OPTIMIZING LANGUAGE MODELS FOR CROSSLINGUAL KNOWLEDGE CONSISTENCY

Anonymous authorsPaper under double-blind review

000

001

002003004

006

008 009

010 011

012

013

014

015

016

018

019

021

024

025

026027028

029

031

032

033

034

037

040

041

042

043

044

046

047

050

051

052

ABSTRACT

Large language models are known to often exhibit inconsistent knowledge. This is particularly problematic in multilingual scenarios, where models are likely to be asked similar questions in different languages, and inconsistent responses can undermine their reliability. In this work, we show that this issue can be mitigated using reinforcement learning with a structured reward function, which leads to an optimal policy with consistent crosslingual responses. We introduce Direct Consistency Optimization (DCO), a DPO-inspired method that requires no explicit reward model and is derived directly from the LLM itself. Comprehensive experiments show that DCO significantly improves crosslingual consistency across diverse LLMs and outperforms existing methods when training with samples of multiple languages, while complementing DPO when gold labels are available. Extra experiments demonstrate the effectiveness of DCO in bilingual settings, significant out-of-domain generalizability, and controllable alignment via direction hyperparameters. Taken together, these results establish DCO as a robust and efficient solution for improving knowledge consistency across languages in multilingual LLMs. All code, training scripts, and evaluation benchmarks are released at https://anonymous.

1 Introduction

As multilingual capabilities become a standard feature of modern large language models (LLMs) (Touvron et al., 2023; OpenAI et al., 2023; DeepSeek-AI et al., 2025), ensuring crosslingual consistency (CLC) has become increasingly critical. Ideally, an LLM should provide consistent answers to the same factual question regardless of the language in which it is asked. However, this is far from guaranteed: prior work (Jiang et al., 2020; Qi et al., 2023; Wang et al., 2025b) has revealed that LLMs often produce conflicting responses across languages, as shown in Fig. 1 (left). Such inconsistencies can confuse users with diverse language backgrounds and undermine trust in multilingual systems.

To address this challenge, we aim to improve CLC by Reinforcement Learning (RL), inspired by principles of alignment with human preferences. Existing post-training algorithms for aligning with human preferences, such as proximal policy optimization (PPO; Schulman et al., 2017) and direct preference optimization (DPO; Ouyang et al., 2022; Rafailov et al., 2023), rely on reward functions defined over pairs of responses, often modeled using the Bradley–Terry framework. However, CLC involves connecting multiple languages and requires a different approach to reward design and optimization.

To this end, we propose a new reward function that promotes CLC by leveraging the likelihoods assigned by a model to the same answer expressed in different languages. Specifically, to align two languages, L_1 and L_2 , we define the reward for L_1 based on the log-likelihood of answers generated when prompted in L_2 , and vice versa. This leads to a policy expressed as a *product of experts* (Hinton, 1999): $\pi^*(\boldsymbol{y}^i \mid \boldsymbol{x}^i) = \frac{1}{Z} \prod_j \left(\pi_{\text{REF}} (\tau^j(\boldsymbol{y}^i) \mid \tau^j(\boldsymbol{x}^i)) \right)^{w_{ij}}$, where π_{REF} is the base multilingual LLM, τ^i translates a prompt or response to L_i , w_{ij} are controllable parameters, and Z is a normalization term. By controlling w_{ij} , the optimal policy π^* can be theoretically guaranteed to be consistent

term. By controlling w_{ij} , the optimal policy π^* can be theoretically guaranteed to be consistent while preserving the model's overall performance. Building on this foundation, we propose **direct consistency optimization** (DCO), an efficient algorithm that adapts a DPO-like procedure to our proposed objective without explicit reward models. We theoretically prove that DCO can bypass the online sampling step in RL, yet still arrive at the same optimal policy as the original RL formulation.

The capital of the Netherlands is	The capital is	The capital of the Netherlands is
Amsterdam	Amsterdam Rotterdam	Amsterdam
Rotterdam	オランダの首都は	Rotterdam
Boston	アムステルダム ロッテルダム (Amsterdam) (Rotterdam)	Boston
	The capital is	■ オランダの 首都 は
プムステルダム (Amsterdam)	Boston Rotterdam	アムステルダム (Amsterdam)
ロッテルダム (Rotterdam)	オランダの首都は	ロッテルダム (Rotterdam
ボストン (Boston)	ボストン ロッテルダム (Boston) (Rotterdam	ボストン (Boston)

Figure 1: Illustration of DCO, which promotes crosslingual consistency by aligning the likelihood of completions across parallel prompts in different languages.

As illustrated in Fig. 1, training involves parallel prompts and completions across languages (middle), and the optimization encourages consistent distributions over completions in both languages (right).

We evaluate the effectiveness of the proposed reward and optimization algorithm with nine LLMs across three datasets, covering 26 languages. Experimental results demonstrate that DCO significantly improves crosslingual consistency while maintaining, and often improving, answer accuracy in the post-trained languages.

In summary, our contributions are as follows:

- We propose a reward function tailored for CLC and introduce DCO, an algorithm that solves the RL objective, with theoretical guarantees of improved CLC and preserved task performance.
- We empirically validate DCO on advanced LLMs across diverse benchmarks.
- We provide extensive analyses, including comparisons with other alignment techniques, cross-domain generalization, and control over language preference.

2 RELATED WORK

Crosslingual knowledge consistency is a crucial property for multilingual LLMs.

Measuring CLC. Several studies have explored methods to assess the consistency of knowledge in multilingual LLMs. Xing et al. (2024) and Ai et al. (2025) evaluate consistency by measuring the agreement of top-1 generated answers to the same question posed in different languages, whereas Jiang et al. (2020) compute the average overlapping ratio of correct predictions across languages. To assess CLC more comprehensively and to disentangle it from accuracy, Qi et al. (2023) introduce the RankC metric, based on a weighted average of the overlapping ratio of top-1 to top-N ranked candidates. These studies reveal significant crosslingual knowledge inconsistencies in a wide range of LLMs.

Improving CLC. A number of recent studies attempt to improve CLC by applying vector interventions on the hidden representations of LLMs (Lu et al., 2025; Wang et al., 2025a; Liu & Niehues, 2025). While promising and insightful, these interpretability-based methods are typically tested on small datasets and specific models, making them challenging to scale to broader applications.

Closer to our work, Wang et al. (2025b) proposes CALM, which improves CLC using RL. Their approach first selects a target answer by majority voting based on the model's completions across multiple languages. Then, they use DPO to increase the likelihood of the target majority answer across languages. However, CALM requires more than two languages, restricting its usage in practical bilingual scenarios. Moreover, it does not necessarily benefit from adding more languages as majority voting can become unreliable when multiple low-resource languages are included.

3 PRELIMINARIES

Reinforcement Learning from Human Feedback. Reinforcement Learning from Human Feedback (RLHF) typically starts with supervised fine-tuning (SFT) a pre-trained language model $\pi_{\boldsymbol{\theta}}$ on a dataset \mathcal{D}_{SFT} containing annotated examples for downstream tasks to minimize the loss $\mathcal{L}^{\text{ML}}(\boldsymbol{\theta}) = -\mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{D}_{\text{SFT}}}\Big[\log\pi_{\boldsymbol{\theta}}(\boldsymbol{y}\mid\boldsymbol{x})\Big]$. The resulting fine-tuned model is denoted by π_{SFT} . However, it may not always reflect human preferences. This misalignment arises because the maximum likelihood estimation objective does not differentiate between major and minor errors in the model's responses. To address this, a **reward optimization** step is introduced. Assuming the availability of a reward model $r(\boldsymbol{x},\boldsymbol{y})$, which is trained on a dataset with human feedback \mathcal{D}_{HF} , the RLHF objective aims to maximize the expected reward of the model's outputs. A KL divergence regularization term is added to the objective (Stiennon et al., 2020) to prevent reward hacking (Amodei et al., 2016) and ensure the model does not deviate excessively from π_{SFT} . The ultimate target is to obtain a $\pi_{\boldsymbol{\theta}}$:

$$\max_{\pi_{\boldsymbol{\theta}}} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})} \left[r(\boldsymbol{x}, \boldsymbol{y}) \right] - \beta \cdot \text{KL} \left[\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) \parallel \pi_{\text{SFT}}(\boldsymbol{y} \mid \boldsymbol{x}) \right], \tag{1}$$

where β is a hyperparameter controlling the adherence to π_{SFT} . This objective is typically optimized using algorithms such as PPO or other actor–critic methods (Mnih et al., 2016; Glaese et al., 2022). As proposed by Rafailov et al. 2023, the optimal π^* can be expressed in the closed form:

$$\pi^{\star}(\boldsymbol{y} \mid \boldsymbol{x}) = \frac{1}{Z(\boldsymbol{x})} \pi_{\text{SFT}}(\boldsymbol{y} \mid \boldsymbol{x}) \exp\left(\frac{1}{\beta} r(\boldsymbol{x}, \boldsymbol{y})\right). \tag{2}$$

where Z(x) is the partition function that ensures normalization.

Direct Preference Optimization. Rafailov et al. (2023) observe that by rearranging the terms in Eq. (2), the reward function r can be reparameterized as:

$$r(\boldsymbol{x}, \boldsymbol{y}) = \beta \log \frac{\pi^{\star}(\boldsymbol{y} \mid \boldsymbol{x})}{\pi_{\text{REF}}(\boldsymbol{y} \mid \boldsymbol{x})} + \beta \log Z(\boldsymbol{x}), \tag{3}$$

where π_{REF} is the reference policy. To avoid training reward models, Rafailov et al. (2023) propose DPO, which directly optimizes the policy π_{θ} with the following loss function:

$$\mathcal{L}^{\text{DPO}}(\boldsymbol{\theta}) = - \underset{(\boldsymbol{x}, \boldsymbol{y}_w, \boldsymbol{y}_l) \sim \mathcal{D}_{\text{HF}}}{\mathbb{E}} \left[\log \mathbb{P}_{\widehat{r}_{\boldsymbol{\theta}}}(\boldsymbol{y}_w \succ \boldsymbol{y}_l) \right], \tag{4}$$

where an estimated reward $\hat{r}_{\theta} \stackrel{\text{def}}{=} \beta \log \frac{\pi_{\theta}(\boldsymbol{y}|\boldsymbol{x})}{\pi_{\text{REF}}(\boldsymbol{y}|\boldsymbol{x})}$ replaces the true reward r and $(\boldsymbol{y}_w, \boldsymbol{y}_l)$ represents a pair of preferred and dispreferred responses (or 'winning' and 'loosing', respectively). Minimizing Eq. (4) yields the *same* optimal policy π^* as optimizing Eq. (1) with a reward function trained on \mathcal{D}_{HF} (Rafailov et al., 2023, Theorem 1; Azar et al., 2023, Proposition 4).

4 OPTIMIZING CROSSLINGUAL CONSISTENCY

In this section, we formulate the problem of alignment for consistency as an RL task, define the reward function, and derive the optimal policy that ensures consistent responses across languages.

4.1 Defining Crosslingual Consistency

Throughout this paper, we use superscripts to denote the language of a prompt \boldsymbol{x} or a response \boldsymbol{y} . For example, \boldsymbol{x}^1 represents a prompt in language L_1 , \boldsymbol{y}^2 represents a response in language L_2 . We define two prompt—response pairs $(\boldsymbol{x}^1,\boldsymbol{y}^1)$ and $(\boldsymbol{x}^2,\boldsymbol{y}^2)$ in languages L_1 and L_2 as **equivalent**, denoted by $(\boldsymbol{x}^1,\boldsymbol{y}^1)\sim(\boldsymbol{x}^2,\boldsymbol{y}^2)$, if they can be mapped to each other via translational mappings $\tau^1\colon L_2\to L_1$ and $\tau^2\colon L_1\to L_2$. For simplicity, we denote τ^1 , which maps strings from L_2 to L_1 , to be the inverse of τ^2 . For example, this implies $\boldsymbol{x}^2=\tau^2(\boldsymbol{x}^1)$ and $\boldsymbol{y}^1=\tau^1(\boldsymbol{y}^2)$.

 $^{^1}$ We assume the existence of such translational mappings τ^1 , τ^2 , particularly in factual question-answering settings where the answers to a question are objective and the set of candidate answers is finite. Prior work on zero-shot crosslingual transfer and reward transfer (Wu & Dredze, 2019; Wu et al., 2024) discussed the generalizability of this assumption to other fields that involve open-ended generation.

We formalize **crosslingual consistency** as the property that the relative preference between any pair of responses remains *unchanged across different languages*.

Definition 1. A language model π^* is **consistent** across L_1 and L_2 if

$$\pi^{\star}(\boldsymbol{y}_{w}^{1} \mid \boldsymbol{x}^{1}) \geq \pi^{\star}(\boldsymbol{y}_{l}^{1} \mid \boldsymbol{x}^{1}) \iff \pi^{\star}(\boldsymbol{y}_{w}^{2} \mid \boldsymbol{x}^{2}) \geq \pi^{\star}(\boldsymbol{y}_{l}^{2} \mid \boldsymbol{x}^{2}). \tag{5}$$

for all
$$(\boldsymbol{x}^1, \boldsymbol{y}_w^1) \sim (\boldsymbol{x}^2, \boldsymbol{y}_w^2)$$
 and $(\boldsymbol{x}^1, \boldsymbol{y}_l^1) \sim (\boldsymbol{x}^2, \boldsymbol{y}_l^2)$.

In other words, given a prompt x and a pair of responses (y_w, y_l) , a consistent language LLM should maintain the same preference for one response over the other, regardless of the language in which the prompt and responses are expressed. See App. C for the rationale behind not enforcing exact distribution matching in Def. 1.

4.2 A PIECEWISE REWARD FUNCTION FOR CONSISTENCY

To align a model π_{REF} across L_1 and L_2 , we propose the following **piecewise reward function**:

$$r_{\text{ALIGN}}(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} \gamma_1 \log \pi_{\text{REF}}(\tau^2(\boldsymbol{y}) \mid \tau^2(\boldsymbol{x})) & \text{if } \boldsymbol{x}, \boldsymbol{y} \in L_1, \\ \gamma_2 \log \pi_{\text{REF}}(\tau^1(\boldsymbol{y}) \mid \tau^1(\boldsymbol{x})) & \text{if } \boldsymbol{x}, \boldsymbol{y} \in L_2, \\ 0 & \text{otherwise,} \end{cases}$$
(6)

where $\gamma_1, \gamma_2 \in \mathbb{R}^+$ are parameters controlling the deviation from π_{REF} in each language. A smaller γ_1 keeps the aligned model closer to π_{REF} in L_1 , while a smaller γ_2 does the same for L_2 . Note that γ_1 and γ_2 are distinct from β (see Eq. (1)), which controls the *overall* deviation of the target policy from the base policy π_{REF} .

4.3 SOLVING THE CONSTRAINED RL PROBLEM

Substituting r_{ALIGN} back into the RL objective Eq. (1), the RL problem becomes:

$$\max_{\boldsymbol{\pi}_{\boldsymbol{\theta}}} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}, \boldsymbol{y} \sim \boldsymbol{\pi}_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})} \left[r_{\text{ALIGN}}(\boldsymbol{x}, \boldsymbol{y})) \right] - \beta \cdot \text{KL} \left[\pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x}) \| \pi_{\text{REF}}(\cdot \mid \boldsymbol{x}) \right], \tag{7}$$

where \mathcal{D} is a set of factual question prompts. The optimal policy is given by Rafailov et al., 2023:

$$\pi^{\star}(\boldsymbol{y} \mid \boldsymbol{x}) = \frac{1}{Z(\boldsymbol{x})} \pi_{\text{REF}}(\boldsymbol{y} \mid \boldsymbol{x}) \exp\left(\frac{1}{\beta} r_{\text{ALIGN}}(\boldsymbol{x}, \boldsymbol{y})\right), \tag{8}$$

where Z(x) is the normalization constant. For L_1 and L_2 , the resulting policy takes a product-of-experts form (Hinton, 1999), which expands to:

$$\pi^{\star}(\boldsymbol{y}^{1} \mid \boldsymbol{x}^{1}) = \frac{1}{Z(\boldsymbol{x}^{1})} \pi_{\text{REF}}(\boldsymbol{y}^{1} \mid \boldsymbol{x}^{1}) \Big(\pi_{\text{REF}} \big(\tau^{2}(\boldsymbol{y}^{1}) \mid \tau^{2}(\boldsymbol{x}^{1}) \big) \Big)^{\gamma_{1}/\beta}, \quad (\boldsymbol{x}^{1}, \boldsymbol{y}^{1} \in L_{1})$$
(9a)

$$\pi^{\star}(\boldsymbol{y}^2 \mid \boldsymbol{x}^2) = \frac{1}{Z(\boldsymbol{x}^2)} \pi_{\text{REF}}(\boldsymbol{y}^2 \mid \boldsymbol{x}^2) \Big(\pi_{\text{REF}} \big(\tau^1(\boldsymbol{y}^2) \mid \tau^1(\boldsymbol{x}^2) \big) \Big)^{\gamma_2/\beta}. \quad (\boldsymbol{x}^2, \boldsymbol{y}^2 \in L_2)$$
(9b)

Choosing γ_1, γ_2 and β . *Not all* combinations of γ_1, γ_2 , and β guarantee a consistent optimal policy. Lemma 1 provides a condition for selecting these hyperparameters to ensure consistency.

Lemma 1. If $\gamma_1 \gamma_2 = \beta^2$, the optimal policy π^* defined by Eq. (8) is consistent across L_1 and L_2 .

Proof sketch. When $\gamma_1 \gamma_2 = \beta^2$, raising both sides of Eq. (9a) to the power of $\frac{\beta}{\gamma_1}$ gives us:

$$\left(\pi^{\star}(\boldsymbol{y}^1\mid\boldsymbol{x}^1)\right)^{\beta/\gamma_1}\equiv\frac{Z(\tau^2(\boldsymbol{x}^1))}{Z^{\beta/\gamma_1}(\boldsymbol{x}^1)}\pi^{\star}(\tau^2(\boldsymbol{y}^1)\mid\tau^2(\boldsymbol{x}^1)).$$

Since the function $f(x)=cx^{\beta/\gamma_1}$ increases monotonically in x for $\beta/\gamma_1>0, c>0$, we have $\pi^\star(\boldsymbol{y}_w^1\mid\boldsymbol{x}^1)\geq\pi^\star(\boldsymbol{y}_l^1\mid\boldsymbol{x}^1)\iff\pi^\star(\tau^2(\boldsymbol{y}_w^1)\mid\tau^2(\boldsymbol{x}^1))\geq\pi^\star(\tau^2(\boldsymbol{y}_l^1)\mid\tau^2(\boldsymbol{x}^1)),$ for all $\boldsymbol{y}_w^1,\boldsymbol{y}_l^1.$ Thus, π^\star is consistent across L_1 and L_2 . See App. D.1 for details.

Remark 1. Optimizing the objective in Eq. (7) yields a policy π^* that balances the original policy π_{REF} across L_1 and L_2 . Lemma 1 specifies the relationship $\gamma_1\gamma_2=\beta^2$ to ensure consistency. Here, β controls the overall deviation of π^* from π_{REF} . While γ_1 and γ_2 determine the relative alignment strength for L_1 and L_2 . For instance, a smaller γ_1 biases π^* closer to π_{REF} in L_1 .

What does r_{ALIGN} do? Maximizing $\mathbb{E}_{\boldsymbol{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})} \left[r_{\text{ALIGN}}(\boldsymbol{x}, \boldsymbol{y}) \right]$ is equivalent to maximizing the weighted summation $\sum_{\boldsymbol{y}} \pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) r_{\text{ALIGN}}(\boldsymbol{x}, \boldsymbol{y})$. According to the **rearrangement inequality**, this summation achieves its maximum when the sequences $\{\pi_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})\}_{\boldsymbol{y}}$ and $\{r_{\text{ALIGN}}(\boldsymbol{x}, \boldsymbol{y})\}_{\boldsymbol{y}}$ are *monotonically aligned* (Hardy et al., 1952). This alignment directly corresponds to our notion of **consistency**. By defining r_{ALIGN} as in Eq. (6), which reflects the likelihood of a response in *the other language*, $\pi_{\boldsymbol{\theta}}$ is encouraged to align its preferences across languages, thereby promoting consistency.

Generalizing to N languages. Our method naturally extends to align N languages. For N languages, we introduce (N^2-N) hyperparameters γ_{ij} , where $i,j\in\{1,2,\ldots,N\}$ and $i\neq j$, to control the alignment strength between L_i and L_j . The reward function is $r_{\text{ALIGN}}(\boldsymbol{x},\boldsymbol{y})=\sum_{j=1}^N \gamma_{ij} \log \pi_{\text{REF}}(\tau^j(\boldsymbol{y}) \mid \tau^j(\boldsymbol{x}))$ when $\boldsymbol{x},\boldsymbol{y}\in L_i$. and the optimal policy is given by:

$$\pi^{\star}(\boldsymbol{y}^{i} \mid \boldsymbol{x}^{i}) = \frac{1}{Z(\boldsymbol{x}^{i})} \pi_{\text{REF}}(\boldsymbol{y}^{i} \mid \boldsymbol{x}^{i}) \prod_{j \neq i \land j \in \{1, 2, \cdots, N\}} \left(\pi_{\text{REF}} \left(\tau^{j}(\boldsymbol{y}^{i}) \mid \tau^{j}(\boldsymbol{x}^{i}) \right) \right)^{\gamma_{ij}/\beta}, \quad (10)$$

where $x^i, y^i \in L_i$ and $Z(x^i)$ is the normalization constant, for $i \in \{1, 2, ..., N\}$.

The detailed derivation and the constraints on γ_{ij} to ensure consistency are provided in App. E. This formulation ensures that the policy π^* aligns preferences across all N languages while maintaining flexibility through the hyperparameters γ_{ij} .

4.4 DIRECT CONSISTENCY OPTIMIZATION

In principle, there could be diverse ways to implement $r_{\rm ALIGN}$. Here, we propose Direct Consistency Optimization (DCO) as an efficient algorithm tailored to our consistency objective. DCO is inspired by DPO, which bypasses the reward modeling and constrained RL phase. It leverages a dataset of parallel prompt–response pairs, eliminating the need for online sampling and translator usage.

The Objective Function. The core idea of DPO is to use a change of variables to express the human preference alignment loss directly as a function of the policy π_{θ} . In Eq. (6), we have described the exact form of r_{ALIGN} that we need. Our goal is to design an objective function that will lead to an optimal \hat{r}_{θ} that is the same as r_{ALIGN} , and thus leads to policy π_{θ} that is the same as π^* . In principle, any objective function with an optimal solution of r_{ALIGN} can be used. Here, we adopt an objective that mirrors the DPO framework, leveraging the Bradley-Terry preference model to align reward differences with expected values. Specifically, we train $\hat{r}_{\theta}(x, y_w) - \hat{r}_{\theta}(x, y_l)$ to match $r_{\text{ALIGN}}(x, y_w) - r_{\text{ALIGN}}(x, y_l)$. Through this modeling choice, we avoid computing the intractable normalization term Z(x) in Eq. (3).

Let \mathcal{D}_{\parallel} denote a dataset of parallel prompt–response pairs, from which we sample tuples $(\boldsymbol{x}^1, \boldsymbol{y}^1, \boldsymbol{x}^2, \boldsymbol{y}^2)$, where $(\boldsymbol{x}^1, \boldsymbol{y}^1) \sim (\boldsymbol{x}^2, \boldsymbol{y}^2)$. The responses are randomly paired into $\boldsymbol{y}_w^1, \boldsymbol{y}_l^1,$ meaning we do not assume \boldsymbol{y}_w^1 is inherently better than \boldsymbol{y}_l^1 . We define the following loss function to train \hat{r}_{θ} to match r_{ALIGN} :

$$L(\boldsymbol{\theta}) = \underset{(\boldsymbol{x}^{1}, \boldsymbol{y}_{w}^{1}, \boldsymbol{y}_{l}^{1}, \boldsymbol{x}^{2}, \boldsymbol{y}_{w}^{2}, \boldsymbol{y}_{l}^{2}) \sim \mathcal{D}_{\parallel}}{\mathbb{E}} \left[\left\| \left(\widehat{r}_{\boldsymbol{\theta}}(\boldsymbol{x}^{1}, \boldsymbol{y}_{w}^{1}) - \widehat{r}_{\boldsymbol{\theta}}(\boldsymbol{x}^{1}, \boldsymbol{y}_{l}^{1}) \right) - \gamma_{1} \log \frac{\pi_{\text{REF}}(\boldsymbol{y}_{w}^{2} \mid \boldsymbol{x}^{2})}{\pi_{\text{REF}}(\boldsymbol{y}_{l}^{2} \mid \boldsymbol{x}^{2})} \right\| + \left\| \left(\widehat{r}_{\boldsymbol{\theta}}(\boldsymbol{x}^{2}, \boldsymbol{y}_{w}^{2}) - \widehat{r}_{\boldsymbol{\theta}}(\boldsymbol{x}^{2}, \boldsymbol{y}_{l}^{2}) \right) - \gamma_{2} \log \frac{\pi_{\text{REF}}(\boldsymbol{y}_{w}^{1} \mid \boldsymbol{x}^{1})}{\pi_{\text{REF}}(\boldsymbol{y}_{l}^{1} \mid \boldsymbol{x}^{1})} \right\| \right].$$

$$(11)$$

Minimizing Eq. (11) yields the same optimal policy as Eq. (7), as formalized in the following lemma: **Lemma 2.** When Eq. (11) is minimized, the reward function \hat{r}_{θ} will converge to

$$\widehat{r}_{\boldsymbol{\theta}}^{\star}(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} \gamma_1 \log \pi_{\text{REF}}(\tau^2(\boldsymbol{y}) \mid \tau^2(\boldsymbol{x})) + c(\boldsymbol{x}) & \text{if } \boldsymbol{x}, \boldsymbol{y} \in L_1, \\ \gamma_2 \log \pi_{\text{REF}}(\tau^1(\boldsymbol{y}) \mid \tau^1(\boldsymbol{x})) + c(\boldsymbol{x}) & \text{if } \boldsymbol{x}, \boldsymbol{y} \in L_2, \end{cases}$$
(12)

where c(x) is a function independent of y.

See App. D.2 for proof. By combining Lemma 2 with Rafailov et al. (2023, Theorem 1), we conclude that a consistent policy can be directly trained without explicitly training a reward function r or solving a constrained RL problem. We further compare our method with DPO in App. F.

5 EXPERIMENTAL SETUP

Models. We evaluate our method on 9 multilingual models from 4 LLM families with sizes ranging from 4B to 14B, namely: Qwen2.5-7B/14B (Qwen et al., 2025), Qwen3-8B/14B (Yang et al., 2025), Aya-Expanse-8B (Üstün et al., 2024), Llama3.1-8B, Llama3.2-3B (Dubey et al., 2024), and Gemma3-4B/12B (Kamath et al., 2025). Training configurations are provided in App. G.

Datasets. We use three different multilingual question answering benchmarks: MMMLU (Hendrycks et al., 2021), XCSQA (Lin et al., 2021), and BMLAMA (Qi et al., 2023). All three contain parallel questions and candidate completions over all tested languages, translated from their English origin. MMMLU is a multilingual extension of the MMLU dataset on *general knowledge*, translated into 14 languages by human annotators. LLMs are prompted with a question and four candidate answers, and have to generate one option from {A, B, C, D}. In XCSQA, questions are also multi-choice (5 options, 16 languages), but focus on *commonsense reasoning*. By contrast, BMLAMA (Qi et al., 2023) includes parallel sentence prefixes and a varying number of possible parallel completions (e.g. "The capital of Italy is __", "{Rome/Paris/...}"), evaluating LLMs' *factual associations* in 17 languages. More detailed statistics are provided in App. H.

Evaluation Metrics. We measure **crosslingual consistency** via the RankC metric (Qi et al., 2023), which considers the likelihood distribution over all candidate completions.² Besides, we evaluate **answer accuracy** following the LM-Evaluation-Harness framework³ (Gao et al., 2024), where the candidate completion with the highest model likelihood is selected and compared to the gold answer.

6 RESULTS AND ANALYSIS

6.1 Comparison with Previous Methods

We compare DCO with three representative methods: SFT, DPO, and CALM. Among these, SFT and DPO use *ground-truth labels* as the training target or the 'preferred' completion. To investigate the complementarity between DCO and DPO, we also evaluate a hybrid approach where the model is first trained with DPO and then refined with DCO using the *same* instances used for DPO. For a fair comparison, we follow the setup of Wang et al. (2025b), where each LLM is aligned across N languages jointly in a single post-training process. In this setup, we use $\beta = 1$ and $\gamma_{ij} = 1$ for all $i, j \in \{1, ..., N\}$ with N = 12 on the general knowledge dataset MMMLU.⁴

Method	Qwe	n2.5-	14B	Gemm	a3-12E	3-pt	Qw	en3-14	4B	Aya-E	xpans	e-8B	Lla	ma3.1-	-8B
	CLCall	\mathbf{A}_{EN}	$A_{\neg EN}$												
Base	68.56	72.46	58.08	73.56	70.07	62.28	76.13	76.58	67.28	72.17	59.76	52.92	60.87	57.27	45.79
+ SFT	+0.64	+1.51	+6.67	+0.64	+0.72	+1.64	-0.18	+0.09	+0.52	+3.45	+0.72	+0.52	+4.28	+6.66	+5.94
+ DPO	+12.28	+7.84	+13.88	+6.52	+1.80	+3.40	+2.99	+2.65	+4.16	+1.26	+2.54	+2.48	+10.07	+7.97	+8.83
+ DCO	+13.07	+7.58	+13.45	+10.24	+1.17	+2.94	+4.38	+2.78	+4.30	+3.06	+2.66	+2.61	+13.83	+7.32	+8.88
+ CALM	+4.22	+0.00	+4.10	+3.02	-0.41	-0.04	+0.32	-2.13	-1.12	+1.44	-2.16	-2.14	+2.97	-2.18	-5.03
+ DCO	+10.64	+4.02	+9.63	+6.47	+0.88	+2.53	+2.74	+0.37	+1.34	+5.33	+0.52	+0.46	+9.35	+7.45	+7.61

Table 1: Comparison with previous methods in the joint training setup, on the MMMLU dataset. CLC_{all} : average crosslingual consistency (measured by RankC) between all language pairs; A_{EN}/A_{-EN} : average accuracy on English/non-English instances.

As shown in Tab. 1, the three baselines have distinct behaviors. *SFT*, trained on instances with gold labels, produces modest gains: it slightly improves CLC_{all} and accuracies (e.g., Llama3.1-8B), yet on stronger models such as Qwen3-14B, its effect on CLC_{all} is negligible or even slightly negative,

²See App. I for detailed definitions of the function.

³https://github.com/EleutherAI/lm-evaluation-harness

 $^{^4}$ We exclude Bengali as its prompt length exceeds the memory capacity of four A100 GPUs, and Swahili and Yoruba because most of our LLMs perform at a random-guess level in these languages. See §6.4 for targeted experiments on the low-resource languages, which demonstrate promising results with adjusted γ values.

indicating that simple SFT is not a reliable mechanism for enhancing consistency. In contrast, DPO yields larger gains in CLC_{all} , A_{EN} , and $A_{\neg EN}$ across all LLMs.

Turning to label-free approaches, CALM applies DPO to encourage a preference for majority answers across different languages. This design requires more than two languages, limiting applicability in bilingual settings; moreover, including multiple low-resource languages can make majority voting unreliable. Empirically, this limitation is evident in our results: CLC_{all} is slightly improved, English and non-English accuracy fluctuates without obvious increments, confirming its sensitivity to noisy majority voting when low-resource languages are included. By contrast, DCO yields consistently higher CLC_{all} on all tested models while preserving accuracy or even improving it in many cases. Notably, on some models (e.g., Aya-Expanse-8B) DCO even surpasses DPO on CLC_{all}, and on the rest it nearly matches DPO despite using no gold labels. We provide detailed CLC results for all language pairs in App. L, showing that DCO not only improves CLC for typologically similar languages, but also for distant pairs such as Korean-French and Arabic-Chinese.

Finally, combining gold-label preference learning with consistency optimization (DPO+DCO) yields optimal results: applying DCO as a post-step to a DPO-trained model consistently achieves the highest CLC_{all} across all language models. Accuracy remains comparable to DPO, with minor trade-offs in English for some models, and slight gains in non-English languages for others. Taken together, these results highlight DCO as the most versatile and practical option. It offers a robust path to crosslingual consistency while preserving (and often improving) task accuracy, and it can also serve as an effective post-step that further benefits models already trained with DPO.

6.2 BILINGUAL IMPROVEMENTS

The experiments in §6.1 target *joint* consistency improvements across many languages, a setting aligned with large multilingual foundation models. In practical scenarios, however, developers may be interested in aligning knowledge between English and a specific local language, or between a small set of regional languages. To assess this use case, we instantiate a *bilingual* version of DCO that aligns English with one non-English language, and we extend the evaluation beyond MMMLU (general knowledge) to XCSQA (commonsense reasoning) and BMLAMA (factual association). Tab. 2 reports CLC and average answer accuracy on English and non-English. For space reasons, we present the largest model in each family (see App. M for full results on nine LLMs).

Model	N	IMMLU			XCSQA		F	BMLAM	A
	CLC _{all}	A_{EN}	$A_{\neg EN}$	CLCall	A_{EN}	$A_{\neg EN}$	CLC _{all}	$\mathbf{A}_{\mathbf{EN}}$	$A_{\neg EN}$
Qwen2.5-14B	68.56	72.46	66.57	64.58	87.00	56.87	41.87	62.67	38.61
+ DCO	+12.60	+1.64	+8.49	+6.81	-2.53	+4.67	+15.41	+6.33	+14.20
Gemma3-12B-pt	73.56	70.07	63.64	58.28	66.00	47.23	42.23	68.25	38.28
+ DCO	+7.15	-0.90	+1.36	+4.61	+0.10	+3.57	+16.65	+1.55	+16.96
Qwen3-14B	76.13	76.58	68.95	61.91	77.57	54.00	38.90	58.43	36.38
+ DCO	+4.79	+0.13	+1.67	+7.14	+1.07	+3.77	+16.19	+8.07	+14.47
Aya-Expanse-8B	72.17	59.76	53.38	62.58	78.00	54.40	41.93	67.02	37.80
+ DCO	+5.33	+0.52	+0.46	+6.36	+0.57	+3.67	+12.29	+1.43	+12.16
Llama3.1-8B	60.87	57.27	48.80	60.23	67.50	47.73	40.85	61.16	35.83
+DCO	+12.06	+0.74	+3.01	+9.10	+0.17	+1.27	+15.70	+7.17	+17.62

Table 2: Results of consistency with English and the average accuracy of all English and non-English pairs on MMMLU, XCSQA, and BMLAMA. See App. M for full results on nine LLMs.

Overall, DCO substantially improves both $\rm CLC_{all}$ and accuracy across datasets. On MMMLU, $\rm CLC_{all}$ increases by +4.79 to +12.60 across all models, with concurrent gains in the accuracy of non-English $\rm A_{\neg EN}$ (+0.46 to +8.49) and remains largely stable in English accuracy. On XCSQA, $\rm CLC_{all}$ improves by +4.61 to +9.10, with smaller changes in English accuracy (-2.53 to +1.07, with the single notable dip on Qwen2.5-14B), while non-English accuracy increases consistently (+1.27 to +4.67). The largest gains appear on BMLAMA, where $\rm CLC_{all}$ improves by +12.29 to +16.65 and both English accuracy (+1.43 to +8.07) and non-English accuracy (+12.16 to +17.62) rise markedly. We hypothesize that

BMLAMA benefits more from DCO because outputs are concrete factual entities rather than abstract option labels, making distributional alignment across languages more direct.

6.3 Out-of-Domain Generalizability

To assess whether the benefits of our method extend beyond the specific domain on which the model was post-trained, we conduct a controlled experiment using Qwen2.5-14B: DCO is performed on a single subject within MMMLU (namely, *high school microeconomics*) and evaluated on various other subjects from the same dataset. For easier interpretation of the results and for managing computational costs, we keep the bilingual DCO setup in the rest of our experiments.

Method	A	natomy		Medi	ical Gen	etics	High	School M	Iaths	Co	llege Ma	ths
	CLCall	$\mathbf{A}_{\mathbf{E}\mathbf{N}}$	$A_{\neg EN}$	CLCall	$\mathbf{A}_{\mathbf{E}\mathbf{N}}$	$A_{\neg EN}$	CLC _{all}	$\mathbf{A_{EN}}$	$A_{\neg EN}$	CLC _{all}	$\mathbf{A}_{\mathbf{E}\mathbf{N}}$	$A_{\neg EN}$
Base	59.49	68.89	46.30	70.38	82.00	63.79	67.83	53.70	43.23	64.25	57.00	37.50
+ DCO	+10.94	+1.80	+3.76	+10.33	+5.43	+7.00	+11.27	+2.38	+6.80	+11.36	-0.36	+12.36

Table 3: Cross-domain performance on Qwen2.5-14B. The model is trained with DCO on *high school microeconomics* (390 questions) and tested on distinct domains on MMMLU. Detailed results by language, and for more test domains, are shown in App. M.

Tab. 3 shows strong out-of-domain transfer from a single training subject. DCO increases CLC_{all} by about 11% on average across all target domains, indicating that CLC is enhanced beyond the specific post-training domain. Non-English accuracy also significantly improves, with the largest gain on *college mathematics* (+12.36), reflecting effective knowledge transfer from English to less resourced languages, even without explicit accuracy supervision. English accuracy is largely preserved, with only a negligible decrease of 0.36 on *college mathematics*, showing that DCO does not overfit to the training subject or degrade the model's primary language competence. Taken together, these results support the potential of DCO as a practical tool for real-world deployments where labeled data are scarce and the target application domain may differ from that of the available training data.

6.4 EFFECT OF DIRECTION CONTROLLING PARAMETERS

Setup. We study how the parameters γ_1, γ_2 of DCO control transfer specifically between English (EN) and low-resource languages. Specifically, we select Swahili (SW) and Yoruba (YO), which have the lowest baseline accuracy on MMMLU, and vary the values of γ_1, γ_2 in three regimes⁵: **Default** ($\gamma_1=1, \gamma_2=1$), **SW/YO Stable** ($\gamma_1=0.1, \gamma_2=10$, strong transfer from SW/YO to EN), and **EN Stable** ($\gamma_1=10, \gamma_2=0.1$, strong transfer from EN to SW/YO)). All other settings remain the same as in §6.2.

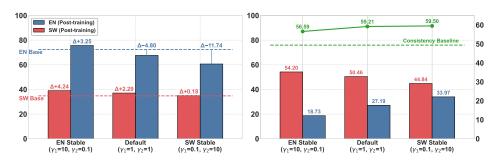


Figure 2: Left: Answer accuracy after performing DCO on English-Swahili. Right: Proportion of questions for which the LLM's response changes after DCO, with CLC values marked in green.

Results. We present results of DCO between EN and SW in Fig. 2 and leave the results between EN and YO to App. J where similar trends are observed. With default weighting, EN accuracy declines by -4.80 points while SW gains +2.29. As we expected, the SW-stable weighting (large γ_2) severely hurts EN accuracy (-11.74) while barely helping SW (+0.18). Finally, the EN-stable weighting (large

⁵Note that we keep $\gamma_1 \gamma_2 = \beta^2 = 1$ as discussed in Lemma 1.

 $\gamma_1)$ yields a Pareto improvement: the accuracy of SW increases by +4.24 while the accuracy in EN remains less changed (smaller Δ); in this case, fortunately, it even slightly increases. By contrast, CLC improves in all weighting schemes. The baseline ${\bf CLC_{all}}$ of 49.37 rises to 59.21, 59.50, 56.59 under $(\gamma_1{:}\gamma_2)=(1{:}1), (0.1{:}10), (10{:}0.1)$ respectively, showing that DCO reliably optimizes consistency across different direction weights. Notably, the larger ${\bf CLC_{all}}$ boost from the default weighting comes with a substantial EN accuracy drop, whereas the EN-stable setup achieves a more favorable balance: that is, slightly smaller yet still significant gains in ${\bf CLC_{all}}$ but stable or improved EN accuracy.

Ratio of changed answers after DCO. To better understand the effects of (γ_1, γ_2) , we measure the proportion of questions for which the model answer changes after DCO. As shown in Fig. 2 (right), the low-resource side exhibits far more updates than EN, and the direction weights control which side is allowed to move. The EN-stable setting changes only 18.73% of EN answers but 54.20% of SW. In default weighting, EN changes increase and SW changes decrease. In the SW-stable setting, the burden shifts to EN (33.97% EN vs. 44.84% SW). A similar trend holds for English-Yoruba (see App. J). These patterns align with the accuracy/consistency results: EN-anchored regimes keep the high-resource channel stable while DCO primarily revises the low-resource outputs, thereby yielding improved CLC and higher non-EN accuracy. On the other hand, low-resource stable setups induce unnecessary EN churn without sufficient benefits. However, this should not be misinterpreted as 'always set a large γ for EN'. We provide weighting guidance for real-world applications in App. K.

6.5 DISCUSSION

Where do the accuracy gains come from? In general, when a language model performs poorly on a task, it tends to have a *high-entropy distribution* over the candidate answers. In contrast, a low-entropy one that is skewed toward an incorrect answer is less common. Thus, the experts in $\pi^{\star}(\boldsymbol{y}\mid\boldsymbol{x})=\frac{1}{Z}\prod_{j}\left(\pi_{\text{REF}}(\tau^{j}(\boldsymbol{y})\mid\tau^{j}(\boldsymbol{x}))\right)^{w_{j}}$ are complementary to each other. Specifically, a low-entropy expert only contributes minimally to the final distribution, allowing the ensemble to rely more on high-confidence predictions from other experts. As a case study, we verify this assumption using Qwen-2.5-14B on the MMMLU dataset, where the average entropy of the answer distribution on the questions that are correctly answered is 0.41 ± 0.41 , while for incorrectly answered questions, it is significantly higher at 0.98 ± 0.33 . The accuracy of the theoretical optimal policy π^{\star} on MMMLU using Qwen-2.5-14B is 77.0, surpassing the accuracy of the base policy in individual languages.

Beyond crosslingual consistency. While this work focuses on *crosslingual* knowledge consistency, the training objective of DCO is not limited to this task and can naturally be extended to other forms of consistency. For instance, by aligning the output distributions over candidate answers for paraphrased prompts, the model could be encouraged to respond consistently regardless of surface variations. Exploring such extensions is an interesting direction for future work.

7 Conclusion

This paper proposes a novel structured reward function to improve crosslingual consistency in multilingual LLMs and introduces an efficient method, direct consistency optimization (DCO).

Through comprehensive experiments, we demonstrate that DCO consistently improves CLC across a variety of models and datasets. Compared to existing methods, DCO delivers robust performance gains and complements DPO when gold labels are available, producing the strongest overall knowledge alignment in a joint N-languages training setting. In bilingual settings, DCO also enhances CLC effectively, raising accuracy in non-English languages while maintaining accuracy in English. We further show the generalizability of DCO across domains, with gains observed even when testing on subjects that differ from the training ones. The analysis of direction-controlling weights demonstrates how practitioners can steer alignment toward specific languages according to deployment requirements.

Looking ahead, we believe the structured reward underlying DCO has potential for application beyond crosslingual knowledge consistency, for example, improving self-consistency across paraphrases or consistency across modalities. As a computationally efficient algorithm, DCO provides a practical path toward building powerful multilingual LLMs that are not only accurate but also reliable and equitable across languages.

REPRODUCIBILITY STATEMENT

We provide detailed theoretical proofs of Lemmas 1 and 2 in Apps. D.1 and D.2. Implementation details and training configurations are given in App. G. Datasets are contained in the anonymous supplementary material.

REFERENCES

486

487 488

489

490

491 492

493 494

495

496

497

498

499 500

501

502

504 505

506

507 508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523 524

525

526

527

528

529

530

531

532

534

536

538

- Xi Ai, Mahardika Krisna Ihsani, and Min-Yen Kan. Is knowledge in multilingual language models cross-lingually consistent?, 2025. URL https://openreview.net/forum?id=HMa8mIiBT8.
- Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in AI safety. *Computing Research Repository*, arXiv:1606.06565, 2016. URL https://arxiv.org/pdf/1606.06565.
- Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human preferences. *Computing Research Repository*, arXiv:2310.12036, 2023. URL https://arxiv.org/abs/2310.12036.
- Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952. ISSN 00063444. URL http://www.jstor.org/stable/2334029.
- DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning. CoRR, abs/2501.12948, January 2025. URL https://doi.org/10.48550/arXiv.2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. URL https://doi.org/10.48550/arXiv.2407.21783.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham, Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Soňa Mokrá, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac, John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey Irving. Improving alignment of dialogue agents via targeted human judgements. *Computing Research Repository*, arXiv:2209.14375, 2022. URL https://arxiv.org/abs/2209.14375.

G.H. Hardy, J.E. Littlewood, and G. Pólya. *Inequalities*. Cambridge Mathematical Library. Cambridge University Press, 1952. ISBN 9780521358804. URL https://books.google.ch/books?id=t1 RCSP8YKt8C.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

G.E. Hinton. Products of experts. In 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), volume 1, pp. 1–6 vol.1, 1999. doi: 10.1049/cp: 19991075.

Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki, Haibo Ding, and Graham Neubig. X-FACTR: Multilingual factual knowledge retrieval from pretrained language models. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 5943–5959, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.479. URL https://aclanthology.org/2020.emnlp-main.479/.

Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhei, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin, Róbert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shiyakumar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucinska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, and Ivan Nardini. Gemma 3 technical report. CoRR, abs/2503.19786, March 2025. URL https://doi.org/10.4 8550/arXiv.2503.19786.

Pietro Lesci, Clara Meister, Thomas Hofmann, Andreas Vlachos, and Tiago Pimentel. Causal estimation of tokenisation bias. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 28325–28340, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/20 25.acl-long.1374. URL https://aclanthology.org/2025.acl-long.1374/.

595

596

597

598

600 601

602

603

604

605

607

608

609

610 611

612

613

614

615

616 617

618

619

620

621

622

623

625

626

627

629

630

631

632

633

634

635

636

637

638

639

640

641

642

644

645

646

Bill Yuchen Lin, Seyeon Lee, Xiaoyang Qiao, and Xiang Ren. Common sense beyond English: Evaluating and improving multilingual language models for commonsense reasoning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 1274–1287, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.102. URL https://aclanthology.org/2021.acl-long.102/.

Danni Liu and Jan Niehues. Middle-layer representation alignment for cross-lingual transfer in fine-tuned LLMs. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15979–15996, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.778. URL https://aclanthology.org/2025.acl-long.778/.

Meng Lu, Ruochen Zhang, Carsten Eickhoff, and Ellie Pavlick. Paths not taken: Understanding and mending the multilingual factual recall pipeline. *CoRR*, abs/2505.20546, May 2025. URL https://doi.org/10.48550/arXiv.2505.20546.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Research*, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/mniha16.html.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted

Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 technical report. Technical report, OpenAI, 2023. URL https://cdn.openai.com/papers/gpt-4.pdf.

- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 27730–27744. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364 a73914f58805a001731-Paper-Conference.pdf.
- Jirui Qi, Raquel Fernández, and Arianna Bisazza. Cross-lingual consistency of factual knowledge in multilingual language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 10650–10666, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.e mnlp-main.658. URL https://aclanthology.org/2023.emnlp-main.658/.
- Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In *Advances in Neural Information Processing Systems*, volume 36. Curran Associates, Inc., 2023. URL https://arxiv.org/pdf/2305.18290.pdf.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *Computing Research Repository*, arXiv:1707.06347, 2017. URL https://arxiv.org/abs/1707.06347.
- Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 3008–3021. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98 d3ef9b86448f951-Paper.pdf.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.
- Ahmet Üstün, Viraat Aryabumi, Zheng Yong, Wei-Yin Ko, Daniel D'souza, Gbemileke Onilude, Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Freddie Vargus, Phil Blunsom, Shayne Longpre, Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer, and Sara Hooker. Aya model: An

instruction finetuned open-access multilingual language model. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15894–15939, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.845. URL https://aclanthology.org/2024.acl-long.845/.

- Mingyang Wang, Heike Adel, Lukas Lange, Yihong Liu, Ercong Nie, Jannik Strötgen, and Hinrich Schuetze. Lost in multilinguality: Dissecting cross-lingual factual inconsistency in transformer language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5075–5094, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.253. URL https://aclanthology.org/2025.acl-long.253/.
- Yumeng Wang, Zhiyuan Fan, Qingyun Wang, Yi R. Fung, and Heng Ji. CALM: Unleashing the cross-lingual self-aligning ability of language model question answering. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 2809–2817, Albuquerque, New Mexico, April 2025b. Association for Computational Linguistics. ISBN 979-8-89176-195-7. URL https://aclanthology.org/2025.findings-naacl.152/.
- Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and Paul Christiano. Recursively summarizing books with human feedback. *Computing Research Repository*, arXiv:2109.10862, 2021. URL https://arxiv.org/abs/2109.10862.
- Shijie Wu and Mark Dredze. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 833–844, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1077. URL https://aclanthology.org/D19-1077/.
- Zhaofeng Wu, Ananth Balashankar, Yoon Kim, Jacob Eisenstein, and Ahmad Beirami. Reuse your rewards: Reward model transfer for zero-shot cross-lingual alignment. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 1332–1353, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.79. URL https://aclanthology.org/2024.emnlp-main.79/.
- Xiaolin Xing, Zhiwei He, Haoyu Xu, Xing Wang, Rui Wang, and Yu Hong. Evaluating knowledge-based cross-lingual inconsistency in large language models, 2024. URL https://arxiv.org/abs/2407.01358.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
- Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *Computing Research Repository*, arXiv:1909.08593, 2020. URL https://arxiv.org/abs/1909.08593.

A USAGE OF LLMS

LLM tools were used occasionally to improve writing clarity. They did not contribute to the conceptual development, experimental design, or analysis. The authors reviewed and edited all assisted text, and the final manuscript is *entirely* author-written.

B BACKGROUND: MODELING HUMAN PREFERENCES WITH BRADLEY-TERRY MODEL

An important component for post-training LLMs is reward models that align with human preferences (Ziegler et al., 2020; Wu et al., 2021; Ouyang et al., 2022). To construct a human feedback dataset $\mathcal{D}_{\rm HF}$, humans are shown two (or more) responses to a prompt \boldsymbol{x} and are asked to select the response they prefer. $\mathcal{D}_{\rm HF}$ is denoted as a collection of triples $(\boldsymbol{x}, \boldsymbol{y}_w, \boldsymbol{y}_l)$, where \boldsymbol{y}_w is preferred over \boldsymbol{y}_l by a human.

To train a reward function r_{ϕ} on \mathcal{D}_{HF} , it is common to assume that human preference can be modeled by a Bradley-Terry model (Bradley & Terry, 1952),

$$\mathbb{P}_{r_{\phi}}(\boldsymbol{y}_{w} \succ \boldsymbol{y}_{l}) \stackrel{\text{def}}{=} \sigma(r_{\phi}(\boldsymbol{x}, \boldsymbol{y}_{w}) - r_{\phi}(\boldsymbol{x}, \boldsymbol{y}_{l})), \tag{13}$$

where $\sigma(x) \stackrel{\text{def}}{=} \frac{1}{1 + \exp(-x)}$ is the sigmoid function. The reward model r_{ϕ} , parameterized by ϕ , is trained to minimize the following negative log-likelihood loss:

$$\mathcal{L}^{r}(\phi) = - \underset{(\boldsymbol{x}, \boldsymbol{y}_{w}, \boldsymbol{y}_{l}) \sim \mathcal{D}_{HF}}{\mathbb{E}} \left[\log \mathbb{P}_{r_{\phi}}(\boldsymbol{y}_{w} \succ \boldsymbol{y}_{l}) \right]. \tag{14}$$

Intuitively, the reward function should assign higher rewards to the responses that are preferred by humans. Then, the reward function is then plugged into Eq. (1) for policy optimization.

C DISCUSSION ON THE DEFINITION OF CROSSLINGUAL CONSISTENCY

One might attempt to use a stricter definition of consistency, such as requiring exact probability matches $\pi^\star(y_w^1\mid x^1)=\pi^\star(y_w^2\mid x^2)$. Previous work has shown that even semantically identical sentences in different languages can have likelihoods that differ significantly due to lexical, semantic, and tokenization differences (Lesci et al., 2025). For instance, in Gemma3-12B-it, using a temperature of 1, $\pi(\text{"Paris"}\mid \text{"The capital of France is"})=0.8991$, while $\pi(\text{"Paris"}\mid \text{"Die Hauptstadt Frankreichs ist"})=0.1283$. Thus, enforcing exact probability matches would ignore these inherent differences and lead to suboptimal alignment. Instead, we adopt a softer order-based consistency constraint.

D Proofs

D.1 PROOF OF LEMMA 1

Lemma 1. If $\gamma_1 \gamma_2 = \beta^2$, the optimal policy π^* defined by Eq. (8) is consistent across L_1 and L_2 .

Proof. Assume $\gamma_1 \gamma_2 = \beta^2$. Raising both sides of Eq. (9a) to the power of $\frac{\beta}{\gamma_1}$, we obtain:

$$\begin{split} \left(\pi^{\star}(\boldsymbol{y}^{1}\mid\boldsymbol{x}^{1})\right)^{\beta/\gamma_{1}} &= \frac{1}{Z^{\beta/\gamma_{1}}(\boldsymbol{x}^{1})} \left(\pi_{\mathrm{REF}}(\boldsymbol{y}^{1}\mid\boldsymbol{x}^{1})\right)^{\beta/\gamma_{1}} \pi_{\mathrm{REF}}(\tau^{2}(\boldsymbol{y}^{1})\mid\tau^{2}(\boldsymbol{x}^{1})) \\ &= \frac{1}{Z^{\beta/\gamma_{1}}(\boldsymbol{x}^{1})} \underbrace{\left(\pi_{\mathrm{REF}}(\boldsymbol{y}^{1}\mid\boldsymbol{x}^{1})\right)^{\gamma_{2}/\beta} \pi_{\mathrm{REF}}(\tau^{2}(\boldsymbol{y}^{1})\mid\tau^{2}(\boldsymbol{x}^{1}))}_{=Z(\tau^{2}(\boldsymbol{x}^{1}))\pi^{\star}(\tau^{2}(\boldsymbol{y}^{1})\mid\tau^{2}(\boldsymbol{x}^{1})) \quad \text{(Eq. (9b))}} \\ &\equiv \frac{Z(\tau^{2}(\boldsymbol{x}^{1}))}{Z^{\beta/\gamma_{1}}(\boldsymbol{x}^{1})} \pi^{\star}(\tau^{2}(\boldsymbol{y}^{1})\mid\tau^{2}(\boldsymbol{x}^{1})). \end{split}$$

Note that the term $\frac{Z(\tau^2(\boldsymbol{x}^1))}{Z^{\beta/\gamma_1}(\boldsymbol{x}^1)}$ is positive and independent of \boldsymbol{y}^1 . Since the function $f(x) = cx^{\beta/\gamma_1}$ increases monotonically in x for $\beta/\gamma_1 > 0, c > 0$, we have $\pi^\star(\boldsymbol{y}_w^1 \mid \boldsymbol{x}^1) \geq \pi^\star(\boldsymbol{y}_l^1 \mid \boldsymbol{x}^1) \iff \pi^\star(\tau^2(\boldsymbol{y}_w^1) \mid \tau^2(\boldsymbol{x}^1)) \geq \pi^\star(\tau^2(\boldsymbol{y}_l^1) \mid \tau^2(\boldsymbol{x}^1))$, for all $\boldsymbol{y}_w^1, \boldsymbol{y}_l^1$. Thus, π^\star is consistent across L_1 and L_2 .

D.2 PROOF OF LEMMA 2

Lemma 2. When Eq. (11) is minimized, the reward function \hat{r}_{θ} will converge to

$$\widehat{r}_{\boldsymbol{\theta}}^{\star}(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} \gamma_1 \log \pi_{\text{REF}}(\tau^2(\boldsymbol{y}) \mid \tau^2(\boldsymbol{x})) + c(\boldsymbol{x}) & \text{if } \boldsymbol{x}, \boldsymbol{y} \in L_1, \\ \gamma_2 \log \pi_{\text{REF}}(\tau^1(\boldsymbol{y}) \mid \tau^1(\boldsymbol{x})) + c(\boldsymbol{x}) & \text{if } \boldsymbol{x}, \boldsymbol{y} \in L_2, \end{cases}$$
(12)

where c(x) is a function independent of y.

Proof. Following Rafailov et al. (Definition 1, 2023), two reward functions r(x, y) and r'(x, y) are **equivalent** if r(x, y) - r'(x, y) = f(x) for some function f. Our goal is to show that minimizing $L(\theta)$ recovers a reward function equivalent to r_{ALIGN} (Eq. (6)).

First, note that $L(\theta) \ge 0$ in Eq. (11), due to the non-negativity of the absolute value function. Substituting Eq. (12) into Eq. (11), we find that $L(\theta) = 0$, which implies that \hat{r}_{θ}^* minimizes the loss.

Furthermore, since \hat{r}_{θ}^{\star} satisfies the structure of Eq. (12), it is equivalent to r_{ALIGN} up to an additive term $c(\boldsymbol{x})$, which does not affect the policy optimization.

E GENERALIZATION TO N LANGUAGES

We generalize §4 to aligning N languages. The reward function for alignment is generalized to

$$r_{\text{ALIGN}}(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} \sum_{j=1}^{N} \gamma_{ij} \log \pi_{\text{REF}}(\tau^{j}(\boldsymbol{y}) \mid \tau^{j}(\boldsymbol{x})) & \text{when } \boldsymbol{x}, \boldsymbol{y} \in L_{i}, \\ 0 & \text{otherwise.} \end{cases}$$
(15)

We set $\gamma_{ii} = 0$ for $i \in \{1, 2, \dots, N\}$. Thus, there are $(N^2 - N)$ hyperparameters in total.

The optimal policy is

$$\pi^{\star}(\boldsymbol{y}^{i} \mid \boldsymbol{x}^{i}) = \frac{1}{Z(\boldsymbol{x}^{i})} \pi_{\text{REF}}(\boldsymbol{y}^{i} \mid \boldsymbol{x}^{i}) \prod_{j \in \{1, 2, \dots, N\} \setminus \{i\}} \left(\pi_{\text{REF}} \left(\tau^{j}(\boldsymbol{y}^{i}) \mid \tau^{j}(\boldsymbol{x}^{i}) \right) \right)^{\gamma_{j}/\beta}.$$
(16)

We define the following matrix

$$\Gamma \stackrel{\text{def}}{=} \begin{pmatrix} 1 & \gamma_{12}/\beta & \cdots & \gamma_{1N}/\beta \\ \gamma_{21}/\beta & 1 & \cdots & \gamma_{2N}/\beta \\ \vdots & \vdots & \vdots & \vdots \\ \gamma_{N1}/\beta & \gamma_{22}/\beta & \cdots & 1 \end{pmatrix}$$

$$(17)$$

We give a sufficient condition on Γ that leads to consistent policies.

Lemma 3. When $rank(\Gamma) = 1$, π^* is consistent across L_1, \dots, L_N .

Proof. When rank(Γ) = 1, each row of Γ can be represented as a multiple of the first row. I.e., there exists (N-1) numbers k_2, \dots, k_N such that

$$(1 \quad \gamma_{12}/\beta \quad \cdots \quad \gamma_{1N}/\beta) = k_i \left(\gamma_{i2}/\beta \quad \gamma_{i2}/\beta \quad \cdots \quad \gamma_{iN}/\beta \right). \tag{18}$$

Then, $\pi^{\star}(\mathbf{y}^1 \mid \mathbf{x}^1) = \frac{(Z(\mathbf{x}^i))^{k_i}}{Z(\mathbf{x}^1)} \left(\pi^{\star}(\mathbf{y}^i \mid \mathbf{x}^i)\right)^{k_i}$, which indicates $\pi^{\star}(\mathbf{y}^i \mid \mathbf{x}^i)$ is consistent with $\pi^{\star}(\mathbf{y}^1 \mid \mathbf{x}^1)$ for $i \in \{2, \dots, N\}$. Therefore, every pair of languages L_i, L_j is consistent.

F COMPARISON WITH THE DPO OBJECTIVE

The DPO objective relies on a labeled dataset of preferences, aiming to train the Bradley–Terry model $\mathbb{P}_{\widehat{r}_{\boldsymbol{\theta}}}(\boldsymbol{y}_w \succ \boldsymbol{y}_l) = \sigma(\beta(\widehat{r}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y}_w) - \widehat{r}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y}_l)))$ to match ground truth preference labels. The optimal $\widehat{r}_{\boldsymbol{\theta}}$ in this case can take *unbounded* values and lacks a closed-form expression. By contrast, in \mathcal{D}_{\parallel} , the response pairs $\boldsymbol{y}_w^1, \boldsymbol{y}_l^1$ are randomly paired, meaning \boldsymbol{y}_w^1 is not necessarily the better response carrying the gold answer, which benefits real-world applications. Minimizing $L(\boldsymbol{\theta})$ ensures that the Bradley–Terry model $\mathbb{P}_{\widehat{r}_{\boldsymbol{\theta}}}$ matches the distribution $\sigma(\log \frac{\pi_{\text{REF}}(\boldsymbol{y}_w^2 | \boldsymbol{x}^2)}{\pi_{\text{REF}}(\boldsymbol{y}_l^2 | \boldsymbol{x}^2)})$ exactly.

G IMPLEMENTATION DETAILS

In our experiments, we set $\beta=1, \gamma_1=\gamma_2=1$. For all models, we use the AdamW optimizer with a learning rate of $1e^{-5}$, with an exception of $1e^{-6}$ for Gemma models on XCSQA to avoid overfit, weight decay of $0, \beta_1=0.9, \beta_2=0.999, \varepsilon=1e^{-8}$. All models are trained on four A100 GPUs of 40GB memory. For SFT, DPO, and CALM, the learning rate is set to $5e^{-7}$, $5e^{-6}$, and $5e^{-6}$, respectively.

H DATASET DETAILS

Three datasets with parallel queries and candidate completions are used in our experiments. Here we list the detailed statistics in Tab. 4.

Dataset	Knowledge Type	#Langs	Par	alleled?	#Train	#Test	Answer Format
	g, F-	8	Query	Candidate			
MMMLU	General Knowledge	12(+2)	/	/	5000	9042	A/B/C/D
XCSQA	Commonsense Reasoning	16	✓	✓	800	200	A/B/C/D/E
BMLAMA	Factual Association	17	✓	✓	5000	1792	Words

Table 4: Statistics of datasets used in experiments.

MMMLU. MMMLU is a multilingual extension of the MMLU dataset (Hendrycks et al., 2021) on general knowledge. The LLMs with the question and candidate answers. The LLMs are expected to give an answer from {A, B, C, D}. Each question and its candidate answers are given in 15 languages. In our experiments, we exclude Bengali due to the GPU constraint, and Swahili and Yoruba due to their low accuracy. Nonetheless, we conduct extra experiments and in-depth analysis on these two languages (i.e., brackets in Tab. 4) in §6.4.

XCSQA. Similar to MMMLU, the questions are multi-choice commonsense reasoning tasks over 16 languages. The answer space is also a set of capital letters: {A, B, C, D, E}.

BMLAMA. The BMLAMA dataset Qi et al. (2023) specifically focuses on factual associations, and the answer format is objective words rather than option letters, which promotes the best crosslingual knowledge alignment in our experiments. Parallel prompts and candidate answers are provided across 17 languages.

Sampling training instances. Regarding MMMLU and BMLAMA, we randomly sample two pairs of parallel candidate completions per query in the training set, yielding 5000 instances for DCO. Regarding XCSQA, we repeat this sampling procedure seven times to construct a dataset of comparable size (800*7=5600) for DCO training.

I DETAILS OF RANKC: RANKING-BASED CROSSLINGUAL CONSISTENCY

RankC (Qi et al., 2023) is a ranking-based consistency metric for assessing crosslingual knowledge consistency independently of probing accuracy.

Given a parallel query set: $Q^1 = \{\boldsymbol{x}_i^1\}_{i=1}^{|Q|}, \quad Q^2 = \{\boldsymbol{x}_i^2\}_{i=1}^{|Q|}, \text{ where each } \boldsymbol{x}_i^1 \text{ in } L_1 \text{ corresponds to } \boldsymbol{x}_i^2 \text{ in } L_2.$ For the i-th query, assuming there are N_i candidate answers $\{c_{i,j}\}_{j=1}^{N_i}$, the model assigns a likelihood to each of the candidates. Let the candidates in each language be sorted by descending likelihood: $c_{i,1}^1, c_{i,2}^1, \ldots, c_{i,N_i}^1$ (in L_1) and $c_{i,1}^2, c_{i,2}^2, \ldots, c_{i,N_i}^2$ (in L_2).

Then, the 'precision at j' (denoted P@j) is defined as the proportion of overlap among the top-j candidates in both languages: $P@j = \frac{1}{j} \left| \{c_{i,1}^1, \dots, c_{i,j}^1\} \cap \{c_{i,1}^2, \dots, c_{i,j}^2\} \right|$. A ranking-based weight $w_j = \frac{\exp(N_i - j)}{\sum_{k=1}^{N_i} \exp(N_i - k)}$ is multiplied to each P@j, so that agreements at smaller j (i.e., top of the

list) are rewarded more. Given these, the consistency score for that query pair is: consist($\mathbf{x}_i^1, \mathbf{x}_i^2$) = $\sum_{j=1}^{N_i} w_j \cdot P@j$.

Finally, the overall RankC between L_1 and L_2 is the average consistency score over all query pairs: $\operatorname{RankC}(L_1, L_2) = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \operatorname{consist}(\boldsymbol{x}_i^1, \boldsymbol{x}_i^2).$

J DIRECTION CONTROLLING RESULTS ON ENGLISH-YORUBA

Shown in Fig. 3, the original accuracy on EN and YO is more severe since it is an extremely low-resource language. The **default** weighting induces decreases in both languages: EN drops by -15.94 and YO also declines by -1.18. Making Yoruba 'stable' (**YO Stable**; $\gamma_1 = 0.1, \gamma_2 = 10$) exacerbates the problem, especially pushing EN down to -19.97 while still not helping Yoruba accuracy ($\Delta = -1.22$). In contrast, the **EN Stable** setup ($\gamma_1 = 10, \gamma_2 = 0.1$) delivers the best trade-off: EN accuracy remains less affected (+2.98) while that of Yoruba also improves by +1.43. Regarding CLC, for EN-YO, the baseline of 45.67 increases to 57.16, 55.40, and 51.66, demonstrating the effectiveness of DCO in crosslingual knowledge alignment.

As for the proportion of changed answers, similar to EN-SW, EN-stable minimizes EN updates as 19.00% while allowing substantial revisions on Yoruba as 59.87%. Default setup raises EN changes to 38.74%, and YO Stable setup further increases EN changes to 42.51%.

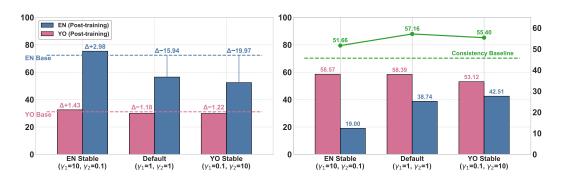


Figure 3: Left: Answer accuracy after performing DCO on English-Yoruba. Right: Proportion of questions for which the LLM's response changes after DCO, with CLC values marked in green.

K GUIDANCE OF DIRECTION CONTROLLING FOR REAL-WORLD APPLICATIONS

Direction—controlling hyperparameters matter: by adjusting (γ_1,γ_2) , we control the transfer strength for each side, thus deciding the direction of optimizing knowledge consistency. The low-resource languages Swahili and Yoruba were selected in our experiments for the best visibility of the effect; yet the results should not be misinterpreted as 'always set a large γ for EN.' In fact, the principle is more general: anchor on the high-quality, high-priority language, which is EN in our study, but could be French or any other well-trained language, according to the specific requirements of the downstream LLM application. When both languages are of comparable quality, or when policy requires reciprocity, a symmetric schedule like 1:1 is expected to be optimal. In practice, (γ_1, γ_2) can also be selected empirically against a small validation set. The 'ratio of changed answers' (i.e. Fig. 2 (right) & Fig. 3 (right)) is useful: if the intended stable language exhibits excessive changes, or the language expected to shift shows little movement, increase γ_1 , and by construction, γ_2 will decrease correspondingly $(\gamma_2=1/\gamma_1)$.

Note that DCO is capable of improving CLC under any direction parameter setups, as demonstrated in Fig. 2 & Fig. 3. This empirical adjustment further yields gains in accuracy for both sides.

L DETAILED CLC RESULTS

We visualize the improvement of CLC between all language pairs in Fig. 4 to Fig. 8. The left sub-figure in each panel reports the baseline CLC scores, while the right sub-figure shows the absolute change after applying DCO. Warmer colors indicate higher CLC scores, and the delta plots highlight systematic gains across most language pairs.

Notably, DCO consistently improves CLC, with substantial gains not only between typologically similar languages such as English-Spanish, but also between distant ones. For instance, Arabic–Chinese and Hindi-Japanese improve by 15% and 13%, respectively, while the Korean-French pair gains a remarkable 14% increase on Llama-3.1-8B.

These results indicate that DCO not only raises overall knowledge consistency but also narrows the gap between distant language families.

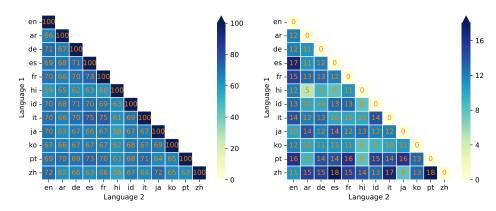


Figure 4: The changes in CLC of Qwen2.5-14B after DCO. Left: CLC between all language pairs on the original model. Right: Improvements in CLC of the post-DCO model.

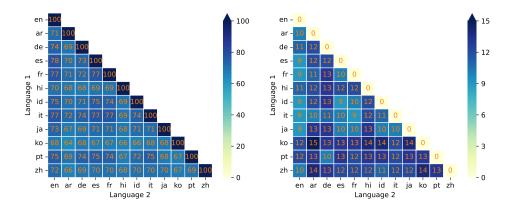


Figure 5: The changes in CLC of Gemma3-12B after DCO. Left: CLC between all language pairs on the original model. Right: The Improvements in CLC of the post-DCO model.

M FULL BILINGUAL EXPERIMENTAL RESULTS

We present the detailed results of the bilingual experiments in Tab. 5 to Tab. 10

N FULL RESULTS OF OUT-OF-DOMAIN EXPERIMENTS

We present the full results on all five out-of-domain tasks in Tab. 11 and Tab. 12. The improvement in both evaluation dimensions suggests the significant generalizability of DCO.

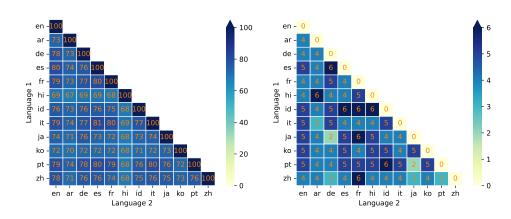


Figure 6: The changes in CLC of Qwen3-14B after DCO. Left: CLC between all language pairs on the original model. Right: The Improvements in CLC of the post-DCO model.

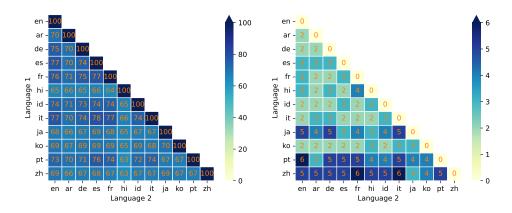


Figure 7: The changes in CLC of Aya-Expanse-8B after DCO. Left: CLC between all language pairs on the original model. Right: The Improvements in CLC of the post-DCO model.

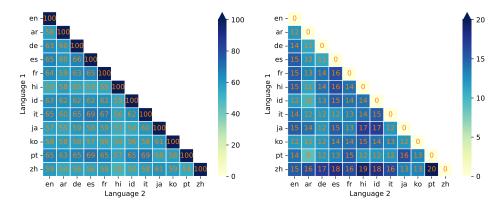


Figure 8: The changes in CLC of Llama3.1-8B after DCO. Left: CLC between all language pairs on the original model. Right: The Improvements in CLC of the post-DCO model.

	AR	DE	ES	FR	HI	ID	IT	JA	KO	PT	ZH
				C	onsistenc	y					
Qwen2.5-7B	64.18	70.68	74.60	73.33	50.95	69.20	73.46	68.05	65.63	72.40	72.38
+ DCO	+9.17	+9.20	+6.68	+8.88	+14.66	+7.42	+7.50	+8.16	+8.01	+9.99	+7.66
Qwen2.5-14B	66.19	70.93	69.45	70.19	59.15	70.43	69.68	70.16	67.02	68.54	72.38
+DCO	+12.09	+12.82	+14.68	+14.11	+12.98	+11.04	+15.66	+9.15	+10.80	+15.76	+9.54
Gemma3-4B-pt	63.21	68.24	71.78	71.32	56.84	64.48	70.53	58.28	60.73	69.00	60.75
+DCO	+10.69	+10.07	+9.40	+8.11	+18.41	+11.22	+8.73	+14.09	+11.32	+4.85	+14.08
Gemma3-12B-pt	70.56	73.89	77.93	76.81	69.82	75.23	76.87	72.96	68.13	74.86	72.11
+DCO	+7.37	+8.44	+4.64	+4.58	+9.07	+8.41	+6.11	+6.79	+9.91	+7.93	+5.45
Qwen3-8B	65.17	71.58	75.31	72.37	65.16	68.52	74.85	71.64	67.00	74.85	76.37
+DCO	+9.48	+9.77	+7.17	+9.10	+4.80	+10.61	+7.43	+5.80	+7.68	+7.73	+2.99
Qwen3-14B	72.70	77.84	80.34	78.90	68.56	76.17	79.38	74.06	72.46	79.30	77.72
+DCO	+3.73	+4.83	+4.50	+4.86	+4.08	+5.29	+4.66	+6.03	+4.89	+5.10	+4.75
Aya-Expanse-8b	69.66	74.58	77.42	76.26	65.44	73.74	76.70	68.45	68.69	73.49	69.39
+DCO	+5.37	+4.70	+4.01	+5.17	+5.23	+4.17	+4.86	+7.41	+5.04	+6.59	+6.06
Llama3.1-8B	58.31	62.70	65.23	63.83	52.67	62.54	65.38	56.91	57.59	65.15	59.31
+DCO	+10.75	+10.94	+12.57	+13.89	+14.88	+7.99	+6.21	+14.50	+11.07	+13.73	+16.14
Llama3.2-3B	46.07	54.38	54.06	53.65	42.78	51.77	53.25	45.11	42.75	56.23	47.82
+ DCO	+16.54	+12.60	+16.36	+17.28	+18.01	+16.39	+16.53	+17.38	+17.27	+17.03	+18.97

Table 5: Consistency improvements with English for each language across all models on MMMLU.

	EN	AR	DE	ES	FR	HI	ID	IT	JA	KO	PT	ZH
					Accur	acy						
Qwen2.5-7B	69.57	54.51	59.98	63.43	62.30	44.33	58.71	62.66	59.07	57.13	61.93	63.98
+ DCO	-0.01	+1.24	+2.02	+0.72	+1.46	+4.32	+1.80	+1.76	+1.74	+1.44	+1.97	+1.50
Qwen2.5-14B	72.46	54.88	59.52	56.83	58.31	45.66	61.06	56.21	63.24	56.96	56.35	69.87
+DCO	+1.64	+7.63	+8.51	+12.94	+10.67	+8.41	+6.31	+12.57	+4.16	+8.00	+13.38	+0.83
Gemma3-4B-pt	56.09	43.14	49.02	52.51	50.51	39.64	48.47	49.64	42.78	45.39	50.25	46.56
+DCO	+0.08	+1.04	+2.77	-0.02	+0.26	+5.32	+2.93	+1.60	+4.64	+2.13	+1.81	+3.07
Gemma3-12B-pt	70.07	58.60	64.19	65.43	64.14	57.94	62.07	65.05	60.83	60.49	65.01	61.36
+DCO	-0.90	+1.71	+1.22	-0.70	+0.73	+4.44	+1.39	+0.54	+1.46	+1.51	+1.28	+1.33
Qwen3-8B	71.15	56.34	63.41	65.60	64.58	54.29	60.99	64.78	61.32	59.47	64.11	66.29
+DCO	+0.72	+3.03	+2.69	+2.08	+1.84	+1.66	+2.89	+1.94	+1.42	+1.74	+2.87	+0.31
Qwen3-14B	76.58	63.07	68.56	71.04	70.10	58.69	67.49	70.35	65.65	64.74	70.72	69.64
+DCO	+0.13	+0.80	+2.36	+1.38	+1.41	+1.98	+2.09	+1.50	+2.10	+1.52	+1.68	+1.55
Aya-Expanse-8B	59.76	50.75	54.10	56.36	55.71	46.20	53.14	54.62	51.69	51.32	55.63	52.57
+DCO	+0.52	+0.46	-0.01	-0.28	-0.03	+0.96	+0.57	+0.66	+1.37	+0.01	+0.72	+0.68
Llama3.1-8B	57.27	41.19	49.13	51.17	47.56	35.01	46.88	49.89	44.63	43.10	48.71	46.40
+DCO	+0.74	+3.33	+3.21	+4.16	+5.07	+0.23	+3.39	+0.32	+2.12	+2.91	+4.82	+3.54
Llama3.2-3B	52.23	35.45	43.86	46.25	44.67	33.92	42.97	43.80	34.62	36.16	45.07	38.41
+ DCO	+0.93	+4.64	+2.48	+1.75	+2.91	+3.17	+1.66	+2.83	+5.96	+4.42	+2.16	+4.90

Table 6: Accuracy of each model on MMMLU across all languages after DCO.

	ZH	DE	ES	FR	IT	JA	NL	PL	PT	RU	AR	VI	HI	SW	UR
						C	Consisten	cy							
Qwen2.5-7B	64.41	72.26	77.82	71.57	71.96	57.78	65.49	65.41	75.27	66.67	65.49	68.80	49.76	35.58	48.02
+ DCO	+10.81	+4.33	+4.50	+6.55	+6.04	+8.78	+9.73	+6.33	+5.97	+6.34	+8.33	+6.32	+8.25	-0.28	+7.83
Qwen2.5-14B	66.94	70.90	73.82	71.60	73.58	64.55	68.82	65.03	74.13	64.31	64.86	64.41	53.68	39.50	52.57
+ DCO	+8.03	+5.80	+8.21	+5.93	+3.81	+5.92	+8.52	+8.34	+6.52	+8.73	+11.00	+10.68	+5.33	+0.40	+4.90
Gemma3-4B-pt	54.23	60.91	57.85	56.83	60.28	50.21	56.93	53.29	57.68	57.18	53.50	52.78	51.56	37.36	47.26
+ DCO	+4.76	+3.34	+2.91	+3.56	+4.05	+7.43	+5.72	+4.87	+4.18	+4.31	+6.91	+6.42	+6.95	+9.48	+10.98
Gemma3-12B-pt	64.61	65.09	64.18	61.80	63.32	55.11	62.31	56.16	65.07	58.16	50.77	56.15	54.15	46.19	51.06
+ DCO	+3.40	+3.27	+6.15	+4.54	+4.88	+3.51	+4.99	+5.94	+1.54	+5.76	+7.04	+5.72	+3.35	+0.65	+8.45
Qwen3-8B	64.88	65.84	67.75	68.77	70.95	58.49	64.60	63.01	69.41	60.12	61.89	65.46	55.63	37.42	49.25
+ DCO	+4.42	+6.58	+8.88	+5.64	+4.60	+4.19	+7.06	+6.84	+6.63	+7.25	+10.64	+5.01	+4.52	+5.19	+5.69
Qwen3-14B	66.18	66.33	66.11	67.36	70.93	60.14	63.83	61.64	67.19	65.90	64.08	64.07	55.00	37.59	52.26
+ DCO	+4.36	+8.36	+12.06	+7.23	+3.29	+6.19	+9.93	+8.55	+8.70	+4.54	+5.40	+7.32	+6.53	+4.88	+9.70
Aya-Expanse-8B	66.36	69.33	72.63	71.18	69.02	57.02	67.24	64.38	65.18	64.96	65.29	65.77	59.01	35.93	45.34
+ DCO	+4.79	+4.90	+6.43	+5.29	+6.59	+6.92	+7.01	+8.14	+11.86	+3.99	+6.21	+4.15	+6.83	+4.19	+8.07
Llama3.1-8B	59.24	67.62	67.08	67.90	65.36	56.66	65.25	63.13	68.35	60.26	58.52	64.64	55.40	36.92	47.12
+ DCO	+11.29	+3.89	+12.32	+5.15	+8.13	+6.75	+5.51	+5.56	+4.56	+9.53	+6.21	+2.45	+14.60	+24.20	+16.28
Llama3.2-3B	57.52	64.49	65.19	62.84	61.03	53.57	59.29	54.31	61.62	60.54	59.98	57.48	52.58	35.28	45.53
+DCO	+10.30	+6.09	+8.24	+10.39	+8.24	+8.28	+3.54	+9.87	+9.23	+4.94	-1.01	+10.97	+7.92	+5.51	+8.68

Table 7: Consistency improvements with English for each language across all models on XCSQA.

	EN	ZH	DE	ES	FR	IT	JA	NL	PL	PT	RU	AR	VI	HI	SW	UR
							Accu	racy								
Qwen2.5-7B	84.00	55.50	58.00	66.00	60.50	62.00	52.50	54.50	57.50	63.00	55.50	53.50	61.50	39.50	25.00	41.00
+ DCO	-1.93	+7.50	+5.00	+1.50	+2.50	+5.00	+4.50	+5.00	+6.50	+4.50	+3.00	+5.00	+1.50	+7.00	0.00	+4.00
Qwen2.5-14B	87.00	59.50	62.00	65.00	62.50	65.00	57.50	61.00	60.00	67.50	56.00	54.50	56.50	46.50	32.50	47.00
+ DCO	-2.53	+7.00	+5.00	+5.00	+6.00	+2.00	+5.00	+5.00	+3.00	+4.00	+5.00	+8.00	+10.00	+1.50	0.00	+3.50
Gemma3-4B-pt	56.50	35.50	41.00	45.00	45.00	42.50	32.00	40.00	39.00	34.50	39.00	36.50	43.00	30.50	27.00	31.00
+ DCO	+2.30	+5.50	+3.50	+0.50	+0.50	+4.00	+3.50	+4.00	+1.00	+3.50	-0.50	+2.50	0.00	+2.50	+1.50	+3.50
Gemma3-12B-pt	66.00	52.50	52.50	53.50	52.00	56.50	43.00	53.00	45.50	53.50	43.00	39.50	46.50	40.00	37.50	40.00
+ DCO	+0.10	+4.00	+3.50	+2.50	+4.00	+1.00	+1.50	+1.50	+5.00	+2.50	+6.00	+6.00	+5.00	+2.00	+1.50	+7.50
Qwen3-8B	73.50	53.00	53.50	56.50	61.00	60.50	49.00	55.50	53.50	57.00	51.50	50.50	56.50	47.00	28.00	41.50
+ DCO	+0.97	+4.50	+2.50	+3.50	-1.00	+0.50	-1.00	+1.50	+3.00	+5.50	+2.50	+5.50	+1.00	+2.50	+1.00	+3.50
Qwen3-14B	77.50	55.00	58.00	60.00	57.00	62.50	51.50	59.00	57.00	59.00	57.00	55.50	60.50	47.50	27.50	43.00
+ DCO	+1.07	+3.50	+4.00	+5.00	+5.00	+2.50	+4.50	+2.50	+5.00	+4.00	+1.00	+1.50	+2.50	+1.00	+5.50	+9.00
Aya-Expanse-8B	78.00	61.00	59.00	64.00	58.00	62.00	49.50	59.50	57.00	60.00	58.50	56.50	59.50	50.50	25.00	36.00
+ DCO	+0.57	+4.00	+2.50	+5.00	+4.50	+3.00	+5.50	+1.00	+4.00	+7.00	-2.00	+2.50	+4.00	+3.50	+3.50	+7.00
Llama3.1-8B	67.50	48.00	55.50	54.50	55.00	56.50	41.00	52.00	51.00	53.00	48.50	47.00	55.50	39.50	27.00	32.00
+ DCO	+0.17	+3.50	0.00	+0.50	+0.50	-1.00	+3.00	-0.50	+0.50	+1.00	+2.00	-1.50	+0.50	+5.00	+2.00	+3.50
Llama3.2-3B	65.00	51.00	47.50	46.50	42.50	45.50	45.00	39.50	41.50	45.50	44.00	45.00	43.00	35.00	29.00	34.50
+ DCO	-4.07	-3.50	+3.00	+8.50	+6.00	+3.50	+4.00	+2.50	+8.50	+3.50	+2.00	-1.00	+8.00	+4.50	+1.50	+4.00

Table 8: Accuracy of each model on XCSQA across all languages after DCO.

	FR	NL	ES	RU	JA	ZH	KO	VI	EL	HU	HE	TR	CA	AR	UK	FA
							Consi	stency								
Qwen2.5-7B	44.12	48.41	45.50	41.78	39.05	40.18	36.50	44.54	30.88	30.66	30.88	34.29	39.16	40.89	40.53	35.85
+ DCO	+17.90	+13.98	+16.21	+15.08	+16.89	+11.53	+18.40	+19.05	+17.79	+15.54	+17.27	+17.10	+14.64	+13.24	+15.02	+14.15
Qwen2.5-14B	45.01	50.87	47.45	42.83	41.94	42.61	41.19	46.91	35.70	32.04	38.84	37.99	41.71	41.78	42.48	40.58
+ DCO	+17.33	+14.48	+14.35	+16.05	+16.66	+9.77	+16.23	+16.32	+18.86	+16.48	+14.32	+15.93	+13.36	+15.40	+16.67	+14.38
Gemma3-4B-pt	38.26	48.78	45.63	40.57	36.99	31.78	35.72	45.23	38.16	34.85	35.91	39.77	36.88	35.51	43.75	35.92
+ DCO	+23.36	+16.47	+15.47	+18.24	+15.90	+14.32	+16.87	+21.56	+19.32	+20.07	+14.65	+19.58	+18.49	+12.63	+15.81	+12.18
Gemma3-12B-pt	41.81	51.38	47.80	42.90	40.98	34.76	40.39	47.82	41.29	39.53	40.16	42.17	39.82	38.87	45.96	40.10
+ DCO	+23.27	+15.53	+15.53	+17.37	+15.17	+15.12	+15.74	+20.81	+19.02	+18.83	+13.72	+19.46	+17.92	+11.74	+15.76	+11.35
Qwen3-8B	43.21	47.24	43.21	38.43	33.25	37.43	33.89	45.29	32.92	30.50	30.26	35.43	38.58	38.86	40.70	34.29
+ DCO	+15.21	+14.19	+13.47	+14.05	+16.92	+11.13	+16.15	+13.71	+14.91	+16.06	+12.46	+14.27	+13.44	+11.47	+14.45	+13.91
Qwen3-14B	42.45	48.82	44.37	37.93	35.68	38.56	36.01	43.17	36.10	31.49	33.53	37.95	40.46	39.62	40.71	35.62
+ DCO	+16.43	+14.11	+15.01	+17.66	+20.46	+12.22	+16.78	+17.53	+15.39	+18.40	+14.80	+14.37	+15.12	+13.71	+18.13	+18.09
Aya-Expanse-8B	50.81	51.38	58.03	39.84	39.72	38.32	36.77	55.08	34.74	29.12	36.97	41.80	37.02	40.11	44.69	36.43
+ DCO	+18.33	+13.44	+13.16	+15.42	+11.08	+10.74	+11.72	+14.93	+12.77	+7.25	+9.40	+13.45	+9.82	+11.05	+12.31	+11.69
Llama3.1-8B	44.16	51.07	47.40	41.13	41.35	37.11	36.94	45.82	35.80	36.87	40.42	37.31	40.05	38.42	41.33	38.38
+ DCO	+18.83	+13.48	+14.66	+15.91	+12.74	+16.33	+15.32	+19.62	+19.85	+16.26	+10.56	+17.47	+19.42	+11.64	+17.89	+11.23
Llama3.2-3B	43.00	47.98	43.92	38.72	37.89	32.10	34.73	44.14	34.21	32.74	38.04	33.17	39.14	37.21	38.65	35.67
+ DCO	+18.58	+15.29	+14.58	+15.53	+15.18	+15.06	+12.51	+18.92	+16.58	+18.08	+10.84	+17.03	+15.79	+12.44	+17.07	+12.66

Table 9: Consistency improvements with English for each language across all models on BMLAMA.

	EN	FR	NL	ES	RU	JA	ZH	ко	VI	EL	HU	HE	TR	CA	AR	UK	FA
								Accuracy	7								
Qwen2.5-7B	61.83	36.61	43.02	40.79	39.06	36.61	34.82	33.37	38.84	27.68	28.01	26.40	31.86	34.15	39.79	38.56	32.42
+ DCO	+5.61	+19.31	+14.57	+15.68	+12.61	+16.57	+14.23	+17.75	+15.35	+12.61	+12.56	+13.89	+12.73	+13.23	+9.32	+13.34	+10.88
Qwen2.5-14B	62.67	36.61	46.48	44.81	42.02	40.07	37.05	40.57	41.46	32.53	28.12	35.60	34.99	37.05	42.35	41.46	36.66
+ DCO	+6.33	+21.20	+12.90	+12.56	+13.67	+15.18	+11.89	+14.28	+15.85	+13.12	+15.85	+13.34	+12.89	+14.62	+11.17	+15.12	+13.51
Gemma3-4B-pt	66.07	32.42	43.86	39.68	35.21	30.30	26.34	32.48	36.83	31.81	30.69	29.91	34.60	32.42	31.58	38.90	30.08
+ DCO	+2.16	+22.55	+14.73	+19.58	+19.31	+18.81	+17.63	+17.19	+19.14	+18.02	+19.59	+15.74	+17.97	+19.76	+15.13	+16.57	+16.01
Gemma3-12B-pt	68.25	37.56	49.00	43.14	38.28	36.77	30.75	38.11	39.90	38.11	35.88	37.00	37.05	36.22	36.44	41.91	36.38
+ DCO	+1.55	+21.09	+13.05	+17.57	+17.47	+17.30	+16.91	+16.58	+19.03	+18.11	+18.47	+14.23	+19.53	+17.52	+13.84	+18.02	+12.62
Qwen3-8B	58.37	36.83	42.08	38.06	37.17	33.15	32.25	32.70	38.50	30.36	26.17	26.23	32.37	33.82	37.22	42.69	29.52
+ DCO	+6.90	+16.69	+13.11	+14.28	+12.10	+14.67	+12.95	+13.17	+12.34	+11.55	+15.79	+11.94	+13.05	+14.51	+9.43	+9.65	+11.33
Qwen3-14B	58.43	34.99	44.87	40.23	38.45	36.72	33.20	33.43	37.05	34.88	28.35	31.81	34.71	37.05	39.17	42.63	34.49
+ DCO	+8.07	+18.86	+12.66	+13.84	+13.84	+16.01	+16.30	+14.78	+16.69	+17.35	+16.91	+11.77	+14.17	+14.85	+12.00	+11.39	+13.05
Aya-Expanse-8B	67.02	45.31	46.82	52.73	35.21	36.22	37.28	34.04	49.55	32.87	22.32	33.37	35.83	32.76	37.61	39.79	33.15
+ DCO	+1.43	+14.68	+11.55	+9.44	+18.31	+12.27	+11.16	+13.90	+11.00	+12.11	+8.54	+10.16	+14.67	+10.32	+10.55	+12.05	+13.78
Llama3.1-8B	61.16	35.21	46.15	41.96	38.34	37.39	28.52	31.03	38.17	31.58	32.48	36.89	32.48	36.22	33.93	40.18	32.70
+ DCO	+7.17	+23.61	+14.73	+17.58	+17.80	+14.34	+22.43	+18.19	+21.26	+19.87	+17.58	+9.82	+18.41	+20.64	+12.50	+18.36	+14.73
Llama3.2-3B	61.05	35.38	43.08	38.67	34.60	32.31	24.67	26.95	35.55	29.35	28.74	35.16	27.57	35.21	32.25	36.22	28.24
+ DCO	+6.72	+21.76	+16.18	+17.52	+18.30	+17.75	+19.64	+17.41	+21.37	+15.52	+18.14	+9.48	+17.69	+16.35	+14.07	+18.02	+15.34

Table 10: Accuracy of each model on BMLAMA across all languages after DCO.

Domain	AR	DE	ES	FR	HI	ID	IT	JA	KO	PT	SW	YO	ZH	BN
						Α	natomy							
Base + DCO	54.08 +13.10	65.20 +7.02	57.86 +17.56	67.79 +12.04	50.76 +9.30	65.17 +13.69	68.50 +11.42	64.77 +11.12	56.56 +10.49	63.31 +19.53	49.45 +4.81	46.78 +3.20	70.92 +12.00	51.68 +7.91
						Med	ical genet	ics						
Base + DCO	66.91 +9.21	78.76 +11.71	75.42 +16.51	71.46 +18.54	56.92 +12.85	74.52 +8.24	74.54 +13.17	77.25 +3.18	66.76 +10.13	77.88 +14.60	62.25 +4.06	59.95 +4.11	79.97 +8.99	62.66 +9.38
High school mathematics														
Base + DCO	70.25 +8.59	71.76 +8.55	71.93 +14.72	68.89 +13.07	68.21 +10.86	72.42 +13.30	71.38 +11.21	67.22 +12.76	70.27 +9.48	67.51 +16.02	59.42 +8.12	58.65 +4.15	66.81 +14.26	64.88 +12.67
						College	e mathem	atics						
Base + DCO	61.09 +13.72	72.62 +7.71	68.67 +17.22	69.42 +13.31	63.56 +8.55	64.56 +14.01	73.08 +10.30	65.81 +8.80	61.24 +10.38	69.62 +13.61	50.28 +12.08	50.95 +7.26	69.75 +13.39	58.81 +8.68
						High scho	ool world	history						
Base + DCO	83.50 +3.52	83.06 +6.03	87.21 +3.82	86.67 +3.19	74.73 +4.52	81.53 +4.34	87.19 +0.82	83.20 +3.85	54.06 +3.64	85.53 +4.99	56.25 -1.37	44.98 +1.42	41.79 +1.08	74.35 +3.43

Table 11: Consistency with English under cross-domain settings using Qwen2.5-14B. The model is post-trained with data of 'high school microeconomics'.

Domain	EN	AR	DE	ES	FR	HI	ID	IT	JA	KO	PT	SW	YO	ZH	BN
Anatomy															
Base	68.89	43.70	46.67	45.93	53.33	34.07	50.37	51.85	57.04	44.44	43.70	32.59	31.85	72.59	40.00
+ DCO	+1.80	0.00	+5.92	+5.18	+6.67	+2.97	+8.89	+7.41	0.00	+5.93	+18.52	-2.96	-4.44	-2.96	+1.48
	Medical genetics														
Base	82.00	61.00	73.00	66.00	66.00	46.00	74.00	63.00	79.00	59.00	69.00	53.00	53.00	78.00	53.00
+ DCO	+5.43	+5.00	+7.00	+14.00	+14.00	+11.00	+3.00	+13.00	-5.00	+8.00	+16.00	+2.00	-2.00	+4.00	+8.00
High school mathematics															
Base	53.70	43.70	45.56	39.63	45.19	43.33	42.96	39.26	48.52	47.04	43.70	34.81	30.74	60.00	40.74
+ DCO	+2.38	+6.30	+9.63	+7.41	+8.14	+3.71	+7.41	+7.41	+5.18	+4.81	+14.08	+5.93	+6.30	-3.33	+12.22
College mathematics															
Base	57.00	38.00	41.00	40.00	36.00	33.00	39.00	36.00	44.00	35.00	41.00	24.00	32.00	52.00	34.00
+ DCO	-0.36	+11.00	+15.00	+8.00	+22.00	+10.00	+11.00	+18.00	+16.00	+11.00	+13.00	+15.00	+4.00	+10.00	+9.00
						Higl	h school v	orld histo	ory						
Base	89.45	81.43	82.28	84.81	84.39	70.46	79.32	83.97	80.59	80.17	82.70	46.84	33.33	81.86	68.78
+ DCO	+0.55	+1.27	-0.85	0.00	-0.85	+0.43	+1.69	-1.69	+1.27	-2.95	-0.42	-2.96	+0.85	+0.42	+2.53

Table 12: Accuracy under cross-domain settings using Qwen2.5-14B. The model is post-trained with data of 'high school microeconomics'.