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ABSTRACT

Value-based methods are competitive when trained and tested in single environ-
ments. However, they fall short when trained on multiple environments with sim-
ilar characteristics and tested on new ones from the same family. We investigate
the potential reasons behind the poor generalization performance of value-based
methods and discover that exploration plays a crucial role in these settings. Ex-
ploration is helpful not only for finding optimal solutions to the training environ-
ments but also for acquiring knowledge that helps generalization to other unseen
environments. We show how to make value-based methods competitive in these
settings by using uncertainty-driven exploration and distributional RL. Our algo-
rithm is the first value-based approach to achieve state-of-the-art on both Procgen
and Crafter, two challenging benchmarks for generalization in RL.

1 INTRODUCTION

Value-based methods (Watkins & Dayan, 1992) (which directly derive a policy from the value func-
tions) tend to be competitive on singleton Markov decision processes (MDPs) where agents are
trained and tested on the same environment (Mnih et al., 2013; Hessel et al., 2018; Badia et al.,
2020). However, they fall short in contextual MDPs (CMDPs) (Wang et al., 2020; Ehrenberg et al.,
2022), where agents are trained on a number of different environments that share a common struc-
ture and tested on unseen environments from the same family (Cobbe et al., 2019; Wang et al., 2020;
Mohanty et al., 2021; Ehrenberg et al., 2022). In this work, we aim to understand potential reasons
for why value-based approaches work well in singleton MDPs but not in contextual MDPs and how
we can make them competitive in CMDPs.

Most of the existing approaches for improving generalization in CMDPs have treated the problem
as a pure representation learning problem, applying regularization techniques which are commonly
used in supervised deep learning (Farebrother et al., 2018; Cobbe et al., 2018; Igl et al., 2019; Lee
et al., 2020; Ye et al., 2020; Laskin et al., 2020; Raileanu et al., 2020). However, these methods
neglect the unique structure of reinforcement learning (RL), namely that agents collect their own
data by exploring their environments. This suggests that there may be other avenues for improving
generalization in RL beyond representation learning.

Here, we identify the agent’s exploration strategy as a key factor influencing generalization in
contextual MDPs. First, exploration can accelerate training in RL, and since neural networks may
naturally generalize, better exploration can result in better training performance and consequently
better generalization performance. Moreover, in singleton MDPs, exploration can only benefit deci-
sions in that environment, while in CMDPs exploration in one environment can also help decisions
in other, potentially unseen, environments. This is because learning about other parts of the environ-
ment can be useful in other MDPs even if it is not useful for the current MDP. As shown in Figure 1,
trajectories that are suboptimal in certain MDPs may turn out to be optimal in other MDPs from
the same family, so this knowledge can help find the optimal policy more quickly in a new MDP
encountered during training, and better generalize to new MDPs without additional training.

One goal of exploration is to learn new things about the (knowable parts of the) environment so as
to asymptotically reduce epistemic uncertainty. To model epistemic uncertainty (which is reducible
by acquiring more data), we need to disentangle it from aleatoric uncertainty (which is irreducible
and stems from the inherent stochasticity of the environment). As first observed by Raileanu &
Fergus (2021), in CMDPs the same state can have different values depending on the environment,
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Figure 1: Exploration can help agents generalize to new situations at test time, even if it is not needed for
finding the optimal policy on the training environments.

but the agent does not know which environment it is in so it cannot perfectly predict the value of
such states. This is a type of aleatoric uncertainty which can be modeled by learning a distribution
over all possible values rather than a single point estimate (Bellemare et al., 2017). Based on these
observations, we propose Exploration via Distributional Ensemble (EDE), a method that uses an
ensemble of Q-value distributions to encourage exploring states with large epistemic uncertainty.
We evaluate our approach on both Procgen (Cobbe et al., 2019) and Crafter (Hafner, 2022), two
procedurally generated CMDP benchmarks for generalization in deep RL, demonstrating a signif-
icant improvement over more naı̈ve exploration strategies. This is the first model-free value-based
method to achieve state-of-the-art performance on these benchmarks, in terms of both sample effi-
ciency and generalization, surpassing strong policy-optimization baselines (i.e., methods that learn
a parameterized policy in addition to a value function) and even a model-based one.

To summarize, this work: (i) identifies exploration as a key factor for generalization in CMDPs,
(ii) supports this hypothesis using a didactic example in a tabular CMDP, (iii) proposes an
exploration method based on minimizing the agent’s epistemic uncertainty, and (iv) achieves
state-of-the-art performance on two generalization benchmarks for deep RL, Procgen and Crafter.

2 BACKGROUND

Episodic Reinforcement Learning. A Markov decision process (MDP) is defined by the tuple µ =(
S,A, R, P, γ, ρ0

)
, where S is the state space, A is the action space, R : S ×A → [Rmin, Rmax] is

the reward function , P : S ×A× S → R≥0 is the transition distribution, γ ∈ (0, 1] is the discount
factor, and ρ0 : S → R≥0 is the initial state distribution. We further denote the trajectory of an
episode to be the sequence τ = (s0,a0, r0, . . . , sT ,aT , rT , sT+1) where rt = R(st,at) and T is
the length of the trajectory which can be infinite. If a trajectory is generated by a probabilistic policy
π : S × A → R≥0, Zπ =

∑T
t=0 γ

trt is a random variable that describes the discounted return
the policy achieves. The objective is to find a π⋆ that maximizes the expected discounted return,
π⋆ = argmaxπ Eτ∼pπ(·) [Z

π] , where pπ(τ) = ρ0(s0)
∏T

t=0 P (st+1 | st,at)π(st | at). For
simplicity, we will use Eπ instead of Eτ∼pπ(·) to denote the expectation over trajectories sampled
from the policy π. With a slight abuse of notation, we use Zπ(s,a) to denote the conditional
discounted return when starting at s and taking action a (i.e., s0 = s and a0 = a). Finally, without
loss of generality, we assume all measures are discrete and their values lie within [0, 1].

Value-based methods (Watkins & Dayan, 1992) rely on a fundamental quantity in RL, the state-
action value function, also referred to as the Q-function, Qπ(s,a) = Eπ [Z

π | s0 = s, a0 = a].
The Q-function of a policy can be found at the fixed point of the Bellman operator, T π (Bell-
man, 1957), T πQ(s,a) = Es′∼P (·|s,a),a′∼π(·|s′) [R(s,a) + γQ(s′,a′)] . Bellemare et al. (2017)

extends the procedure to the distribution of discounted returns, T πZ(s,a)
d
= R(s,a) +

γZ(s′,a′), s′ ∼ P (· | s,a) and a′ ∼ π(· | s′), where d
= denotes that two random variables have

the same distributions. This extension is referred to as distributional RL (we provide a more detailed
description of QR-DQN, the distributional RL algorithm we use, in Appendix B.1). For value-based
methods, the policy is directly derived from the Q-function as π(a | s) = 1argmaxa′ Q(a′,s)(a).

Policy optimization approaches (Williams, 1992; Sutton et al., 1999) on the other hand seeks to
directly learn the optimal policy via Monte Carlo estimation of the return. Specifically, given a
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(b) ε-greedy
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(c) UCB
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Figure 2: (a) A tabular CMDP that illustrates the importance of exploration for generalization in RL. During
training, the agent starts in the blue square, while at test time it starts in the orange square. In both cases, the
goal is to get to the green square. The other plots show the mean and standard deviation of the train and test
suboptimality (difference between optimal return and achieved return) over 100 runs for (b) Q-learning with
ε-greedy exploration, (c) Q-learning with UCB exploration, and (d) policy gradient with entropy bonus.

policy πϑ parameterized by ϑ, we can compute the gradient of the expected return with respect to
ϑ through the policy gradient theorem, ∇ϑEπϑ

[Zπ] = Eπϑ

[∑T
t=0 Ψ(st,at)∇ϑ log πϑ(at | st)

]
,

where Ψ(s,a) is the advantage function (Schulman et al., 2015). ϑ is updated with gradient-based
optimization method such as stochastic gradient descent. The final policy involves directly sampling
from πϑ(at | st). In general, the advantage function Ψ(s,a) can also involve learned value func-
tions. However, the crucial feature of policy optimization methods is that they have a separate policy
function, whereas value-based methods do not.

Generalization in Contextual MDPs. A contextual Markov decision process (CMDP) (Hallak
et al., 2015) is a special class of partially observable Markov decision process (POMDP) consisting
of different MDPs, that share state and action spaces but have different R, P , and ρ0. In addition to
the standard assumptions of a CMDP, we assume the existence of a structured distribution qµ(µ) over
the MDPs. During training, we are given a (finite or infinite) number of training MDPs,Mtrain =
{µ1, µ2, . . . , µn}, drawn from qµ (Ghosh et al. (2021) refers to this setting as epistemic POMDP).
We use pπ,µ(τ) to denote the trajectory distribution of rolling out π in µ. The objective is to find a
single policy π that maximizes the expected discounted return over the entire distribution of MDPs,
Eτ∼pπ,µ(·),µ∼qµ(·)

[∑T
t=0 γ

trt

]
. Furthermore, we assume the existence of π⋆ (potentially more

than one) that is optimal for all µ ∈ supp(qµ), since otherwise zero-shot generalization can be
intractable (Malik et al., 2021). If the number of training environments is infinite, the challenge is
learning good policies for all of them in a sample-efficient manner, i.e., optimization; if it is finite,
the challenge is also generalization to unseen environments.

3 A DIDACTIC EXAMPLE: GENERALIZATION IN A TABULAR CMDP

Much of the literature treats generalization in deep RL as a pure representation learning prob-
lem (Song et al., 2020; Zhang et al., 2020a;b; Agarwal et al., 2021a) and aims to improve it by
using regularization (Farebrother et al., 2018; Zhang et al., 2018a; Cobbe et al., 2018; Igl et al.,
2019) or data augmentation (Cobbe et al., 2018; Lee et al., 2020; Ye et al., 2020; Kostrikov et al.,
2020; Laskin et al., 2020; Raileanu et al., 2020; Wang et al., 2020). In this section, we will show that
the problem of generalization in RL extends beyond representation learning by considering a tabular
CMDP which does not require representation learning. The goal is to provide intuition on the role of
exploration for generalization in RL using a toy example. More specifically, we show that exploring
the training environments can be helpful not only for finding rewards in those environments but also
for making good decisions in new environments encountered at test time.

Concretely, we consider a generic 5 × 5 grid environment (Figure 2a). During training, the agent
always starts at a fixed initial state, (x = 0, y = 0), and can move in 4 cardinal directions (i.e.,
up, down, left, right). The transition function is deterministic and if the agent moves against the
boundary, it ends up at the same location. If the agent reaches the terminal state, (x = 4, y = 0), it
receives a large positive reward, r = 2 and the episode ends. Otherwise, the agent receives a small
negative reward, r = −0.04. At test time, the agent starts at a different location, (x = 0, y = 4). In
other words, the train and test MDPs only differ by their initial state distribution. In addition, each
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episode is terminated at 250 steps (10 times the size of the state space) to speed up the simulation,
but most episodes reach the terminal state before forced termination.

We study 3 classes of algorithms with different exploration strategies: (1) Q-learning with ε-greedy
(Greedy, Watkins & Dayan (1992)), (2) Q-learning with UCB (UCB, Auer et al. (2002)), and (3)
policy gradient with entropy bonus (PG, Williams & Peng (1991)). To avoid any confounding effects
of function approximation, we use tabular policy parameterization for Q-values and unnormalized
log action probabilities. Both Greedy and UCB use the same base Q-learning algorithm (Watkins
& Dayan, 1992). Greedy explores with ε-greedy strategy which takes a random action with proba-
bility ε and the best action according to the Q-function argmaxa Q(s, a) with probability 1− ε. In
contrast, UCB is uncertainty-driven so it explores more actions that have been selected fewer times
in the past, according to π(a | s) = 1(a = argmaxa′ Q(s, a′) + c

√
log(t)/N(s, a′)), where t is

the total number of timesteps, c is the exploration coefficient, and N(s, a) is the number of times the
agent has taken action a in state s, with ties broken randomly1. PG uses the policy gradient method
with reward-to-go for variance reduction and entropy bonus for exploration. While Greedy is a
naı̈ve but widely used exploration strategy (Sutton & Barto, 2018), UCB is an effective algorithm
designed for multi-armed bandits (Auer et al., 2002; Audibert et al., 2009). Building on their in-
tuition, Chen et al. (2017) showed that uncertainty-based exploration bonus also performs well in
challenging RL environments. See Appendix A for more details about the experimental setup.

Each method’s exploration strategy is controlled by a single hyperparamter. For each hyperparame-
ter, we search over 10 values and run every value for 100 trials. Each trial lasts for 1000 episodes.
The results (mean and standard deviation) of hyperparameters with the highest average test returns
for each method are shown in Figures 2b, 2c and 2d. We measure the performance of each method
by its suboptimality, i.e., the difference between the undiscounted return achieved by the learned
policy and the undiscounted return of the optimal policy. While all three methods are able to quickly
achieve optimal return for the training MDP, their performances on the test MDP differ drastically.
First, we observe that Greedy has the worst generalization performance and the highest variance.
On the other hand, UCB can reliably find the optimal policy for the test MDP as the final return
has a negligible variance. Finally, PG’s performance lies between Greedy and UCB. On average,
it converges to a better solution with lower variance than Greedy but it is not as good as UCB. In
Appendix A.3, we provide another set of simulations based on changing dynamics and make similar
observations. These experiments show that more effective exploration of the training environ-
ments can result in better generalization to new environments.

It is natural to ask whether this example is relevant for realistic deep RL problems. One hypothesis
is that this tabular CMDP with two initial state distributions captures a common phenomenon in
more challenging CMDPs like Procgen, namely that at test time, the agent can often end up in states
that are suboptimal for the training MDPs. Having explored such states during training can help
the agent recover from suboptimal states at test time. See Appendix I for an illustrative example
inspired by one of the Procgen games. This is similar to covariate shift in imitation learning where
the agent’s suboptimality can compound over time. For the purpose of generalization, the effect of
efficient exploration is, in spirit, similar to that of DAgger (Ross et al., 2011) — it helps the agent
learn how to recover from suboptimal situations that are rare during training.

Another potential hypothesis for the superior performance of UCB relative to Greedy is that better
exploration improves sample efficiency resulting in better training performance, which can in turn
lead to better test performance. Indeed, even in the simple tabular MDPs from Figures 2 and 8,
UCB converges faster on the training MDP. In Appendix E.1, we study this hypothesis in more
detail. Note that the above two hypotheses can be simultaneously true, but the latter assumes the
model learns generalizable representations, whereas the previous hypothesis applies regardless. In
both cases, adapting uncertainty-driven exploration to deep RL on complex CMDPs has additional
challenges such as representation learning and unobserved contexts. In the next section, we describe
these challenges and propose a method to mitigate them.

1This UCB is a simple extension of the widely used bandits algorithm to MDP and does not enjoy the same
regret guarantee, but we find it to be effective for didactic purpose. Azar et al. (2017) presents a formal but
much more complicated extension of the UCB algorithm for value iteration on MDPs. The UCB used still
represents uncertainty but is more similar to a count-based exploration bonus.
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Figure 3: The results of Sarsa(λ).

Note that PG’s softmax exploration strategy is not more sophisti-
cated than ε-greedy so its performance gain over Greedy should
be attributed to something else. We hypothesize that this improve-
ment is due to the fact that algorithms based on policy gradient use
whole-trajectory updates (i.e., Monte Carlo methods) rather than
one-step updates like Q-learning (i.e., TD(0)). To test this hypoth-
esis, we run Sarsa(λ) on the same environment. Sarsa(λ) (Sutton
& Barto, 2018, Ch 12.7) is an on-policy method that learns a Q-
value but also does whole-trajectory updates. We observe that with
ε = 0.9 and λ = 0.9, Sarsa(λ) outperforms both Greedy and PG,
but is still worse than UCB and has a much larger variance (Figure 3). This suggests that although
whole-trajectory updates may partially be why policy gradient generalizes better than Q-learning,
better exploration can improve generalization further. In the rest of the paper, we will focus on using
exploration to improve generalization. Details and further analysis are in Appendix A.2.

4 EXPLORATION VIA DISTRIBUTIONAL ENSEMBLE

In the previous section, we showed we can improve generalization via exploration in the tabular
setting. In this section, we would like to extend this idea to deep RL with function approximation.
While in the tabular setting shown above there is no intrinsic stochasticity, environments can in
general be stochastic (e.g., random transitions, or random unobserved contexts). At a high level,
epistemic uncertainty reflects a lack of knowledge which can be addressed by collecting more data,
while aleatoric uncertainty reflects the intrinsic noise in the data which cannot be reduced regardless
of how much data is collected. One goal of exploration can be to gather information about states
with high epistemic uncertainty (O’Donoghue et al., 2018) since aleatoric uncertainty cannot be
reduced, but typical estimates can contain both types of uncertainties (Kendall & Gal, 2017). In
CMDPs, this is particularly important because a large source of aleatoric uncertainty is not knowing
which context the agent is in (Raileanu & Fergus, 2021).

In this section, we introduce Exploration via Distributional Ensemble (EDE), a method that en-
courages the exploration of states with high epistemic uncertainty, which is computed using deep
ensembles and distributional RL. While ensembles are a useful way of measuring uncertainty in
neural networks (Lakshminarayanan et al., 2017), such estimates typically contain both epistemic
and aleatoric uncertainty. Here, we build on Clements et al. (2019) who introduced an approach for
disentangling the epistemic uncertainty from the aleatoric uncertainty of the learned Q-values.

Uncertainty Estimation. Clements et al. (2019) showed that learning the quantiles for QR-
DQN (Dabney et al., 2018) can be formulated as a Bayesian inference problem, given access to
a posterior p(θ | D), where θ is the discretized quantiles of Z(s,a), and D is the dataset of expe-
rience on which the quantiles are estimated. Let j ∈ [N ] denote the index for the jth quantile and
U{1, N} denote the uniform distribution over integers between 1 and N . The uncertainty of the
Q-value, Q(s,a) = Ej∼U{1,N} [θj(s,a)], is the relevant quantity that can inform exploration. The
overall uncertainty σ2 = Varθ∼p(θ|D) [Q(s,a)] can be decomposed into epistemic uncertainty σ2

epi

and aleatoric uncertainty σ2
ale such that σ2 = σ2

epi + σ2
ale, where,

σ2
epi(s,a) = Ej∼U{1,N}

[
Varθ∼p(θ|D) [θj(s,a)]

]
, (1)

σ2
ale(s,a) = Varj∼U{1,N}

[
Eθ∼p(θ|D) [θj(s,a)]

]
. (2)

Ideally, given an infinite or sufficiently large amount of diverse experience, one would expect
the posterior to concentrate on the true quantile θ⋆, so Varθ∼p(θ|D) [θj(s,a)] and consequently
σ2

epi(s,a) = 0. σ2
ale would be non-zero if the true quantiles have different values. Intuitively, to

improve the sample efficiency, the agent should visit state-action pairs with high epistemic uncer-
tainty in order to learn more about the environment (Chen et al., 2017). It should be noted that
the majority of the literature on uncertainty estimation focuses on supervised learning; in RL, due
to various factors such as bootstrapping, non-stationarity, limited model capacity, and approximate
sampling, the uncertainty estimation generally contains errors but empirically even biased epistemic
uncertainty is beneficial for exploration. We refer interested readers to Charpentier et al. (2022) for
a more thorough discussion of this topic.
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Sampling from p(θ | D) is computationally intractable for complex MDPs and function approxi-
mators such as neural networks. Clements et al. (2019) approximates samples from p(θ | D) with
randomized MAP sampling (Pearce et al., 2020) which assumes a Gaussian prior over the model
parameters. However, the unimodal nature of a Gaussian in parameter space may not have enough
diversity for effective uncertainty estimation. Many works have demonstrated that deep ensembles
tend to outperform regular ensembles and other approximate posterior sampling techniques (Laksh-
minarayanan et al., 2017; Fort et al., 2019) in supervised learning. Motivated by these observations,
we propose to maintain M copies of fully-connected value heads, gi : Rd → R|A|×N that share a
single feature extractor f : S → Rd, similar to Osband et al. (2016a). However, we train each value
head with different mini-batches and random initialization (i.e., deep ensemble) instead of distinct
data subsets (i.e., bootstrapping). This is consistent with Lee et al. (2021) which shows deep en-
sembles usually perform better than bootstrapping for estimating uncertainty of Q-values but, unlike
EDE, they do not decompose uncertainties.

Concretely, i ∈ [M ] is the index for M ensemble heads of the Q-network, and j ∈ [N ] is the index
of the quantiles. The output of the ith head for state s and action a is θi(s,a) ∈ RN , where the jth

coordinate, and θij(s,a) is the jth quantile of the predicted state-action value distribution for that
head. The finite sample estimates of the two uncertainties are:

σ̂2
epi(s,a) =

1

N ·M

N∑
j=1

M∑
i=1

(
θij(s,a)− θ̄j(s,a)

)2
, σ̂2

ale(s,a) =
1

N

N∑
j=1

(
θ̄j(s,a)−Q(s,a)

)2
, (3)

where θ̄j(s,a) =
1
M

∑M
i=1 θij(s,a) and Q(s,a) = 1

N

∑N
j=1 θ̄j(s,a).

Exploration Policy. There are two natural ways to use this uncertainty. The first one is by using
Thompson sampling (Thompson, 1933) where the exploration policy is defined by sampling Q-
values from the approximate posterior:

πts(a | s) = 1argmaxa′ ξ(s,a′) (a) , where ξ(s,a′) ∼ N (Q(s,a′), φ σ̂epi(s,a
′)) . (4)

φ ∈ R≥0 is an exploration coefficient that controls how the agent balances exploration and exploita-
tion. Alternatively, we can use the upper-confidence bound (UCB, Chen et al. (2017)):

πucb(a | s) = 1a⋆ (a) , where a⋆ = argmax
a′

Q(s,a′) + φ σ̂epi(s,a
′) (5)

which we found to achieve better results in CMDPs than Thompson sampling (used in Clements
et al. (2019)) on Procgen when we use multiple parallel workers to collect experience, especially
when combined with the next technique.

Equalized Exploration. Due to function approximation, the model may lose knowledge of some
parts of the state space if it does not see them often enough. Even with UCB, this can still happen
after the agent learns a good policy on the training environments. To increase the data diversity, we
propose to use different exploration coefficients for each copy of the model used to collect experi-
ence. Concretely, we have K actors with synchronized weights; the kth actor collects experience
with the following policy:

π
(k)
ucb (a | s) = 1a⋆ (a) , where a⋆ = argmax

a′
Q(s,a′) +

(
φλ1+ k

K−1α
)
σ̂epi(s,a

′). (6)

λ ∈ (0, 1) and α ∈ R>0 are hyperparameters that control the shape of the coefficient distribution.
We will refer to this technique as temporally equalized exploration (TEE). TEE is similar to Horgan
et al. (2018) which uses different values of ε for the ε-greedy exploration for each actor. In prac-
tice, the performances are not sensitive to λ and α (see Figure 14 in Appendix E). Both learning
and experience collection take place on a single machine and we do not use prioritized experience
replay (Schaul et al., 2015) since prior work found it ineffective in CMDPs (Ehrenberg et al., 2022).

To summarize, our agent explores the environment in order to gather information about states with
high epistemic uncertainty which is measured using ensembles and distributional RL. We build on
the algorithm proposed in Clements et al. (2019) for estimating the epistemic uncertainty, but we
use deep ensemble instead of MAP (Pearce et al., 2020), and use either UCB or Thompson sampling
depending on the task and setting. In addition, for UCB, we propose that each actor uses a different
exploration coefficient for more diverse data. While variations of the components of our algorithm
have been used in prior works, this particular combination is new (see Appendix C). Our ablation
experiments show that each design choice is important and naı̈vely combining these techniques does
not work as well.
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Figure 4: Test performance of different methods on the Procgen benchmark across 5 runs. Our method greatly
outperforms all baselines in terms of median and IQM (the more statistically robust metrics), and is competitive
with the state-of-the-art policy optimization methods in terms of mean and optimality gap. Optimality gap is
equal to 1-mean for the evaluation configuration we chose.

5 EXPERIMENTS

5.1 PROCGEN

We compare our method with 3 representative baselines on the standard Procgen benchmark (i.e.,
25M steps and easy mode) as suggested by Cobbe et al. (2018): (1) QR-DQN which is the prior
state-of-the-art value-based method on Procgen (Ehrenberg et al., 2022); (2) PPO which is a popular
policy optimization baseline on which most competitive methods are built; and (3) IDAAC which
is state-of-the-art on Procgen and is built on PPO. We tune all hyperparameters of our method on
the game bigfish only and evaluate all algorithms using the 4 metrics proposed in Agarwal et al.
(2021b). We run each algorithm on every game for 5 seeds and report the aggregated min-max
normalized scores on the full test distribution, and the estimated bootstrap-estimated 95% confidence
interval in Figure 4 (simulated with the runs). Our approach significantly outperforms the other
baselines in terms of median and interquartile mean (IQM) (which are the more statistically robust
metrics according to Agarwal et al. (2021b)). In particular, it achieves almost 3 times the median
score of QR-DQN and more than 2 times the IQM of QR-DQN. In terms of mean and optimality gap,
our method is competitive with IDAAC and outperforms all the other baselines. To the best of our
knowledge, this is the first value-based method that achieves such strong performance on Procgen.
See Appendices G, D, and H for more details about our experiments, results, and hyperparameters.

Ablations. We aim to better understand how each component of our algorithm contributes to the
final performance by running a number of ablations. In addition, we compare with other popular ex-
ploration techniques for value-based algorithms. Since many of the existing approaches are designed
for DQN, we also adapt a subset of them to QR-DQN for a complete comparison. The points of
comparison we use are: (1) Bootstrapped DQN (Osband & Van Roy, 2015) which uses bootstrapping
to train several copies of models that have distinct exploration behaviors, (2) UCB (Chen et al., 2017)
which uses an ensemble of models to do uncertainty estimation, (3) ϵz-greedy exploration (Dabney
et al., 2021) which repeats the same random action (following a zeta distribution) to achieve tempo-
rally extended exploration, (4) UA-DQN (Clements et al., 2019), and (5) NoisyNet (Fortunato et al.,
2017) which adds trainable noise to the linear layers. When UCB is combined with QR-DQN, we
use the epistemic uncertainty unless specified otherwise. Details can be found in Appendix G.

First, note that both using the epistemic uncertainty via UCB and training on diverse data from
TEE are crucial for the strong performance of EDE, with QR-DQN+TEE being worse than QR-
DQN+UCB which is itself worse than EDE. Without using the epistemic uncertainty, the agent
cannot do very well even if it trains on diverse data, i.e., EDE is better than QR-DQN+TEE. Sim-
ilarly, even if the agent uses epistemic uncertainty, it can still further improve its performance by
training on diverse data, i.e., EDE is better than QR-DQN+UCB.

Both Bootstrapped DQN and DQN+UCB, which minimize the total uncertainty rather than only
the epistemic one, perform worse than DQN, although both of them are competitive exploration
methods on Atari. This highlights the importance of using distributional RL in CMDPs in order to
measure epistemic uncertainty. QR-DQN+UCB on the other hand does outperform QR-DQN and
DQN because it seeks to reduce only the epistemic uncertainty. In Figure 12c from Appendix E, we
show that indeed exploring with the total uncertainty σ2 performs significantly worse at test time
than exploring with only the epistemic uncertainty σ2

epi. UA-DQN also performs worse than QR-
DQN+UCB suggesting that deep ensemble may have better uncertainty estimation (Appendix F).

QR-DQN with ϵz-greedy exploration marginally improves upon the base QR-DQN, but remains
significantly worse than our approach. This may be due to the fact that ϵz-greedy exploration can
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Figure 5: Test performance of different exploration methods on the Procgen benchmark across 5 runs.

induce temporally extended exploration but it is not aware of the agent’s uncertainty. Not accounting
for uncertainty can be detrimental since CMDPs can have a much larger number of effective states
than singleton MDPs. If the models have already gathered enough information about a state, further
exploring that state can hurt sample efficiency, regardless of whether the exploration is temporally
extended or not.

NoisyNet performs better than the other points of comparison we consider, but it remains worse
than EDE. Intuitively, the exploration behaviors of NoisyNet are naturally adaptive — the agents
will take into account what they have already learned. While a direct theoretical comparison between
NoisyNet and our method is hard to establish, we believe adaptivity is a common thread for methods
that perform well on CMDPs. Nonetheless, if we consider IQM, none of these methods significantly
outperforms one another whereas our method achieves a much higher IQM. Note that our TEE
cannot be applied to NoisyNets and ϵz-greedy which already use an implicit “schedule”.

5.2 CRAFTER

Method Score (%)

EDE (ours) 11.7± 1.011.7± 1.011.7± 1.0

Rainbow 4.3± 0.2
PPO 4.6± 0.3
DreamerV2 10.0± 1.2

Table 1: Results on Crafter af-
ter 1M steps and over 10 runs.

To test the generality of our method beyond the Procgen bench-
mark, we conduct experiments on the Crafter environment (Hafner,
2022). Making progress on Crafter requires a wide range of capabil-
ities such as strong generalization, deep exploration, and long-term
reasoning. Crafter evaluates agents using a score that summarizes
the agent’s abilities into a single number. Each episode is proce-
durally generated, so the number of training environments is prac-
tically infinite. While Crafter does not test generalization to new
environments, it still requires generalization across the training en-
vironments in order to efficiently train on all of them. We build
our method on top of the Rainbow implementation (Hessel et al.,
2018) provided in the open-sourced code of Hafner (2022). We use Thompson sampling instead of
UCB+TEE since only one environment is used. As seen in Table 5, our algorithm achieves signif-
icantly higher scores compared to all the baselines presented in Hafner (2022), including Dream-
erV2 (Hafner et al., 2021) which is a state-of-the-art model-based RL algorithm. The significant
improvement over Rainbow, which is a competitive value-based approach, suggests that the explo-
ration strategy is crucial for improving performance on such CMDPs.

6 RELATED WORK

Generalization in RL. A large body of work has emphasized the challenges of training RL agents
that can generalize to new environments and tasks (Rajeswaran et al., 2017; Machado et al., 2018;
Justesen et al., 2018; Packer et al., 2018; Zhang et al., 2018a;b; Nichol et al., 2018; Cobbe et al.,
2018; 2019; Juliani et al., 2019; Kuttler et al., 2020; Grigsby & Qi, 2020; Chen, 2020; Bengio et al.,
2020; Bertrán et al., 2020; Ghosh et al., 2021; Kirk et al., 2021; Ajay et al., 2021; Ehrenberg et al.,
2022; Lyle et al., 2022). This form of generalization is different from generalization in singleton
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MDP which refers to function approximators generalizing to different states within the same MDP. A
natural way to alleviate overfitting is to apply widely-used regularization techniques such as implicit
regularization (Song et al., 2020), dropout (Igl et al., 2019), batch normalization (Farebrother et al.,
2018), or data augmentation (Ye et al., 2020; Lee et al., 2020; Laskin et al., 2020; Raileanu et al.,
2020; Wang et al., 2020; Yarats et al., 2021; Hansen & Wang, 2021; Hansen et al., 2021; Ko &
Ok, 2022). Another family of methods aims to learn better state representations via bisimulation
metrics (Zhang et al., 2020b;a; Agarwal et al., 2021a), information bottlenecks (Igl et al., 2019;
Fan & Li, 2022), attention mechanisms (Carvalho et al., 2021), contrastive learning (Mazoure et al.,
2021), adversarial learning (Roy & Konidaris, 2020; Fu et al., 2021; Rahman & Xue, 2021), or
decoupling representation learning from decision making (Stooke et al., 2020; Sonar et al., 2020).
Other approaches use information-theoretic approaches (Chen, 2020; Mazoure et al., 2020), non-
stationarity reduction (Igl et al., 2020; Nikishin et al., 2022), curriculum learning (Jiang et al., 2020;
Team et al., 2021; Jiang et al., 2021; Parker-Holder et al., 2022), planning (Anand et al., 2021),
forward-backward representations (Touati & Ollivier, 2021), or diverse policies (Kumar et al., 2020).
More similar to our work, Raileanu & Fergus (2021) show that the value function can overfit when
trained on CMDPs and propose to decouple the policy from the value optimization to train more
robust policies. However, this approach cannot be applied to value-based methods since the policy
is directly defined by the Q-function. Most of the above works focus on policy optimization methods,
and none emphasizes the key role exploration plays in training more general agents. In contrast, our
goal is to understand why value-based methods are significantly worse on CMDPs.

Exploration. Exploration is a fundamental aspect of RL (Kolter & Ng, 2009; Fruit & Lazaric, 2017;
Tarbouriech et al., 2020). Common approaches include ε-greedy (Sutton & Barto, 2018), count-
based exploration (Strehl & Littman, 2008; Bellemare et al., 2016; Machado et al., 2020), curiosity-
based exploration (Schmidhuber, 1991; Stanton & Clune, 2016; Pathak et al., 2017), or novelty-
based methods specifically designed for exploring sparse reward CMDPs (Raileanu & Rocktäschel,
2020; Zha et al., 2021; Flet-Berliac et al., 2021; Zhang et al., 2021). These methods are based on
policy optimization and focus on training agents in sparse reward CMDPs. In contrast, we are in-
terested in leveraging exploration as a way of improving the generalization of value-based methods
to new MDPs (including dense reward ones). Some of the most popular methods for improving
exploration in value-based algorithms use noise (Osband et al., 2016b; Fortunato et al., 2017), boot-
strapping (Osband & Van Roy, 2015; Osband et al., 2016a), ensembles (Chen et al., 2017; Lee et al.,
2020; Liang et al., 2022), uncertainty estimation (Osband et al., 2013; O’Donoghue et al., 2018;
Clements et al., 2019), or distributional RL (Mavrin et al., 2019). The main goal of these works
was to use exploration to improve sample efficiency on singleton MDPs that require temporally ex-
tended exploration. Another related area is task-agnostic RL (Pong et al., 2019; Zhang et al., 2020c)
where the agent explores the environment without reward and tries to learn a down-stream task with
reward, but to our knowledge these methods have not been successfully adapted to standard bench-
marks like Procgen where the MDPs can have large variations. Our work is the first one to highlight
the role of exploration for faster training on contextual MDPs and better generalization to unseen
MDPs. Our work also builds on the distributional RL perspective (Bellemare et al., 2017), which is
useful in CMDPs for avoiding value overfitting (Raileanu & Fergus, 2021).

7 DISCUSSION

In this work, we aim to understand why value-based methods are significantly worse than policy
optimization methods in contextual MDPs, while being much better in singleton MDPs with similar
characteristics. Our tabular experiments indicate that effective exploration is crucial for generaliza-
tion to new environments. In CMDPs, exploring an environment is not only useful for finding the
optimal policy in that environment, but also for acquiring knowledge that can be useful in other envi-
ronments the agent may encounter at test time. In order to make value-based competitive with policy
optimization in CDMPs, we propose an approach based on uncertainty-driven exploration and dis-
tributional RL. This is the first value-based based method to achieve state-of-the-art performance on
both Procgen and Crafter, two challenging benchmarks for generalization in RL. Our experiments
suggest that exploration is important for all RL algorithms trained and tested on CMDPs. While here
we focus on value-based methods, similar ideas could be applied in policy optimization to further
improve their generalization abilities. One limitation of our approach is that it is more computa-
tionally expensive due to the ensemble (Appendix F). Thus, we expect it could benefit from future
advances in more efficient ways of accurately estimating uncertainty in neural networks.
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8 REPRODUCIBILITY STATEMENT

We include the source code of EDE in the supplementary materials. This work builds on several
existing open-source repositories and we have provided a detailed description of the algorithm,
hyperparameters, and architecture in Appendix C and G. The codebase for Procgen is built on com-
ponents from Jiang et al. (2020) and Ehrenberg et al. (2022); the codebase for Crafter is built on the
baseline provided by Hafner (2022). Access to these codebases can all be found in these papers.
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Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International Conference on Machine Learning, pp. 263–272. PMLR, 2017.
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entangling epistemic and aleatoric uncertainty in reinforcement learning. arXiv preprint
arXiv:2206.01558, 2022.

10



Under review as a conference paper at ICLR 2023

Jerry Zikun Chen. Reinforcement learning generalization with surprise minimization. ArXiv,
abs/2004.12399, 2020.

Richard Y Chen, Szymon Sidor, Pieter Abbeel, and John Schulman. Ucb exploration via q-
ensembles. arXiv preprint arXiv:1706.01502, 2017.

William R Clements, Bastien Van Delft, Benoı̂t-Marie Robaglia, Reda Bahi Slaoui, and Sébastien
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A TABULAR EXPERIMENTS

A.1 GENERALIZATION TO DIFFERENT INITIAL STATES
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Figure 6: Mean test return for each method with different exploration hyperparameters.

Both the training MDP, µtrain, and the test MDP, µtest, share the same state space S, [5] × [5], and
action space A, [4], corresponding to {left, right, up, down}. From each state, the transition,
P (s′ | s, a), to the next state corresponding to an action is 100%. γ is 0.9. The two MDPs differ by
only their initial state distribution: ρtrain(s) = 1(0,0) (s) and ρtest(s) = 1(4,0) (s).

For both policy gradient and Q-learning, we use a base learning rate of α0 = 0.05 that decays as
training progresses. Specifically, at time step t, αt =

1√
t
α0.

For Q-learning, the Q-function is parameterized as ϑ ∈ R|S|×|A| where each entry is a state-action
value. The update is:

Q(t+1)(st, at) = Q(t)(st, at) + αt

(
rt + γmax

a
Q(t)(st+1, a)−Q(t)(st, at)

)
, (7)

where Q(s, a) = ϑs,a. For Q-learning with UCB, the agent keeps N(s, a) that keeps track of how
many times the agent has taken action a from s over the course of training and explore according to:

πucb(a | s) = 1a⋆ (a) where a⋆ = argmax
a

Q(s, a) + c

√
log t

N(s, a)
. (8)

For Q-learning with ε-greedy, the exploration policy is:

πegreedy(a | s) = (1− ε)1argmaxa′ Q(s,a′) (a) + ε

(∑
a′∈A

1

|A|
1a′ (a)

)
. (9)

Ties in argmax are broken randomly which acts as the source of randomness for UCB.

For policy gradient, the policy is parameterized as ϑ ∈ R|S|×|A| where each entry is the logit for the
distribution of taking action a from s, i.e., π(a | s) = exp(ϑs,a)∑

a′∈A exp(ϑs,a′ )
. The overall gradient is:

∇ϑEπϑ
[J(τ)] = Eπϑ

[
T∑

t=0

∇ϑ log πϑ(at | st)
T∑

k=t

γk−trk

]
, (10)

∇ϑHπϑ
= ∇ϑEπϑ

[
T∑

t=0

∑
a∈A

πϑ(a | st) log πϑ(a | st)

]
. (11)

The update is:

ϑ(t+1) = ϑ(t) + αt (∇ϑEπϑ
[J(τ)] + β∇ϑHπϑ

)|ϑ=ϑ(t) , (12)

where the expection is estimated with a single trajectory.

For each method, we repeat the experiment for the following 10 hyperparameter values:

17



Under review as a conference paper at ICLR 2023

• ε: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
• c: {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
• β: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Each experiment involves training the algorithm for 100 trials. Each trial consists of 1000 episodes
and each episode ends when the agent reaches a terminal state or at 250 steps. At test time, all ap-
proaches are deterministic: Q-learning follows the action with highest Q-value and policy gradient
follows the action with the highest probability. The mean test returns for each experiment are shown
in Figure 6. We observe that both UCB and policy gradient are relatively robust to the choice of hy-
perparameters, whereas ε-greedy’s generalization performance varies greatly with ε. Furthermore,
even with extremely large ε, the generalization performance is still far worse than UCB and policy
gradient. The best performing values are respectively ε⋆ = 0.9, c⋆ = 45 and β⋆ = 0.1.

A.2 SARSA(λ)

Sarsa(λ) is an on-policy value-based method that learns Q-value with whole-trajectory update via
eligibility traces. Since the algorithmic details are more involved than the other methods we con-
sider, we refer the reader to Chapter 12.7 of Sutton & Barto (2018) for the details. The Sarsa(λ)
with ε-greedy experiments inherit all the hyperparameters of Q-learning + ε-greedy experiments,
but have one more hyperparameter λ ∈ (0, 1] that interpolates the method between Monte Carlo
method and one-step TD update. We use a fixed λ = 0.9 for all experiments. We sweep ε across 10
values (100 trials each):

• ε: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

It can be seen from Figure 7a that even with whole-episode updates, the average return is still
higher for larger exploration coefficients, which means exploration can still help. Furthermore,
larger exploration coefficients also tend to have smaller variances in the test performance (Figure 7b).
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(b) Standard deviation of return.
Figure 7: Tet performance of Sarsa(λ) across different ε.

A.3 GENERALIZATION TO DIFFERENT DYNAMICS

In previous section, we presented a simple scenario that exploration helps generalization to different
initial state distribution. Here, we demonstrate another scenario where exploration helps general-
ization to new dynamics. We use a 7 × 7 grid as the state space (Figure 8a). The agent receives a
small negative reward for every location except for the green square (4, 2), where the agent receives
a reward of 2 and the episode ends. The difference between this environment and the previous one
is that the agent always starts at (0, 3) but at test time, a gust of wind can blow the agent off course.
Specifically, with a probability of 40%, the agent will be blown to +2 unit in the y-direction. This
environment is an example of the windy world from Sutton & Barto (2018). The results are shown
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Figure 8: (a) During both training and test time, the agent starts in the blue square, but at test time, with 40%
probability, wind can blow the agent down by two unit. In both cases, the goal is to get to the green square.
The other plots show the mean and standard deviation of the train and test suboptimality (difference between
optimal return and achieved return) over 100 runs for (b) Q-learning with ε-greedy exploration, (c) Q-learning
with UCB exploration, and (d) policy gradient with entropy bonus.
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Figure 9: Mean test return for each method with different exploration hyperparameters when the transition
dynamic changes at test time.

in Figure 8 and 9, where we see similar results as the previous section, but at test time the optimal
expected return is generally worse and has higher variance for all methods since there is stochasticity
(suboptimality is computed with respect to the return of an oracle that consistently moves towards
the goal). This setup is related to robust reinforcement learning (Morimoto & Doya, 2005), but
exploration makes no assumptions about the type or magnitude of perturbation (thus making more
complicated perturbation, e.g., different random initializations of the same game, possible) and does
not require access to a simulator.

B ADDITIONAL BACKGROUND

B.1 QUANTILE REGRESSION DQN

Quantile regression DQN (QR-DQN) is a variant of distributional RL that tries to learn the quantiles
of the state-action value distribution with quantile regression rather than produce the actual distri-
bution of Q-values. Compared to the original C51 (Bellemare et al., 2017), QR-DQN has many
favorable theoretical properties. Here, we provide the necessary background for understanding QR-
DQN and refer the readers to Dabney et al. (2018) for a more in-depth discussion of QR-DQN.

Given a random variable Y with associated CDF FY (y) = P(Y ≤ y), the inverse CDF of Y is

F−1
Y (τ) = inf {y ∈ R | τ ≤ FY (y)} .

To approximate Y , we may discretize the CDF with N qunatile values:{
F−1
Y (τ1), F

−1
Y (τ2), . . . , F

−1
Y (τN )

}
where τi =

i

N
.

Using the same notation as main text, we use θ : S ×A → RN to denote a parametric function that
maps a state-action pair, (s,a), to the estimated quantiles {θj(s,a)}Nj=1. The approximated CDF
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of Z(s,a) is thus:

Ẑ(s,a)
d
=

1

N

N∑
j=1

δ (θj(s,a)) ,

where δ (θj(s,a)) is the Dirac delta distribution centered at θj(s,a). To learn the quantiles, we use
quantile regression which allows for unbiased estimate of the true quantile values. Concretely, for a
target distribution Z and quantile τ , the value of F−1

Z (τ) is the minimizer of the quantile regression
loss:

F−1
Z (τ) = argmin

θ
Lτ

QR(θ) = Ez∼Z [ρτ (z − θ)] where ρτ (u) = u (τ − 1(u < 0)) .

Due to discretization, for each quantile τj , the minimizer of the 1-Wasserstein distance within that
quantile is at θ that satisfies FZ(θ) =

1
2 (τj−1 + τj) = τ̂j (see Lemma 2 of Dabney et al. (2018)).

Consequentily, to approximate Z, we can simultaneously optimize for all of the quantiles, {θj}Nj=1,
by minimizing the following loss:

N∑
j=1

Lτ̂j
QR(θj) =

N∑
j=1

Ez∼Z

[
ρτ̂j (z − θj)

]
.

To stablize optimization, QR-DQN uses an modified version of quantile loss called quantile Huber
loss which utilizes the Huber loss with hyperparameter κ:

Lκ(u) =
1

2
u2
1(|u| ≤ κ) + κ

(
|u| − 1

2
κ

)
1(|u| > κ).

The quantile Huber loss is defined as:

ρκτ (u) = |τ − 1(u < 0)| Lκ(u).

In QR-DQN, both the approximating distribution and the target distribution are discretized with
quantiles. The target distribution is computed with bootstrapping through the distributional Bellman
operator. Concretely, given a target network, θtarget, and transition tuple (s,a, r, s′), the target
distribution is approximated as:

Q(s′,a′) =
1

N

N∑
j=1

θtarget
j (s′,a′)

a⋆ = argmax
a′

Q(s′,a′)

T θj = r + γθtarget
j (s′,a⋆). (13)

The TD target Q-value distribution’s quantiles and distribution are:

{T θ1, T θ2, . . . , T θN}, T Z d
=

1

N

N∑
j=1

δ (T θj) .

Treating the target distribution as an oracle (i.e., not differentiable), we update the current quantile
estimates to minimize the following quantile regression loss:

N∑
j=1

Ez∼T Z

[
ρκτ̂j (z − θj(s,a))

]
=

1

N

N∑
j=1

N∑
i=1

ρκτ̂j (sg [T θi]− θj(s,a)) . (14)

sg denotes the stop gradient operation as we do not optimize the target network (standard DQN
practice).
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C ALGORITHMIC DETAILS

In this section, we describe EDE in detail and highlight its differences from previous approaches. In
Algorithm 1, we describe the main training loop of EDE. For simplicity, the pseudocode omits the
initial data collection steps during which the agent uses a uniformly random policy to collect data
and does not update the parameters. We also write the parallel experience collection as a for loop
for easier illustration, but in the actual implementation, all loops over K are parallelized. The main
algorithmic loop largely resembles the standard DQN training loop. Most algorithmic difference
happen in how exploration is being performance i.e., how the action is chosen and how the ensemble
members are updated.

In Algorithm 2, we describe how EDE chooses exploratory actions during training. For each state,
we first extract the features with the shared feature extractor f and then compute the state-action
value distributions for each ensemble head. With the state-action value distributions, we compute
the estimate for the epistemic uncertainty as well as the expected Q-values. Using these quantities,
we choose the action based on either Thompson sampling or UCB.

In Algorithm 3, we describe how EDE updates the parameters of the feature extractor and ensemble
heads. This is where our algorithm deviates significantly from prior approaches. For each ensemble
head, we sample an independent minibatch from the replay buffer and compute the loss like deep
ensemble. Inside the loop, the loss is computed as if each ensemble member is a QR-DQN. How-
ever, doing so naı̈vely means that the feature extractor f will be updated at a much faster rate. To
ensure that all paramters are updated at the same rate, for each update, we randomly choose a sin-
gle ensemble member that will be responsible for updating the feature extractor and the gradient of
other ensemble heads are not propagated to the feature extractor. This also saves some compute. In
practice, this turns out to be crucial for performing good uncertainty estimation and generalization.
We show the effect of doing so in Figure 13c.

Attentive readers would notice EDE is more expensive than other methods since it needs to process
M minibatches for each update. In our experiments, the speed of EDE with 5 ensemble member is
approximately 2.4 times slower than the base QR-DQN (see Appendix F). On the other hand, we
empirically observed that the deep ensemble is crucial for performing accurate uncertainty estima-
tion in CMDPs. UA-DQN (Clements et al., 2019), which uses MAP sampling, performs much worse
than EDE, even when both use the same number of ensemble members e.g., 3 (see Figure 5). In this
work, we do not investigate other altrenatives of uncertainty estimation but we believe future works
in improving uncertainty estimation in deep learning could significantly reduce the computation
overhead of EDE.

Algorithm 1 EDE

1: Initialize feature extractor f and ensemble heads {gi}Mi=1

2: Initialize target feature extractor f target and ensemble heads {gtarget
i }Mi=1

3: Initialize replay buffer Buffer
4: {s(k),done(k)}Kk=1 ← reset all environment
5: for t from 1 to T do ▷ Standard DQN training loop
6: for k from 1 to K do
7: a→ CHOOSEACTION

(
s(k), f, {gi}Mi=1, k

)
8: s′, r,done(k) ← Take a in the environment
9: add {s(k),a, r, s′,done(k)} to Buffer

10: s(k) ← s′

11: if done(k) then
12: s(k),done(k) ← reset the kth environment
13: end if
14: end for
15: UPDATE

(
Buffer, f, {gi}Mi=1, f

target, {gtarget
i }Mi=1

)
16: if t mod update frequency = 0 then
17: f target, {gtarget

i }Mi=1 ← f, {gi}Mi=1
18: end if
19: end for
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Algorithm 2 CHOOSEACTION
(
s, f, {gi}Mi=1, k

)
1: feature← f(s) ▷ Only one forward pass on the feature extractor
2: for i from 1 to M do
3: {θij(s,a)}Nj=1 ← gi(feature) ▷ Compute individual ensemble prediction
4: end for
5: Compute σ̂2

epi(s,a) using Equation 3 ▷ Estimate epistemic uncertainty with ensemble
6: Compute a⋆ using Equation 6 or Equation 4 ▷ Explore with estimated uncertainty
7: return a⋆

Algorithm 3 UPDATE
(
Buffer, f, {gi}Mi=1, f

target, {gtarget
i }Mi=1

)
1: L ← 0
2: grad index ∼ U{1,M} ▷ Randomly select an ensemble member
3: for i from 1 to M do ▷ Train each ensemble member independently
4: {s,a, r, s′,done} ← Sample from Buffer
5: feature(s′)← f target(s′)

6: {θtarget
ij (s′,a)}Nj=1 ← gtarget

i (feature(s′))

7: Compute {T θi1, T θi2, . . . , T θiN} using Equation 13 for the ith ensemble member
8: feature(s)← f(s)
9: if i ̸= grad index then ▷ Prevent over-training the feature extractor

10: feature(s) ← STOPGRADIENT (feature(s))
11: end if
12: {θij(s,a)}Nj=1 ← gi(feature(s))

13: Li ← compute QR loss using Equation 14 for the ith ensemble member
14: L ← L+ Li

15: end for
16: Compute gradient of L w.r.t the parameters of f, {gi}Mi=1
17: Update the parameters with Adam
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D PROCGEN RESULTS

In Table 3 and Table 2, we show the mean and standard deviation of the final unnormalized train
and test scores (at the end of 25M environment steps) of EDE along side with other methods in the
literature. We adapt the tables from Raileanu & Fergus (2021). In Figure 10, we show the curves of
min-max normalized test score that we reproduced using the code from Raileanu & Fergus (2021).
We see that for a subset of games, EDE is significantly more sample-efficient. For other games, EDE
is either on par with the policy optimization methods or fails to train, indicating there are other issues
behind its poor performance on these games. Note that IDAAC results tune the hyperparameters for
individual games whereas we only tune the hyperparameters on bigfish.

Game PPO MixReg PLR UCB-DRAC PPG DAAC IDAAC EDE

bigfish 3.7 ± 1.3 7.1 ± 1.6 10.9 ± 2.8 9.2 ± 2.0 11.2 ± 1.4 17.8 ± 1.4 18.5 ± 1.2 22.1 ± 2.022.1 ± 2.022.1 ± 2.0
StarPilot 24.9 ± 1.0 32.4 ± 1.5 27.9 ± 4.4 30.0 ± 1.3 47.2 ± 1.6 36.4 ± 2.8 37.0 ± 2.3 49.6 ± 2.449.6 ± 2.449.6 ± 2.4
FruitBot 26.2 ± 1.2 27.3 ± 0.8 28.0 ± 1.4 27.6 ± 0.4 27.8 ± 0.6 28.6 ± 0.628.6 ± 0.628.6 ± 0.6 27.9 ± 0.5 25.7 ± 1.4
BossFight 7.4 ± 0.4 8.2 ± 0.7 8.9 ± 0.4 7.8 ± 0.6 10.3 ± 0.210.3 ± 0.210.3 ± 0.2 9.6 ± 0.5 9.8 ± 0.6 10.0 ± 0.5
Ninja 5.9 ± 0.2 6.8 ± 0.5 7.2 ± 0.47.2 ± 0.47.2 ± 0.4 6.6 ± 0.4 6.6 ± 0.1 6.8 ± 0.4 6.8 ± 0.4 6.1 ± 0.6
Plunder 5.2 ± 0.6 5.9 ± 0.5 8.7 ± 2.2 8.3 ± 1.1 14.3 ± 2.0 20.7 ± 3.3 23.3 ± 1.423.3 ± 1.423.3 ± 1.4 4.9 ± 0.5
CaveFlyer 5.1 ± 0.4 6.1 ± 0.6 6.3 ± 0.5 5.0 ± 0.8 7.0 ± 0.4 4.6 ± 0.2 5.0 ± 0.6 7.9 ± 0.47.9 ± 0.47.9 ± 0.4
CoinRun 8.6 ± 0.2 8.6 ± 0.3 8.8 ± 0.5 8.6 ± 0.2 8.9 ± 0.1 9.2 ± 0.2 9.4 ± 0.19.4 ± 0.19.4 ± 0.1 6.7 ± 0.5
Jumper 5.9 ± 0.2 6.0 ± 0.3 5.8 ± 0.5 6.2 ± 0.3 5.9 ± 0.1 6.5 ± 0.46.5 ± 0.46.5 ± 0.4 6.3 ± 0.2 5.7 ± 0.3
Chaser 3.5 ± 0.9 5.8 ± 1.1 6.9 ± 1.2 6.3 ± 0.6 9.8 ± 0.59.8 ± 0.59.8 ± 0.5 6.6 ± 1.2 6.8 ± 1.0 1.6 ± 0.1
Climber 5.6 ± 0.5 6.9 ± 0.7 6.3 ± 0.8 6.3 ± 0.6 2.8 ± 0.4 7.8 ± 0.2 8.3 ± 0.48.3 ± 0.48.3 ± 0.4 5.7 ± 1.1
Dodgeball 1.6 ± 0.1 1.7 ± 0.4 1.8 ± 0.5 4.2 ± 0.9 2.3 ± 0.3 3.3 ± 0.5 3.2 ± 0.3 13.3 ± 0.113.3 ± 0.113.3 ± 0.1
Heist 2.5 ± 0.6 2.6 ± 0.4 2.9 ± 0.5 3.5 ± 0.4 2.8 ± 0.4 3.3 ± 0.2 3.5 ± 0.23.5 ± 0.23.5 ± 0.2 1.5 ± 0.3
Leaper 4.9 ± 2.2 5.3 ± 1.1 6.8 ± 1.2 4.8 ± 0.9 8.5 ± 1.08.5 ± 1.08.5 ± 1.0 7.3 ± 1.1 7.7 ± 1.0 6.4 ± 0.3
Maze 5.5 ± 0.3 5.2 ± 0.5 5.5 ± 0.8 6.3 ± 0.16.3 ± 0.16.3 ± 0.1 5.1 ± 0.3 5.5 ± 0.2 5.6 ± 0.3 3.4 ± 0.5
Miner 8.4 ± 0.7 9.4 ± 0.4 9.6 ± 0.6 9.2 ± 0.6 7.4 ± 0.2 8.6 ± 0.9 9.5 ± 0.49.5 ± 0.49.5 ± 0.4 0.7 ± 0.1

Table 2: Procgen scores on test levels after training on 25M environment steps. The mean and
standard deviation are computed using 5 runs with different seeds.

Game PPO MixReg PLR UCB-DRAC PPG DAAC IDAAC EDE

bigfish 9.2 ± 2.7 15.0 ± 1.3 7.8 ± 1.0 12.8 ± 1.8 19.9 ± 1.7 20.1 ± 1.6 21.8 ± 1.8 27.5 ± 2.027.5 ± 2.027.5 ± 2.0
StarPilot 29.0 ± 1.1 28.7 ± 1.1 2.6 ± 0.3 33.1 ± 1.3 49.6 ± 2.149.6 ± 2.149.6 ± 2.1 38.0 ± 2.6 38.6 ± 2.2 46.9 ± 0.7
FruitBot 28.8 ± 0.6 29.9 ± 0.5 15.9 ± 1.3 29.3 ± 0.5 31.1 ± 0.531.1 ± 0.531.1 ± 0.5 29.7 ± 0.4 29.1 ± 0.7 27.7 ± 1.0
BossFight 8.0 ± 0.4 7.9 ± 0.8 8.7 ± 0.7 8.1 ± 0.4 11.1 ± 0.111.1 ± 0.111.1 ± 0.1 10.0 ± 0.4 10.4 ± 0.4 10.6 ± 0.4
Ninja 7.3 ± 0.3 8.2 ± 0.4 5.4 ± 0.5 8.0 ± 0.4 8.9 ± 0.2 8.8 ± 0.2 8.9 ± 0.3 9.1 ± 0.49.1 ± 0.49.1 ± 0.4
Plunder 6.1 ± 0.8 6.2 ± 0.3 4.1 ± 1.3 10.2 ± 1.76 16.4 ± 1.9 22.5 ± 2.8 24.6 ± 1.624.6 ± 1.624.6 ± 1.6 8.2 ± 0.8
CaveFlyer 6.7 ± 0.6 6.2 ± 0.7 6.4 ± 0.1 5.8 ± 0.9 9.5 ± 0.2 5.8 ± 0.4 6.2 ± 0.6 10.6 ± 0.110.6 ± 0.110.6 ± 0.1
CoinRun 9.4 ± 0.3 9.5 ± 0.2 5.4 ± 0.4 9.4 ± 0.2 9.9 ± 0.09.9 ± 0.09.9 ± 0.0 9.8 ± 0.0 9.8 ± 0.1 6.6 ± 0.4
Jumper 8.3 ± 0.2 8.5 ± 0.4 3.6 ± 0.5 8.2 ± 0.1 8.7 ± 0.1 8.6 ± 0.3 8.7 ± 0.2 9.0 ± 0.49.0 ± 0.49.0 ± 0.4
Chaser 4.1 ± 0.3 3.4 ± 0.9 6.3 ± 0.7 7.0 ± 0.6 10.7 ± 0.410.7 ± 0.410.7 ± 0.4 6.9 ± 1.2 7.5 ± 0.8 2.2 ± 0.1
Climber 6.9 ± 1.0 7.5 ± 0.8 6.2 ± 0.8 8.6 ± 0.6 10.2 ± 0.2 10.0 ± 0.3 10.2 ± 0.710.2 ± 0.710.2 ± 0.7 10.0 ± 0.3
Dodgeball 5.3 ± 2.3 9.1 ± 0.5 2.0 ± 1.1 7.3 ± 0.8 5.5 ± 0.5 5.2 ± 0.4 4.9 ± 0.3 15.9 ± 0.315.9 ± 0.315.9 ± 0.3
Heist 7.1 ± 0.5 4.4 ± 0.3 1.2 ± 0.4 6.2 ± 0.6 7.4 ± 0.47.4 ± 0.47.4 ± 0.4 5.2 ± 0.7 4.5 ± 0.3 7.2 ± 0.1
Leaper 5.5 ± 0.4 3.2 ± 1.2 6.4 ± 0.4 5.0 ± 0.9 9.3 ± 1.19.3 ± 1.19.3 ± 1.1 8.0 ± 1.1 8.3 ± 0.7 9.0 ± 0.3
Maze 9.1 ± 0.29.1 ± 0.29.1 ± 0.2 8.7 ± 0.7 4.1 ± 0.5 8.5 ± 0.3 9.0 ± 0.2 6.6 ± 0.4 6.4 ± 0.5 5.7 ± 0.9
Miner 11.7 ± 0.5 8.9 ± 0.9 9.7 ± 0.4 12.0 ± 0.312.0 ± 0.312.0 ± 0.3 11.3 ± 1.0 11.3 ± 0.9 11.5 ± 0.5 1.1 ± 0.2

Table 3: Procgen scores on train levels after training on 25M environment steps. The mean and
standard deviation are computed using 5 runs with different seeds.
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Figure 10: Min-max normalized test performance of a few representative methods on individual Procgen games.
Mean and standard deviation are computed over 5 seeds. We can see that for games that value-based methods
can make meaningful progress, EDE almost improve up QR-DQN. In many cases, EDE is significantly more
sample efficient compared to the other methods. There are notably 4 games (chaser, maze, heist,
miner) where value-based methods (including EDE) still perform much worse than policy optimization. These
games all require generalization with long horizon planning which appear to remain challenging for value-based
methods. Getting value-based methods to generalize on these games would be an interesting future direction.

E ADDITIONAL ANALYSIS

E.1 OTHER SOURCES OF POOR GENERALIZATION

While our method improves train and test performance on two different CMDP benchmarks, it still
does not fully close the generalization gap. In this section, we study other potential reasons for the
poor generalization of RL algorithms, particularly value-based ones.

Optimization vs. Generalization. In supervised learning, deep neural networks have good gener-
alization, meaning that they perform similarly well on both train and test data. However, in RL, the
main bottleneck remains optimization rather than generalization. For example in Procgen, the state-
of-the-art training performance is far below the theoretical optimum (Cobbe et al., 2019; Raileanu
& Fergus, 2021), suggesting that current RL algorithms do not yet “overfit” the training distribu-
tion. To verify this hypothesis, we first conduct a meta-analysis of existing algorithms. We choose 7
representative algorithms (Appendix D) and measure whether better performance on training MDPs
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Figure 11: Investigations of other potential sources of poor generalization in RL.

translates into better performance on test MDPs. More specifically, we compute the Spearman’s
rank correlation, rs, between the training and test performance of the algorithms, for each Procgen
environment (Figure 11a). For many Procgen environments, training performance is strongly corre-
lated with test performance, suggesting that further improvements in optimization could also result
in better generalization.

In Figure 12a and Figure 12b, we show the scatter plot of the training performace and test perfor-
mance of each algorithm on games with positive correlation and games with negative correlation
(each color represents a different game). For games with positive correlation, we see that the cor-
relation is almost linear with slope of 1 (i.e., almost no generalization gap), which suggests that for
these games, we can expect the good generalization if the training performance is good. On the
games with negative correlation, it is less clear that improving training performance will necessarily
lead to better generalization or more severe overfitting. Most of the games with negative correlation
are either saturated in terms of performance or too challenging for current methods to make much
progress. This suggests that despite their apparent similarity, there are actually two “categories” of
games based on the algorithm’s tendency to overfit. Note that this dichotomy likely depends on the
algorithm; here, all algorithms are PPO-based and we hypothesize the picture would be different
for value-based methods. It would be interesting to understand what structural properties of these
CMDPs are responsible for this difference in overfitting, but this is out of scope for the current work.

Another interesting thing to notice is that most of the outliers in the two plots are PLR (Jiang et al.,
2021) which is an adversarial method that actively tries to reduce training performance. This may
explain why the trend does not hold for PLR as all other methods use a uniform distribution over the
training environments.

Sample Efficiency. One hypothesis for the poor performance of value-based methods relative to
policy optimization ones in CMDPs is that the former is less sample efficient than the latter in each
individual MDP µ ∈ Mtrain. If that is the case, the suboptimality can accumulate across all the
training MDPs, resulting in a large gap between these types of methods when trained in all the
environments inMtrain. To test this hypothesis, we run both DQN and PPO on a single environment
from each of the Procgen games. As shown in Figure 11b, we see that there is not a significant gap
between the average performances of DQN and PPO on single environments (across 3 seeds for 10
environments on which both methods reach scores above 0.5). In fact, DQN is usually slightly more
sample-efficient. Thus, we can rule this out as a major factor behind the observed discrepancy.

Partial Observability. Another sensible hypothesis for why DQN underperforms PPO in CMDPs
is the partial observability due to not knowing which environment the agent is interacting with at any
given time (Ghosh et al., 2021). Policy optimization methods that use trajectory-wise Monte Carlo
update are less susceptible to partial observability whereas value-based methods that use temporal
difference updates can suffer more since they rely heavily on the Markovian assumption. To test this
hypothesis, we provide the task ID to the Q-network in addition to the observation similar to Liu
et al. (2021). The access to the task ID means the agent knows exactly which environment it is
in (even though the environment itself may still be partially observable like Atari). In Figure 11b,
we see that both methods do well on the singleton environments, so with task IDs, the algorithms
should in theory be able to do as well as singleton environments even if there is no transfer between
different MDPs because the model can learn them separately. In practice, we embed the discrete task
IDs into R64 and add them as input to the final layers of the Q-network. Since there is no semantic
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relationship between discrete task IDs, we do not expect this to improve generalization performance,
but, surprisingly, we found that it does not improve training performance either (Figure 11c). This
suggests that partial observability may not be the main problem in such environments as far as
training is concerned. Note that this issue is related to but not the same as the aforementioned value-
overfitting issue. Having task ID means that the agent can have an accurate point estimate for each
MDP (as far as representation is concerned), but optimization remains challenging without proper
exploration.

Value Overfitting. Most deep RL algorithms model value functions as point estimates of the ex-
pected return at each state. As discussed in Raileanu & Fergus (2021), this is problematic in CMDPs
because the same state can have different values in different environments. Hence, the only way for
the values to be accurate is to rely on spurious features which are irrelevant for finding the optimal
action. For policy optimization algorithms, the policy can be protected from this type of overfitting
by using separate networks to train the policy and value, as proposed in Raileanu & Fergus (2021).
However, this approach cannot be applied to value-based methods since the policy is directly defined
by the Q-function. An alternative solution is distributional RL (Bellemare et al., 2017) which learns
a distribution (rather than a point estimate) over all possible Q-values for a given state. This mod-
els the aleatoric uncertainty resulting from the unobserved contexts in CMDPs (i.e., not knowing
which MDP the agent is interacting with), thus being able to account for one state having different
potential values depending on the MDP. Our method uses distributional RL to mitigate the problem
of value overfitting. As seen in Figure 5, while learning a value distribution leads to better results
than learning only a point estimate (i.e., QR-DQN > DQN), the largest gains are due to using a more
sophisticated exploration method (i.e., QR-DQN + UCB + TNN≫ DQN).

Our analysis indicates that sample efficiency and partial observability are not the main reasons be-
hind the poor generalization of value-based methods. In contrast, value overfitting is indeed a prob-
lem, but it can be alleviated with distributional RL. Nevertheless, effective exploration proves to be
a key factor in improving the train and test performance of value-based approaches in CMDPs. Our
results also suggest that better optimization on the training environment can lead to better general-
ization to new environments, making it a promising research direction.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
train

0.2

0.0

0.2

0.4

0.6

0.8

1.0

te
st

Train vs. test return

bigfish
bossfight
caveflyer

chaser
climber
coinrun

jumper
leaper

plunder
starpilot

(a) Games with positive train-test
correlation.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
train

0.2

0.0

0.2

0.4

0.6

0.8

1.0

te
st

Train vs. test return for 
 games with negative correlation

dodgeball
fruitbot

heist
maze

miner ninja

(b) Games with negative train-test
correlation.

0.0 0.5 1.0 1.5 2.0
1e7

0.05

0.00

0.05

0.10

0.15

0.20

0.25
2 vs. 2

epi test performance
2

2
epi

(c) Comparing different uncer-
tainties (mean test min-max nor-
malized scores).

Figure 12: Additional empirical results.

F UNCERTAINTY

Central to our method is the estimation of uncertainty in Q-values. We found that what kind of un-
certainty to model and how we model it are crucial to the performance of EDE. The first important
consideration is what kind of uncertainty to model. Specifically, we argue that only epistemic uncer-
tainty is useful for exploration since they represent the reducible uncertainty. This is a longstanding
view shared by many different sub-field of machine learning (Mockus, 1982; Settles, 2009). The
aleatoric uncertainty on the other hand is intrinsic to the environment (e.g., label noise) and cannot
be reduced no matter how many samples we gather. In standard regression, even with ensembles,
the estimated uncertainty (i.e., variance) contains both epistemic and aleatoric uncertainty. In Atari,
the main source of aleatoric uncertainty comes from the sticky action which has a relatively simple
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structure. However, in CMDPs such as Procgen, the aleatoric uncertainty coming from having differ-
ent environments is much more complicated and possibly multimodal, making it important to model
them explicitly. Empirically, using aleatoric uncertainty to explore is detrimental to the test per-
formance which may partially explain DQN+UCB’s extremely poor performance (Figure 5), even
compared to DQN+ε-greedy (i.e., uncertainty estimation based on ensemble of non-distributional
DQNs contains both types of uncertainties). To further test this hypothesis, we run QR-DQN+UCB
with both aleatoric and epistemic uncertainty and a version with only epistemic uncertainty (Fig-
ure 12c). The results show that using only epistemic uncertainty performs significantly better than
using both uncertainties in terms of both training and test performance.

Some additional important detail about uncertainty estimation with an ensemble are the number
of ensembles and how the members of the ensemble are updated. These details have implications
for both the computational complexity of inference and the quality of estimated uncertainty. For
the main experiments, we use 5 ensemble members which, without specific optimization, results
in about 2.5 times more time per algorithm step. The fol lowing are the time complexity of our
algorithm on a Tesla V100:

• EDE (5 ensemble members): 0.3411 seconds per algorithm step
• EDE (3 ensemble members): 0.2331 seconds per algorithm step
• QR-DQN: 0.1356 seconds per algorithm step

In Figure 13b, we found that using 3 ensemble heads achieves comparable performance. On the other
hand, using deep ensemble seems to be crucial for a good estimation of epistemic uncertainty as UA-
DQN (Clements et al., 2019), which uses MAP sampling with 3 ensemble members, performs much
worse than QR-DQN with 3 ensemble members trained with different minibatch and initialization
(which are presumably more independent from each other). We believe further understanding this
phenomenon would be an exciting future research direction.

G ARCHITECTURE AND HYPERPARAMETERS

G.1 PROCGEN

Architecture. We use a standard ResNet (He et al., 2016) feature extractor (f ) from IMPALA (Es-
peholt et al., 2018), which was adopted by Ehrenberg et al. (2022) for value-based methods. The
feature maps are flattened (d = 2048) and processed by M copies of 2-layer MLPs with the same
architecture to output M × |A| ×N values (for other models, this shape is changed accordingly for
the appropriate output dimension). |A| = 15 for all Procgen games. Each MLP conisists of two liner
layers (both of dimension 512) separated by a ReLU activation; the first layer is g(1) : Rd → R512

and the second layer is g(2) : R512 → R|A|×N . The overall archetecture is

g ◦ f = g(2) ◦ ReLU ◦ g(1) ◦ Flatten ◦ f.
The hyperparameters for the main method is shown in Table 4, and are directly adapted from Ehren-
berg et al. (2022) other than those of new algorithmic components.

For hyperparameters specific to EDE, we search over the following values on the game bigfish:

• φ : {10, 20, 30, 50}
• λ : {0.5, 0.6, 0.7}
• α : {6, 7, 8, 9}

and picked the best combination.

Points of comparisons. We try to keep the hyperaparameters the same as much as possible and
only make necessary changes to keep the comparison fair:

• For base DQN and QR-DQN, we use ε-greedy exploration with decaying ε. Specifically,
at every algorithmic step, the epsilon is computed with the following equation:

ε(t) = min

(
0.1 + 0.9 exp

(
− t− 2000

8000

)
, 1

)
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Name Value

number of training envs 200
procgen distribution mode easy
minibatch size 512
number of parallel workers (K) 64
replay buffer size 106

discount factor (γ) 0.99
n-step return 3
frame stack 1
dueling network no

target network update frequency 32000 (algo step)
initial random experience collection steps 2000×K (env step)
total number of steps 25× 106 (env step)
update per algo step 1
env step per algo step K

Adam learning rate 2.5× 10−4

Adam epsilon 1.5× 10−4

prioritized experience replay no

number of quantiles (N) 200
number of ensemble heads (M) 5
Huber loss κ 1
gradient clip norm 10

φ (UCB) 30
λ (TEE) 0.6
α (TEE) 7

Table 4: Hyperparameters for the main Procgen experiments. One algorithm step (algo step) can
have multiple environment steps (env step) due to the distributed experience collection.

• For Bootstrapped DQN (Osband & Van Roy, 2015), we use bootstrapping to trained the
model and uniformly sample a value head for each actor at the beginning of each episode
that is used for the entire episode. We use 5 ensemble members just like the other methods.

• For UCB, we use the estimated epistemic uncertainty when combined with QR-DQN and
use the standard variance when combined with DQN (Chen et al., 2017) and use φ = 30.

• For TEE without UCB, we use ε-greedy exploration without decaying ε for both QR-DQN
and DQN, and EDE with the same λ and α.

• For ϵz-greedy, we use the same ε decay schedule in combination with n = 10000 and
µ = 2.0 which are the best performing hyperparameter values from Dabney et al. (2021).
Each parallel worker has its own ϵz-greedy exploration process.

• For NoisyNet, we modify the base fully-connected layer with the noisy implementa-
tion (Fortunato et al., 2017) with σ = 0.5.

G.2 CRAFTER

For Crafter, we use the default architecture and hyperparameters that are used for the Rainbow
experiments in Hafner (2022) with the following changes:

• Change the distributional RL component from C51 to QR-DQN with appropriate architec-
ture change and use EDE for exploration

• Change the minibatch size from 32 to 64 to speed up training
• Remove prioritized experience replay

Once again, we emphasize that everything else stays the same, so the performance gain can be
largely attributed to the proposed method. For EDE, since the default configuration from Hafner
(2022) is single thread, we use Thompson sampling instead of UCB and do not use TEE.

For φ, we searched over {0.5, 1.0, 2.0} and picked the best value.
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Name Value

minibatch size 64
number of parallel workers (K) 1
replay buffer size 106

discount factor (γ) 0.99
n-step return 3
frame stack 4
dueling network no

target network update frequency 8000 (algo step)
initial random experience collection steps 20000 (env steps)
total number of steps 106 (env steps)
algo step per update 4
env step per algo step 1

Adam learning rate 6.25× 10−5

Adam epsilon 1.5× 10−4

prioritized experience replay no

number of quantiles (N) 200
number of ensemble heads (M) 5
Huber loss κ 1
gradient clip norm 10

φ (Thompson sampling) 0.5

Table 5: Hyperparameters for the final Crafter experiments.

H SENSITIVITY STUDY

In this section, we study the sensitivity of the test performance (i.e., aggregated min-max normalized
scores) to various hyperparameters on a subset of games. First, without TEE, we study the sensitivity
to different φ (UCB exploration coefficients), different M (number of ensemble members), and
whether the feature extractor is trained with gradients from each ensemble member.

For φ and M , we run the algorithm on: bossfight, ninja, plunder, starpilot,
caveflyer, jumper, bigfish, leaper for 1 seed and report the aggregated min-max
normalized scores in Figure 13a and Figure 13b. We observe that the algorithm is slightly sensitive
to the choice of φ, but not sensitive at all to M . This is encouraging since a large amount of compu-
tational overhead comes from the ensemble. Note that while smaller φ performs the best here, we
use a larger value (φ = 30) in combination with TEE.

In Figure 13c, we show the effect of only training the feature extractor using the gradient from
one member of the ensemble at every iteration. The results are computed on: ninja, plunder,
jumper, caveflyer, bigfish, leaper, climber for 1 seed. We observe that always
training the feature extractor leads to lower performance, corroborating our intuition that the feature
extractor should be trained at the same speed as the individual ensemble members.

In Figure 14, we study the performance under different hyperparameter values of TEE. We use fixed
M = 5 and φ = 30 and vary the values of either α or λ while holding the other one fixed. We
observe no significant difference across these, suggesting that the algorithm is robust to the values
of α and λ.
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(a) φ ablation.
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(b) M ablation.
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(c) Feature extractor ablation.
Figure 13: Aggregated min-max normalized test scores for φ (for fixed M = 3, and training feature extractor
for all value heads), M (for fixed φ = 50 and training feature extractor for all value heads), and whether feature
extractor is trained with all value head (for fixed φ = 50 and M = 3).
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Figure 14: Aggregated min-max normalized test scores for λ (for fixed α = 7) and α (for fixed λ = 0.6) on 4
games: bossfight, climber, plunder, starpilot.

I CASE STUDY: SIMPLIFIED BIGFISH

To further illustrate the intuition that exploration on the training MDPs can help zero-shot general-
ization to other MDPs, we will use a slightly simplified example inspired by the game bigfish
(Figure 15) from Procgen. As illustrated in Figure 16, in bigfish, the agent (green circle) needs
to eat smaller fish (small red circle) and avoid bigger fish (large red circle). The images with solid
borders are the observed frames and the images with dashed borders are the transitions.

If the agent collides with the small fish, it eats the small fish and gains +1 reward; if the agent
collides with the big fish, it dies and the episode ends. The blue rectangle (top) represents the
training environment and the red rectangle (bottom) represents the test environment. In the training
MDP, the agent always starts in the state shown in the T = 0 of the greedy trajectory (top row).
Using random exploration strategy (e.g., ϵ-greedy), the agent should be able to quickly identify that
going to the top will be able to achieve the +1 reward. However, there is an alternative trajectory
(middle) where the agent can go down and right to eat the small fish on the right (orange border).
This trajectory is longer (therefore harder to achieve via uniformly random exploration than the first
one) and has lower discounted return.

From the perspective of solving the training MDP, the trajectory is suboptimal. If this trajectory is
sufficiently hard to sample, the agent with a naive exploration will most likely keep repeating the
greedy trajectory. On the other hand, once the agent has sampled the greedy trajectory sufficiently,
uncertainty-aware exploration (e.g., UCB or count-based exploration) will more likely sample these
rarer trajectories since they have been visited less and thus have higher uncertainty. This has no
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Figure 15: Example frames of bigfish. The goal for the agent (green fish) is to avoid fish bigger than itself
and eat smaller fish. The spawning of enemy fish is different across different MDPs and the background can
change.

Figure 16: Simplified version of bigfish.

impact on the performance in the training MDP because the agent has learned the optimal policy
regardless of which exploration strategy is used.2

However, on the test MDP, the initial state is shown in T = 0 of the test trajectory (bottom row).
There is no guarantee that the agent knows how to behave correctly in this state because it has not
seen it during training. One could hope that the neural network has learned a good representation so
the agent knows what to do, but this does not necessarily have to be the case — the objective only
cares about solving the training MDP and does not explicitly encourage learning representations that
help generalization. Suppose that the agent keeps moving up due to randomness in the initialization
of the weight, it will run into the big fish and die (bottom row, T = 2). Notice that even though the
two environments are distinct, the test trajectory (bottom row) and the explorative trajectory (middle
row) share the same state at T = 1 (pink arrow). Due to this structure, agents that have learned
about the explorative trajectory during training time will be able to recognize that the better action
from T = 1 is to move to the right which will avoid death and ultimately result in +1 reward.

Once again, we emphasize that this is a simplified example for illustrative purpose. In reality, the
sequences of states do not need to be exactly the same and the neural network can learn to map

2Using function approximators with insufficient capacity may induce some effect on the optimal policy.
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similar states to similar representations. In principle, the neural network can also learn to avoid the
big fish but at T = 0 of the training MDP, the behavior “moving up” is indistinguishable from the
behavior “avoiding the big fish”. Good exploration during training can lead the agent to run into the
big fish from all directions which is much closer to “avoid the big fish”, the intuitive generalizable
behavior. Clearly, not all CMDPs will have this structure which allows us to improve generalization
via exploration, but it should not hurt. Like most problems in deep RL, it is difficult to prove
this hypothesis analytically but empirically it is indeed the case that EDE has better or the same
performance as QR-DQN in 11 out of 16 Procgen environments and perform approximately the
same in the remaining environments (Figure 10).

This perspective allows us to tackle the problem with exploration that is in principle orthogonal to
representation learning; however, since exploration naturally collects more diverse data, it may also
be beneficial for representation learning as a side effect.
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