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GPS: GENERAL PER–SAMPLE PROMPTER
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Figure 1: Left: Comparison of existing works to GPS. We propose the first automatic prompting
method that is (i) general purpose, i.e. works without a task-specific training set and task-specific
training and (ii) improves upon user-given prompts through refinement on a per-sample basis. Right:
Overview of GPS, a general, per-sample prompter trained on mathematical, logical, and program-
ming tasks. Once trained, it generates out-of-domain prompts for classification, summarization, and
simplification. The model operates in a per-sample regime, producing a unique prompt for each
input.

ABSTRACT

LLMs are sensitive to prompting, with task performance often hinging on subtle,
sometimes imperceptible variations in phrasing. As a result, crafting effective
prompts manually remains challenging and time-consuming. Recent automatic
prompting methods mitigate this difficulty but face three key limitations: (i) for
each new task, they require large datasets to train good prompts; (ii) they rely on
costly optimization loops that may take hours; (iii) they typically produce a single
task-level prompt that does not adapt to the individual input problem to be solved.

We propose GPS, the first general-purpose, per-sample prompting method. With-
out any task-specific tuning, GPS generates a tailored prompt for each unseen
input, improving performance across diverse tasks. The prompter is trained with
reinforcement learning on a suite of training tasks and includes a novel regulariza-
tion for effectively adapting to per-sample prompting. Finally, we employ Mini-
mum Bayes Risk decoding to stabilize inference.

Empirically, GPS demonstrates competitive performance: we attain second best
results among baselines on text simplification, third best results on summarization
and on-par results on classification, while not training on any of these tasks, in
contrast to the baselines. For in-domain prompting, we obtain sota on GSM8K.
Our work shows the potential of a novel and effective paradigm for automatic
prompting: generating adaptive, input-specific prompts without extensive opti-
mization and without access to a task-specific training set. Code and data will be
released upon acceptance.
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1 INTRODUCTION

LLMs reveal their full potential only when guided by carefully designed prompts. Recent bench-
marks show that model behaviour is highly sensitive to prompt phrasing Razavi et al. (2025), and
this sensitivity persists even as model size increases Batorski et al. (2025); Guo et al. (2025).

Automatic prompt engineering has emerged to address this challenge. Early work searched for
optimal prompts without iterative refinement Zhang et al. (2022), while later approaches introduced
optimization loops based on evolutionary strategies or reinforcement feedback Pryzant et al. (2023);
Guo et al. (2023); Batorski et al. (2025). Although effective, these methods must be re-run for every
new task, making them impractical when prompts are needed on demand. In addition, each method
requires the user to first construct a carefully curated dataset, often exceeding 1,500 samples, for the
prompts to be usable, further limiting their practicality in real-world scenarios.

Moreover, a central shortcoming is task specificity: existing systems generate a single prompt per
task, necessitating a new optimization cycle whenever the task changes. In practice, however, users
expect effective prompts instantly. To address this, we introduce the first general prompter, a model
trained to produce high-quality prompts for unseen tasks without requiring new datasets or costly
optimization loops. To our knowledge, no prior work has provided a system working in this setting.

A last limitation concerns granularity. Most existing methods generate a single prompt for the entire
task, implicitly optimizing for average-case performance. However, inputs within the same task can
vary significantly in difficulty and characteristics, often benefiting from different demonstrations
or instructions. As a result, a universal prompt may underperform on more challenging or atypical
examples. This highlights the importance of moving beyond one-size-fits-all prompting toward more
fine-grained, per-sample strategies.

For our approach we use Reinforcement Learning with Verifiable Rewards (RLVR) Lambert et al.
(2024); Guo et al. (2025) and present GPS, a method that generates a separate prompt for every input
instance of an unseen task. This fine-grained adaptation arises naturally within RLVR and requires
no task-specific training.

However, incorporating observations into the prompt during reinforcement learning may lead the
model to learn how to solve the task directly and embed the answer within the prompt itself. While
this behavior is natural, it conflicts with the goal of building a general-purpose prompter and sup-
presses the model’s ability to scale with model size. To address this, we propose a novel regular-
ization mechanism that successfully encourages the prompt generator to produce prompts without
embedding task-specific answers.

We conduct experiments in which GPS is trained on mathematical, logical reasoning, and coding
tasks, and evaluated without any additional supervision on text classification, simplification, and
summarization.

To summarize our contributions are as follows:

Setting: We present the first, to our knowledge, general-purpose prompter that generates high-
quality prompts for unseen tasks without requiring any additional optimization or new
training examples.

Per-Sample: Our method operates in a per-sample manner, generating a distinct prompt for each
individual input.

Regularization: We introduce a novel regularization strategy that effectively prevents the model
from embedding answers in the generated prompts. This encourages proper per-sample
prompting and enables the approach to scale with the size of the model evaluator.

Experiments: We conduct extensive experiments demonstrating the effectiveness of our method on
classification, summarization, simplification tasks as well as GSM8K.

Ablations: We provide an ablation study highlighting the importance of both per-sample prompting
and the proposed regularization mechanism.
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2 RELATED WORK

Automated Prompt Engineering replaces manual prompt design with algorithmic generation to
boost performance. APE (Zhou et al., 2022) generates prompt candidates from input–output pairs
and selects the best, forgoing refinement once no further gains emerge. APO (Pryzant et al., 2023)
refines prompts iteratively via natural-language critiques, using training-set examples and optimiz-
ing with minibatching, beam search, and bandit selection. EvoPrompt (Guo et al., 2023) applies
evolutionary strategies to evolve prompts.RLPrompt (Deng et al., 2022) casts discrete prompt opti-
mization as reinforcement learning: a lightweight policy network generates token-level prompts for
a frozen LM and is trained via reward signals with stabilization techniques to handle noisy, delayed
feedback. Batorski et al. (2025) introduces a RLVR approach to automatic prompt generation.

While effective, those methods above—performs task-specific optimization and must be run per
dataset/task, whereas GPS aims to produce high-quality prompts for previously unseen tasks without
task-level tuning.

Per-sample Prompt Engineering A growing body of work investigates per-sample prompt gener-
ation to better tailor language models to individual inputs. Instance-Wise Prompt Tuning (IPT) (Jiang
et al., 2022) learns input-dependent prompt embeddings, achieving fine-tuning-level performance
with significantly fewer parameters. Instance-Dependent Prompt Generation (IDPG) (Wu et al.,
2022) employs a lightweight generator to produce unique soft prompts for each input, surpass-
ing fixed prompt tuning on a range of NLU tasks. Beyond NLP, per-sample prompting has also
been explored in computer vision: Domain-Adaptive Prompting (DAP) (Jung et al., 2023) generates
instance-level prompts at inference time to support rehearsal-free continual learning. Our method
extends this paradigm by training per-sample prompts via reinforcement learning, a simple, general,
and domain-agnostic approach applicable across diverse tasks.

3 METHOD

We train our model within a reinforcement learning paradigm. We adopt an architectural setup
similar to Batorski et al. (2025) including a Prompt Generator and Evaluator Model, a similar reward
formulation and optimization procedure.

Our approach consists of two LLMs:

• Prompt Generator: A trainable language model that generates prompts through a structured
reasoning process (see Appendix . B).

• Evaluator Model: A frozen LLM that takes the generated prompt and produces a response.

Subsequently, we present a detailed breakdown of each component.

Reward Function Our total reward is the sum of several sub-rewards: rtoken, rstructure, rformat, and
ralignment.

Token-level formatting reward:

• Each correctly placed marker: <think>, </think>, <answer>, and </answer> earns a
reward of rtoken

4 , provided if appears exactly once.
• If all four markers are used correctly, the generator receives the total token reward of rtoken.
• A structural bonus rstructure is awarded when the output exactly follows the format: <think> rea-

soning </think> <answer> final answer </answer>, ensuring a clean two-phase response.

Evaluator Model rewards:

• rformat: Adherence to a required pattern (e.g. multiple-choice options). Depends on the specific
task.

• ralignment: Measures task accuracy or other performance metrics, such as correctness, ROUGE, or
SARI, depending on the task.

These components combine to form the overall reward:

R = rtoken + rstructure + rformat + ralignment. (1)
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Prompt Generator The generator πgenerator
θ is conditioned on a base prompt and observation (See

Fig. 4), and produces reasoning traces followed by candidate prompts. At each training iteration, the
generator samples outputs o1, . . . , on, from which prompts p1, . . . , pn are extracted and evaluated
by the Evaluator Model.

Evaluator Model The evaluator, denoted as πeval, is a frozen LLM. It is queried using prompts
generated by the Prompt Generator.

Regularization When the Prompt Generator receives both the prompt and the corresponding ob-
servation as input, there is a risk that it will learn to directly output the correct instead of letting
the evaluation model answer. Such behavior defeats the goal of learning a transferable prompting
strategy and limits effectiveness. The example of the prompt leakage is shown in Appendix G.

Figure 2: Training cycle of GPS. First, the Prompt
Generator produces an initial prompt based on the
given observation. This prompt is then regularized us-
ing either Judge Regularization or Sample Regulariza-
tion to prevent label leakage, i.e., the inclusion of the
correct answer within the prompt itself. The Evaluator
then assesses the quality of the regularized prompt by
measuring its accuracy and provides a reward signal.
Finally, the model is updated based on this feedback to
improve prompt quality over time.

To mitigate this, we introduce two comple-
mentary regularization strategies:

• LLM-based Regularization (Judge).
We employ an auxiliary frozen language
model, referred to as the Judge, to ver-
ify whether a generated prompt contains
the answer. If the Judge detects that
the prompt leaks the solution, a penalty
of −1 is applied to the reward. This
discourages the Prompt Generator from
embedding answers directly in prompts.
The prompt template used for the Judge
is shown in Appendix H.

• Sample-Based Regularization. After
the Prompt Generator produces a prompt
for a specific observation x, we evalu-
ate that prompt with probability p not
on x itself, but on a randomly selected
subset {x1, . . . , xn} from the same task.
This regularization encourages the gen-
eration of prompts that generalize be-
yond the original input. Increasing p en-
hances robustness, though it may reduce
the prompt’s specificity to individual examples.

These strategies strike a balance between leveraging information from specific samples and avoiding
overfitting or solution leakage. During inference, the Prompt Generator creates prompts using only
the specific example, without any regularization. The pseudocode for the training loop, as well as
for the Judge and Sample Regularization components, is provided in Appendix A.

Optimization We update the Prompt Generator using Group Relative Policy Optimization
(GRPO) (Shao et al., 2024), a variant of PPO that eliminates the need for a separate value network
by computing baseline-adjusted, group-wise rewards. This offers memory efficiency and leverages
the relative ranking of multiple prompt samples. Pseudo-code of the training loop is shown in Fig. 2.

Decoding. We view RLVR as a distribution shifter: training nudges the generator toward regions
of the prompt space that yield useful outputs, but at inference time an unseen task induces a large
hypothesis space, so committing to a single high-variance prompt is brittle. Therefore, we employ
Minimum Bayes Risk (MBR) decoding Kumar & Byrne (2004) expressed purely in terms of a task-
specific utility function.

For an input x, the Prompt Generator samples N candidate prompts c1, . . . , cN . The Evaluator maps
each (x, cj) to an output yj . Let H(x) = {y1, . . . , yN}. Given a utility u : H(x)×H(x) → [0, 1],
MBR selects

ŷ = arg max
y∈H(x)

Ey′∼p(·|x)
[
u(y, y′)

]
. (2)
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Since p(· | x) is unknown, we use the empirical distribution over the N evaluator outputs. The
empirical expected utility of yj is

Û(yj) =
1

N

N∑
k=1

u(yj , yk), ŷ = arg max
yj∈H(x)

Û(yj).

We consider two regimes:

• Classification. Use the agreement utility u(y, y′) = 1[y = y′]. Under the uniform empirical
distribution, MBR reduces to majority voting:

ŷ = argmax
yj

N∑
k=1

1[yj = yk].

• Generation (summarization/simplification). Use a reference-free consensus utility

u(y, y′) = 1
3 (ROUGE-1(y, y′) + ROUGE-2(y, y′) + ROUGE-L(y, y′)) ∈ [0, 1],

and select
j⋆ = argmax

j

1

N − 1

∑
k ̸=j

u(yj , yk), ŷ = yj⋆ .

All quantities are computed per input x using only the N evaluator outputs for that x; no ground-
truth labels, reference texts, or statistics from other test examples are used.

4 EXPERIMENTS

All experiments are conducted on two NVIDIA A100 GPUs (40 GB each). Each model is trained
for 48 hours, following the setup of Batorski et al. (2025). We use the Qwen2.5-7B-Instruct model
(Yang et al., 2024) as both the Prompt Generator and the Evaluator for GPS as well as for all baseline
benchmarks, ensuring a fair comparison.

Our models are fine-tuned using Group Relative Policy Optimization (GRPO) with parameters ϵ =
0.2, β = 0.04, and a weight decay of 0.1. Additionally, we apply Low-Rank Adaptation (LoRA)
(Hu et al., 2022) with a learning rate of 5 × 10−5, setting the scaling factor α = 32 and the rank
r = 8.

Training Datasets We train GPS on three diverse tasks: mathematical reasoning, logical rea-
soning, and programming motivated by evidence that task diversity and difficulty enhance model
reasoning Muennighoff et al. (2025). For each task, we define simple rule-based alignment and
format rewards.

• Mathematical Reasoning: Alignment = 1 if the answer matches ground truth; Format = 1 if the
output follows expected syntax (e.g., integer, Yes/No).

– GSM8K Cobbe et al. (2021): 8.5K grade school math word problems requiring multi-step rea-
soning.

– DeepMath-103K He et al. (2025): a corpus of formally verified mathematics problems covering
diverse topics; we train on a randomly chosen subset of 3,000 examples whose answers are either
integers or binary (Yes/No).

• Logical Reasoning: Alignment = 1 if the selected answer is correct; Format = 1 if the response
follows the required multiple-choice format.

– CommonSenseQA Talmor et al. (2019): 12K commonsense QA questions based on Concept-
Net.

– OpenBookQA Mihaylov et al. (2018): 6K science QA questions requiring world knowledge.
– MedQA Jin et al. (2020): Real-world medical board exam questions covering clinical and

biomedical topics.
• Programming: Alignment = 2 if the generated function passes all unit tests and uses the correct

name; Format = 0 (not enforced).
– MBPP Austin et al. (2021): 1K entry-level Python problems with reference solutions and test

cases.
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Methods We compare GPS against both human-written, task-specific prompts and a variety of
general-purpose prompt engineering methods. It is important to highlight that the benchmark meth-
ods described below are tuned separately for each dataset, whereas GPS is a unified prompting
approach trained without access to any examples from the classification, summarization, or simpli-
fication datasets. For a fair comparison, we use the same model Qwen2.5-7B Instruct ((Yang et al.
(2024))), as the prompt generator and evaluator across all baseline methods.

• MI (Manual Instruction) (Zhang et al., 2022): Handcrafted prompts written by humans, aiming
to boost performance on individual tasks using manually designed instructions.

• NI (Natural Instruction) (Mishra et al., 2021): Similar to MI, crowd-sourced human-written
instructions.

• APE (Automatic Prompt Engineer) (Zhou et al., 2022): APE automatically generates a set of
instruction candidates using an LLM, and then selects the most effective prompt based on its down-
stream performance with a target model. Candidate prompts are not refined during the optimization
process.

• APO (Automatic Prompt Optimization) (Pryzant et al., 2023): APO uses an iterative feedback
loop using beam search to refine prompts without relying on gradients, treating prompt tuning as
a black-box optimization problem.

• EvoPrompt (Guo et al., 2023): Uses evolutionary strategies: selection, crossover, and mutation to
evolve a pool of discrete prompts, discovering high-performing prompts.

– DE (Differential Evolution): Uses differential evolution to traverse the prompt search space.
– GA (Genetic Algorithm): Applies classic genetic operators such as selection, crossover, and

mutation to cultivate progressively better prompts.
• PRL (Prompts from Reinforcement Learning) (Batorski et al., 2025): PRL applies a reinforce-

ment learning loop to automatically generate and optimize prompts.

Table 1: Text summarization results aver-
aged over three runs.

Method ROUGE-1 ROUGE-2 ROUGE-L
MI 32.76 10.39 28.97
APE 37.12±2.02 12.97±0.74 33.32±1.68
GA 39.69±1.76 14.47±1.00 35.84±1.63
DE 33.91±4.04 12.53±1.47 31.05±3.79
PRL 42.47±0.83 16.17±0.24 37.73±0.36

GPS-J 38.08±0.74 13.07±0.44 34.09±0.61
GPS-SR-0.1 40.03±0.11 14.36±0.13 35.91±0.19

Summarization We evaluate GPS on an abstrac-
tive summarization task, where the model must ex-
tract and condense the most salient information from
a given dialogue. The goal is to produce concise
summaries that retain essential content while filter-
ing out irrelevant or redundant details.

Experiments are conducted on the SAMSUM
dataset (Gliwa et al., 2019), a curated corpus of En-
glish chat dialogues resembling real-world messen-
ger conversations. These dialogues, created by lin-
guists to reflect informal and natural exchanges, are
paired with manually written abstractive summaries.

To measure summarization performance, we employ the standard ROUGE metrics (Lin, 2004):
ROUGE-1 measures unigram overlap, assessing content selection, ROUGE-2 bigram overlap, eval-
uating coherence and phrasing and ROUGE-L the longest common subsequence, reflecting struc-
tural and fluency alignment.

Table 2: Results on
task simplification aver-
aged over three runs.

Method SARI
MI 43.77
APE 45.33±0.83
GA 46.25±0.47
DE 45.79±0.35
PRL 52.26±3.51

GPS-J 52.09±0.22
GPS-SR-0.1 48.10±0.66

The results in Table 1 show that both GPS–J and GPS–SR–0.1 perform
well on summarization. GPS–J surpasses APE, and GPS–SR–0.1 ranks
among the top three methods overall. We argue that in summarization
we see quite strongly the benefit of per-sample prompting, our prompt
can adapt to the topic, style etc. of the text to be summarized in contrast
to non-sample specific methods.

Simplification We evaluate GPS on sentence simplification using the
ASSET dataset (Alva-Manchego et al., 2020), a crowdsourced corpus
curated for testing rewriting capabilities such as lexical paraphrasing,
sentence splitting, deletion, and reordering. Each original sentence is
paired with multiple human-written simplifications, offering diverse ref-
erence outputs that enable comprehensive evaluation of model perfor-
mance.
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To measure the quality of simplification, we use the SARI metric (Xu et al., 2016). SARI compares
model output to the reference simplifications and also to the original sentence, scoring the additions,
deletions, and preserved elements in the output. It aligns well with human assessments of simplicity,
making it a trusted and effective metric for this task.

The results of the sentence simplification task are shown in Table 2. GPS–J attains the second-
highest average SARI score across all methods, while GPS–SR–0.1 ranks third. Remarkably, despite
being trained exclusively on out-of-domain tasks such as mathematics, logic, and programming,
GPS outperforms several in-domain baselines tuned for simplification such as APE, APO, and Evo-
Prompt. An illustrative example of a generated simplification prompt is provided in Appendix E.
Overall, these results highlight the strong out-of-domain generalization ability of GPS and demon-
strate the effectiveness of per-sample prompt generation even without task-specific supervision.

Classification We evaluate the performance of GPS on a diverse set of language understanding
classification tasks, including the following:

• Binary sentiment classification: SST-2 (Socher et al., 2013), MR (Pang & Lee, 2005), and
CR (Hu & Liu, 2004) datasets for identifying whether a sentence conveys a positive or
negative sentiment.

• Multiclass sentiment classification: SST-5 (Socher et al., 2013) extends binary sentiment classi-
fication to five sentiment levels: terrible, bad, okay, good, or great. This gives a finer
granularity in sentiment detection compared.

• Question classification: The TREC dataset (Voorhees & Tice, 2000) requires determining
the semantic category of a question, choosing from six options: Description, Entity,
Expression, Human, Location, or Number.

• News topic classification: AG’s News (Zhang et al., 2015) consists of news headlines and de-
scriptions categorized into four domains: World, Sports, Business, and Tech.

• Subjectivity analysis: The SUBJ dataset (Pang & Lee, 2004) involves labeling sentences as either
subjective or objective, for distinguish personal opinions from factual statements.

Results are presented in Table 3. Overall, GPS-J performs better GPS-SR-0.1, and GPS-J occasion-
ally surpasses methods that are specifically tailored for individual tasks. In particular, we achieve a
top-3 position on SST-5 and top-2 and top-3 positions on AG News. These findings suggest that GPS
is especially effective on text classification tasks with a larger number of classes. In such cases, the
boundaries between classes are less distinct, which allows per-prompt sampling to more effectively
enhance performance. On the other hand, GPS performs poorly on Subj (64–65%), where fine-
grained, dataset-specific cues and fragile decision boundaries make distinguishing subjective from
objective statements especially challenging. Without access to in-domain exemplars, per-sample
prompting alone is insufficient to fully capture these nuances.

Table 3: Accuracy (%) on seven text-classification benchmarks, averaged over three runs. For each
dataset, the best, second-best, and third-best scores are highlighted in red, orange, and yellow, re-
spectively. Standard deviations (± ) are shown in script-style next to each mean.

Method SST-2 CR MR SST-5 AG News TREC Subj Avg

MI 92.70 87.25 87.40 52.31 82.29 69.20 57.95 75.59
NI 95.77 91.50 90.85 51.90 83.43 66.60 68.10 78.31
APO 93.71±0.25 93.48±0.24 89.97±1.37 53.94±0.29 83.73±0.31 71.30±1.90 69.80±5.96 79.42
APE 91.23±0.66 92.87±0.02 89.90±0.94 49.37±5.66 82.58±1.20 77.07±1.61 73.92±1.39 79.56
GA 94.65±1.04 92.75±0.40 90.45±0.72 53.76±1.13 82.24±1.00 79.20±2.83 74.93±3.12 81.14
DE 93.29±0.34 93.38±0.19 89.98±0.24 55.25±0.37 82.18±1.04 76.47±0.38 73.08±4.95 80.52
PRL 96.32±0.04 92.83±0.24 91.27±0.05 56.21±0.15 84.36±0.08 77.07±2.36 76.90±0.95 82.14
GPS-J 94.25±1.20 90.65±0.05 89.15±0.38 55.16±0.36 84.04±0.02 72.80±0.60 64.20±2.25 78.61
GPS-SR-0.1 92.98±0.19 90.50±0.38 88.70±0.05 55.14±1.13 84.21±0.34 68.20±0.20 65.10±0.28 77.83

GSM8K In this experiment, we present the performance of GPS on the GSM8K dataset. This
benchmark is particularly interesting as it evaluates how GPS acquires reasoning abilities, given that
its training primarily involves reasoning tasks. It is important to note that GSM8K samples were
included in the training set; however, we evaluate our method on the held-out test set, which was not
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seen during training. The results, summarized in Table 4, show that GPS-SR-0.1 achieves the highest
accuracy on GSM8K, while GPS-J ranks among the top three models. These findings suggest that
GPS not only learns to solve GSM8K problems included in the training set, but also benefits from
transfer effects derived from training on other reasoning tasks. This highlights the effectiveness of
GPS in enhancing performance on reasoning benchmarks.

Table 4: GSM8K Re-
sults.

Method Acc.

MI 78.20
APE 83.43±1.98
GA 81.62±1.38
DE 79.52±0.45
PRL 86.15±0.55
GPS-J 84.45±0.93
GPS-SR-0.1 87.55±0.42

Ablation Study: Effect of Regularization on DeepMath Reasoning
Tasks In this experiment, we investigate the role of regularization
in improving generalization on the challenging DeepMath benchmark,
which contains mathematically sophisticated problems requiring precise
multi-step reasoning. We hypothesize that without regularization, the
Prompt Generator may overfit to the training setup by embedding an-
swers directly into the prompts thereby diminishing the benefits of using
larger evaluator models. We compare the performance of GPS using two
regularization strategies: Judge Regularization and Sample Regulariza-
tion (with probability 0.1) against two baselines:

• No Reg.: A variant trained without any regularization. This model
is free to insert answers directly into the prompt, leading to potential
leakage.

• Base: A static, handcrafted prompt used uniformly across all bench-
marks, without any learned refinement.
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Figure 3: Comparison of accuracy on the DeepMath benchmark
across different regularization strategies and evaluator sizes.

To assess the generalization
capacity of these methods,
we evaluate the prompts gen-
erated by each model using
increasingly capable evaluators:
Qwen2.5-{7B|32B|72B}-
Instruct. We sample 2000
previously unseen DeepMath
tasks and evaluate model accu-
racy under each configuration.
The results, presented in Fig-
ure 3, demonstrate: (i) GPS
outperforms the base prompt,
(ii) As the evaluator becomes
larger, prompt leakage hurts
more and more, while our
regularizations produce gen-
eralizable prompts that scale
better and benefit more from
more capable evaluators. We
have found that some prompts generated by GPS are already precise and well-formed, yet the 7B
evaluator lacks the capacity to solve the corresponding task. This suggests that the limitation lies
not in the prompt itself, but in the evaluator’s reasoning ability. An illustrative example of such a
case where a prompt generated by GPS–SR–0.1 is incorrectly answered by the 7B evaluator but
correctly solved by the 72B evaluator is presented in Appendix I.

Ablation: Effect of Sample Regularization Probability We study the effect of varying the swap
probability in our sample regularization mechanism. A high probability may cause the model to
disregard the observation entirely when generating prompts, while a very low probability increases
the risk of solution leakage, where the prompt implicitly encodes the answer. In Table 5 we report
results on swap probabilities of 0.1, 0.2 and 0.5 and also compare against Judge regularization on
subjectivity classification, summarization and simplification. While there is no clear best setting,
0.1 and Judge regularization are overall good values.

Ablation: Effect of Minimum Bayes Risk Decoding We evaluate GPS–SR–0.1 both with and
without MBR across the subjectivity, summarization, and simplification tasks. The results, sum-
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Table 5: Performance of regularization strategies and per–sample prompting across three NLP tasks.
SR = Sample Regularization; J = LLM-Judge regularization; J+SR-0.2 = Judge + Sample Regu-
larization with swap probability 0.2; No-PSP = no per–sample prompting; No-MBR = decoding
without Minimum Bayes Risk; Llama = model trained with the Llama-3.1-8B-Instruct backbone.

Task Metric Method
SR-0.1 SR-0.2 SR-0.5 J J+SR-0.2 No-PSP NO MBR Llama

Subj Accuracy 65.10±0.28 62.55±1.31 66.00±2.25 64.20±2.25 62.95±2.35 70.40±1.47 64.62±0.33 60.90±0.7

Simplification SARI 48.10±0.66 46.42±1.74 48.84±0.50 52.09±0.22 49.33±0.01 44.11±1.93 47.25±1.11 52.04±0.34

Summarization
ROUGE-1 40.03±0.11 40.12±0.58 39.85±1.99 38.08±0.74 38.26±0.61 36.88±0.78 38.00±0.20 40.46±0.15
ROUGE-2 14.36±0.13 13.89±0.43 14.10±1.30 13.07±0.44 13.43±0.07 12.39±0.62 12.97±1.26 14.62±0.17
ROUGE-L 35.91±0.19 35.47±0.55 35.54±1.56 34.09±0.61 34.28±0.55 33.11±1.78 33.66±1.6 35.91±0.23

marized in Table 5, show that while the model already achieves competitive performance without
MBR, applying MBR consistently yields further improvements across all tasks.

Ablation: Effect of Per-Sample Prompting We train the model on the same datasets as GPS, but
with a key difference: during training, we only show the base prompt, i.e. the prompt to be enhanced
without including any accompanying observations. As a result, the model has access to a limited
number of observations, since the dataset now consists of only a few base prompts. Nevertheless,
it still receives rich reward signals derived from those observations. During training, we craft a
single prompt for the currently processed task and sample 10 observations from that specific task
on which the prompt is evaluated. We then compare models trained with and without per-sample
prompting across three tasks: simplification, summarization, and subjectivity classification. Results
in Table 5 indicate that removing per-sample prompting attains the strongest performance on sub-
jectivity classification, while remaining competitive—on par with APE for summarization and with
a manual prompt for simplification. This pattern suggests that, for classification tasks with relatively
coarse decision boundaries, a single well-tuned prompt can be sufficient. By contrast, for generation
tasks such as summarization and simplification, which require finer control, GPS with PSP delivers
consistent improvements.

Ablation: Cross-model performance We assess the cross-model generality of GPS by replacing
the Qwen training backbone with LLAMA-3.1-8B-INSTRUCT (AI@Meta, 2024), motivated by re-
ports that even with random rewards Qwen can exhibit notable gains on certain tasks (Shao et al.,
2025). To isolate backbone effects, we keep all training settings fixed and apply the same Sam-
ple Regularization (probability 0.1). We train and evaluate on summarization, simplification, and
subjectivity classification.

Results are shown in Table 5. With the exception of subjectivity classification, training with Llama
surpasses training with Qwen across tasks. These findings indicate that our pipeline is sensible
and that GPS does not derive its improvements from Qwen specific oddity or the spurious reward
phenomenon, but rather transfers effectively across model backbones.

5 CONCLUSIONS & LIMITATIONS

We have shown the viability of general-purpose zero-shot per-sample prompting, reaching competi-
tive results on text summarization, simplification and classification and GSM8K, while being trained
exclusively on mathematical, logical and programming tasks. We argue that such a setting is more
realistic, since in practice we do not have access to a large training set with ground truth answers.
We also hope to stimulate development of automatic prompting methods for this regime.

In order to close the gap to automatic prompting methods that use task-specific optimization, we
estimate that fast training-free synthesizing of few-shot examples might be helpful. Another avenue
is better regularization: While ours was effective in suppressing prompt leakage, this was achieved
at the cost of also inhibiting to some extent adaptation to the current sample. An avenue for further
research is advanced regularization and other mechanisms for this problem.
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A GPS PSEUDO CODES

In this section we provide:

1. Algorithm 1 – overall training loop of GPS
2. Algorithm 2 – Judge regularization
3. Algorithm 3 – Sample regularization

Algorithm 1 GPS Training
Require:

Prompt generator πgen
θ

Frozen evaluator πeval

Dataset D
Iterations T
Prompts per step n

Ensure: trained parameters θ
1: for i← 1 to T do
2: (x, b)← SAMPLE(D)
3: o1:n ← πgen

θ (b, x)
4: p1:n ← EXTRACTPROMPTS(o1:n)
5: r1:n ←

COMPUTEREGULARIZEDREWARDS (p1:n, x, π
eval)

6: θ ← GRPOUPDATE(θ, r1:n)
return θ

Algorithm 2 JUDGEREGULARIZATION

Require:
Observation x
Base prompt b
Prompt generator πgen

θ

Frozen evaluator πeval

Frozen judge πjudge

1: p← πgen
θ (x, b) ▷ candidate prompt

2: R← πeval(x, p)
3: q ← WRAPWITHTEMPLATE(p) ▷ template from App. H
4: y ← πjudge(q) ▷ "1" if leak, else "0"
5: if y = 1 then
6: return R− 1 ▷ apply leakage penalty
7: else
8: return R

B SYSTEM AND USER PROMPT

In this section we provide the system and user prompt used in GPS models.

C BASE PROMPTS

In this section we provide all base prompts that are used for each task type in GPS.

OpenBookQA

Choose one of the correct answers. Return only the correct response [‘A‘, ‘B‘, ‘C‘, ‘D‘] without any additional text.

CommonSense & MedQA

Choose one of the correct answers. Return only the correct response [‘A‘, ‘B‘, ‘C‘, ‘D‘] without any additional text.
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Algorithm 3 SAMPLEREGULARIZATION

Require:
Observation x of task t
Base prompt b for t
Training set D
Swap probability pswap
Prompt generator πgen

θ

Frozen evaluator πeval

1: p← πgen
θ (x, b)

2: Draw u ∼ U(0, 1)
3: if u < pswap then ▷ swap branch
4: D̂t ← SAMPLE(D)
5: R← 0
6: for all xj ∈ D̂t do
7: R← R+ πeval(xj , p)

8: return R
9: else ▷ no swap

10: return πeval(x, p)

System prompt

A conversation between User and Assistant. The user asks a question, and the assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within
<think> . . . </think> <answer> . . . </answer>.

User Prompt

Your task is to refine a base prompt for another model that performs a math task. You will be given the base prompt and the
observation for which the prompt should be enhanced. Improve the instructions to enhance the model’s performance. Return only
the enhanced prompt.
BASE PROMPT: Solve this riddle and return ONLY the integer answer:
OBSERVATION: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?

Figure 4: System prompt (top) and user prompt (bottom) used in the prompt refinement task. The
system prompt defines the expected format of responses, while the user prompt instructs the assistant
to refine a base prompt for improved performance on a specific observation.

GSM8K

Solve this riddle and return ONLY the integer answer.

DeepMath

Solve this riddle and return ONLY the integer answer or ‘Yes‘, ‘No‘ without any other text.

MBPP

Solve this coding task. Provide the python code that solves this problem (with return statements). Return this function and nothing
else. Do not provide any usage examples. Every argument should be defined inside the function.

Summarization

How would you rephrase that in a few words?

Simplification

Simplify the text.

SST-2

Please perform Sentiment Classification task. Given the sentence, assign a sentiment label from [’negative’, ’positive’]. Return
label only without any other text.
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Simplification

Simplify the text.

CR & MR & SST–2

Please perform Sentiment Classification task. Given the sentence, assign a sentiment label from [’negative’, ’positive’]. Return
label only without any other text.

SST-5

Please perform Sentiment Classification task. Given the sentence, assign a sentiment label from [’terrible’, ’bad’, ’okay’, ’good’,
’great’]. Return label only without any other text.

AG’s News

Please perform News Classification task. Given the news item, assign a label from [’World’, ’Sports’, ’Business’, ’Tech’]. Return
label only without any other text.

TREC

Please perform Question Classification task. Given the question, assign a label from [’Description’, ’Entity’, ’Expression’, ’Human’,
’Location’, ’Number’]. Return label only without any other text.

SUBJ

Please perform Subjectivity Classification task. Given the sentence, assign a label from [’subjective’, ’objective’]. Return label only
without any other text.

D EFFECTIVE PROMPT FOR SST-5 AND AG’S NEWS

In this section, we present well-crafted example prompts for the SST-5 sentiment classification task
and AG’s News topic classification task.

SST-5 PROMPTS

Below are example prompts for the SST-5 sentiment classification task.

Observation

Take care of my cat offers a refreshingly different slice of Asian cinema.

Prompt

Please perform a Sentiment Classification task. For each sentence, assign a sentiment label from the following list: [’terrible’, ’bad’,
’okay’, ’good’, ’great’]. The label should be determined based on the overall tone and content of the sentence. Focus on identifying
whether the sentiment is positive, negative, or neutral. Return the label only without any additional text or explanations.
For example:
- "The movie was a complete disaster." should be classified as ’terrible’.
- "It was a mediocre experience." should be classified as ’okay’.
- "This film exceeded all my expectations!" should be classified as ’great’.

AG’S NEWS PROMPT

Below is an example prompt for the AG’s News topic classification task.

Observation

FT.com – Shares in Sohu.com, a leading US-listed Chinese internet portal, fell more than 10 percent on Friday after China’s biggest
mobile-phone network operator imposed a one-year suspension on its multimedia messaging services because of customer spam
complaints.

Prompt

Please perform the News Classification task.
Choose exactly one label from: [’World’, ’Sports’, ’Business’, ’Tech’].
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Guidelines
- Look for the dominant theme (global affairs, athletics, finance/economics, or technology).
- If a story mixes topics, prefer the one most central to the headline and body.
- Return only the label, nothing else.

Example (for illustration):
Headline: “LeBron James leads Lakers to victory in NBA opener.”
Correct output → Sports

E PROMPTS FOR SIMPLIFICATION

In this section, we provide example prompt used for the sentence simplification task.

Observation

The Kindle 2 features 16-level grayscale display, improved battery life, 20 percent faster page-refreshing, a text-to-speech option to
read the text aloud, and overall thickness reduced from 0.8 to 0.36 inches (9.1 millimeters).

Prompt

Simplify the following description of the Kindle 2 for a general audience. Focus on the most important features and present them
in a straightforward manner, avoiding technical terms and details that might confuse the reader.
Key features to highlight include:
- Display type and quality
- Battery life improvement
- Reading speed
- Text-to-speech capability
- Size reduction

Please provide a simplified version that covers these points:

F PROMPTS FOR SUMMARIZATION

In this section, we provide example prompt used for the sentence summarization task.

Observation

Mr. Williams: Ms. Blair, would you like to go for a coffee?
Ms. Blair: I thought you’d never ask.
Mr. Williams: That’s outstanding. Do you have a favourite coffee place?
Ms. Blair: I actually do. It’s near the square in a side alley.
Mr. Williams: I think I know which one. Let’s say 2 p.m.?
Ms. Blair: Sounds great. See you there :)

Prompt

Summarize the brief conversation between Mr. Williams and Ms. Blair in a concise manner, capturing the main points and
preserving the conversational tone. Include the following details:

1. Mr. Williams invites Ms. Blair for coffee.
2. Ms. Blair expresses enthusiasm for the invitation.
3. They discuss meeting at a specific coffee place.
4. They agree on a time and confirm the meeting.

G PROMPTS WITHOUT REGULARIZATION

In this section we provide exmaple of prompts that leakage i.e. in the prompts there is already an
answer.
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Observation

not since japanese filmmaker akira kurosawa’s ran have the savagery of combat and the specter of death been visualized with such
operatic grandeur .

Leakage Prompt (No Regularization)

"Please perform a Subjectivity Classification task. Given the sentence, determine if it is subjective or objective and assign a label
from [’subjective’, ’objective’]. Return the label only without any additional text or explanation.
Example:
Input: not since japanese filmmaker akira kurosawa’s ran have the savagery of combat and the specter of death been visualized with
such operatic grandeur.
Expected Output: subjective

Prompt after Regularization

Please perform a subjectivity classification task on the given sentence. Determine if the sentence expresses opinions, feelings, or is
more factual and straightforward. Assign the label ’subjective’ if the sentence contains personal views, emotions, or interpretations.
Assign the label ’objective’ if the sentence contains facts or is neutral without personal bias. Return only the label without any
additional text.

Ground Truth

subjective

Figure 5: Comparison between a flawed and a regularized prompt setup for subjectivity classifica-
tion. The observation is the actual user input. The leakage prompt embeds the correct answer within
an example that mirrors the test input, effectively leaking the label into the prompt. This kind of
leakage compromises evaluation integrity, as it allows the model to extract or memorize the answer
without performing the task. The regularized prompt, on the other hand, avoids including the target
label and better reflects a fair testing setup. The ground truth shows the expected model output.
Regularization techniques are essential for mitigating this type of leakage and ensuring reliable per-
formance evaluation.

H PROMPT FOR JUDGE LLM

In this section, we provide the prompt for the Judge LLM, which is responsible for regularization.

Judge Prompt

You will receive a single text input: a “candidate prompt” that is intended for another LLM to solve a specific problem. Your job is
to decide whether this candidate prompt already contains the solution (i.e., it reveals the answer) to that problem.
If the candidate prompt does include already the solution, reply with exactly: 1
If the candidate prompt does not include the solution (it only contains instructions, context, examples, or background without giving
the answer), reply with exactly: 0
Return only ’1’ or ’0’ without any additional text.
Examples:
Example 1: No solution embedded Candidate prompt: “Summarize the following paragraph in one sentence: ‘Artificial intelligence
(AI) refers to machines that can perform tasks typically requiring human intelligence, such as recognizing speech, translating
languages, and making decisions.’ Provide a concise summary without revealing the original paragraph verbatim.” → 0
Example 2: Solution embedded Candidate prompt: “Translate the English sentence ‘The cat sits on the mat’ into French. The
answer is ‘Le chat est assis sur le tapis’. After that, explain each word’s role in the sentence.” → 1
The prompt to evaluate:

I INTERESTING FAILURES DESPITE GOOD PROMPTS

In this section, we present notable failure cases where the generated prompts are well-structured,
logically sound, and provide a clear step-by-step solution to the task. Despite this, the evaluator
still selects an incorrect answer, highlighting limitations in the downstream model’s reasoning or
alignment.

Question

Find the longest geometric progression with a common ratio greater than 1 that can be formed from the set
{100, 101, 102, . . . , 1000}. What is the length of this progression?
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918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt

Solve the riddle step-by-step:
1. Understand the set range: {100, 101, 102, . . . , 1000}.
2. Identify the common ratio greater than 1 and ensure the geometric progression doesn’t exceed the maximum of the set. Here, the
common ratio needs to be larger and the numbers should be successive members of a geometric progression.
3. Iterate through the set and detect the longest geometric progression. This requires a careful examination of numbers and their
relationships.
The highest integer answer is found through these steps to be:
Solve this riddle and return ONLY the integer answer or ‘Yes‘, ‘No‘ without any other text.

Prediction

No

Ground Truth

6

J USE OF LLMS

LLMs were used exclusively to improve the clarity and readability of the texts.
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