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Abstract

Predicate entailment detection is a crucial task
for question-answering from text, where pre-
vious work has explored unsupervised learn-
ing of entailment graphs from typed open re-
lation triples. In this paper, we present the
first pipeline for building Chinese entailment
graphs. In this pipeline, we present a novel
high-recall open relation extraction (ORE)
method and the first Chinese fine-grained en-
tity typing dataset following the FIGER type
ontology. Through experiments on the popular
Levy-Holt dataset, translated into Chinese, we
show that our Chinese entailment graph out-
performs a range of strong baselines by large
margins. Moreover, an ensemble of Chinese
and English entailment graphs sets a new un-
supervised SOTA on the original Levy-Holt
dataset, surpassing previous SOTA by more
than 4 AUC points'.

1 Introduction

Predicate entailment detection is important for
many tasks of natural language understanding
(NLU), including reading comprehension and se-
mantic parsing. Suppose we wish to answer a ques-
tion by finding a relation V holding between enti-
ties A and B. Often, V cannot be found directly
from the reference passage or database, but another
relation U can be found between A and B, where
U entails V (for instance, suppose U is buy, V is
own). If we can confirm this with predicate entail-
ment detection, we can then answer the question.
To detect predicate entailments, previous work
has explored unsupervised learning of typed en-
tailment graphs (Szpektor and Dagan, 2008; Be-
rant et al., 2011, 2015; Hosseini et al., 2018, 2019;
Hosseini, 2021). Entailment graphs are directed
graphs, where each node represents the predicate
of a relation, and an edge from node U to node V
denotes “U entails V”. Entailment graphs are built

'Our codes and data will be released on Github.

based on the Distributional Inclusion Hypothesis
(DIH) (Dagan et al., 1999; Geffet and Dagan, 2005;
Herbelot and Ganesalingam, 2013; Kartsaklis and
Sadrzadeh, 2016). Predicates are disambiguated ac-
cording to their arguments’ types, predicates taking
the same types of arguments go into one subgraph.

While previous work on building entailment
graphs has been limited to English, building entail-
ment graphs for other languages is an interesting
and challenging goal. The importance is two-fold:
for that language, a native entailment graph would
facilitate NLU in it; from a multi-lingual perspec-
tive, entailment graphs in different languages host
complementary information, and the different pol-
yseme mappings are helpful for disambiguation.
Thus, entailment graphs in multiple languages open
up many possibilities for cross-lingual alignment,
as we will showcase with a simple ensemble.

In this paper, we propose a pipeline for build-
ing entailment graphs in Chinese, as it is distant
enough from English to be rich in complementary
information, meanwhile relatively high-resource so
that reliable tools can be found. Though being rel-
atively high-resource, building entailment graphs
in Chinese is still filled with challenges, where
the two toughest ones are open relation extraction
(ORE) and fine-grained entity typing (FET).

ORE is crucial for entailment detection, identi-
fying the predicates-argument pairs in sentences.
It has been solved with either rule-based methods
over syntactic parsers (Fader et al., 2011; Etzioni
etal., 2011; Angeli et al., 2015), or neural sequence
labellers distantly-supervised by rule-based meth-
ods (Cui et al., 2018; Stanovsky et al., 2018; Kol-
luru et al., 2020). The challenge in ORE can be
largely attributed to the poor definition of “open
relations”. The situation worsens in Chinese, as
the parts of speech have a higher degree of ambi-
guity and many linguistic indicators of relations
are poorly represented. Previous work on Chinese
ORE has resorted to a conservative approach (Qiu



and Zhang, 2014; Jia et al., 2018), failing to iden-
tify many constructions relevant to relation extrac-
tion. In this paper, we propose a novel dependency-
based ORE method which, to our best empirical
observation, provides a comprehensive account for
constructions where relations are involved.

The other challenge, regarding FET, lies mainly
in the lack of a suitable dataset over a suitable type
ontology for predicate word-sense disambiguation:
too coarse a type set would be insufficient for dis-
ambiguation, while too granular a type set would
result in disastrous sparsity in the entailment graph.
We follow Hosseini et al. (2018) on using the pop-
ular FIGER type set (Ling and Weld, 2012), and
elicit a Chinese FET dataset with FIGER labels via
label mapping. Entity typing models built on this
dataset are proven to be satisfactory in performance
and helpful for predicate disambiguation.

With these challenges solved, we build strong
Chinese entailment graphs. Evaluation on the Levy-
Holt dataset (Levy and Dagan, 2016; Holt, 2019)
(through translation) shows, that our Chinese entail-
ment graph outperforms baselines by large margins,
and is comparable with the English graph. By en-
sembling the prediction scores from English and
Chinese graphs, we show a clear advantage over
both monolingual graphs, and sets a new SOTA.

Our contribution is as follows: 1) we present a
novel Chinese ORE method sensitive to a much
wider range of relations than previous SOTA, and
a Chinese FET dataset, the first under the FIGER
type ontology; 2) we construct the first Chinese
entailment graph, comparable to its English coun-
terpart; 3) we reveal the cross-lingual complemen-
tarity of entailment graphs with an ensemble.

2 Background and Related Work

Predicate entailment detection has been an area
of active research. Lin (1998); Weeds and Weir
(2003); Szpektor and Dagan (2008) proposed vari-
ous cooccurrence-based scores for entailment de-
tection; Berant et al. (2011) proposed to “globalize”
the typed entailment graphs by closing them with
transitivity constraint; Hosseini et al. (2018) pro-
posed a more scalable global learning approach
using soft transitivity constraints; Hosseini et al.
(2019); Hosseini (2021) further exploited the dual-
ity between entailment graph construction and link
prediction to refine the entailment scores.

Our work is closely related to Hosseini et al.
(2018), with a few key adaptations for Chinese.

First, while they used a CCG parser (Reddy et al.,
2014) for ORE, our ORE method is based on de-
pendency parser (Zhang et al., 2020); second, while
they typed the entities by linking them to Wikipedia
entries, we use neural entity typing for the task.

Dependency parses are less informative than
CCQG parses, and require heavier adaptation. How-
ever, Chinese dependency parsers are currently
more reliable than CCG parsers (Tse and Curran,
2012). Previous work (Qiu and Zhang, 2014; Jia
et al., 2018; Zhang et al., 2020) has built Chinese
ORE algorithms from dependency parsers, but their
parsers omit many common constructions essential
to ORE. In Section 3, we present the most compre-
hensive Chinese ORE method so far.

Linking-based entity-typing methods can be
more accurate than neural entity typing, since the
type labels are exact as long as linking is correct.
Unfortunately, current Chinese entity linking meth-
ods require either translation (Pan et al., 2019)
or search logs (Fu et al., 2020). Both hurt link-
ing accuracy, and the latter grows prohibitively
expensive with scale. On the other hand, since
the seminal work of Ling and Weld (2012), neu-
ral fine-grained entity typing (FET) has developed
rapidly, where Yogatama et al. (2015); Shimaoka
et al. (2017); Chen et al. (2020) proposed various
methods, sharing a common interest in the FIGER
dataset. Lee et al. (2020) built a Chinese ultra-
fine-grained entity typing dataset through distant
supervision. Based on their dataset, we are able to
build our CFIGER dataset by label mapping.

As a relevant task, Ganitkevitch and Callison-
Burch (2014) created a multi-lingual database for
symmetric paraphrases, in contrast, entailment
graphs host directional entailment relations. More
recently, Schmitt and Schiitze (2021) proposed to
fine-tune language models on predicate entailment
datasets via handcrafted prompts. In contrast to
entailment graph construction, this is a supervised
approach, which carries the danger of overfitting to
dataset artifacts (Gururangan et al., 2018).

Another related strand of research, exemplified
by SNLI (Bowman et al., 2015), is concerned with
the more general NLI task, including hypernymy
detection and logic reasoning like A A B — B, but
rarely covers the cases where external knowledge
of predicate entailment is required. Entailment
graphs, on the other hand, are focused on providing
a robust resource for directional predicate entail-
ments induced from textual corpora.



3 Chinese Open Relation Extraction

We build our ORE method based on DDParser
(Zhang et al., 2020), a SOTA Chinese dependency
parser. We mine relation triples from its output by
identifying patterns in its dependency paths.

Depending on the semantics of the head verb,
instances of a dependency pattern can range from
being highly felicitous to marginally acceptable as
a relation. Motivated by our downstream task of
entailment graph construction, we go for higher
recall and take them in based on the Relation Fre-
quency Assumption: the less felicitous relations
occur less frequently, and are less likely to take part
in entailments when they do occur, thus they are
negligible. As will be shown through Table 3, this
approach significantly outperforms previous SOTA
on supporting entailment graph construction.

3.1 Parsing for Chinese ORE

The task of open relation extraction on top of LM-
driven dependency parsers, is really the task of
binding the relations in surface forms to the un-
derlying relation structures. Though trivial at first
sight, the definition of these underlying and essen-
tially semantic relations demands detailed analysis.
Jia et al. (2018) is the latest to propose an ORE
method based on dependency parsing. They de-
fined a set of rules to extract relations from depen-
dency labels, which they call dependency semantic
normal forms (DSNFs). We refer readers to Ap-
pendix A for a brief summary of their DSNFs.
However, their set of DSNFs is inexhaustive and
somewhat inaccurate. We show below that many
linguistic features of Chinese demand a more prin-
cipled account, more constructions need to be con-
sidered as relations, some to be ruled out. In partic-
ular, we highlight 5 important constructions which
we additionally identify, explained with examples.

A. PP Modifiers as “De” Structures One key
feature of Chinese is its prevalent use of “De” struc-
tures in the place of prepositional phrases, where
“De” can be roughly seen as equivalent to the posses-
sive clitic ’s. For instance, in “MH 4 (pharyngitis)
5% N (becomes) K #(fever) W(De) J&H (cause);
Pharyngitis becomes the cause of fever", the pred-
icate “becomes the cause of" is expressed as “be-
comes-X-De-cause". The direct relation here is
Due to the lack of a commonly accepted benchmark or a
criterion for “relations” in Chinese ORE, we did not perform

an intrinsic evaluation for our ORE method; its effect on EGz,
(§7) should suffice to demonstrate its strength.

“Pharyngitis, becomes, cause”, but we additionally
extract the more informative relation (pharyngi-
tis, becomes-X-De-cause, fever), where the true
object “fever” is a nominal attribute of the direct
object “cause”, and the true predicate subsumes
the direct object?.

The same also applies to the subject, though
somewhat more restricted. For sentences like “3
R(Apple) Hi(De) BIUG N(founder) R(is) 740
Hr(Jobs); The founder of Apple is Jobs”, we ad-
ditionally extract the relation (Apple, founder-is,
Jobs), where the true subject “Apple” is a nominal
attribute of the direct subject “founder”, and the
true predicate subsumes the direct subject®.

B. Bounded Dependencies In Chinese, bounded
dependencies, particularly control structures, are
expressed with a covert element of Chomskyan cat-
egory T (typically “to”). We capture the following
phenomena in addition to direct relations:

« Sequences of VPs: for sentences such as “F(1)
F(go-to) ZFi(clinic) ¥ (take) % Hi (vaccine); 1
go to the clinic to take the vaccine”, the two verb
phrases “Z(go-to) 12 (clinic)” and “+7 (take)
J% T (vaccine)” are directly concatenated, with
no overt indicator of connection. Here we extract
the relation (I, take, vaccine) by copying the
subject of the head verb to subsequent verbs.

* Subject-control verbs: for the famous example
“F(D) R (want) K (try) TR (begin) 5 (write)
—"Ma) BIZ(play); I want to try to begin to
write a play”, again the verbs are directly con-
catenated, and this time, all verbs but the first
one bear a “VOB” dependency label, as the di-
rect object to its antecedent. In such cases, we
extract sequences of relations like (I, want, try),
(I, want-try, begin), (I, want-try-begin, write),
(I, want-begin-try-write, a play).

Notably, the above phenomena are different from

conjunction constructions in Table 5: the sequences

of events here involve subordination (control)

rather than coordination, thus needs a separate rule.

C. Relative Clauses Relative Clauses also take
the form of modification structures in Chinese, for

*Here and below, examples are paired with English
metaphrases, and when necessary, paraphrases; relation triples
are presented as English metaphrases (inflections ignored) .

*The legitimacy of such relations depend on the frequency
of the verb co-occurring with these direct arguments. Re-
lations with less frequent combinations are less felicitous.
However, as in line with the Relation Frequency Assumption,
less felicitous relations are also less statistically significant.



which additional relations should also be extracted.
For example, in “fiti(he) fEH(solve) T (-ed)
H(puzzle) KK (everyone) H)(De) [7]#i(problem);
He solved the problem that puzzled everyone”, we
extract not only the direct relation (he, solve, prob-
lem), but also the relation embedded in the modifi-
cation structure (problem, puzzle, everyone).

D. Nominal Compounds Relations can be ex-
tracted from nominal compounds, where a noun
phrase (NP) has two consecutive “ATT” mod-
ifiers. For example, in “fZ [E(Germany) &
¥ (Chancellor) Bk 57 /K (Merkel); German Chan-
cellor Merkel” “Germany” modifies “Chancel-
lor”, and “Chancellor” modifies “Merkel”. Jia
et al. (2018) extracted relations such as (Germany,
Chancellor, Merkel) for these NPs.

However, they overlooked the fact that preposi-
tional phrases (PPs) in Chinese with omitted “De”
take exactly the same form (see constructions A).
For instance, in NPs with PP modifiers such as
“FL(formalities) Jp¥ (handle) B 5 (timeliness);
Timeliness of the handling of formalities” , we have
the same structure, but it certainly does not mean
“the handling of formalities is timeliness”!

We take a step back and put restrictions on such
constructions: when all three words in the NP are
nominals (but not pronouns), the third word is the
head, the second is a ‘PERSON’ or ‘TITLE’, and
the first is a ‘PERSON’, then it is reliably a relation
(Merkel, isX-De-Chancellor, Germany). Other-
wise, the NP rarely contains legitimate relations.

E. Copula with Covert Objects Copula are
sometimes followed by modifiers ending with
“De”. Examples are “TK(Corn) & (is) M (from)
ELE(US) 5 (introduce) B)(De); Corn is intro-
duced from US”, “1%& & (device) 7&(is) 7Rk (wood)
W (make) W)(De); The device is made of wood” .

In these cases, there should be an object follow-
ing the indicator “H%J(De)”, but the object is an
empty pro considered inferable from context. In
the absence of the true object, the VOB label is
given to “fYJ(De)”, leading to direct relations like
(Corn, is, De). However, the true predicates are
rather “is introduced from” or “is made of”. To
fix this, we replace the direct relations with ones
like (Corn, is-from-X-introduce-De-pro, Amer-
ica), reminiscent of the constructions A.

3.2 Our ORE Method

With the above constructions taken into account,
we build our ORE method on top of DDParser. At

Macro F1 (%) dev | test
CFET with CFET dataset - 24.9
CFET with CFIGER dataset 75.7 | 75.7
HierType with FIGER dataset - 82.6
HierType with CFIGER dataset | 74.8 | 74.5

Table 1: F1 scores of baseline models for CFIGER
dataset, compared with the results on the datasets
where they were proposed. Macro-F1 scores are re-
ported because it is available in both baselines.

times we depend on Part-of-Speech labels to assist
our judgment. We use Stanford CoreNLP (Man-
ning et al., 2014) POS tagger for this purpose. We
detect negations by looking for matches of negation
keywords in the adjunct modifiers of predicates.
We handle negations at the lexical level: for predi-
cates with an odd number of negation matches, we
insert a negation indicator, treating them as sepa-
rate predicates from the non-negated ones.

4 Chinese Fine-Grained Entity Typing

As shown in previous work (Berant et al., 2011;
Hosseini et al., 2018), the types of a predicate’s
arguments are helpful for disambiguating a predi-
cate in context. To this end, we need a fine-grained
entity typing model to classify the arguments into
sufficiently discriminative yet populous types.

Lee et al. (2020) presented CFET dataset, an
ultra-fine-grained entity typing dataset in Chinese.
They labelled entities in sentence-level context,
into around 6,000 free-form types and 10 general
types. Unfortunately, their free-form types are too
fragmented for predicate disambiguation, and their
general types are too ambiguous.

We turn to the FIGER type ontology (Ling and
Weld, 2012), a commonly used type set: we re-
annotate the CFET dataset with the FIGER types
through label mapping. Given that there are around
6,000 ultra-fine-grained types and only 112 FIGER
types (49 for the first layer), we can reasonably
assume that each ultra-fine-grained type can be
unambiguously mapped to a single FIGER type.
Based on this assumption, we manually create an
injective mapping between the two, and obtain a re-
annotated CFET dataset, the first in Chinese under
the FIGER type ontology. We call the re-annotated
dataset CFIGER. As with CFET, this dataset con-
sists of 4.8K crowd-annotated data (equally divided
into crowd-train, crowd-dev and crowd-test) and
1.9M distantly supervised data from Wikipedia>.

SFor detailed statistics, please refer to Appendix B.



For training set we combine the crowd-train and
Wikipedia subsets; for dev and test sets we use
crowd-dev and crowd-test respectively. We train
two baseline models: CFET, the baseline model
for CFET dataset; HierType (Chen et al., 2020), a
SOTA English entity typing model.

Results are shown in Table 1: we observe that
the F1 score for HierType model is slightly lower
on CFIGER dataset than on FIGER dataset in En-
glish; on the other hand, thanks to fewer type labels,
CFET baseline model sees an increase in F1 score
on CFIGER dataset, bringing it on par with the
more sophisticated HierType model. This indicates
that our CFIGER dataset is valid for the Chinese
fine-grained entity typing task, and may contribute
to a benchmark for cross-lingual entity typing.

For downstream applications, we nevertheless
employ the HierType model, as empirically it gener-
alizes better to our news corpora. As shown in later
sections, the resulting FET model can substantially
help with predicate disambiguation.

S The Chinese Entailment Graph

We construct the Chinese entailment graph from
the Webhose dataset®, a multi-source news corpus
of 316K articles, crawled from 133 news websites
in October 2016. Similarly to the NewsSpike cor-
pus used in Hosseini et al. (2018, 2019); Hosseini
(2021), the Webhose corpus contains non-fiction
text from multiple sources in a short period of time.
This means it is also rich in reliable and diverse
relation triples over a focused set of events, which
is ideal for mining entailment relations.

We cut the articles into sentences by punctua-
tions, limiting the maximum sentence length to 500.
We discard the sentences shorter than 5 characters,
and the articles whose sentences are all discarded.
In the end, we are left with 313,718 articles, sum-
ming up to a total of 5,065,686 sentences.

We get the POS tags with CoreNLP, then feed the
articles and POS tags into our ORE method in Sec-
tion 3, to extract the corresponding open relations.
Then, with the HierType model (Chen et al., 2020)
on CFIGER, we type all arguments of the extracted
relations. Following previous work, we consider
only the first-layer FIGER types; we type each
predicate with the type-pairs of its subject and ob-
ject, such as “person-event” or “food-law”. When
multiple type labels are outputted, we consider all

*https://webhose.io/free-datasets/
chinese-news—articles/

EGz, EGgy,
# of articles taken 313,718 546,713
# of triples used 7,621,994 | 10,978,438
# of predicates 363,349 326,331
# of type pairs where:
subgraph exists 942 355
Isubgraphl > 100 442 115
Isubgraphl > 1,000 149 27
Isubgraphl > 10,000 26 7

Table 2: Statistics of our Chinese entailment graphs
(EGz,) in comparison to English entailment graphs
from Hosseini et al. (2018) (EGg,). | - | denotes the
number of predicates in a subgraph.

combinations as valid types for that predicate.

We finally employ the entailment graph construc-
tion method in Hosseini et al. (2018), taking in only
binary relation triples. We only feed in the relation
triples whose predicate and arguments both appear
at least 2 times’. Resultingly, we obtain a Chinese
entailment graph of comparable size to the English
graph, with detailed statistics shown in Table 2.

6 Evaluation

Due to the lack of Chinese predicate entailment
datasets, we are forced to use the English en-
tailment detection task for evaluation via ma-
chine translation: we translate English premise-
hypothesis pairs into Chinese, then retrieve entail-
ment scores from Chinese entailment graph as pre-
dictions for those pairs. We are painfully aware
that translation adds noise, and will return to this
point below.

Our experiments are based on Levy-Holt dataset
(Levy and Dagan, 2016; Holt, 2019), with the same
dev/test configuration as Hosseini et al. (2018). In
Levy-Holt dataset, the task is: to take as input a
pair of relation triples about the same arguments,
one premise and one hypothesis, and judge whether
the premise entails the hypothesis.

To translate Levy-Holt dataset, we concatenate
each relation triple into a pseudo-sentence, then use
Google Translate to translate the pseudo-sentences
into Chinese. For each translated pseudo-sentence,
we parse it back into Chinese relation triples, again
with our ORE method in Section 3. If multiple
relations are returned, to retrieve the most represen-
tative relations, we consider only those relations

"We experimented with 2-2, 2-3, 3-2 and 3-3, among which
this 2-2 setting is empirically favoured.


https://webhose.io/free-datasets/chinese-news-articles/
https://webhose.io/free-datasets/chinese-news-articles/

whose predicate covers the HEAD word.?

To type the translated relation triples, we again
use HierType model to type their arguments. The
premise and hypothesis need to take the same types,
so we take the intersection of their possible types
unless it is empty, in which case we take the union.

These types are used as predicate types to specify
which typed entailment subgraphs to search when
scoring the entailment from premise to hypothesis.
When both predicates are found in the right order
in the relevant subgraph, we retrieve the entailment
score between them. When scores are found in
multiple subgraphs, we take their maximum.

We compare our Chinese entailment graph with
a few strong baselines:

* BERT: We take the raw translations of the
pseudo-sentence pairs, and compute the cosine
similarity between the pretrained BERT sen-
tence representations of premise and hypothe-
sis, at the [CLS] token. This is a strong asso-
ciative meaning baseline but symmetric;

* Jia: We build entailment graph in the same way
as Section 5, but with the more restricted ORE
method by Jia et al. (2018); accordingly, Jia
et al. (2018) method is also used in evaluation;

e DDPORE: Similar to Jia baseline, but with the
baseline ORE method in DDParser (2020).

Ensembling with English Entailment Graphs
In order to examine the complementarity between
our Chinese entailment graph and the English
graph, we experiment on ensembling the scores
from two graphs, pred.,, and pred,,. We take the
English graph from Hosseini et al. (2018), and eval-
uate four ensemble strategies: lexicographic orders
from English to Chinese and Chinese to English,
max pooling and average pooling:

predey, on = preden, + 7 % O(predey,) * pred.p,

predap_en = 7 * pred.p + O(pred.p) * preden
predmas = MAX (predey, v * pred.p)
predayg = AVG(preden, v * pred.p)

where O(+) is the boolean function IsZero, v is
the relative weight of Chinese and English graphs.
~ is a hyperparameter tuned on Levy-Holt dev set,
searched between 0.0 and 1.0 with step size 0.1.

For instance, suppose our premise is “he,
shopped in, the store”, and our hypothesis is “he,
went to, the store”, then our Chinese relations,

8See Appendix C for more details.

AUC (%) dev test
BERT * 5.5 3.2
Jia (2018) 0.9 2.4
DDPORE (2020) % 9.8 5.9
EGz, + 16.1 9.1
EGg, (2018) ¢ 20.7 16.5
EGg,++ (2021) ¢ 23.3 19.5
Ensemble En_Zh ¢ | 27.9 (v:0.5) | 20.8
Ensemble Zh_En¢ | 27.5(v:0.9) | 21.0
Ensemble MAX < 29.8 (v:0.5) | 21.6 |
Ensemble AVG ¢ 298 (v:0.3) | 21.7
Ensemble++ AVG o | 31.2(v:0.1) | 24.0 |
EGyz, -type 11.1 7.0
DataConcat En ¢ 20.6 17.8
DataConcat Zh % 19.0 14.2
DataConcat Esb ¢ 31.8 25.0
BackTrans Esb ¢ 23.0 17.5

Table 3: Area Under Curve (AUC) values for Chinese
entailment graph (EGg,), its baselines, ensembles with
English graphs, and ablation studies. EGg, is the En-
glish graph in (Hosseini et al., 2018); EGg,++ is the
English graph in (Hosseini, 2021). For entries with %,
the minimum recall is set by Chinese lemma baseline;
for entries with ¢, the minimum recall is set by English
lemma baseline; entries with | are the best ensemble
strategies according to dev set results.

by translation, would be “ffl, Z£-X- &%), B 5>
and “ftf, Hj{E, 745> respectively. Suppose we
find in the English graph an edge from “shop
in” to “go to”, scored pred_en = 0.6, and we
find in the Chinese graph an edge from “7£-X-llJ
1 to “Hij{E”, scored pred_zh = 0.7. Then we
would have prede,, ., = 0.6, pred.p ¢, = 0.7,
predmas = 0.7, preda,g = 0.65.

In addition to ensembling with EGg, (2018),
we also ensembled our entailment graph with the
SOTA English graph EGg,++ (2021). We call the
later ones Ensemble++ here and below.

7 Results and Discussions

To measure the performance of our Chinese en-
tailment graphs, we follow previous work in re-
porting the Precision-Recall (P-R) Curves plotted
for successively lower confidence thresholds, and
their Area Under Curves (AUC), for the range with
> 50% precision.

For our Chinese entailment graph (EGz;,) and its
baselines, we report their AUC calculated with min-
imum recall set by Chinese lemma baseline. For
ensembled models, in order to get commensurable
AUC values with previous work instead of being
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Figure 1: P-R Curves on Levy-Holt test set for EGy,,
ensembles and baselines; Jia(2018) baseline is much
lower than others, and not displayed for the clarity of
the figure.

over-optimistic, we set the minimum recall with
English lemma baseline.

As shown in Table 3, on the Chinese version of
Levy-Holt dataset, our EGz, graph substantially
outperforms the BERT pretrained baseline. EGy,
is also far ahead of entailment graphs with baseline
ORE methods, proving a superiority of our Chinese
ORE method against previous SOTA.

EGy, and EGg, are built with the same entail-
ment graph induction algorithm (Hosseini et al.,
2018), and evaluated on parallel datasets. Learnt
from 57% the data, EGy, achieves an AUC value
55% of its English counterpart. Considering the ex-
tra noise from MT in evaluation, it shows that our
pipeline is utilizing the source corpus very well.

The ensemble between EGy, and EGg, sets
a new SOTA for unsupervised predicate entail-
ment detection. With all 4 ensemble strategies,
we observe an improvement upon both monolin-
gual graphs; with Ensemble MAX, the best setting
on dev set, the margin of test set improvement is
more than 5 points. Moreover, with Ensemble++
AVG, the best dev set setting when ensembling
with EGg,++, we get an AUC of 24.0 points on the
test set, raising SOTA by more than 4 points.

In an ablation study, the EGy, -type setting, with-
out entity typing, loses 2.1 points in AUC. This
means the HierType model on CFIGER indeed
helps entailment graph construction by correctly
typing the arguments, thus typing the predicates.

Another ablation study, shown in the fourth sec-
tion of Table 3, disentangles the effect of ensem-
bling from the effect of extra data. We machine-
translate NewsSpike corpus into Chinese, Webhose
into English. We build an English graph “DataCon-

cat En” using NewsSpike + translated-Webhose,
and a Chinese graph “DataConcat Zh” using Web-
hose + translated-NewsSpike. Results show that
while both graphs improve with data from the other
side, our Ensemble MAX is still far ahead of them.
This suggests, the success of cross-lingual ensem-
ble cannot be reproduced by sticking in all the data
to a monolingual graph via translation. Further,
ensembling the two DataConcat graphs delivers a
25.0% AUC, 7 points higher than DataConcat En,
an even wider margin than our main setting.

These results show that complementary informa-
tion is learnt in entailment graphs in the two lan-
guages, and the strength of our Chinese entailment
graph is sufficient to contribute to the ensemble.
The ensemble delivers a huge lift in performance,
especially in terms of recall in the moderate pre-
cision range (see Figure 1). Thus, we expect that
ensembling strong entailment graphs in more lan-
guages may result in further improvements.

We further analyse our improvements with a case
study: we compare the predictions of our Ensem-
ble_MAX to that of the English monolingual EGg,,
both thresholded over 65% precision. We catego-
rize the prediction differences into 4 classes: True
Positives, False Positives, True Negatives, False
Negatives. Positives are cases where the ensemble
switched the prediction label from negative to posi-
tive, vice versa for negatives; True means that the
switch is correct, False, that the switch is incorrect.

In Table 4, we break down each class of differ-
ences according to the direct cause of EGz, making
a different prediction than EGg,°'°:

* same sentence after translation: The premise
and hypothesis become identical in relation struc-
ture; this can only happen with positives;

* translation error: The premise or hypothesis
becomes unparsable into relations due to transla-
tion error; this can only happen with negatives;

* lexicalization: The difference in predictions is
attributed to the cross-lingual difference in the
lexicalization of complex relations;

* ORE error: After translation, the true relations
in premise and hypothesis have the same argu-
ments, but are mistaken due to ORE error;

» evidence of entailment: The difference is at-
tributed to the different evidence of entailment in
the two graphs; this is most relevant to our EGy,.

?since the switch in Ensemble_MAX is driven by EGz.
10examples of each class of cause are given in Appendix D.



Direct causes of EGy,’s different prediction | TP (+) | FP(-) | TN (+) | FN (-) | +/-
translation-related causes, among which: +52 -30 +42 -48 +16
- same sentence after translation +52 -30 0 0 +22
- translation error 0 0 +42 -48 -6
lexicalization +28 -52 +20 -12 -16
ORE error +8 -17 +8 -7 -8
evidence of entailment +108 | -108 +101 -51 +50
TOTAL +196 | -207 +171 -118 | +42

Table 4: Breakdown of the different predictions between our ensembles and English monolingual graph. “TP”,
“FP”, “TN”, “FN” represent True Positive, False Positive, True Negative and False Negative respectively; in the

column “+/-” is the overall impact of each factor.

As shown, the majority of our performance gain
comes from the additional evidence of entailment
in EGz;,; surprisingly, translation played a positive
role in the ensemble, though not a major contribu-
tor. We attribute this to the fact that MT systems
tend to translate semantically similar sentences to
the same target sentence, though this similarity is
still symmetric, not directional. In the “BackTrans
Esb” ablation study in Table 3, we single out trans-
lation in ensembling: we ensemble predictions on
the original and back-translated Levy-Holt dataset,
both in English. The performance gain in this case
is only marginal, stressing that evidence of entail-
ment is the key to our success, while translation is
not. Further, for EGy, itself, translated datasets is
a negative factor overall, as explained later below.

In Table 4, for both the differences from evi-
dence of entailment, and differences in TOTAL,
the precision of positives is lower than that of neg-
atives. Namely, TP/(T'P + FP) is lower than
TN/(TN + FN). This is no surprise, as posi-
tives and negatives have different baselines to start
with: Positives attempt to correct the false nega-
tives from EGg,,, where 17% of the negatives are
false; Negatives attempt to correct the false pos-
itives, where 35% of the positives are false (as
dictated in the setting of our case study). In this
context, it is expectable that our evidence of entail-
ment gets 108/(108 + 108) = 50% correct for pos-
itives, while a much better 101 /(101 +51) = 66%
correct for negatives. These results support the
solidarity of our contributions.

The use of translated test data underestimates
the power of Chinese entailment graphs in three
ways: 1) The quality of machine-translation is im-
perfect. Without wider context, the translations
could drift apart from the meaning of the original
relations, and the entailment labels could go wrong.
2) EGg, is induced purely from native Chinese,

while the translated relations bear a translationese
language style. This poses a gap in the choice of
words, and reduces the chance of finding a match
in EGg,. 3) The original Levy-Holt dataset uses
human-annotated relation triples, while for the Chi-
nese version we have to mine them from translated
pseudo-sentences with our ORE method, adding an
extra source of noise.

While the first two sources of noise are harder
to measure, we can crudely quantify the third one
by counting the ORE failures. Among the 12,921
relation pairs in Levy-Holt test set, 3,584 of them
failed to be translated-then-parsed into binary rela-
tions. This means, for Chinese entailment graphs,
the hard boundary for recall is not 100%, but rather
72.3%, as is the hard boundary for AUC.

Though hindered by this evaluation setting, our
Chinese entailment graph still achieves strong per-
formance. Particularly, in the Data_Concat setting
in Table 3, we get a 79.8% ratio of AUC between
Chinese and English, which is fully explainable by
the 72.3% ratio of hard recall bound. This reaffirms
that the strength of our Chinese entailment graph
pipeline is on par with its English counterpart.

8 Conclusion

We have presented a pipeline for building Chinese
entailment graphs. Along the way, we proposed a
novel high-recall open relation extraction method,
and built a fine-grained entity typing dataset by la-
bel mapping. As our main result, we have shown
that: our Chinese entailment graph is comparable
with English graphs, where unsupervised BERT
baseline did poorly; an ensemble between Chinese
and English entailment graphs substantially outper-
forms English monolingual graphs, and sets a new
SOTA for unsupervised entailment detection. Di-
rections for future work include multilingual align-
ment and alternative predicate disambiguation.
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A A Brief Summary of Jia et al. (2018)

In Table 5 are the 7 rules from Jia et al. (2018)
which they call Dependency Structure Normal
Forms. The first rule corresponds to nominal com-
pounds which we elaborated in constructions D in
Section 3.1; the second rule corresponds to direct S-
V-O relations; the third rule attends to the semantic
objects hidden in adjuncts, which are always pre-
verbs in Chinese; the fourth rule subsumes comple-
ments of head verbs into the predicate; the fifth rule
handles coordination of subjects, the sixth handles
coordination of object, and the seventh handles co-
ordination of predicates. These rules are reflected
in our ORE method as well, but for the sake of
brevity, only the constructions that has never been
covered by previous work are listed in Section 3.1.

EE 2 BwR -
German Chancellor Merkel .
(German, Chancellor, Merkel)
T EBEF K-

I see you .

{, see, you)
fit &£ K It B -
He at home play game .
(He, play-game, home)

*oE B EEE
I walk to library .
(I, walk-to, library)

E TR

I and you go-to shop .
(I, go-to, shop) (you, go-to, shop)

o WE M EX -
I eat burger and chips .

(I, eat, burger) (I, eat, chips)

SV T SN Y |
Criminal shot, kill -ed him .
(criminal, shot, him) (criminal, kill, him)

Table 5: Set of DSNFs from Jia et al. (2018) exempli-
fied. In each box, at top is an example sentence, pre-
sented in Chinese and its English metaphrase (inflec-
tion ignored); below are the relations they extract.

B Detailed Statistics of the CFIGER
dataset

To test our injective mapping assumption, we in-
spect the number of FIGER type labels to which
each ultra-fine-grained type is mapped through
manual labelling without considering injectivity.
Among the 6273 ultra-fine-grained types in total,
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5622 of them are mapped to exactly one FIGER
type, another 510 are not mapped to any FIGER
types; only 134 ultra-fine-grained types are mapped
to 2 FIGER types, and 7 mapped to 3 FIGER types.
No ultra-fine-grained types are mapped to more
than 3 FIGER types. Therefore, it is safe to say
that our label mapping is roughly injective.

We further inspected the number of FIGER types
each mention is attached with. It turns out the
among the 1,913,197 mentions in total, 59,517 of
them are mapped to no FIGER types, 1,675,089
of them are mapped to 1 FIGER type, 160,097
are mapped to 2 FIGER types, 16,309 are mapped
to 3 FIGER types, 1,952 are mapped to 4 FIGER
types, 200 are mapped to 5 FIGER types, and 33
are mapped to 6 FIGER types. No mentions are
mapped to more than 6 FIGER types. Note that
each mention can be mapped to more than one ultra-
fine-grained types from the start, so these numbers
are not in contradiction with the above numbers.

Number of Ultra-fine-grained Types per FIGER type (crowd subset) (top 10)

. [ I
& & s & & © & e
& & & s & & © & o 5
& & &

Figure 2: Number of ultra-fine-grained types in crowd-
annotated subset mapped to each FIGER type; only the
FIGER types with top 10 number of ultra-fine-grained
types are displayed.

Number of Ultra-fine-grained Types per FIGER Type (wiki subset) (top 10)
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Figure 3: Number of ultra-fine-grained types in
wikipedia distantly supervised subset mapped to each
FIGER type; only the FIGER types with top 10 num-
ber of ultra-fine-grained types are displayed.

We also looked at the number of ultra-fine-



grained types each FIGER type is mapped to, so
as to understand the skewness of our mapping.
Results are shown in Figure 2 and 3. Unsurpris-
ingly, the most popular ultra-fine-grained labels
are highly correlated with the ones that tend to ap-
pear in coarse-grained type sets, with “PERSON”
label taking up a large portion. This distribution
is largely consistent between crowd-annotated and
Wikipedia subsets.

Another set of stats are the number of mentions
that corresponds to each FIGER type, shown in Fig-
ure 4 and 5. The winners in terms of the number of
mentions are consistent with that of the number of
ultra-fine-grained types, and also consistent among
themselves (between the two subsets).

Number of Mentions per FIGER Type (crowd subset) (top 10)
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Figure 4: Number of mentions in crowd-annotated sub-
set labelled as each FIGER type; only the FIGER types
with top 10 number of mentions are displayed.

Number of Mentions per FIGER Type (top 10)
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Figure 5: Number of mentions in wikipedia distantly
supervised subset labelled as each FIGER type; only
the FIGER types with top 10 number of mentions are
displayed.

C Selecting Relation Triples for
Translated Levy-Holt

To retrieve the relation triple most likely reflecting
the meaning of the whole sentence, we follow this
order when determining which relation triple to
select:
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For the amended relations, if the predicate of
any of them cover the word with HEAD token
in DDParser dependency parse, we randomly
choose one of these;

If none is found, but the predicate of any non-
amended relations cover the word with HEAD
token in DDParser dependency parse, we ran-
domly choose one of these;

If none is found, but there are any other rela-
tions, we randomly choose one of these;

Finally, if none is found, we assign
PREMISE_PLACEHOLDER to the premise and
HYPOTHESIS_PLACEHOLDER to the hypothe-
sis, so that no entailment relation would ever
be detected between them.

Examples of Different Predictions in
Case Study by Category of Direct
Cause

In this section, we provide one example for each
class of direct cause, as described in Section 7.
Chinese sentences and relations in the examples
are presented in the same format as Section 3.1.

Same sentence after translation

* Premise - English: (magnesium sulfate, re-
lieves, headache)

* Hypothesis - English: (magnesium sulfate,
alleviates, headaches)

* Premise - Chinese translation: “Bit
fig %(magnesium) % fi#(relieves) -k
JF (headache)”

* Hypothesis - Chinese translation: “fif
f2 #E(magnesium) %% f#(alleviates) -k
J# (headache)”

The two sentences are translated to the same sur-
face form in Chinese, as the predicates are in many
cases synonyms. There are more true positives than
false positives, because synonyms are simultane-
ous more likely true entailments and more likely
translated to the same Chinese word.

Translation Error

* Premise - English: (Refuge, was attacked by,
terrorists)



* Hypothesis - English: (Terrorists, take,
refuge)

e Premise - Chinese translation: R
M Fr(refuge) 78 #l(suffered) 2% i 4

“F(terrorists) 7% it (attack); Refuge suffered
attack from terrorists.”

Hypothesis - Chinese translation: “Z%{ffi 43
“F(terrorists) ¥ ¥E(take-shelter); Terrorists
take shelter.”

The hypothesis is supposed to mean “The ter-
rorists took over the refuge”. However, with trans-
lation, the hypothesis in Chinese is mistaken as a
intransitive relation where take-refuge is consid-
ered a predicate.

Lexicalization

* Premise - English: (Granada, is located near,
mountains)

* Hypothesis - English: (Granada, lies at the
foot of, mountains)

e Premise - Chinese translation: “#% $i7 44
75 (Granada) $E/T (is-near) L[k (mountains)”

* Hypothesis - Chinese translation: “#% $i/
44 75(Granada) i T (is-located-at) Ll i
"N (hillfoot)”

When the hypothesis is translated into Chinese,
the lexicalization of the relation changed, the part
of the predicate hosting the meaning of ’the foot
of’ is absorbed into the object. Therefore, while
in English “is located near” does not entail “lies at
the foot of”’, in Chinese “is-near” is considered to
entail “is-located-at”. In this way, an instance of
false positive comes into being.

ORE Error
* Premise - English: (A crow, can eat, a fish)
» Hypothesis - English: (A crow, feeds on, fish)

* Premise - Chinese translation: “Z %5 (crow)

A] LA(can) FZ(eat) Hi(fish)”

» Hypothesis - Chinese translation: “%
(crow) PL(take) fi(fish) H(as) & (food)”

¢ Premise - extracted Chinese relation: (crow,
eat, fish)
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* Hypothesis - extracted Chinese relation:
(crow, take-X-as-food, fish)

While the translations for this pair of relations
is correct, in the subsequent Chinese open relation
extraction, our ORE method failed to recognize “A]
l(can)” as an important part of the predicate. To
avoid sparsity, most adjuncts of the head verb are
discarded, and modals are part of them. While the
original premise “can eat” does not entail “feeds
on”, the Chinese premise “eat” does in a way entail
“feeds on”, where another instance of false positive
arises.

Evidence of Entailment
* Premise - English: (quinine, cures, malaria)

* Hypothesis - English: (quinine, is used for the
treatment of, malaria)

* Premise - Chinese translation: “Z=T*(quinine)
1677 (cure) JEFE (malaria)”

 Hypothesis - Chinese translation: “Z&
T'(quinine) [ T (is-used-to) JA¥7 (cure) JE
% (malaria)”

* Premise - extracted Chinese relation: (quinine,
cure, malaria)

* Hypothesis - extracted Chinese relation: (qui-
nine, is-used-to-cure, malaria)

In the above example, sufficiently strong evi-
dence for “cure” entailing “is used for the treat-
ment of” is not found in the English graph, whereas
strong evidence for “JA 7T (cure)” entailing “F
TF-JR77 (is-used-to-cure)” is found in the Chinese
graph. In this way we get an instance of true posi-
tive.

E More Precision-Recall Curves

In this section, we present more precision-recall
curves from the baselines and ablation studies in
Table 3. These curves contain more details explain-
ing the AUC values in the table.

Figure 6 contains the curves for the ablation
study of DataConcat. Here all three models ul-
timately come from the same corpus, so the per-
formance difference can be fully attributed to the
complementarity of entailment graphs in different
languages.

Figure 7 contains the curves for two ablation
studies: EGz, with or without entity typing; EGg,
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Figure 6: P-R Curves on Levy-Holt test set for Data-

Concat ablation study.
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Figure 7: P-R Curves on Levy-Holt test set for EGy,
—type, BackTrans Esb, in comparison to EGz, and
EGg, respectively.

ensembled with back-translation predictions or not.
The former study shows the clear benefit of our en-
tity typing system, while the latter study shows that
ensembling with back-translated predictions only
results in a marginal gain, therefore paraphrases
through translation is not a major contributor to the
success of our ensembling method.



