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Abstract

Predicate entailment detection is a crucial task001
for question-answering from text, where pre-002
vious work has explored unsupervised learn-003
ing of entailment graphs from typed open re-004
lation triples. In this paper, we present the005
first pipeline for building Chinese entailment006
graphs. In this pipeline, we present a novel007
high-recall open relation extraction (ORE)008
method and the first Chinese fine-grained en-009
tity typing dataset following the FIGER type010
ontology. Through experiments on the popular011
Levy-Holt dataset, translated into Chinese, we012
show that our Chinese entailment graph out-013
performs a range of strong baselines by large014
margins. Moreover, an ensemble of Chinese015
and English entailment graphs sets a new un-016
supervised SOTA on the original Levy-Holt017
dataset, surpassing previous SOTA by more018
than 4 AUC points1.019

1 Introduction020

Predicate entailment detection is important for021

many tasks of natural language understanding022

(NLU), including reading comprehension and se-023

mantic parsing. Suppose we wish to answer a ques-024

tion by finding a relation V holding between enti-025

ties A and B. Often, V cannot be found directly026

from the reference passage or database, but another027

relation U can be found between A and B, where028

U entails V (for instance, suppose U is buy, V is029

own). If we can confirm this with predicate entail-030

ment detection, we can then answer the question.031

To detect predicate entailments, previous work032

has explored unsupervised learning of typed en-033

tailment graphs (Szpektor and Dagan, 2008; Be-034

rant et al., 2011, 2015; Hosseini et al., 2018, 2019;035

Hosseini, 2021). Entailment graphs are directed036

graphs, where each node represents the predicate037

of a relation, and an edge from node U to node V038

denotes “U entails V”. Entailment graphs are built039

1Our codes and data will be released on Github.

based on the Distributional Inclusion Hypothesis 040

(DIH) (Dagan et al., 1999; Geffet and Dagan, 2005; 041

Herbelot and Ganesalingam, 2013; Kartsaklis and 042

Sadrzadeh, 2016). Predicates are disambiguated ac- 043

cording to their arguments’ types, predicates taking 044

the same types of arguments go into one subgraph. 045

While previous work on building entailment 046

graphs has been limited to English, building entail- 047

ment graphs for other languages is an interesting 048

and challenging goal. The importance is two-fold: 049

for that language, a native entailment graph would 050

facilitate NLU in it; from a multi-lingual perspec- 051

tive, entailment graphs in different languages host 052

complementary information, and the different pol- 053

yseme mappings are helpful for disambiguation. 054

Thus, entailment graphs in multiple languages open 055

up many possibilities for cross-lingual alignment, 056

as we will showcase with a simple ensemble. 057

In this paper, we propose a pipeline for build- 058

ing entailment graphs in Chinese, as it is distant 059

enough from English to be rich in complementary 060

information, meanwhile relatively high-resource so 061

that reliable tools can be found. Though being rel- 062

atively high-resource, building entailment graphs 063

in Chinese is still filled with challenges, where 064

the two toughest ones are open relation extraction 065

(ORE) and fine-grained entity typing (FET). 066

ORE is crucial for entailment detection, identi- 067

fying the predicates-argument pairs in sentences. 068

It has been solved with either rule-based methods 069

over syntactic parsers (Fader et al., 2011; Etzioni 070

et al., 2011; Angeli et al., 2015), or neural sequence 071

labellers distantly-supervised by rule-based meth- 072

ods (Cui et al., 2018; Stanovsky et al., 2018; Kol- 073

luru et al., 2020). The challenge in ORE can be 074

largely attributed to the poor definition of “open 075

relations”. The situation worsens in Chinese, as 076

the parts of speech have a higher degree of ambi- 077

guity and many linguistic indicators of relations 078

are poorly represented. Previous work on Chinese 079

ORE has resorted to a conservative approach (Qiu 080
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and Zhang, 2014; Jia et al., 2018), failing to iden-081

tify many constructions relevant to relation extrac-082

tion. In this paper, we propose a novel dependency-083

based ORE method which, to our best empirical084

observation, provides a comprehensive account for085

constructions where relations are involved.086

The other challenge, regarding FET, lies mainly087

in the lack of a suitable dataset over a suitable type088

ontology for predicate word-sense disambiguation:089

too coarse a type set would be insufficient for dis-090

ambiguation, while too granular a type set would091

result in disastrous sparsity in the entailment graph.092

We follow Hosseini et al. (2018) on using the pop-093

ular FIGER type set (Ling and Weld, 2012), and094

elicit a Chinese FET dataset with FIGER labels via095

label mapping. Entity typing models built on this096

dataset are proven to be satisfactory in performance097

and helpful for predicate disambiguation.098

With these challenges solved, we build strong099

Chinese entailment graphs. Evaluation on the Levy-100

Holt dataset (Levy and Dagan, 2016; Holt, 2019)101

(through translation) shows, that our Chinese entail-102

ment graph outperforms baselines by large margins,103

and is comparable with the English graph. By en-104

sembling the prediction scores from English and105

Chinese graphs, we show a clear advantage over106

both monolingual graphs, and sets a new SOTA.107

Our contribution is as follows: 1) we present a108

novel Chinese ORE method sensitive to a much109

wider range of relations than previous SOTA, and110

a Chinese FET dataset, the first under the FIGER111

type ontology; 2) we construct the first Chinese112

entailment graph, comparable to its English coun-113

terpart; 3) we reveal the cross-lingual complemen-114

tarity of entailment graphs with an ensemble.115

2 Background and Related Work116

Predicate entailment detection has been an area117

of active research. Lin (1998); Weeds and Weir118

(2003); Szpektor and Dagan (2008) proposed vari-119

ous cooccurrence-based scores for entailment de-120

tection; Berant et al. (2011) proposed to “globalize”121

the typed entailment graphs by closing them with122

transitivity constraint; Hosseini et al. (2018) pro-123

posed a more scalable global learning approach124

using soft transitivity constraints; Hosseini et al.125

(2019); Hosseini (2021) further exploited the dual-126

ity between entailment graph construction and link127

prediction to refine the entailment scores.128

Our work is closely related to Hosseini et al.129

(2018), with a few key adaptations for Chinese.130

First, while they used a CCG parser (Reddy et al., 131

2014) for ORE, our ORE method is based on de- 132

pendency parser (Zhang et al., 2020); second, while 133

they typed the entities by linking them to Wikipedia 134

entries, we use neural entity typing for the task. 135

Dependency parses are less informative than 136

CCG parses, and require heavier adaptation. How- 137

ever, Chinese dependency parsers are currently 138

more reliable than CCG parsers (Tse and Curran, 139

2012). Previous work (Qiu and Zhang, 2014; Jia 140

et al., 2018; Zhang et al., 2020) has built Chinese 141

ORE algorithms from dependency parsers, but their 142

parsers omit many common constructions essential 143

to ORE. In Section 3, we present the most compre- 144

hensive Chinese ORE method so far. 145

Linking-based entity-typing methods can be 146

more accurate than neural entity typing, since the 147

type labels are exact as long as linking is correct. 148

Unfortunately, current Chinese entity linking meth- 149

ods require either translation (Pan et al., 2019) 150

or search logs (Fu et al., 2020). Both hurt link- 151

ing accuracy, and the latter grows prohibitively 152

expensive with scale. On the other hand, since 153

the seminal work of Ling and Weld (2012), neu- 154

ral fine-grained entity typing (FET) has developed 155

rapidly, where Yogatama et al. (2015); Shimaoka 156

et al. (2017); Chen et al. (2020) proposed various 157

methods, sharing a common interest in the FIGER 158

dataset. Lee et al. (2020) built a Chinese ultra- 159

fine-grained entity typing dataset through distant 160

supervision. Based on their dataset, we are able to 161

build our CFIGER dataset by label mapping. 162

As a relevant task, Ganitkevitch and Callison- 163

Burch (2014) created a multi-lingual database for 164

symmetric paraphrases, in contrast, entailment 165

graphs host directional entailment relations. More 166

recently, Schmitt and Schütze (2021) proposed to 167

fine-tune language models on predicate entailment 168

datasets via handcrafted prompts. In contrast to 169

entailment graph construction, this is a supervised 170

approach, which carries the danger of overfitting to 171

dataset artifacts (Gururangan et al., 2018). 172

Another related strand of research, exemplified 173

by SNLI (Bowman et al., 2015), is concerned with 174

the more general NLI task, including hypernymy 175

detection and logic reasoning like A∧B → B, but 176

rarely covers the cases where external knowledge 177

of predicate entailment is required. Entailment 178

graphs, on the other hand, are focused on providing 179

a robust resource for directional predicate entail- 180

ments induced from textual corpora. 181
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3 Chinese Open Relation Extraction182

We build our ORE method based on DDParser183

(Zhang et al., 2020), a SOTA Chinese dependency184

parser. We mine relation triples from its output by185

identifying patterns in its dependency paths.186

Depending on the semantics of the head verb,187

instances of a dependency pattern can range from188

being highly felicitous to marginally acceptable as189

a relation. Motivated by our downstream task of190

entailment graph construction, we go for higher191

recall and take them in based on the Relation Fre-192

quency Assumption: the less felicitous relations193

occur less frequently, and are less likely to take part194

in entailments when they do occur, thus they are195

negligible. As will be shown through Table 3, this196

approach significantly outperforms previous SOTA197

on supporting entailment graph construction2.198

3.1 Parsing for Chinese ORE199

The task of open relation extraction on top of LM-200

driven dependency parsers, is really the task of201

binding the relations in surface forms to the un-202

derlying relation structures. Though trivial at first203

sight, the definition of these underlying and essen-204

tially semantic relations demands detailed analysis.205

Jia et al. (2018) is the latest to propose an ORE206

method based on dependency parsing. They de-207

fined a set of rules to extract relations from depen-208

dency labels, which they call dependency semantic209

normal forms (DSNFs). We refer readers to Ap-210

pendix A for a brief summary of their DSNFs.211

However, their set of DSNFs is inexhaustive and212

somewhat inaccurate. We show below that many213

linguistic features of Chinese demand a more prin-214

cipled account, more constructions need to be con-215

sidered as relations, some to be ruled out. In partic-216

ular, we highlight 5 important constructions which217

we additionally identify, explained with examples.218

A. PP Modifiers as “De” Structures One key219

feature of Chinese is its prevalent use of “De” struc-220

tures in the place of prepositional phrases, where221

“De” can be roughly seen as equivalent to the posses-222

sive clitic ’s. For instance, in “咽炎(pharyngitis)223

成为(becomes) 发热(fever) 的(De) 原因(cause);224

Pharyngitis becomes the cause of fever", the pred-225

icate “becomes the cause of" is expressed as “be-226

comes·X·De·cause". The direct relation here is227

2Due to the lack of a commonly accepted benchmark or a
criterion for “relations” in Chinese ORE, we did not perform
an intrinsic evaluation for our ORE method; its effect on EGZh

(§7) should suffice to demonstrate its strength.

“Pharyngitis, becomes, cause”, but we additionally 228

extract the more informative relation (pharyngi- 229

tis, becomes·X·De·cause, fever), where the true 230

object “fever” is a nominal attribute of the direct 231

object “cause”, and the true predicate subsumes 232

the direct object3. 233

The same also applies to the subject, though 234

somewhat more restricted. For sentences like “苹 235

果(Apple) 的(De) 创始人(founder) 是(is) 乔布 236

斯(Jobs); The founder of Apple is Jobs”, we ad- 237

ditionally extract the relation (Apple, founder·is, 238

Jobs), where the true subject “Apple” is a nominal 239

attribute of the direct subject “founder”, and the 240

true predicate subsumes the direct subject4. 241

B. Bounded Dependencies In Chinese, bounded 242

dependencies, particularly control structures, are 243

expressed with a covert element of Chomskyan cat- 244

egory T (typically “to”). We capture the following 245

phenomena in addition to direct relations: 246

• Sequences of VPs: for sentences such as “我(I) 247

去(go-to)诊所(clinic)打(take)疫苗(vaccine); I 248

go to the clinic to take the vaccine”, the two verb 249

phrases “去(go-to)诊所(clinic)” and “打(take) 250

疫苗(vaccine)” are directly concatenated, with 251

no overt indicator of connection. Here we extract 252

the relation (I, take, vaccine) by copying the 253

subject of the head verb to subsequent verbs. 254

• Subject-control verbs: for the famous example 255

“我(I)想(want)试图(try)开始(begin)写(write) 256

一个(a) 剧本(play); I want to try to begin to 257

write a play”, again the verbs are directly con- 258

catenated, and this time, all verbs but the first 259

one bear a “VOB” dependency label, as the di- 260

rect object to its antecedent. In such cases, we 261

extract sequences of relations like (I, want, try), 262

(I, want·try, begin), (I, want·try·begin, write), 263

(I, want·begin·try·write, a play). 264

Notably, the above phenomena are different from 265

conjunction constructions in Table 5: the sequences 266

of events here involve subordination (control) 267

rather than coordination, thus needs a separate rule. 268

C. Relative Clauses Relative Clauses also take 269

the form of modification structures in Chinese, for 270

3Here and below, examples are paired with English
metaphrases, and when necessary, paraphrases; relation triples
are presented as English metaphrases (inflections ignored) .

4The legitimacy of such relations depend on the frequency
of the verb co-occurring with these direct arguments. Re-
lations with less frequent combinations are less felicitous.
However, as in line with the Relation Frequency Assumption,
less felicitous relations are also less statistically significant.
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which additional relations should also be extracted.271

For example, in “他(he) 解决(solve) 了(-ed) 困272

扰(puzzle)大家(everyone)的(De)问题(problem);273

He solved the problem that puzzled everyone”, we274

extract not only the direct relation (he, solve, prob-275

lem), but also the relation embedded in the modifi-276

cation structure (problem, puzzle, everyone).277

D. Nominal Compounds Relations can be ex-278

tracted from nominal compounds, where a noun279

phrase (NP) has two consecutive “ATT” mod-280

ifiers. For example, in “德国(Germany) 总281

理(Chancellor) 默克尔(Merkel); German Chan-282

cellor Merkel” “Germany” modifies “Chancel-283

lor”, and “Chancellor” modifies “Merkel”. Jia284

et al. (2018) extracted relations such as (Germany,285

Chancellor, Merkel) for these NPs.286

However, they overlooked the fact that preposi-287

tional phrases (PPs) in Chinese with omitted “De”288

take exactly the same form (see constructions A).289

For instance, in NPs with PP modifiers such as290

“手续(formalities)办理(handle)时效(timeliness);291

Timeliness of the handling of formalities” , we have292

the same structure, but it certainly does not mean293

“the handling of formalities is timeliness”!294

We take a step back and put restrictions on such295

constructions: when all three words in the NP are296

nominals (but not pronouns), the third word is the297

head, the second is a ‘PERSON’ or ‘TITLE’, and298

the first is a ‘PERSON’, then it is reliably a relation299

(Merkel, is·X·De·Chancellor, Germany). Other-300

wise, the NP rarely contains legitimate relations.301

E. Copula with Covert Objects Copula are302

sometimes followed by modifiers ending with303

“De”. Examples are “玉米(Corn)是(is)从(from)304

美国(US)引进(introduce)的(De); Corn is intro-305

duced from US”, “设备(device)是(is)木头(wood)306

做(make)的(De); The device is made of wood”.307

In these cases, there should be an object follow-308

ing the indicator “的(De)”, but the object is an309

empty pro considered inferable from context. In310

the absence of the true object, the VOB label is311

given to “的(De)”, leading to direct relations like312

(Corn, is, De). However, the true predicates are313

rather “is introduced from” or “is made of”. To314

fix this, we replace the direct relations with ones315

like (Corn, is·from·X·introduce·De·pro, Amer-316

ica), reminiscent of the constructions A.317

3.2 Our ORE Method318

With the above constructions taken into account,319

we build our ORE method on top of DDParser. At320

Macro F1 (%) dev test
CFET with CFET dataset - 24.9
CFET with CFIGER dataset 75.7 75.7
HierType with FIGER dataset - 82.6
HierType with CFIGER dataset 74.8 74.5

Table 1: F1 scores of baseline models for CFIGER
dataset, compared with the results on the datasets
where they were proposed. Macro-F1 scores are re-
ported because it is available in both baselines.

times we depend on Part-of-Speech labels to assist 321

our judgment. We use Stanford CoreNLP (Man- 322

ning et al., 2014) POS tagger for this purpose. We 323

detect negations by looking for matches of negation 324

keywords in the adjunct modifiers of predicates. 325

We handle negations at the lexical level: for predi- 326

cates with an odd number of negation matches, we 327

insert a negation indicator, treating them as sepa- 328

rate predicates from the non-negated ones. 329

4 Chinese Fine-Grained Entity Typing 330

As shown in previous work (Berant et al., 2011; 331

Hosseini et al., 2018), the types of a predicate’s 332

arguments are helpful for disambiguating a predi- 333

cate in context. To this end, we need a fine-grained 334

entity typing model to classify the arguments into 335

sufficiently discriminative yet populous types. 336

Lee et al. (2020) presented CFET dataset, an 337

ultra-fine-grained entity typing dataset in Chinese. 338

They labelled entities in sentence-level context, 339

into around 6,000 free-form types and 10 general 340

types. Unfortunately, their free-form types are too 341

fragmented for predicate disambiguation, and their 342

general types are too ambiguous. 343

We turn to the FIGER type ontology (Ling and 344

Weld, 2012), a commonly used type set: we re- 345

annotate the CFET dataset with the FIGER types 346

through label mapping. Given that there are around 347

6,000 ultra-fine-grained types and only 112 FIGER 348

types (49 for the first layer), we can reasonably 349

assume that each ultra-fine-grained type can be 350

unambiguously mapped to a single FIGER type. 351

Based on this assumption, we manually create an 352

injective mapping between the two, and obtain a re- 353

annotated CFET dataset, the first in Chinese under 354

the FIGER type ontology. We call the re-annotated 355

dataset CFIGER. As with CFET, this dataset con- 356

sists of 4.8K crowd-annotated data (equally divided 357

into crowd-train, crowd-dev and crowd-test) and 358

1.9M distantly supervised data from Wikipedia5. 359

5For detailed statistics, please refer to Appendix B.
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For training set we combine the crowd-train and360

Wikipedia subsets; for dev and test sets we use361

crowd-dev and crowd-test respectively. We train362

two baseline models: CFET, the baseline model363

for CFET dataset; HierType (Chen et al., 2020), a364

SOTA English entity typing model.365

Results are shown in Table 1: we observe that366

the F1 score for HierType model is slightly lower367

on CFIGER dataset than on FIGER dataset in En-368

glish; on the other hand, thanks to fewer type labels,369

CFET baseline model sees an increase in F1 score370

on CFIGER dataset, bringing it on par with the371

more sophisticated HierType model. This indicates372

that our CFIGER dataset is valid for the Chinese373

fine-grained entity typing task, and may contribute374

to a benchmark for cross-lingual entity typing.375

For downstream applications, we nevertheless376

employ the HierType model, as empirically it gener-377

alizes better to our news corpora. As shown in later378

sections, the resulting FET model can substantially379

help with predicate disambiguation.380

5 The Chinese Entailment Graph381

We construct the Chinese entailment graph from382

the Webhose dataset6, a multi-source news corpus383

of 316K articles, crawled from 133 news websites384

in October 2016. Similarly to the NewsSpike cor-385

pus used in Hosseini et al. (2018, 2019); Hosseini386

(2021), the Webhose corpus contains non-fiction387

text from multiple sources in a short period of time.388

This means it is also rich in reliable and diverse389

relation triples over a focused set of events, which390

is ideal for mining entailment relations.391

We cut the articles into sentences by punctua-392

tions, limiting the maximum sentence length to 500.393

We discard the sentences shorter than 5 characters,394

and the articles whose sentences are all discarded.395

In the end, we are left with 313,718 articles, sum-396

ming up to a total of 5,065,686 sentences.397

We get the POS tags with CoreNLP, then feed the398

articles and POS tags into our ORE method in Sec-399

tion 3, to extract the corresponding open relations.400

Then, with the HierType model (Chen et al., 2020)401

on CFIGER, we type all arguments of the extracted402

relations. Following previous work, we consider403

only the first-layer FIGER types; we type each404

predicate with the type-pairs of its subject and ob-405

ject, such as “person-event” or “food-law”. When406

multiple type labels are outputted, we consider all407

6https://webhose.io/free-datasets/
chinese-news-articles/

EGZh EGEn

# of articles taken 313,718 546,713
# of triples used 7,621,994 10,978,438
# of predicates 363,349 326,331
# of type pairs where:
subgraph exists 942 355
|subgraph| > 100 442 115
|subgraph| > 1,000 149 27
|subgraph| > 10,000 26 7

Table 2: Statistics of our Chinese entailment graphs
(EGZh) in comparison to English entailment graphs
from Hosseini et al. (2018) (EGEn). | · | denotes the
number of predicates in a subgraph.

combinations as valid types for that predicate. 408

We finally employ the entailment graph construc- 409

tion method in Hosseini et al. (2018), taking in only 410

binary relation triples. We only feed in the relation 411

triples whose predicate and arguments both appear 412

at least 2 times7. Resultingly, we obtain a Chinese 413

entailment graph of comparable size to the English 414

graph, with detailed statistics shown in Table 2. 415

6 Evaluation 416

Due to the lack of Chinese predicate entailment 417

datasets, we are forced to use the English en- 418

tailment detection task for evaluation via ma- 419

chine translation: we translate English premise- 420

hypothesis pairs into Chinese, then retrieve entail- 421

ment scores from Chinese entailment graph as pre- 422

dictions for those pairs. We are painfully aware 423

that translation adds noise, and will return to this 424

point below. 425

Our experiments are based on Levy-Holt dataset 426

(Levy and Dagan, 2016; Holt, 2019), with the same 427

dev/test configuration as Hosseini et al. (2018). In 428

Levy-Holt dataset, the task is: to take as input a 429

pair of relation triples about the same arguments, 430

one premise and one hypothesis, and judge whether 431

the premise entails the hypothesis. 432

To translate Levy-Holt dataset, we concatenate 433

each relation triple into a pseudo-sentence, then use 434

Google Translate to translate the pseudo-sentences 435

into Chinese. For each translated pseudo-sentence, 436

we parse it back into Chinese relation triples, again 437

with our ORE method in Section 3. If multiple 438

relations are returned, to retrieve the most represen- 439

tative relations, we consider only those relations 440

7We experimented with 2-2, 2-3, 3-2 and 3-3, among which
this 2-2 setting is empirically favoured.
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whose predicate covers the HEAD word.8441

To type the translated relation triples, we again442

use HierType model to type their arguments. The443

premise and hypothesis need to take the same types,444

so we take the intersection of their possible types445

unless it is empty, in which case we take the union.446

These types are used as predicate types to specify447

which typed entailment subgraphs to search when448

scoring the entailment from premise to hypothesis.449

When both predicates are found in the right order450

in the relevant subgraph, we retrieve the entailment451

score between them. When scores are found in452

multiple subgraphs, we take their maximum.453

We compare our Chinese entailment graph with454

a few strong baselines:455

• BERT: We take the raw translations of the456

pseudo-sentence pairs, and compute the cosine457

similarity between the pretrained BERT sen-458

tence representations of premise and hypothe-459

sis, at the [CLS] token. This is a strong asso-460

ciative meaning baseline but symmetric;461

• Jia: We build entailment graph in the same way462

as Section 5, but with the more restricted ORE463

method by Jia et al. (2018); accordingly, Jia464

et al. (2018) method is also used in evaluation;465

• DDPORE: Similar to Jia baseline, but with the466

baseline ORE method in DDParser (2020).467

Ensembling with English Entailment Graphs468

In order to examine the complementarity between469

our Chinese entailment graph and the English470

graph, we experiment on ensembling the scores471

from two graphs, preden and predzh. We take the472

English graph from Hosseini et al. (2018), and eval-473

uate four ensemble strategies: lexicographic orders474

from English to Chinese and Chinese to English,475

max pooling and average pooling:476

preden_zh = preden + γ ∗Θ(preden) ∗ predzh477

predzh_en = γ ∗ predzh + Θ(predzh) ∗ preden478

predmax = MAX(preden, γ ∗ predzh)479

predavg = AVG(preden, γ ∗ predzh)480

where Θ(·) is the boolean function IsZero, γ is481

the relative weight of Chinese and English graphs.482

γ is a hyperparameter tuned on Levy-Holt dev set,483

searched between 0.0 and 1.0 with step size 0.1.484

For instance, suppose our premise is “he,485

shopped in, the store”, and our hypothesis is “he,486

went to, the store”, then our Chinese relations,487

8See Appendix C for more details.

AUC (%) dev test
BERT ? 5.5 3.2
Jia (2018) ? 0.9 2.4
DDPORE (2020) ? 9.8 5.9
EGZh ? 16.1 9.1
EGEn (2018) � 20.7 16.5
EGEn++ (2021) � 23.3 19.5
Ensemble En_Zh � 27.9 (γ : 0.5) 20.8
Ensemble Zh_En � 27.5 (γ : 0.9) 21.0
Ensemble MAX � 29.8 (γ : 0.5) 21.6 †
Ensemble AVG � 29.8 (γ : 0.3) 21.7
Ensemble++ AVG � 31.2 (γ : 0.1) 24.0 †
EGZh -type ? 11.1 7.0
DataConcat En � 20.6 17.8
DataConcat Zh ? 19.0 14.2
DataConcat Esb � 31.8 25.0
BackTrans Esb � 23.0 17.5

Table 3: Area Under Curve (AUC) values for Chinese
entailment graph (EGZh), its baselines, ensembles with
English graphs, and ablation studies. EGEn is the En-
glish graph in (Hosseini et al., 2018); EGEn++ is the
English graph in (Hosseini, 2021). For entries with ?,
the minimum recall is set by Chinese lemma baseline;
for entries with �, the minimum recall is set by English
lemma baseline; entries with † are the best ensemble
strategies according to dev set results.

by translation, would be “他, 在·X·购物, 商店” 488

and “他, 前往, 商店” respectively. Suppose we 489

find in the English graph an edge from “shop 490

in” to “go to”, scored pred_en = 0.6, and we 491

find in the Chinese graph an edge from “在·X·购 492

物” to “前往”, scored pred_zh = 0.7. Then we 493

would have preden_zh = 0.6, predzh_en = 0.7, 494

predmax = 0.7, predavg = 0.65. 495

In addition to ensembling with EGEn (2018), 496

we also ensembled our entailment graph with the 497

SOTA English graph EGEn++ (2021). We call the 498

later ones Ensemble++ here and below. 499

7 Results and Discussions 500

To measure the performance of our Chinese en- 501

tailment graphs, we follow previous work in re- 502

porting the Precision-Recall (P-R) Curves plotted 503

for successively lower confidence thresholds, and 504

their Area Under Curves (AUC), for the range with 505

> 50% precision. 506

For our Chinese entailment graph (EGZh) and its 507

baselines, we report their AUC calculated with min- 508

imum recall set by Chinese lemma baseline. For 509

ensembled models, in order to get commensurable 510

AUC values with previous work instead of being 511

6



Figure 1: P-R Curves on Levy-Holt test set for EGZh,
ensembles and baselines; Jia(2018) baseline is much
lower than others, and not displayed for the clarity of
the figure.

over-optimistic, we set the minimum recall with512

English lemma baseline.513

As shown in Table 3, on the Chinese version of514

Levy-Holt dataset, our EGZh graph substantially515

outperforms the BERT pretrained baseline. EGZh516

is also far ahead of entailment graphs with baseline517

ORE methods, proving a superiority of our Chinese518

ORE method against previous SOTA.519

EGZh and EGEn are built with the same entail-520

ment graph induction algorithm (Hosseini et al.,521

2018), and evaluated on parallel datasets. Learnt522

from 57% the data, EGZh achieves an AUC value523

55% of its English counterpart. Considering the ex-524

tra noise from MT in evaluation, it shows that our525

pipeline is utilizing the source corpus very well.526

The ensemble between EGZh and EGEn sets527

a new SOTA for unsupervised predicate entail-528

ment detection. With all 4 ensemble strategies,529

we observe an improvement upon both monolin-530

gual graphs; with Ensemble MAX, the best setting531

on dev set, the margin of test set improvement is532

more than 5 points. Moreover, with Ensemble++533

AVG, the best dev set setting when ensembling534

with EGEn++, we get an AUC of 24.0 points on the535

test set, raising SOTA by more than 4 points.536

In an ablation study, the EGZh -type setting, with-537

out entity typing, loses 2.1 points in AUC. This538

means the HierType model on CFIGER indeed539

helps entailment graph construction by correctly540

typing the arguments, thus typing the predicates.541

Another ablation study, shown in the fourth sec-542

tion of Table 3, disentangles the effect of ensem-543

bling from the effect of extra data. We machine-544

translate NewsSpike corpus into Chinese, Webhose545

into English. We build an English graph “DataCon-546

cat En” using NewsSpike + translated-Webhose, 547

and a Chinese graph “DataConcat Zh” using Web- 548

hose + translated-NewsSpike. Results show that 549

while both graphs improve with data from the other 550

side, our Ensemble MAX is still far ahead of them. 551

This suggests, the success of cross-lingual ensem- 552

ble cannot be reproduced by sticking in all the data 553

to a monolingual graph via translation. Further, 554

ensembling the two DataConcat graphs delivers a 555

25.0% AUC, 7 points higher than DataConcat En, 556

an even wider margin than our main setting. 557

These results show that complementary informa- 558

tion is learnt in entailment graphs in the two lan- 559

guages, and the strength of our Chinese entailment 560

graph is sufficient to contribute to the ensemble. 561

The ensemble delivers a huge lift in performance, 562

especially in terms of recall in the moderate pre- 563

cision range (see Figure 1). Thus, we expect that 564

ensembling strong entailment graphs in more lan- 565

guages may result in further improvements. 566

We further analyse our improvements with a case 567

study: we compare the predictions of our Ensem- 568

ble_MAX to that of the English monolingual EGEn, 569

both thresholded over 65% precision. We catego- 570

rize the prediction differences into 4 classes: True 571

Positives, False Positives, True Negatives, False 572

Negatives. Positives are cases where the ensemble 573

switched the prediction label from negative to posi- 574

tive, vice versa for negatives; True means that the 575

switch is correct, False, that the switch is incorrect. 576

In Table 4, we break down each class of differ- 577

ences according to the direct cause of EGZh making 578

a different prediction than EGEn
910: 579

• same sentence after translation: The premise 580

and hypothesis become identical in relation struc- 581

ture; this can only happen with positives; 582

• translation error: The premise or hypothesis 583

becomes unparsable into relations due to transla- 584

tion error; this can only happen with negatives; 585

• lexicalization: The difference in predictions is 586

attributed to the cross-lingual difference in the 587

lexicalization of complex relations; 588

• ORE error: After translation, the true relations 589

in premise and hypothesis have the same argu- 590

ments, but are mistaken due to ORE error; 591

• evidence of entailment: The difference is at- 592

tributed to the different evidence of entailment in 593

the two graphs; this is most relevant to our EGZh. 594

9since the switch in Ensemble_MAX is driven by EGZh.
10examples of each class of cause are given in Appendix D.
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Direct causes of EGZh’s different prediction TP (+) FP (-) TN (+) FN (-) +/-
translation-related causes, among which: +52 -30 +42 -48 +16

· same sentence after translation +52 -30 0 0 +22
· translation error 0 0 +42 -48 -6

lexicalization +28 -52 +20 -12 -16
ORE error +8 -17 +8 -7 -8
evidence of entailment +108 -108 +101 -51 +50
TOTAL +196 -207 +171 -118 +42

Table 4: Breakdown of the different predictions between our ensembles and English monolingual graph. “TP”,
“FP”, “TN”, “FN” represent True Positive, False Positive, True Negative and False Negative respectively; in the
column “+/-” is the overall impact of each factor.

As shown, the majority of our performance gain595

comes from the additional evidence of entailment596

in EGZh; surprisingly, translation played a positive597

role in the ensemble, though not a major contribu-598

tor. We attribute this to the fact that MT systems599

tend to translate semantically similar sentences to600

the same target sentence, though this similarity is601

still symmetric, not directional. In the “BackTrans602

Esb” ablation study in Table 3, we single out trans-603

lation in ensembling: we ensemble predictions on604

the original and back-translated Levy-Holt dataset,605

both in English. The performance gain in this case606

is only marginal, stressing that evidence of entail-607

ment is the key to our success, while translation is608

not. Further, for EGZh itself, translated datasets is609

a negative factor overall, as explained later below.610

In Table 4, for both the differences from evi-611

dence of entailment, and differences in TOTAL,612

the precision of positives is lower than that of neg-613

atives. Namely, TP/(TP + FP ) is lower than614

TN/(TN + FN). This is no surprise, as posi-615

tives and negatives have different baselines to start616

with: Positives attempt to correct the false nega-617

tives from EGEn , where 17% of the negatives are618

false; Negatives attempt to correct the false pos-619

itives, where 35% of the positives are false (as620

dictated in the setting of our case study). In this621

context, it is expectable that our evidence of entail-622

ment gets 108/(108+108) = 50% correct for pos-623

itives, while a much better 101/(101 + 51) = 66%624

correct for negatives. These results support the625

solidarity of our contributions.626

The use of translated test data underestimates627

the power of Chinese entailment graphs in three628

ways: 1) The quality of machine-translation is im-629

perfect. Without wider context, the translations630

could drift apart from the meaning of the original631

relations, and the entailment labels could go wrong.632

2) EGZh is induced purely from native Chinese,633

while the translated relations bear a translationese 634

language style. This poses a gap in the choice of 635

words, and reduces the chance of finding a match 636

in EGZh . 3) The original Levy-Holt dataset uses 637

human-annotated relation triples, while for the Chi- 638

nese version we have to mine them from translated 639

pseudo-sentences with our ORE method, adding an 640

extra source of noise. 641

While the first two sources of noise are harder 642

to measure, we can crudely quantify the third one 643

by counting the ORE failures. Among the 12,921 644

relation pairs in Levy-Holt test set, 3,584 of them 645

failed to be translated-then-parsed into binary rela- 646

tions. This means, for Chinese entailment graphs, 647

the hard boundary for recall is not 100%, but rather 648

72.3%, as is the hard boundary for AUC. 649

Though hindered by this evaluation setting, our 650

Chinese entailment graph still achieves strong per- 651

formance. Particularly, in the Data_Concat setting 652

in Table 3, we get a 79.8% ratio of AUC between 653

Chinese and English, which is fully explainable by 654

the 72.3% ratio of hard recall bound. This reaffirms 655

that the strength of our Chinese entailment graph 656

pipeline is on par with its English counterpart. 657

8 Conclusion 658

We have presented a pipeline for building Chinese 659

entailment graphs. Along the way, we proposed a 660

novel high-recall open relation extraction method, 661

and built a fine-grained entity typing dataset by la- 662

bel mapping. As our main result, we have shown 663

that: our Chinese entailment graph is comparable 664

with English graphs, where unsupervised BERT 665

baseline did poorly; an ensemble between Chinese 666

and English entailment graphs substantially outper- 667

forms English monolingual graphs, and sets a new 668

SOTA for unsupervised entailment detection. Di- 669

rections for future work include multilingual align- 670

ment and alternative predicate disambiguation. 671
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A A Brief Summary of Jia et al. (2018)897

In Table 5 are the 7 rules from Jia et al. (2018)898

which they call Dependency Structure Normal899

Forms. The first rule corresponds to nominal com-900

pounds which we elaborated in constructions D in901

Section 3.1; the second rule corresponds to direct S-902

V-O relations; the third rule attends to the semantic903

objects hidden in adjuncts, which are always pre-904

verbs in Chinese; the fourth rule subsumes comple-905

ments of head verbs into the predicate; the fifth rule906

handles coordination of subjects, the sixth handles907

coordination of object, and the seventh handles co-908

ordination of predicates. These rules are reflected909

in our ORE method as well, but for the sake of910

brevity, only the constructions that has never been911

covered by previous work are listed in Section 3.1.912

德国 总理 默克尔 。
German Chancellor Merkel .

(German, Chancellor, Merkel)
我 看到 你 。

I see you .
(I, see, you)

他 在 家 玩 游戏 。
He at home play game .
(He, play-game, home)
我 走 到 图书馆 。

I walk to library .
(I, walk-to, library)

我 和 你 去 商店 。
I and you go-to shop .

(I, go-to, shop) (you, go-to, shop)
我 吃 汉堡 和 薯条 。

I eat burger and chips .
(I, eat, burger) (I, eat, chips)

罪犯 击中 、 杀死 了 他 。
Criminal shot, kill -ed him .

(criminal, shot, him) (criminal, kill, him)

Table 5: Set of DSNFs from Jia et al. (2018) exempli-
fied. In each box, at top is an example sentence, pre-
sented in Chinese and its English metaphrase (inflec-
tion ignored); below are the relations they extract.

B Detailed Statistics of the CFIGER913

dataset914

To test our injective mapping assumption, we in-915

spect the number of FIGER type labels to which916

each ultra-fine-grained type is mapped through917

manual labelling without considering injectivity.918

Among the 6273 ultra-fine-grained types in total,919

5622 of them are mapped to exactly one FIGER 920

type, another 510 are not mapped to any FIGER 921

types; only 134 ultra-fine-grained types are mapped 922

to 2 FIGER types, and 7 mapped to 3 FIGER types. 923

No ultra-fine-grained types are mapped to more 924

than 3 FIGER types. Therefore, it is safe to say 925

that our label mapping is roughly injective. 926

We further inspected the number of FIGER types 927

each mention is attached with. It turns out the 928

among the 1,913,197 mentions in total, 59,517 of 929

them are mapped to no FIGER types, 1,675,089 930

of them are mapped to 1 FIGER type, 160,097 931

are mapped to 2 FIGER types, 16,309 are mapped 932

to 3 FIGER types, 1,952 are mapped to 4 FIGER 933

types, 200 are mapped to 5 FIGER types, and 33 934

are mapped to 6 FIGER types. No mentions are 935

mapped to more than 6 FIGER types. Note that 936

each mention can be mapped to more than one ultra- 937

fine-grained types from the start, so these numbers 938

are not in contradiction with the above numbers. 939

Figure 2: Number of ultra-fine-grained types in crowd-
annotated subset mapped to each FIGER type; only the
FIGER types with top 10 number of ultra-fine-grained
types are displayed.

Figure 3: Number of ultra-fine-grained types in
wikipedia distantly supervised subset mapped to each
FIGER type; only the FIGER types with top 10 num-
ber of ultra-fine-grained types are displayed.

We also looked at the number of ultra-fine- 940
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grained types each FIGER type is mapped to, so941

as to understand the skewness of our mapping.942

Results are shown in Figure 2 and 3. Unsurpris-943

ingly, the most popular ultra-fine-grained labels944

are highly correlated with the ones that tend to ap-945

pear in coarse-grained type sets, with “PERSON”946

label taking up a large portion. This distribution947

is largely consistent between crowd-annotated and948

Wikipedia subsets.949

Another set of stats are the number of mentions950

that corresponds to each FIGER type, shown in Fig-951

ure 4 and 5. The winners in terms of the number of952

mentions are consistent with that of the number of953

ultra-fine-grained types, and also consistent among954

themselves (between the two subsets).955

Figure 4: Number of mentions in crowd-annotated sub-
set labelled as each FIGER type; only the FIGER types
with top 10 number of mentions are displayed.

Figure 5: Number of mentions in wikipedia distantly
supervised subset labelled as each FIGER type; only
the FIGER types with top 10 number of mentions are
displayed.

C Selecting Relation Triples for956

Translated Levy-Holt957

To retrieve the relation triple most likely reflecting958

the meaning of the whole sentence, we follow this959

order when determining which relation triple to960

select:961

• For the amended relations, if the predicate of 962

any of them cover the word with HEAD token 963

in DDParser dependency parse, we randomly 964

choose one of these; 965

• If none is found, but the predicate of any non- 966

amended relations cover the word with HEAD 967

token in DDParser dependency parse, we ran- 968

domly choose one of these; 969

• If none is found, but there are any other rela- 970

tions, we randomly choose one of these; 971

• Finally, if none is found, we assign 972

PREMISE_PLACEHOLDER to the premise and 973

HYPOTHESIS_PLACEHOLDER to the hypothe- 974

sis, so that no entailment relation would ever 975

be detected between them. 976

D Examples of Different Predictions in 977

Case Study by Category of Direct 978

Cause 979

In this section, we provide one example for each 980

class of direct cause, as described in Section 7. 981

Chinese sentences and relations in the examples 982

are presented in the same format as Section 3.1. 983

Same sentence after translation 984

• Premise - English: (magnesium sulfate, re- 985

lieves, headache) 986

• Hypothesis - English: (magnesium sulfate, 987

alleviates, headaches) 988

• Premise - Chinese translation: “硫 989

酸 镁(magnesium) 缓 解(relieves) 头 990

痛(headache)” 991

• Hypothesis - Chinese translation: “硫 992

酸 镁(magnesium) 缓 解(alleviates) 头 993

痛(headache)” 994

The two sentences are translated to the same sur- 995

face form in Chinese, as the predicates are in many 996

cases synonyms. There are more true positives than 997

false positives, because synonyms are simultane- 998

ous more likely true entailments and more likely 999

translated to the same Chinese word. 1000

Translation Error 1001

• Premise - English: (Refuge, was attacked by, 1002

terrorists) 1003
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• Hypothesis - English: (Terrorists, take,1004

refuge)1005

• Premise - Chinese translation: “避1006

难 所(refuge) 遭 到(suffered) 恐 怖 分1007

子(terrorists) 袭击(attack); Refuge suffered1008

attack from terrorists.”1009

• Hypothesis - Chinese translation: “恐怖分1010

子(terrorists) 避难(take-shelter); Terrorists1011

take shelter.”1012

The hypothesis is supposed to mean “The ter-1013

rorists took over the refuge”. However, with trans-1014

lation, the hypothesis in Chinese is mistaken as a1015

intransitive relation where take-refuge is consid-1016

ered a predicate.1017

Lexicalization1018

• Premise - English: (Granada, is located near,1019

mountains)1020

• Hypothesis - English: (Granada, lies at the1021

foot of, mountains)1022

• Premise - Chinese translation: “格拉纳1023

达(Granada)靠近(is-near)山脉(mountains)”1024

• Hypothesis - Chinese translation: “格拉1025

纳达(Granada) 位于(is-located-at) 山脚1026

下(hillfoot)”1027

When the hypothesis is translated into Chinese,1028

the lexicalization of the relation changed, the part1029

of the predicate hosting the meaning of ’the foot1030

of’ is absorbed into the object. Therefore, while1031

in English “is located near” does not entail “lies at1032

the foot of”, in Chinese “is-near” is considered to1033

entail “is-located-at”. In this way, an instance of1034

false positive comes into being.1035

ORE Error1036

• Premise - English: (A crow, can eat, a fish)1037

• Hypothesis - English: (A crow, feeds on, fish)1038

• Premise - Chinese translation: “乌鸦(crow)1039

可以(can)吃(eat)鱼(fish)”1040

• Hypothesis - Chinese translation: “乌1041

鸦(crow)以(take)鱼(fish)为(as)食(food)”1042

• Premise - extracted Chinese relation: (crow,1043

eat, fish)1044

• Hypothesis - extracted Chinese relation: 1045

(crow, take·X·as·food, fish) 1046

While the translations for this pair of relations 1047

is correct, in the subsequent Chinese open relation 1048

extraction, our ORE method failed to recognize “可 1049

以(can)” as an important part of the predicate. To 1050

avoid sparsity, most adjuncts of the head verb are 1051

discarded, and modals are part of them. While the 1052

original premise “can eat” does not entail “feeds 1053

on”, the Chinese premise “eat” does in a way entail 1054

“feeds on”, where another instance of false positive 1055

arises. 1056

Evidence of Entailment 1057

• Premise - English: (quinine, cures, malaria) 1058

• Hypothesis - English: (quinine, is used for the 1059

treatment of, malaria) 1060

• Premise - Chinese translation: “奎宁(quinine) 1061

治疗(cure)疟疾(malaria)” 1062

• Hypothesis - Chinese translation: “奎 1063

宁(quinine) 用于(is-used-to) 治疗(cure) 疟 1064

疾(malaria)” 1065

• Premise - extracted Chinese relation: (quinine, 1066

cure, malaria) 1067

• Hypothesis - extracted Chinese relation: (qui- 1068

nine, is-used-to·cure, malaria) 1069

In the above example, sufficiently strong evi- 1070

dence for “cure” entailing “is used for the treat- 1071

ment of” is not found in the English graph, whereas 1072

strong evidence for “治疗(cure)” entailing “用 1073

于·治疗(is-used-to·cure)” is found in the Chinese 1074

graph. In this way we get an instance of true posi- 1075

tive. 1076

E More Precision-Recall Curves 1077

In this section, we present more precision-recall 1078

curves from the baselines and ablation studies in 1079

Table 3. These curves contain more details explain- 1080

ing the AUC values in the table. 1081

Figure 6 contains the curves for the ablation 1082

study of DataConcat. Here all three models ul- 1083

timately come from the same corpus, so the per- 1084

formance difference can be fully attributed to the 1085

complementarity of entailment graphs in different 1086

languages. 1087

Figure 7 contains the curves for two ablation 1088

studies: EGZh with or without entity typing; EGEn 1089
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Figure 6: P-R Curves on Levy-Holt test set for Data-
Concat ablation study.

Figure 7: P-R Curves on Levy-Holt test set for EGZh

−type, BackTrans Esb, in comparison to EGZh and
EGEn respectively.

ensembled with back-translation predictions or not.1090

The former study shows the clear benefit of our en-1091

tity typing system, while the latter study shows that1092

ensembling with back-translated predictions only1093

results in a marginal gain, therefore paraphrases1094

through translation is not a major contributor to the1095

success of our ensembling method.1096
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