helices and strands
through centroids. For helices, centroids include the first and last four Ca atoms, as well as the total
Ca atom centroid. Strands are represented by centroids of the first and last two Ca atoms, along
with the overall Ca atom centroid within the strand. CG topology can also be easily represented
as a protein sketch, which is a rough 3D approximation of a native protein structure with standard
SSEs, lacking loops, and AA side chains. Compared with Form and protein sketch, this represen-
tation method of CGtopo gets rid of the concept of layers and has a higher freedom in structural
representation to represent structures like beta barrels, and it is still simple with a small number of
degrees of freedom.

A.1.2 DATASET

Using the CG topology approach we can easily convert a protein structure database, such as PDB,
from standard protein models to CG topology structures. In this paper, all PDB structural data
are sourced from CATH, a database organized as a classification of protein structures (Knudsen &
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Wiuf, 2010). To mitigate the influence of structural redundancy on the data distribution, we em-
ploy the CATH-dataset-nonredundant S40 for training data, yielding 31,886 non-redundant protein
structures. 90% of structures are used for training and 10% rest are used for independent validation.

A.1.3 DIFFTOPO+RFDIFFUSION FRAMEWORK

First, we introduce DiffTopo, a Equivariant diffusion model for generating CG topology conditioned
on SSEs strings. Based on previous works on denoising diffusion (Song et al., 2021;[Ho et al., 2020;
Austin et al.;2023), given a data point sampled from a real data distribution zy ~ ¢(z), the forward
diffusion process is defined by adding Gaussian noise gradually to the data point zy form corrupted
samples z;. For one CG topology data zg, there are three points x and corresponding secondary
structure type u. At time step ¢ = 0,...,T, the conditional distribution of the intermediate data
state z; given the previous state is defined by the multivariate normal distribution,

Q(Zt | Zt—l) =N (Zt; VA 5752’7571,5751)

The step sizes are controlled by a variance schedule {3; € (0, 1)}th1. The process is constructed to
be Markovian and if we let oy = 1 — 3; and a; = H§:1 «;, we could obtain the distribution of z;

given x
q(z | 20) = N (20 Vaizo, (1 —ag) I)

For the backward process, we need to learn a model p to approximate these conditional probabilities.
Pzt | ze,u) =N (2e-1; 1 (21,1, u) , B (21, 1))

o (x4, t,u) is predicted by the neural network. In this paper function p that predicts noise €y is
implemented as geometric vector perceptrons (Jing et al.l [2021). The input to GVPs is the noised
version of the point coordinates x; and point feature h; at time ¢ and context u. Note that the
predicted noise e includes coordinate and feature components, € = [ex, €p]. The predicted noise
could be calculated by

€0 (v1,1) = GV P (x4, hyyu,t) — [z4, he]

Following the generation of the CG topology via the diffusion process, utilizing CG topology allows
us to straightforwardly obtain the positions and lengths of standard Secondary Structure Elements
(SSEs). Since CG topology retains a certain level of fuzziness, we need a backbone level model to
systematically search for the designable backbone corresponding to CG topology. Here, we leverage
RFdiffusion, a highly effective backbone generation model to generate designable backbones from
CG topology. Initially, we construct a protein sketch from standard SSEs based on CG topology and
utilize the motif modeling function inherent in RFdiffusion to directly connect the SSEs. Subse-
quently, we employ the partial diffusion approach to identify a reasonable backbone structure within
this interconnected structure. Then we employ the Protein Message Passing Neural Network (Pro-
teinMPNN) (Dauparas et al., [2022) for fixed backbone sequence design algorithm to obtain amino
acid sequences. These sequences are then input into the structure prediction algorithm Alphafold2
(Jumper et al.l 2021)) to predict the structure, which is use to validate the designability of generated
backbones.

A.1.4 MOTIF SCCAFOLD MODELING

First, we extract the initial helix combined with PD-L1 in DBL_03 and convert it to CGtopo. Subse-
quently, we employ Difftopo’s conditional generation protocol to sample the entire scaffold’s CG-
topo, using the condition "HEHEHE’ while keeping the first helix unchanged. The sampled CGtopo
is then constructed into a protein sketch, with the first helix replaced by a functional motif.

Next, RFdiffusion’s fixcontig protocol is utilized to connect the loops, followed by the partial dif-
fusion protocol to optimize the entire backbone while preserving the first 20 amino acids. Lastly,
ProteinMPNN is employed to design sequences for positions other than the first 20 amino acids. Al-
phafold is then used to predict the monomer structure, and Alphafold multimer is applied to predict
the complex structure.

B SUPPLEMENTARY FIGURES
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(A) AF2 prediction of PDL-1 and best design
£33

M Best design
M PDL-1

Complex pLDDT=84.9
iPTM=0.52

Figure B.1: Motif scaffolding application. (A) Prediction of multimer structure of best design and
PD-L1. Zoomed-in part shows the AlphaFold2-predicted interface, with red residues representing
the functional motif binding to PD-L1.
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