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ABSTRACT

Large language models are known to often exhibit inconsistent knowledge. This
is particularly problematic in multilingual scenarios, where models are likely to
be asked similar questions in different languages, and inconsistent responses can
undermine their reliability. In this work, we show that this issue can be mitigated
using reinforcement learning with a structured reward function, which leads to
an optimal policy with consistent crosslingual responses. We introduce Direct
Consistency Optimization (DCO), a DPO-inspired method that requires no explicit
reward model and is derived directly from the LLM itself. Comprehensive ex-
periments show that DCO significantly improves crosslingual consistency across
diverse LLMs and outperforms existing methods when training with samples of
multiple languages, while complementing DPO when gold labels are available.
Extra experiments demonstrate the effectiveness of DCO in bilingual settings,
significant out-of-domain generalizability, and controllable alignment via direction
hyperparameters. Taken together, these results establish DCO as a robust and
efficient solution for improving knowledge consistency across languages in multi-
lingual LLMs. All code, training scripts, and evaluation benchmarks are released
at https://anonymous.

1 INTRODUCTION

As multilingual capabilities become a standard feature of modern large language models (LLMs)
(Touvron et al., 2023; OpenAI et al., 2023; DeepSeek-AI et al., 2025), ensuring crosslingual consis-
tency (CLC) has become increasingly critical. Ideally, an LLM should provide consistent answers to
the same factual question regardless of the language in which it is asked. However, this is far from
guaranteed: prior work (Jiang et al., 2020; Qi et al., 2023; Wang et al., 2025b) has revealed that LLMs
often produce conflicting responses across languages, as shown in Fig. 1 (left). Such inconsistencies
can confuse users with diverse language backgrounds and undermine trust in multilingual systems.

To address this challenge, we aim to improve CLC by Reinforcement Learning (RL), inspired by
principles of alignment with human preferences. Existing post-training algorithms for aligning with
human preferences, such as proximal policy optimization (PPO; Schulman et al., 2017) and direct pref-
erence optimization (DPO; Ouyang et al., 2022; Rafailov et al., 2023), rely on reward functions defined
over pairs of responses, often modeled using the Bradley–Terry framework. However, CLC involves
connecting multiple languages and requires a different approach to reward design and optimization.

To this end, we propose a new reward function that promotes CLC by leveraging the likelihoods
assigned by a model to the same answer expressed in different languages. Specifically, to align two
languages, L1 and L2, we define the reward for L1 based on the log-likelihood of answers generated
when prompted in L2, and vice versa. This leads to a policy expressed as a product of experts (Hinton,

1999): π⋆(yi | xi) = 1
Z

∏
j

(
πREF

(
τ j(yi) | τ j(xi)

))wij

, where πREF is the base multilingual LLM,

τ i translates a prompt or response to Li, wij are controllable parameters, and Z is a normalization
term. By controlling wij , the optimal policy π⋆ can be theoretically guaranteed to be consistent
while preserving the model’s overall performance. Building on this foundation, we propose direct
consistency optimization (DCO), an efficient algorithm that adapts a DPO-like procedure to our
proposed objective without explicit reward models. We theoretically prove that DCO can bypass the
online sampling step in RL, yet still arrive at the same optimal policy as the original RL formulation.
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Figure 1: Illustration of DCO, which promotes crosslingual consistency by aligning the likelihood of
completions across parallel prompts in different languages.

As illustrated in Fig. 1, training involves parallel prompts and completions across languages (middle),
and the optimization encourages consistent distributions over completions in both languages (right).

We evaluate the effectiveness of the proposed reward and optimization algorithm with nine LLMs
across three datasets, covering 26 languages. Experimental results demonstrate that DCO significantly
improves crosslingual consistency while maintaining, and often improving, answer accuracy in the
post-trained languages.

In summary, our contributions are as follows:

• We propose a reward function tailored for CLC and introduce DCO, an algorithm that
solves the RL objective, with theoretical guarantees of improved CLC and preserved task
performance.

• We empirically validate DCO on advanced LLMs across diverse benchmarks.
• We provide extensive analyses, including comparisons with other alignment techniques,

cross-domain generalization, and control over language preference.

2 RELATED WORK

Crosslingual knowledge consistency is a crucial property for multilingual LLMs.

Measuring CLC. Several studies have explored methods to assess the consistency of knowledge
in multilingual LLMs. Xing et al. (2024) and Ai et al. (2025) evaluate consistency by measuring the
agreement of top-1 generated answers to the same question posed in different languages, whereas Jiang
et al. (2020) compute the average overlapping ratio of correct predictions across languages. To assess
CLC more comprehensively and to disentangle it from accuracy, Qi et al. (2023) introduce the RankC
metric, based on a weighted average of the overlapping ratio of top-1 to top-N ranked candidates.
These studies reveal significant crosslingual knowledge inconsistencies in a wide range of LLMs.

Improving CLC. A number of recent studies attempt to improve CLC by applying vector interven-
tions on the hidden representations of LLMs (Lu et al., 2025; Wang et al., 2025a; Liu & Niehues,
2025). While promising and insightful, these interpretability-based methods are typically tested on
small datasets and specific models, making them challenging to scale to broader applications.

Closer to our work, Wang et al. (2025b) proposes CALM, which improves CLC using RL. Their
approach first selects a target answer by majority voting based on the model’s completions across
multiple languages. Then, they use DPO to increase the likelihood of the target majority answer
across languages. However, CALM requires more than two languages, restricting its usage in practical
bilingual scenarios. Moreover, it does not necessarily benefit from adding more languages as majority
voting can become unreliable when multiple low-resource languages are included.
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3 PRELIMINARIES

Reinforcement Learning from Human Feedback. Reinforcement Learning from Human Feed-
back (RLHF) typically starts with supervised fine-tuning (SFT) a pre-trained language model
πθ on a dataset DSFT containing annotated examples for downstream tasks to minimize the loss
LML(θ) = −E(x,y)∼DSFT

[
log πθ(y | x)

]
. The resulting fine-tuned model is denoted by πSFT. How-

ever, it may not always reflect human preferences. This misalignment arises because the maximum
likelihood estimation objective does not differentiate between major and minor errors in the model’s
responses. To address this, a reward optimization step is introduced. Assuming the availability of a
reward model r(x,y), which is trained on a dataset with human feedback DHF, the RLHF objective
aims to maximize the expected reward of the model’s outputs. A KL divergence regularization term
is added to the objective (Stiennon et al., 2020) to prevent reward hacking (Amodei et al., 2016) and
ensure the model does not deviate excessively from πSFT. The ultimate target is to obtain a πθ:

max
πθ

E
x∼D,y∼πθ(·|x)

[
r(x,y)

]
− β · KL

[
πθ(y | x) ∥πSFT(y | x)

]
, (1)

where β is a hyperparameter controlling the adherence to πSFT. This objective is typically optimized
using algorithms such as PPO or other actor–critic methods (Mnih et al., 2016; Glaese et al., 2022).
As proposed by Rafailov et al. 2023, the optimal π⋆ can be expressed in the closed form:

π⋆(y | x) = 1

Z(x)
πSFT(y | x) exp

( 1

β
r(x,y)

)
. (2)

where Z(x) is the partition function that ensures normalization.

Direct Preference Optimization. Rafailov et al. (2023) observe that by rearranging the terms in
Eq. (2), the reward function r can be reparameterized as:

r(x,y) = β log
π⋆(y | x)
πREF(y | x)

+ β logZ(x), (3)

where πREF is the reference policy. To avoid training reward models, Rafailov et al. (2023) propose
DPO, which directly optimizes the policy πθ with the following loss function:

LDPO(θ) = − E
(x,yw,yl)∼DHF

[
logPr̂θ (yw ≻ yl)

]
, (4)

where an estimated reward r̂θ
def
= β log πθ(y|x)

πREF(y|x) replaces the true reward r and (yw,yl) represents a
pair of preferred and dispreferred responses (or ‘winning’ and ‘loosing’, respectively). Minimizing
Eq. (4) yields the same optimal policy π⋆ as optimizing Eq. (1) with a reward function trained on
DHF (Rafailov et al., 2023, Theorem 1; Azar et al., 2023, Proposition 4).

4 OPTIMIZING CROSSLINGUAL CONSISTENCY

In this section, we formulate the problem of alignment for consistency as an RL task, define the
reward function, and derive the optimal policy that ensures consistent responses across languages.

4.1 DEFINING CROSSLINGUAL CONSISTENCY

Throughout this paper, we use superscripts to denote the language of a prompt x or a response y. For
example, x1 represents a prompt in language L1, y2 represents a response in language L2. We define
two prompt–response pairs (x1,y1) and (x2,y2) in languages L1 and L2 as equivalent, denoted by
(x1,y1) ∼ (x2,y2), if they can be mapped to each other via translational mappings τ1 : L2 → L1

and τ2 : L1 → L2.1 For simplicity, we denote τ1, which maps strings from L2 to L1, to be the
inverse of τ2. For example, this implies x2 = τ2(x1) and y1 = τ1(y2).

1We assume the existence of such translational mappings τ1, τ2, particularly in factual question-answering
settings where the answers to a question are objective and the set of candidate answers is finite. Prior work
on zero-shot crosslingual transfer and reward transfer (Wu & Dredze, 2019; Wu et al., 2024) discussed the
generalizability of this assumption to other fields that involve open-ended generation.

3
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We formalize crosslingual consistency as the property that the relative preference between any pair
of responses remains unchanged across different languages.
Definition 1. A language model π⋆ is consistent across L1 and L2 if

π⋆(y1
w | x1) ≥ π⋆(y1

l | x1) ⇐⇒ π⋆(y2
w | x2) ≥ π⋆(y2

l | x2). (5)

for all (x1,y1
w) ∼ (x2,y2

w) and (x1,y1
l ) ∼ (x2,y2

l ).

In other words, given a prompt x and a pair of responses (yw,yl), a consistent language LLM
should maintain the same preference for one response over the other, regardless of the language
in which the prompt and responses are expressed. See App. C for the rationale behind not enforcing
exact distribution matching in Def. 1.

4.2 A PIECEWISE REWARD FUNCTION FOR CONSISTENCY

To align a model πREF across L1 and L2, we propose the following piecewise reward function:

rALIGN(x,y) =


γ1 log πREF(τ

2(y) | τ2(x)) if x,y ∈ L1,

γ2 log πREF(τ
1(y) | τ1(x)) if x,y ∈ L2,

0 otherwise,
(6)

where γ1, γ2 ∈ R+ are parameters controlling the deviation from πREF in each language. A smaller
γ1 keeps the aligned model closer to πREF in L1, while a smaller γ2 does the same for L2. Note that
γ1 and γ2 are distinct from β (see Eq. (1)), which controls the overall deviation of the target policy
from the base policy πREF.

4.3 SOLVING THE CONSTRAINED RL PROBLEM

Substituting rALIGN back into the RL objective Eq. (1), the RL problem becomes:

max
πθ

E
x∼D,y∼πθ(·|x)

[
rALIGN(x,y))

]
− β · KL

[
πθ(· | x)∥πREF(· | x)

]
, (7)

where D is a set of factual question prompts. The optimal policy is given by Rafailov et al., 2023:

π⋆(y | x) = 1

Z(x)
πREF(y | x) exp

( 1

β
rALIGN(x,y)

)
, (8)

where Z(x) is the normalization constant. For L1 and L2, the resulting policy takes a product-of-
experts form (Hinton, 1999), which expands to:

π⋆(y1 | x1) =
1

Z(x1)
πREF(y

1 | x1)
(
πREF

(
τ2(y1) | τ2(x1)

))γ1/β

, (x1,y1 ∈ L1) (9a)

π⋆(y2 | x2) =
1

Z(x2)
πREF(y

2 | x2)
(
πREF

(
τ1(y2) | τ1(x2)

))γ2/β

. (x2,y2 ∈ L2) (9b)

Choosing γ1, γ2 and β. Not all combinations of γ1, γ2, and β guarantee a consistent optimal
policy. Lemma 1 provides a condition for selecting these hyperparameters to ensure consistency.
Lemma 1. If γ1γ2 = β2, the optimal policy π⋆ defined by Eq. (8) is consistent across L1 and L2.

Proof sketch. When γ1γ2 = β2, raising both sides of Eq. (9a) to the power of β
γ1

gives us:(
π⋆(y1 | x1)

)β/γ1

≡ Z(τ2(x1))

Zβ/γ1(x1)
π⋆(τ2(y1) | τ2(x1)).

Since the function f(x) = cx
β/γ1 increases monotonically in x for β/γ1 > 0, c > 0, we have

π⋆(y1
w | x1) ≥ π⋆(y1

l | x1) ⇐⇒ π⋆(τ2(y1
w) | τ2(x1)) ≥ π⋆(τ2(y1

l ) | τ2(x1)), for all y1
w,y

1
l .

Thus, π⋆ is consistent across L1 and L2. See App. D.1 for details. ■

Remark 1. Optimizing the objective in Eq. (7) yields a policy π⋆ that balances the original policy
πREF across L1 and L2. Lemma 1 specifies the relationship γ1γ2 = β2 to ensure consistency. Here,
β controls the overall deviation of π⋆ from πREF. While γ1 and γ2 determine the relative alignment
strength for L1 and L2. For instance, a smaller γ1 biases π⋆ closer to πREF in L1.

4
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What does rALIGN do? Maximizing Ey∼πθ(·|x)

[
rALIGN(x,y))

]
is equivalent to maximizing the

weighted summation
∑

y πθ(y | x)rALIGN(x,y). According to the rearrangement inequality,
this summation achieves its maximum when the sequences {πθ(y | x)}y and {rALIGN(x,y)}y are
monotonically aligned (Hardy et al., 1952). This alignment directly corresponds to our notion of
consistency. By defining rALIGN as in Eq. (6), which reflects the likelihood of a response in the other
language, πθ is encouraged to align its preferences across languages, thereby promoting consistency.

Generalizing to N languages. Our method naturally extends to align N languages. For N
languages, we introduce (N2 − N) hyperparameters γij , where i, j ∈ {1, 2, . . . , N} and i ̸= j,
to control the alignment strength between Li and Lj . The reward function is rALIGN(x,y) =∑N

j=1 γij log πREF(τ
j(y) | τ j(x)) when x,y ∈ Li. and the optimal policy is given by:

π⋆(yi | xi) =
1

Z(xi)
πREF(y

i | xi)
∏

j ̸=i∧j∈{1,2,··· ,N}

(
πREF

(
τ j(yi) | τ j(xi)

))γij/β

, (10)

where xi,yi ∈ Li and Z(xi) is the normalization constant, for i ∈ {1, 2, . . . , N}.

The detailed derivation and the constraints on γij to ensure consistency are provided in App. E. This
formulation ensures that the policy π⋆ aligns preferences across all N languages while maintaining
flexibility through the hyperparameters γij .

4.4 DIRECT CONSISTENCY OPTIMIZATION

In principle, there could be diverse ways to implement rALIGN. Here, we propose Direct Consistency
Optimization (DCO) as an efficient algorithm tailored to our consistency objective. DCO is inspired
by DPO, which bypasses the reward modeling and constrained RL phase. It leverages a dataset of
parallel prompt–response pairs, eliminating the need for online sampling and translator usage.

The Objective Function. The core idea of DPO is to use a change of variables to express the
human preference alignment loss directly as a function of the policy πθ . In Eq. (6), we have described
the exact form of rALIGN that we need. Our goal is to design an objective function that will lead
to an optimal r̂θ that is the same as rALIGN, and thus leads to policy πθ that is the same as π⋆. In
principle, any objective function with an optimal solution of rALIGN can be used. Here, we adopt
an objective that mirrors the DPO framework, leveraging the Bradley–Terry preference model to
align reward differences with expected values. Specifically, we train r̂θ(x,yw)− r̂θ(x,yl) to match
rALIGN(x,yw)− rALIGN(x,yl). Through this modeling choice, we avoid computing the intractable
normalization term Z(x) in Eq. (3).

Let D∥ denote a dataset of parallel prompt–response pairs, from which we sample tuples
(x1,y1,x2,y2), where (x1,y1) ∼ (x2,y2). The responses are randomly paired into y1

w,y
1
l ,

meaning we do not assume y1
w is inherently better than y1

l . We define the following loss function to
train r̂θ to match rALIGN:

L(θ) = E
(x1,y1

w,y1
l ,x

2,y2
w,y2

l )∼D∥

[∥∥∥(r̂θ(x1,y1
w)− r̂θ(x

1,y1
l )
)
− γ1 log

πREF(y
2
w | x2)

πREF(y2
l | x2)

∥∥∥+∥∥∥(r̂θ(x2,y2
w)− r̂θ(x

2,y2
l )
)
− γ2 log

πREF(y
1
w | x1)

πREF(y1
l | x1)

∥∥∥]. (11)

Minimizing Eq. (11) yields the same optimal policy as Eq. (7), as formalized in the following lemma:
Lemma 2. When Eq. (11) is minimized, the reward function r̂θ will converge to

r̂θ
⋆(x,y) =

{
γ1 log πREF(τ

2(y) | τ2(x)) + c(x) if x,y ∈ L1,

γ2 log πREF(τ
1(y) | τ1(x)) + c(x) if x,y ∈ L2,

(12)

where c(x) is a function independent of y.

See App. D.2 for proof. By combining Lemma 2 with Rafailov et al. (2023, Theorem 1), we conclude
that a consistent policy can be directly trained without explicitly training a reward function r or
solving a constrained RL problem. We further compare our method with DPO in App. F.

5
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5 EXPERIMENTAL SETUP

Models. We evaluate our method on 9 multilingual models from 4 LLM families with sizes
ranging from 4B to 14B, namely: Qwen2.5-7B/14B (Qwen et al., 2025), Qwen3-8B/14B (Yang et al.,
2025), Aya-Expanse-8B (Üstün et al., 2024), Llama3.1-8B, Llama3.2-3B (Dubey et al., 2024), and
Gemma3-4B/12B (Kamath et al., 2025). Training configurations are provided in App. G.

Datasets. We use three different multilingual question answering benchmarks: MMMLU
(Hendrycks et al., 2021), XCSQA (Lin et al., 2021), and BMLAMA (Qi et al., 2023). All three
contain parallel questions and candidate completions over all tested languages, translated from their
English origin. MMMLU is a multilingual extension of the MMLU dataset on general knowledge,
translated into 14 languages by human annotators. LLMs are prompted with a question and four
candidate answers, and have to generate one option from {A,B,C,D}. In XCSQA, questions are
also multi-choice (5 options, 16 languages), but focus on commonsense reasoning. By contrast,
BMLAMA (Qi et al., 2023) includes parallel sentence prefixes and a varying number of possible
parallel completions (e.g. “The capital of Italy is __”, “{Rome/Paris/...}”), evaluating LLMs’
factual associations in 17 languages. More detailed statistics are provided in App. H.

Evaluation Metrics. We measure crosslingual consistency via the RankC metric (Qi et al., 2023),
which considers the likelihood distribution over all candidate completions.2 Besides, we evaluate
answer accuracy following the LM-Evaluation-Harness framework3 (Gao et al., 2024), where the
candidate completion with the highest model likelihood is selected and compared to the gold answer.

6 RESULTS AND ANALYSIS

6.1 COMPARISON WITH PREVIOUS METHODS

We compare DCO with three representative methods: SFT, DPO, and CALM. Among these, SFT
and DPO use ground-truth labels as the training target or the ‘preferred’ completion. To investigate
the complementarity between DCO and DPO, we also evaluate a hybrid approach where the model
is first trained with DPO and then refined with DCO using the same instances used for DPO. For a
fair comparison, we follow the setup of Wang et al. (2025b), where each LLM is aligned across N
languages jointly in a single post-training process. In this setup, we use β = 1 and γij = 1 for all
i, j ∈ {1, . . . , N} with N = 12 on the general knowledge dataset MMMLU.4

Method Qwen2.5-14B Gemma3-12B-pt Qwen3-14B Aya-Expanse-8B Llama3.1-8B

CLCall AEN A¬EN CLCall AEN A¬EN CLCall AEN A¬EN CLCall AEN A¬EN CLCall AEN A¬EN

Base 68.56 72.46 58.08 73.56 70.07 62.28 76.13 76.58 67.28 72.17 59.76 52.92 60.87 57.27 45.79

+ SFT +0.64 +1.51 +6.67 +0.64 +0.72 +1.64 -0.18 +0.09 +0.52 +3.45 +0.72 +0.52 +4.28 +6.66 +5.94

+ DPO +12.28 +7.84 +13.88 +6.52 +1.80 +3.40 +2.99 +2.65 +4.16 +1.26 +2.54 +2.48 +10.07 +7.97 +8.83

+ DCO +13.07 +7.58 +13.45 +10.24 +1.17 +2.94 +4.38 +2.78 +4.30 +3.06 +2.66 +2.61 +13.83 +7.32 +8.88

+ CALM +4.22 +0.00 +4.10 +3.02 -0.41 -0.04 +0.32 -2.13 -1.12 +1.44 -2.16 -2.14 +2.97 -2.18 -5.03

+ DCO +10.64 +4.02 +9.63 +6.47 +0.88 +2.53 +2.74 +0.37 +1.34 +5.33 +0.52 +0.46 +9.35 +7.45 +7.61

Table 1: Comparison with previous methods in the joint training setup, on the MMMLU dataset.
CLCall: average crosslingual consistency (measured by RankC) between all language pairs; AEN/A¬EN:
average accuracy on English/non-English instances.

As shown in Tab. 1, the three baselines have distinct behaviors. SFT, trained on instances with gold
labels, produces modest gains: it slightly improves CLCall and accuracies (e.g., Llama3.1-8B), yet
on stronger models such as Qwen3-14B, its effect on CLCall is negligible or even slightly negative,

2See App. I for detailed definitions of the function.
3https://github.com/EleutherAI/lm-evaluation-harness
4We exclude Bengali as its prompt length exceeds the memory capacity of four A100 GPUs, and Swahili

and Yoruba because most of our LLMs perform at a random-guess level in these languages. See §6.4 for targeted
experiments on the low-resource languages, which demonstrate promising results with adjusted γ values.
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indicating that simple SFT is not a reliable mechanism for enhancing consistency. In contrast, DPO
yields larger gains in CLCall, AEN, and A¬EN across all LLMs.

Turning to label-free approaches, CALM applies DPO to encourage a preference for majority answers
across different languages. This design requires more than two languages, limiting applicability in
bilingual settings; moreover, including multiple low-resource languages can make majority voting
unreliable. Empirically, this limitation is evident in our results: CLCall is slightly improved, English
and non-English accuracy fluctuates without obvious increments, confirming its sensitivity to noisy
majority voting when low-resource languages are included. By contrast, DCO yields consistently
higher CLCall on all tested models while preserving accuracy or even improving it in many cases.
Notably, on some models (e.g., Aya-Expanse-8B) DCO even surpasses DPO on CLCall, and on
the rest it nearly matches DPO despite using no gold labels. We provide detailed CLC results for
all language pairs in App. L, showing that DCO not only improves CLC for typologically similar
languages, but also for distant pairs such as Korean-French and Arabic–Chinese.

Finally, combining gold-label preference learning with consistency optimization (DPO+DCO) yields
optimal results: applying DCO as a post-step to a DPO-trained model consistently achieves the
highest CLCall across all language models. Accuracy remains comparable to DPO, with minor
trade-offs in English for some models, and slight gains in non-English languages for others. Taken
together, these results highlight DCO as the most versatile and practical option. It offers a robust path
to crosslingual consistency while preserving (and often improving) task accuracy, and it can also
serve as an effective post-step that further benefits models already trained with DPO.

6.2 BILINGUAL IMPROVEMENTS

The experiments in §6.1 target joint consistency improvements across many languages, a setting
aligned with large multilingual foundation models. In practical scenarios, however, developers may
be interested in aligning knowledge between English and a specific local language, or between a
small set of regional languages. To assess this use case, we instantiate a bilingual version of DCO
that aligns English with one non-English language, and we extend the evaluation beyond MMMLU
(general knowledge) to XCSQA (commonsense reasoning) and BMLAMA (factual association).
Tab. 2 reports CLC and average answer accuracy on English and non-English. For space reasons, we
present the largest model in each family (see App. M for full results on nine LLMs).

Model MMMLU XCSQA BMLAMA

CLCall AEN A¬EN CLCall AEN A¬EN CLCall AEN A¬EN

Qwen2.5-14B 68.56 72.46 66.57 64.58 87.00 56.87 41.87 62.67 38.61
+ DCO +12.60 +1.64 +8.49 +6.81 -2.53 +4.67 +15.41 +6.33 +14.20

Gemma3-12B-pt 73.56 70.07 63.64 58.28 66.00 47.23 42.23 68.25 38.28
+ DCO +7.15 -0.90 +1.36 +4.61 +0.10 +3.57 +16.65 +1.55 +16.96

Qwen3-14B 76.13 76.58 68.95 61.91 77.57 54.00 38.90 58.43 36.38
+ DCO +4.79 +0.13 +1.67 +7.14 +1.07 +3.77 +16.19 +8.07 +14.47

Aya-Expanse-8B 72.17 59.76 53.38 62.58 78.00 54.40 41.93 67.02 37.80
+ DCO +5.33 +0.52 +0.46 +6.36 +0.57 +3.67 +12.29 +1.43 +12.16

Llama3.1-8B 60.87 57.27 48.80 60.23 67.50 47.73 40.85 61.16 35.83
+ DCO +12.06 +0.74 +3.01 +9.10 +0.17 +1.27 +15.70 +7.17 +17.62

Table 2: Results of consistency with English and the average accuracy of all English and non-English
pairs on MMMLU, XCSQA, and BMLAMA. See App. M for full results on nine LLMs.

Overall, DCO substantially improves both CLCall and accuracy across datasets. On MMMLU, CLCall
increases by +4.79 to +12.60 across all models, with concurrent gains in the accuracy of non-English
A¬EN(+0.46 to +8.49) and remains largely stable in English accuracy. On XCSQA, CLCall improves by
+4.61 to +9.10, with smaller changes in English accuracy (–2.53 to +1.07, with the single notable dip
on Qwen2.5-14B), while non-English accuracy increases consistently (+1.27 to +4.67). The largest
gains appear on BMLAMA, where CLCall improves by +12.29 to +16.65 and both English accuracy
(+1.43 to +8.07) and non-English accuracy (+12.16 to +17.62) rise markedly. We hypothesize that
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BMLAMA benefits more from DCO because outputs are concrete factual entities rather than abstract
option labels, making distributional alignment across languages more direct.

6.3 OUT-OF-DOMAIN GENERALIZABILITY

To assess whether the benefits of our method extend beyond the specific domain on which the model
was post-trained, we conduct a controlled experiment using Qwen2.5-14B: DCO is performed on
a single subject within MMMLU (namely, high school microeconomics) and evaluated on various
other subjects from the same dataset. For easier interpretation of the results and for managing
computational costs, we keep the bilingual DCO setup in the rest of our experiments.

Method Anatomy Medical Genetics High School Maths College Maths
CLCall AEN A¬EN CLCall AEN A¬EN CLCall AEN A¬EN CLCall AEN A¬EN

Base 59.49 68.89 46.30 70.38 82.00 63.79 67.83 53.70 43.23 64.25 57.00 37.50
+ DCO +10.94 +1.80 +3.76 +10.33 +5.43 +7.00 +11.27 +2.38 +6.80 +11.36 -0.36 +12.36

Table 3: Cross-domain performance on Qwen2.5-14B. The model is trained with DCO on high school
microeconomics (390 questions) and tested on distinct domains on MMMLU. Detailed results by
language, and for more test domains, are shown in App. M.

Tab. 3 shows strong out-of-domain transfer from a single training subject. DCO increases CLCall by
about 11% on average across all target domains, indicating that CLC is enhanced beyond the specific
post-training domain. Non-English accuracy also significantly improves, with the largest gain on
college mathematics (+12.36), reflecting effective knowledge transfer from English to less resourced
languages, even without explicit accuracy supervision. English accuracy is largely preserved, with
only a negligible decrease of 0.36 on college mathematics, showing that DCO does not overfit to the
training subject or degrade the model’s primary language competence. Taken together, these results
support the potential of DCO as a practical tool for real-world deployments where labeled data are
scarce and the target application domain may differ from that of the available training data.

6.4 EFFECT OF DIRECTION CONTROLLING PARAMETERS

Setup. We study how the parameters γ1, γ2 of DCO control transfer specifically between English
(EN) and low-resource languages. Specifically, we select Swahili (SW) and Yoruba (YO), which have
the lowest baseline accuracy on MMMLU, and vary the values of γ1, γ2 in three regimes5: Default
(γ1=1, γ2=1), SW/YO Stable (γ1=0.1, γ2=10, strong transfer from SW/YO to EN), and EN Stable
(γ1=10, γ2=0.1, strong transfer from EN to SW/YO)). All other settings remain the same as in §6.2.

EN Stable
( 1=10, 2=0.1)

Default
( 1=1, 2=1)

SW Stable
( 1=0.1, 2=10)

0

20

40

60

80

100

EN Base

SW Base

+3.25 4.80 11.74

+4.24 +2.29 +0.18

EN (Post-training)
SW (Post-training)

EN Stable
( 1=10, 2=0.1)

Default
( 1=1, 2=1)

SW Stable
( 1=0.1, 2=10)

0

20

40

60

80

100

54.20
50.46

44.84

18.73

27.19
33.97

0

10

20

30
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50

60

Consistency Baseline

56.59
59.21 59.50

Figure 2: Left: Answer accuracy after performing DCO on English-Swahili. Right: Proportion of
questions for which the LLM’s response changes after DCO, with CLC values marked in green.

Results. We present results of DCO between EN and SW in Fig. 2 and leave the results between EN
and YO to App. J where similar trends are observed. With default weighting, EN accuracy declines
by −4.80 points while SW gains +2.29. As we expected, the SW-stable weighting (large γ2) severely
hurts EN accuracy (−11.74) while barely helping SW (+0.18). Finally, the EN-stable weighting (large

5Note that we keep γ1γ2 = β2 = 1 as discussed in Lemma 1.
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γ1) yields a Pareto improvement: the accuracy of SW increases by +4.24 while the accuracy in EN
remains less changed (smaller ∆); in this case, fortunately, it even slightly increases. By contrast, CLC
improves in all weighting schemes. The baseline CLCall of 49.37 rises to 59.21, 59.50, 56.59 under
(γ1:γ2) = (1:1), (0.1:10), (10:0.1) respectively, showing that DCO reliably optimizes consistency
across different direction weights. Notably, the larger CLCall boost from the default weighting comes
with a substantial EN accuracy drop, whereas the EN-stable setup achieves a more favorable balance:
that is, slightly smaller yet still significant gains in CLCall but stable or improved EN accuracy.

Ratio of changed answers after DCO. To better understand the effects of (γ1, γ2), we measure the
proportion of questions for which the model answer changes after DCO. As shown in Fig. 2 (right),
the low-resource side exhibits far more updates than EN, and the direction weights control which
side is allowed to move. The EN-stable setting changes only 18.73% of EN answers but 54.20% of
SW. In default weighting, EN changes increase and SW changes decrease. In the SW-stable setting,
the burden shifts to EN (33.97% EN vs. 44.84% SW). A similar trend holds for English-Yoruba (see
App. J). These patterns align with the accuracy/consistency results: EN-anchored regimes keep the
high-resource channel stable while DCO primarily revises the low-resource outputs, thereby yielding
improved CLC and higher non-EN accuracy. On the other hand, low-resource stable setups induce
unnecessary EN churn without sufficient benefits. However, this should not be misinterpreted as
‘always set a large γ for EN’. We provide weighting guidance for real-world applications in App. K.

6.5 DISCUSSION

Where do the accuracy gains come from? In general, when a language model performs poorly
on a task, it tends to have a high-entropy distribution over the candidate answers. In contrast, a
low-entropy one that is skewed toward an incorrect answer is less common. Thus, the experts in

π⋆(y | x) = 1
Z

∏
j

(
πREF

(
τ j(y) | τ j(x)

))wj

are complementary to each other. Specifically, a
low-entropy expert only contributes minimally to the final distribution, allowing the ensemble to rely
more on high-confidence predictions from other experts. As a case study, we verify this assumption
using Qwen-2.5-14B on the MMMLU dataset, where the average entropy of the answer distribution
on the questions that are correctly answered is 0.41± 0.41, while for incorrectly answered questions,
it is significantly higher at 0.98±0.33. The accuracy of the theoretical optimal policy π⋆ on MMMLU
using Qwen-2.5-14B is 77.0, surpassing the accuracy of the base policy in individual languages.

Beyond crosslingual consistency. While this work focuses on crosslingual knowledge consistency,
the training objective of DCO is not limited to this task and can naturally be extended to other
forms of consistency. For instance, by aligning the output distributions over candidate answers for
paraphrased prompts, the model could be encouraged to respond consistently regardless of surface
variations. Exploring such extensions is an interesting direction for future work.

7 CONCLUSION

This paper proposes a novel structured reward function to improve crosslingual consistency in
multilingual LLMs and introduces an efficient method, direct consistency optimization (DCO).

Through comprehensive experiments, we demonstrate that DCO consistently improves CLC across a
variety of models and datasets. Compared to existing methods, DCO delivers robust performance gains
and complements DPO when gold labels are available, producing the strongest overall knowledge
alignment in a joint N -languages training setting. In bilingual settings, DCO also enhances CLC effec-
tively, raising accuracy in non-English languages while maintaining accuracy in English. We further
show the generalizability of DCO across domains, with gains observed even when testing on subjects
that differ from the training ones. The analysis of direction-controlling weights demonstrates how
practitioners can steer alignment toward specific languages according to deployment requirements.

Looking ahead, we believe the structured reward underlying DCO has potential for application beyond
crosslingual knowledge consistency, for example, improving self-consistency across paraphrases or
consistency across modalities. As a computationally efficient algorithm, DCO provides a practical
path toward building powerful multilingual LLMs that are not only accurate but also reliable and
equitable across languages.
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REPRODUCIBILITY STATEMENT

We provide detailed theoretical proofs of Lemmas 1 and 2 in Apps. D.1 and D.2. Implementation
details and training configurations are given in App. G. Datasets are contained in the anonymous
supplementary material.
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B BACKGROUND: MODELING HUMAN PREFERENCES WITH BRADLEY-TERRY
MODEL

An important component for post-training LLMs is reward models that align with human preferences
(Ziegler et al., 2020; Wu et al., 2021; Ouyang et al., 2022). To construct a human feedback dataset DHF,
humans are shown two (or more) responses to a prompt x and are asked to select the response they
prefer. DHF is denoted as a collection of triples (x,yw,yl), where yw is preferred over yl by a human.

To train a reward function rϕ on DHF, it is common to assume that human preference can be modeled
by a Bradley–Terry model (Bradley & Terry, 1952),

Prϕ(yw ≻ yl)
def
= σ

(
rϕ(x,yw)− rϕ(x,yl)

)
, (13)

where σ(x)
def
= 1

1+exp(−x) is the sigmoid function. The reward model rϕ, parameterized by ϕ, is
trained to minimize the following negative log-likelihood loss:

Lr(ϕ) = − E
(x,yw,yl)∼DHF

[
logPrϕ(yw ≻ yl)

]
. (14)

Intuitively, the reward function should assign higher rewards to the responses that are preferred by
humans. Then, the reward function is then plugged into Eq. (1) for policy optimization.

C DISCUSSION ON THE DEFINITION OF CROSSLINGUAL CONSISTENCY

One might attempt to use a stricter definition of consistency, such as requiring exact probability
matches π⋆(y1

w | x1) = π⋆(y2
w | x2). Previous work has shown that even semantically iden-

tical sentences in different languages can have likelihoods that differ significantly due to lexical,
semantic, and tokenization differences (Lesci et al., 2025). For instance, in Gemma3-12B-it, us-
ing a temperature of 1, π(“ Paris” | “The capital of France is”) = 0.8991, while π(“ Paris” |
“Die Hauptstadt Frankreichs ist”) = 0.1283. Thus, enforcing exact probability matches would
ignore these inherent differences and lead to suboptimal alignment. Instead, we adopt a softer
order-based consistency constraint.

D PROOFS

D.1 PROOF OF LEMMA 1

Lemma 1. If γ1γ2 = β2, the optimal policy π⋆ defined by Eq. (8) is consistent across L1 and L2.

Proof. Assume γ1γ2 = β2. Raising both sides of Eq. (9a) to the power of β
γ1

, we obtain:

(
π⋆(y1 | x1)

)β/γ1

=
1

Zβ/γ1(x1)

(
πREF(y

1 | x1)
)β/γ1πREF(τ

2(y1) | τ2(x1))

=
1

Zβ/γ1(x1)

(
πREF(y

1 | x1)
)γ2/β

πREF(τ
2(y1) | τ2(x1))︸ ︷︷ ︸

=Z(τ2(x1))π⋆(τ2(y1)|τ2(x1)) (Eq. (9b))

(γ1γ2 = β2)

≡ Z(τ2(x1))

Zβ/γ1(x1)
π⋆(τ2(y1) | τ2(x1)).

Note that the term Z(τ2(x1))

Zβ/γ1 (x1)
is positive and independent of y1. Since the func-

tion f(x) = cx
β/γ1 increases monotonically in x for β/γ1 > 0, c > 0, we have

π⋆(y1
w | x1) ≥ π⋆(y1

l | x1) ⇐⇒ π⋆(τ2(y1
w) | τ2(x1)) ≥ π⋆(τ2(y1

l ) | τ2(x1)), for all
y1
w,y

1
l . Thus, π⋆ is consistent across L1 and L2. ■
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D.2 PROOF OF LEMMA 2

Lemma 2. When Eq. (11) is minimized, the reward function r̂θ will converge to

r̂θ
⋆(x,y) =

{
γ1 log πREF(τ

2(y) | τ2(x)) + c(x) if x,y ∈ L1,

γ2 log πREF(τ
1(y) | τ1(x)) + c(x) if x,y ∈ L2,

(12)

where c(x) is a function independent of y.

Proof. Following Rafailov et al. (Definition 1, 2023), two reward functions r(x,y) and r′(x,y) are
equivalent if r(x,y)− r′(x,y) = f(x) for some function f . Our goal is to show that minimizing
L(θ) recovers a reward function equivalent to rALIGN (Eq. (6)).

First, note that L(θ) ≥ 0 in Eq. (11), due to the non-negativity of the absolute value function.
Substituting Eq. (12) into Eq. (11), we find that L(θ) = 0, which implies that r̂θ⋆ minimizes the loss.

Furthermore, since r̂θ
⋆ satisfies the structure of Eq. (12), it is equivalent to rALIGN up to an additive

term c(x), which does not affect the policy optimization. ■

E GENERALIZATION TO N LANGUAGES

We generalize §4 to aligning N languages. The reward function for alignment is generalized to

rALIGN(x,y) =

{∑N
j=1 γij log πREF(τ

j(y) | τ j(x)) when x,y ∈ Li,

0 otherwise.
(15)

We set γii = 0 for i ∈ {1, 2, · · · , N}. Thus, there are (N2 −N) hyperparameters in total.

The optimal policy is

π⋆(yi | xi) =
1

Z(xi)
πREF(y

i | xi)
∏

j∈{1,2,··· ,N}\{i}

(
πREF

(
τ j(yi) | τ j(xi)

))γj/β

. (16)

We define the following matrix

Γ
def
=


1 γ12/β · · · γ1N/β

γ21/β 1 · · · γ2N/β
...

...
...

...
γN1/β γ22/β · · · 1

 (17)

We give a sufficient condition on Γ that leads to consistent policies.
Lemma 3. When rank(Γ) = 1, π⋆ is consistent across L1, · · · , LN .

Proof. When rank(Γ) = 1, each row of Γ can be represented as a multiple of the first row. I.e., there
exists (N − 1) numbers k2, · · · , kN such that

(1 γ12/β · · · γ1N/β) = ki (γi2/β γi2/β · · · γiN/β) . (18)

Then, π⋆(y1 | x1) = (Z(xi))ki

Z(x1)

(
π⋆(yi | xi)

)ki , which indicates π⋆(yi | xi) is consistent with
π⋆(y1 | x1) for i ∈ {2, · · · , N}. Therefore, every pair of languages Li, Lj is consistent. ■

F COMPARISON WITH THE DPO OBJECTIVE

The DPO objective relies on a labeled dataset of preferences, aiming to train the Bradley–Terry
model Pr̂θ

(
yw ≻ yl

)
= σ(β(r̂θ(x,yw)− r̂θ(x,yl))) to match ground truth preference labels. The

optimal r̂θ in this case can take unbounded values and lacks a closed-form expression. By contrast, in
D∥, the response pairs y1

w,y
1
l are randomly paired, meaning y1

w is not necessarily the better response
carrying the gold answer, which benefits real-world applications. Minimizing L(θ) ensures that the
Bradley–Terry model Pr̂θ matches the distribution σ

(
log

πREF(y
2
w|x2)

πREF(y2
l |x2)

)
exactly.
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G IMPLEMENTATION DETAILS

In our experiments, we set β = 1, γ1 = γ2 = 1. For all models, we use the AdamW optimizer with
a learning rate of 1e−5, with an exception of 1e−6 for Gemma models on XCSQA to avoid overfit,
weight decay of 0, β1 = 0.9, β2 = 0.999, ε = 1e−8. All models are trained on four A100 GPUs
of 40GB memory. For SFT, DPO, and CALM, the learning rate is set to 5e−7, 5e−6, and 5e−6,
respectively.

H DATASET DETAILS

Three datasets with parallel queries and candidate completions are used in our experiments. Here we
list the detailed statistics in Tab. 4.

Dataset Knowledge Type #Langs Paralleled? #Train #Test Answer Format
Query Candidate

MMMLU General Knowledge 12(+2) ✓ ✓ 5000 9042 A/B/C/D
XCSQA Commonsense Reasoning 16 ✓ ✓ 800 200 A/B/C/D/E
BMLAMA Factual Association 17 ✓ ✓ 5000 1792 Words

Table 4: Statistics of datasets used in experiments.

MMMLU. MMMLU is a multilingual extension of the MMLU dataset (Hendrycks et al., 2021) on
general knowledge. The LLMs with the question and candidate answers. The LLMs are expected to
give an answer from {A,B,C,D}. Each question and its candidate answers are given in 15 languages.
In our experiments, we exclude Bengali due to the GPU constraint, and Swahili and Yoruba due to
their low accuracy. Nonetheless, we conduct extra experiments and in-depth analysis on these two
languages (i.e., brackets in Tab. 4) in §6.4.

XCSQA. Similar to MMMLU, the questions are multi-choice commonsense reasoning tasks over
16 languages. The answer space is also a set of capital letters: {A,B,C,D,E}.

BMLAMA. The BMLAMA dataset Qi et al. (2023) specifically focuses on factual associations, and
the answer format is objective words rather than option letters, which promotes the best crosslingual
knowledge alignment in our experiments. Parallel prompts and candidate answers are provided across
17 languages.

Sampling training instances. Regarding MMMLU and BMLAMA, we randomly sample two
pairs of parallel candidate completions per query in the training set, yielding 5000 instances for
DCO. Regarding XCSQA, we repeat this sampling procedure seven times to construct a dataset of
comparable size (800*7=5600) for DCO training.

I DETAILS OF RANKC: RANKING-BASED CROSSLINGUAL CONSISTENCY

RankC (Qi et al., 2023) is a ranking-based consistency metric for assessing crosslingual knowledge
consistency independently of probing accuracy.

Given a parallel query set: Q1 = {x1
i }

|Q|
i=1, Q2 = {x2

i }
|Q|
i=1, where each x1

i in L1 corresponds to
x2
i in L2. For the i-th query, assuming there are Ni candidate answers {ci,j}Ni

j=1, the model assigns a
likelihood to each of the candidates. Let the candidates in each language be sorted by descending
likelihood: c1i,1, c

1
i,2, . . . , c

1
i,Ni

(in L1) and c2i,1, c
2
i,2, . . . , c

2
i,Ni

(in L2).

Then, the ‘precision at j’ (denoted P@j) is defined as the proportion of overlap among the top-j
candidates in both languages: P@j = 1

j

∣∣{c1i,1, . . . , c1i,j}∩ {c2i,1, . . . , c2i,j}
∣∣. A ranking-based weight

wj = exp(Ni−j)∑Ni
k=1 exp(Ni−k)

is multiplied to each P@j, so that agreements at smaller j (i.e., top of the
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list) are rewarded more. Given these, the consistency score for that query pair is: consist(x1
i ,x

2
i ) =∑Ni

j=1 wj · P@j.

Finally, the overall RankC between L1 and L2 is the average consistency score over all query pairs:
RankC(L1, L2) =

1
|Q|

∑|Q|
i=1 consist(x

1
i ,x

2
i ).

J DIRECTION CONTROLLING RESULTS ON ENGLISH-YORUBA

Shown in Fig. 3, the original accuracy on EN and YO is more severe since it is an extremely
low-resource language. The default weighting induces decreases in both languages: EN drops
by −15.94 and YO also declines by −1.18. Making Yoruba ‘stable’ (YO Stable; γ1=0.1, γ2=10)
exacerbates the problem, especially pushing EN down to −19.97 while still not helping Yoruba
accuracy (∆ = −1.22). In contrast, the EN Stable setup (γ1=10, γ2=0.1) delivers the best trade-off:
EN accuracy remains less affected (+2.98) while that of Yoruba also improves by +1.43. Regarding
CLC, for EN–YO, the baseline of 45.67 increases to 57.16, 55.40, and 51.66, demonstrating the
effectiveness of DCO in crosslingual knowledge alignment.

As for the proportion of changed answers, similar to EN-SW, EN-stable minimizes EN updates as
19.00% while allowing substantial revisions on Yoruba as 59.87%. Default setup raises EN changes
to 38.74%, and YO Stable setup further increases EN changes to 42.51%.
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( 1=10, 2=0.1)
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Figure 3: Left: Answer accuracy after performing DCO on English-Yoruba. Right: Proportion of
questions for which the LLM’s response changes after DCO, with CLC values marked in green.

K GUIDANCE OF DIRECTION CONTROLLING FOR REAL-WORLD
APPLICATIONS

Direction–controlling hyperparameters matter: by adjusting (γ1, γ2), we control the transfer strength
for each side, thus deciding the direction of optimizing knowledge consistency. The low-resource
languages Swahili and Yoruba were selected in our experiments for the best visibility of the effect;
yet the results should not be misinterpreted as ‘always set a large γ for EN.’ In fact, the principle
is more general: anchor on the high-quality, high-priority language, which is EN in our study, but
could be French or any other well-trained language, according to the specific requirements of the
downstream LLM application. When both languages are of comparable quality, or when policy
requires reciprocity, a symmetric schedule like 1:1 is expected to be optimal. In practice, (γ1, γ2) can
also be selected empirically against a small validation set. The ‘ratio of changed answers’ (i.e. Fig. 2
(right) & Fig. 3 (right)) is useful: if the intended stable language exhibits excessive changes, or the
language expected to shift shows little movement, increase γ1, and by construction, γ2 will decrease
correspondingly (γ2 = 1/γ1).

Note that DCO is capable of improving CLC under any direction parameter setups, as demonstrated
in Fig. 2 & Fig. 3. This empirical adjustment further yields gains in accuracy for both sides.
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L DETAILED CLC RESULTS

We visualize the improvement of CLC between all language pairs in Fig. 4 to Fig. 8. The left sub-
figure in each panel reports the baseline CLC scores, while the right sub-figure shows the absolute
change after applying DCO. Warmer colors indicate higher CLC scores, and the delta plots highlight
systematic gains across most language pairs.

Notably, DCO consistently improves CLC, with substantial gains not only between typologically sim-
ilar languages such as English-Spanish, but also between distant ones. For instance, Arabic–Chinese
and Hindi-Japanese improve by 15% and 13%, respectively, while the Korean-French pair gains a
remarkable 14% increase on Llama-3.1-8B.

These results indicate that DCO not only raises overall knowledge consistency but also narrows the
gap between distant language families.
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Figure 4: The changes in CLC of Qwen2.5-14B after DCO. Left: CLC between all language pairs on
the original model. Right: Improvements in CLC of the post-DCO model.
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Figure 5: The changes in CLC of Gemma3-12B after DCO. Left: CLC between all language pairs on
the original model. Right: The Improvements in CLC of the post-DCO model.

M FULL BILINGUAL EXPERIMENTAL RESULTS

We present the detailed results of the bilingual experiments in Tab. 5 to Tab. 10

N FULL RESULTS OF OUT-OF-DOMAIN EXPERIMENTS

We present the full results on all five out-of-domain tasks in Tab. 11 and Tab. 12. The improvement
in both evaluation dimensions suggests the significant generalizability of DCO.
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Figure 6: The changes in CLC of Qwen3-14B after DCO. Left: CLC between all language pairs on
the original model. Right: The Improvements in CLC of the post-DCO model.

en ar de es fr hi id it ja ko pt zh
Language 2

en
ar
de
es
fr
hi
id
it
ja
ko
pt
zh

La
ng

ua
ge

 1

100
70 100
75 70 100
77 70 74 100
76 71 75 77 100
65 66 65 66 64 100
74 71 73 74 74 65 100
77 70 74 78 77 66 74 100
68 66 67 69 68 65 67 67 100
69 67 69 69 69 65 69 68 70 100
73 70 71 76 74 63 72 74 67 67 100
69 66 67 68 67 63 67 67 69 67 67 100

en ar de es fr hi id it ja ko pt zh
Language 2

en
ar
de
es
fr
hi
id
it
ja
ko
pt
zh

La
ng

ua
ge

 1
0
2 0
2 2 0
3 3 3 0
3 2 2 3 0
3 2 3 2 4 0
2 2 2 3 2 3 0
2 3 3 2 2 2 3 0
5 4 5 3 4 3 4 5 0
2 2 2 2 2 3 2 3 3 0
6 3 5 5 5 4 4 5 4 4 0
5 5 5 5 6 5 5 6 3 4 5 0

0

20

40

60

80

100

0

1

2

3

4

5

6

Figure 7: The changes in CLC of Aya-Expanse-8B after DCO. Left: CLC between all language pairs
on the original model. Right: The Improvements in CLC of the post-DCO model.
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Figure 8: The changes in CLC of Llama3.1-8B after DCO. Left: CLC between all language pairs on
the original model. Right: The Improvements in CLC of the post-DCO model.
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AR DE ES FR HI ID IT JA KO PT ZH

Consistency
Qwen2.5-7B 64.18 70.68 74.60 73.33 50.95 69.20 73.46 68.05 65.63 72.40 72.38
+ DCO +9.17 +9.20 +6.68 +8.88 +14.66 +7.42 +7.50 +8.16 +8.01 +9.99 +7.66
Qwen2.5-14B 66.19 70.93 69.45 70.19 59.15 70.43 69.68 70.16 67.02 68.54 72.38
+DCO +12.09 +12.82 +14.68 +14.11 +12.98 +11.04 +15.66 +9.15 +10.80 +15.76 +9.54

Gemma3-4B-pt 63.21 68.24 71.78 71.32 56.84 64.48 70.53 58.28 60.73 69.00 60.75
+DCO +10.69 +10.07 +9.40 +8.11 +18.41 +11.22 +8.73 +14.09 +11.32 +4.85 +14.08
Gemma3-12B-pt 70.56 73.89 77.93 76.81 69.82 75.23 76.87 72.96 68.13 74.86 72.11
+DCO +7.37 +8.44 +4.64 +4.58 +9.07 +8.41 +6.11 +6.79 +9.91 +7.93 +5.45

Qwen3-8B 65.17 71.58 75.31 72.37 65.16 68.52 74.85 71.64 67.00 74.85 76.37
+DCO +9.48 +9.77 +7.17 +9.10 +4.80 +10.61 +7.43 +5.80 +7.68 +7.73 +2.99
Qwen3-14B 72.70 77.84 80.34 78.90 68.56 76.17 79.38 74.06 72.46 79.30 77.72
+DCO +3.73 +4.83 +4.50 +4.86 +4.08 +5.29 +4.66 +6.03 +4.89 +5.10 +4.75

Aya-Expanse-8b 69.66 74.58 77.42 76.26 65.44 73.74 76.70 68.45 68.69 73.49 69.39
+DCO +5.37 +4.70 +4.01 +5.17 +5.23 +4.17 +4.86 +7.41 +5.04 +6.59 +6.06

Llama3.1-8B 58.31 62.70 65.23 63.83 52.67 62.54 65.38 56.91 57.59 65.15 59.31
+DCO +10.75 +10.94 +12.57 +13.89 +14.88 +7.99 +6.21 +14.50 +11.07 +13.73 +16.14
Llama3.2-3B 46.07 54.38 54.06 53.65 42.78 51.77 53.25 45.11 42.75 56.23 47.82
+ DCO +16.54 +12.60 +16.36 +17.28 +18.01 +16.39 +16.53 +17.38 +17.27 +17.03 +18.97

Table 5: Consistency improvements with English for each language across all models on MMMLU.

EN AR DE ES FR HI ID IT JA KO PT ZH

Accuracy
Qwen2.5-7B 69.57 54.51 59.98 63.43 62.30 44.33 58.71 62.66 59.07 57.13 61.93 63.98
+ DCO -0.01 +1.24 +2.02 +0.72 +1.46 +4.32 +1.80 +1.76 +1.74 +1.44 +1.97 +1.50
Qwen2.5-14B 72.46 54.88 59.52 56.83 58.31 45.66 61.06 56.21 63.24 56.96 56.35 69.87
+DCO +1.64 +7.63 +8.51 +12.94 +10.67 +8.41 +6.31 +12.57 +4.16 +8.00 +13.38 +0.83

Gemma3-4B-pt 56.09 43.14 49.02 52.51 50.51 39.64 48.47 49.64 42.78 45.39 50.25 46.56
+DCO +0.08 +1.04 +2.77 -0.02 +0.26 +5.32 +2.93 +1.60 +4.64 +2.13 +1.81 +3.07
Gemma3-12B-pt 70.07 58.60 64.19 65.43 64.14 57.94 62.07 65.05 60.83 60.49 65.01 61.36
+DCO -0.90 +1.71 +1.22 -0.70 +0.73 +4.44 +1.39 +0.54 +1.46 +1.51 +1.28 +1.33

Qwen3-8B 71.15 56.34 63.41 65.60 64.58 54.29 60.99 64.78 61.32 59.47 64.11 66.29
+DCO +0.72 +3.03 +2.69 +2.08 +1.84 +1.66 +2.89 +1.94 +1.42 +1.74 +2.87 +0.31
Qwen3-14B 76.58 63.07 68.56 71.04 70.10 58.69 67.49 70.35 65.65 64.74 70.72 69.64
+DCO +0.13 +0.80 +2.36 +1.38 +1.41 +1.98 +2.09 +1.50 +2.10 +1.52 +1.68 +1.55

Aya-Expanse-8B 59.76 50.75 54.10 56.36 55.71 46.20 53.14 54.62 51.69 51.32 55.63 52.57
+DCO +0.52 +0.46 -0.01 -0.28 -0.03 +0.96 +0.57 +0.66 +1.37 +0.01 +0.72 +0.68

Llama3.1-8B 57.27 41.19 49.13 51.17 47.56 35.01 46.88 49.89 44.63 43.10 48.71 46.40
+DCO +0.74 +3.33 +3.21 +4.16 +5.07 +0.23 +3.39 +0.32 +2.12 +2.91 +4.82 +3.54
Llama3.2-3B 52.23 35.45 43.86 46.25 44.67 33.92 42.97 43.80 34.62 36.16 45.07 38.41
+ DCO +0.93 +4.64 +2.48 +1.75 +2.91 +3.17 +1.66 +2.83 +5.96 +4.42 +2.16 +4.90

Table 6: Accuracy of each model on MMMLU across all languages after DCO.

ZH DE ES FR IT JA NL PL PT RU AR VI HI SW UR

Consistency
Qwen2.5-7B 64.41 72.26 77.82 71.57 71.96 57.78 65.49 65.41 75.27 66.67 65.49 68.80 49.76 35.58 48.02
+ DCO +10.81 +4.33 +4.50 +6.55 +6.04 +8.78 +9.73 +6.33 +5.97 +6.34 +8.33 +6.32 +8.25 -0.28 +7.83

Qwen2.5-14B 66.94 70.90 73.82 71.60 73.58 64.55 68.82 65.03 74.13 64.31 64.86 64.41 53.68 39.50 52.57
+ DCO +8.03 +5.80 +8.21 +5.93 +3.81 +5.92 +8.52 +8.34 +6.52 +8.73 +11.00 +10.68 +5.33 +0.40 +4.90

Gemma3-4B-pt 54.23 60.91 57.85 56.83 60.28 50.21 56.93 53.29 57.68 57.18 53.50 52.78 51.56 37.36 47.26
+ DCO +4.76 +3.34 +2.91 +3.56 +4.05 +7.43 +5.72 +4.87 +4.18 +4.31 +6.91 +6.42 +6.95 +9.48 +10.98

Gemma3-12B-pt 64.61 65.09 64.18 61.80 63.32 55.11 62.31 56.16 65.07 58.16 50.77 56.15 54.15 46.19 51.06
+ DCO +3.40 +3.27 +6.15 +4.54 +4.88 +3.51 +4.99 +5.94 +1.54 +5.76 +7.04 +5.72 +3.35 +0.65 +8.45

Qwen3-8B 64.88 65.84 67.75 68.77 70.95 58.49 64.60 63.01 69.41 60.12 61.89 65.46 55.63 37.42 49.25
+ DCO +4.42 +6.58 +8.88 +5.64 +4.60 +4.19 +7.06 +6.84 +6.63 +7.25 +10.64 +5.01 +4.52 +5.19 +5.69

Qwen3-14B 66.18 66.33 66.11 67.36 70.93 60.14 63.83 61.64 67.19 65.90 64.08 64.07 55.00 37.59 52.26
+ DCO +4.36 +8.36 +12.06 +7.23 +3.29 +6.19 +9.93 +8.55 +8.70 +4.54 +5.40 +7.32 +6.53 +4.88 +9.70

Aya-Expanse-8B 66.36 69.33 72.63 71.18 69.02 57.02 67.24 64.38 65.18 64.96 65.29 65.77 59.01 35.93 45.34
+ DCO +4.79 +4.90 +6.43 +5.29 +6.59 +6.92 +7.01 +8.14 +11.86 +3.99 +6.21 +4.15 +6.83 +4.19 +8.07

Llama3.1-8B 59.24 67.62 67.08 67.90 65.36 56.66 65.25 63.13 68.35 60.26 58.52 64.64 55.40 36.92 47.12
+ DCO +11.29 +3.89 +12.32 +5.15 +8.13 +6.75 +5.51 +5.56 +4.56 +9.53 +6.21 +2.45 +14.60 +24.20 +16.28

Llama3.2-3B 57.52 64.49 65.19 62.84 61.03 53.57 59.29 54.31 61.62 60.54 59.98 57.48 52.58 35.28 45.53
+ DCO +10.30 +6.09 +8.24 +10.39 +8.24 +8.28 +3.54 +9.87 +9.23 +4.94 -1.01 +10.97 +7.92 +5.51 +8.68

Table 7: Consistency improvements with English for each language across all models on XCSQA.
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EN ZH DE ES FR IT JA NL PL PT RU AR VI HI SW UR

Accuracy
Qwen2.5-7B 84.00 55.50 58.00 66.00 60.50 62.00 52.50 54.50 57.50 63.00 55.50 53.50 61.50 39.50 25.00 41.00
+ DCO -1.93 +7.50 +5.00 +1.50 +2.50 +5.00 +4.50 +5.00 +6.50 +4.50 +3.00 +5.00 +1.50 +7.00 0.00 +4.00
Qwen2.5-14B 87.00 59.50 62.00 65.00 62.50 65.00 57.50 61.00 60.00 67.50 56.00 54.50 56.50 46.50 32.50 47.00
+ DCO -2.53 +7.00 +5.00 +5.00 +6.00 +2.00 +5.00 +5.00 +3.00 +4.00 +5.00 +8.00 +10.00 +1.50 0.00 +3.50

Gemma3-4B-pt 56.50 35.50 41.00 45.00 45.00 42.50 32.00 40.00 39.00 34.50 39.00 36.50 43.00 30.50 27.00 31.00
+ DCO +2.30 +5.50 +3.50 +0.50 +0.50 +4.00 +3.50 +4.00 +1.00 +3.50 -0.50 +2.50 0.00 +2.50 +1.50 +3.50
Gemma3-12B-pt 66.00 52.50 52.50 53.50 52.00 56.50 43.00 53.00 45.50 53.50 43.00 39.50 46.50 40.00 37.50 40.00
+ DCO +0.10 +4.00 +3.50 +2.50 +4.00 +1.00 +1.50 +1.50 +5.00 +2.50 +6.00 +6.00 +5.00 +2.00 +1.50 +7.50

Qwen3-8B 73.50 53.00 53.50 56.50 61.00 60.50 49.00 55.50 53.50 57.00 51.50 50.50 56.50 47.00 28.00 41.50
+ DCO +0.97 +4.50 +2.50 +3.50 -1.00 +0.50 -1.00 +1.50 +3.00 +5.50 +2.50 +5.50 +1.00 +2.50 +1.00 +3.50
Qwen3-14B 77.50 55.00 58.00 60.00 57.00 62.50 51.50 59.00 57.00 59.00 57.00 55.50 60.50 47.50 27.50 43.00
+ DCO +1.07 +3.50 +4.00 +5.00 +5.00 +2.50 +4.50 +2.50 +5.00 +4.00 +1.00 +1.50 +2.50 +1.00 +5.50 +9.00

Aya-Expanse-8B 78.00 61.00 59.00 64.00 58.00 62.00 49.50 59.50 57.00 60.00 58.50 56.50 59.50 50.50 25.00 36.00
+ DCO +0.57 +4.00 +2.50 +5.00 +4.50 +3.00 +5.50 +1.00 +4.00 +7.00 -2.00 +2.50 +4.00 +3.50 +3.50 +7.00

Llama3.1-8B 67.50 48.00 55.50 54.50 55.00 56.50 41.00 52.00 51.00 53.00 48.50 47.00 55.50 39.50 27.00 32.00
+ DCO +0.17 +3.50 0.00 +0.50 +0.50 -1.00 +3.00 -0.50 +0.50 +1.00 +2.00 -1.50 +0.50 +5.00 +2.00 +3.50
Llama3.2-3B 65.00 51.00 47.50 46.50 42.50 45.50 45.00 39.50 41.50 45.50 44.00 45.00 43.00 35.00 29.00 34.50
+ DCO -4.07 -3.50 +3.00 +8.50 +6.00 +3.50 +4.00 +2.50 +8.50 +3.50 +2.00 -1.00 +8.00 +4.50 +1.50 +4.00

Table 8: Accuracy of each model on XCSQA across all languages after DCO.

FR NL ES RU JA ZH KO VI EL HU HE TR CA AR UK FA

Consistency
Qwen2.5-7B 44.12 48.41 45.50 41.78 39.05 40.18 36.50 44.54 30.88 30.66 30.88 34.29 39.16 40.89 40.53 35.85
+ DCO +17.90 +13.98 +16.21 +15.08 +16.89 +11.53 +18.40 +19.05 +17.79 +15.54 +17.27 +17.10 +14.64 +13.24 +15.02 +14.15
Qwen2.5-14B 45.01 50.87 47.45 42.83 41.94 42.61 41.19 46.91 35.70 32.04 38.84 37.99 41.71 41.78 42.48 40.58
+ DCO +17.33 +14.48 +14.35 +16.05 +16.66 +9.77 +16.23 +16.32 +18.86 +16.48 +14.32 +15.93 +13.36 +15.40 +16.67 +14.38

Gemma3-4B-pt 38.26 48.78 45.63 40.57 36.99 31.78 35.72 45.23 38.16 34.85 35.91 39.77 36.88 35.51 43.75 35.92
+ DCO +23.36 +16.47 +15.47 +18.24 +15.90 +14.32 +16.87 +21.56 +19.32 +20.07 +14.65 +19.58 +18.49 +12.63 +15.81 +12.18
Gemma3-12B-pt 41.81 51.38 47.80 42.90 40.98 34.76 40.39 47.82 41.29 39.53 40.16 42.17 39.82 38.87 45.96 40.10
+ DCO +23.27 +15.53 +15.53 +17.37 +15.17 +15.12 +15.74 +20.81 +19.02 +18.83 +13.72 +19.46 +17.92 +11.74 +15.76 +11.35

Qwen3-8B 43.21 47.24 43.21 38.43 33.25 37.43 33.89 45.29 32.92 30.50 30.26 35.43 38.58 38.86 40.70 34.29
+ DCO +15.21 +14.19 +13.47 +14.05 +16.92 +11.13 +16.15 +13.71 +14.91 +16.06 +12.46 +14.27 +13.44 +11.47 +14.45 +13.91
Qwen3-14B 42.45 48.82 44.37 37.93 35.68 38.56 36.01 43.17 36.10 31.49 33.53 37.95 40.46 39.62 40.71 35.62
+ DCO +16.43 +14.11 +15.01 +17.66 +20.46 +12.22 +16.78 +17.53 +15.39 +18.40 +14.80 +14.37 +15.12 +13.71 +18.13 +18.09

Aya-Expanse-8B 50.81 51.38 58.03 39.84 39.72 38.32 36.77 55.08 34.74 29.12 36.97 41.80 37.02 40.11 44.69 36.43
+ DCO +18.33 +13.44 +13.16 +15.42 +11.08 +10.74 +11.72 +14.93 +12.77 +7.25 +9.40 +13.45 +9.82 +11.05 +12.31 +11.69

Llama3.1-8B 44.16 51.07 47.40 41.13 41.35 37.11 36.94 45.82 35.80 36.87 40.42 37.31 40.05 38.42 41.33 38.38
+ DCO +18.83 +13.48 +14.66 +15.91 +12.74 +16.33 +15.32 +19.62 +19.85 +16.26 +10.56 +17.47 +19.42 +11.64 +17.89 +11.23
Llama3.2-3B 43.00 47.98 43.92 38.72 37.89 32.10 34.73 44.14 34.21 32.74 38.04 33.17 39.14 37.21 38.65 35.67
+ DCO +18.58 +15.29 +14.58 +15.53 +15.18 +15.06 +12.51 +18.92 +16.58 +18.08 +10.84 +17.03 +15.79 +12.44 +17.07 +12.66

Table 9: Consistency improvements with English for each language across all models on BMLAMA.

EN FR NL ES RU JA ZH KO VI EL HU HE TR CA AR UK FA

Accuracy
Qwen2.5-7B 61.83 36.61 43.02 40.79 39.06 36.61 34.82 33.37 38.84 27.68 28.01 26.40 31.86 34.15 39.79 38.56 32.42
+ DCO +5.61 +19.31 +14.57 +15.68 +12.61 +16.57 +14.23 +17.75 +15.35 +12.61 +12.56 +13.89 +12.73 +13.23 +9.32 +13.34 +10.88
Qwen2.5-14B 62.67 36.61 46.48 44.81 42.02 40.07 37.05 40.57 41.46 32.53 28.12 35.60 34.99 37.05 42.35 41.46 36.66
+ DCO +6.33 +21.20 +12.90 +12.56 +13.67 +15.18 +11.89 +14.28 +15.85 +13.12 +15.85 +13.34 +12.89 +14.62 +11.17 +15.12 +13.51

Gemma3-4B-pt 66.07 32.42 43.86 39.68 35.21 30.30 26.34 32.48 36.83 31.81 30.69 29.91 34.60 32.42 31.58 38.90 30.08
+ DCO +2.16 +22.55 +14.73 +19.58 +19.31 +18.81 +17.63 +17.19 +19.14 +18.02 +19.59 +15.74 +17.97 +19.76 +15.13 +16.57 +16.01
Gemma3-12B-pt 68.25 37.56 49.00 43.14 38.28 36.77 30.75 38.11 39.90 38.11 35.88 37.00 37.05 36.22 36.44 41.91 36.38
+ DCO +1.55 +21.09 +13.05 +17.57 +17.47 +17.30 +16.91 +16.58 +19.03 +18.11 +18.47 +14.23 +19.53 +17.52 +13.84 +18.02 +12.62

Qwen3-8B 58.37 36.83 42.08 38.06 37.17 33.15 32.25 32.70 38.50 30.36 26.17 26.23 32.37 33.82 37.22 42.69 29.52
+ DCO +6.90 +16.69 +13.11 +14.28 +12.10 +14.67 +12.95 +13.17 +12.34 +11.55 +15.79 +11.94 +13.05 +14.51 +9.43 +9.65 +11.33
Qwen3-14B 58.43 34.99 44.87 40.23 38.45 36.72 33.20 33.43 37.05 34.88 28.35 31.81 34.71 37.05 39.17 42.63 34.49
+ DCO +8.07 +18.86 +12.66 +13.84 +13.84 +16.01 +16.30 +14.78 +16.69 +17.35 +16.91 +11.77 +14.17 +14.85 +12.00 +11.39 +13.05

Aya-Expanse-8B 67.02 45.31 46.82 52.73 35.21 36.22 37.28 34.04 49.55 32.87 22.32 33.37 35.83 32.76 37.61 39.79 33.15
+ DCO +1.43 +14.68 +11.55 +9.44 +18.31 +12.27 +11.16 +13.90 +11.00 +12.11 +8.54 +10.16 +14.67 +10.32 +10.55 +12.05 +13.78

Llama3.1-8B 61.16 35.21 46.15 41.96 38.34 37.39 28.52 31.03 38.17 31.58 32.48 36.89 32.48 36.22 33.93 40.18 32.70
+ DCO +7.17 +23.61 +14.73 +17.58 +17.80 +14.34 +22.43 +18.19 +21.26 +19.87 +17.58 +9.82 +18.41 +20.64 +12.50 +18.36 +14.73
Llama3.2-3B 61.05 35.38 43.08 38.67 34.60 32.31 24.67 26.95 35.55 29.35 28.74 35.16 27.57 35.21 32.25 36.22 28.24
+ DCO +6.72 +21.76 +16.18 +17.52 +18.30 +17.75 +19.64 +17.41 +21.37 +15.52 +18.14 +9.48 +17.69 +16.35 +14.07 +18.02 +15.34

Table 10: Accuracy of each model on BMLAMA across all languages after DCO.
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Domain AR DE ES FR HI ID IT JA KO PT SW YO ZH BN

Anatomy
Base 54.08 65.20 57.86 67.79 50.76 65.17 68.50 64.77 56.56 63.31 49.45 46.78 70.92 51.68
+ DCO +13.10 +7.02 +17.56 +12.04 +9.30 +13.69 +11.42 +11.12 +10.49 +19.53 +4.81 +3.20 +12.00 +7.91

Medical genetics
Base 66.91 78.76 75.42 71.46 56.92 74.52 74.54 77.25 66.76 77.88 62.25 59.95 79.97 62.66
+ DCO +9.21 +11.71 +16.51 +18.54 +12.85 +8.24 +13.17 +3.18 +10.13 +14.60 +4.06 +4.11 +8.99 +9.38

High school mathematics
Base 70.25 71.76 71.93 68.89 68.21 72.42 71.38 67.22 70.27 67.51 59.42 58.65 66.81 64.88
+ DCO +8.59 +8.55 +14.72 +13.07 +10.86 +13.30 +11.21 +12.76 +9.48 +16.02 +8.12 +4.15 +14.26 +12.67

College mathematics
Base 61.09 72.62 68.67 69.42 63.56 64.56 73.08 65.81 61.24 69.62 50.28 50.95 69.75 58.81
+ DCO +13.72 +7.71 +17.22 +13.31 +8.55 +14.01 +10.30 +8.80 +10.38 +13.61 +12.08 +7.26 +13.39 +8.68

High school world history
Base 83.50 83.06 87.21 86.67 74.73 81.53 87.19 83.20 54.06 85.53 56.25 44.98 41.79 74.35
+ DCO +3.52 +6.03 +3.82 +3.19 +4.52 +4.34 +0.82 +3.85 +3.64 +4.99 -1.37 +1.42 +1.08 +3.43

Table 11: Consistency with English under cross-domain settings using Qwen2.5-14B. The model is
post-trained with data of ‘high school microeconomics’.

Domain EN AR DE ES FR HI ID IT JA KO PT SW YO ZH BN

Anatomy
Base 68.89 43.70 46.67 45.93 53.33 34.07 50.37 51.85 57.04 44.44 43.70 32.59 31.85 72.59 40.00
+ DCO +1.80 0.00 +5.92 +5.18 +6.67 +2.97 +8.89 +7.41 0.00 +5.93 +18.52 -2.96 -4.44 -2.96 +1.48

Medical genetics
Base 82.00 61.00 73.00 66.00 66.00 46.00 74.00 63.00 79.00 59.00 69.00 53.00 53.00 78.00 53.00
+ DCO +5.43 +5.00 +7.00 +14.00 +14.00 +11.00 +3.00 +13.00 -5.00 +8.00 +16.00 +2.00 -2.00 +4.00 +8.00

High school mathematics
Base 53.70 43.70 45.56 39.63 45.19 43.33 42.96 39.26 48.52 47.04 43.70 34.81 30.74 60.00 40.74
+ DCO +2.38 +6.30 +9.63 +7.41 +8.14 +3.71 +7.41 +7.41 +5.18 +4.81 +14.08 +5.93 +6.30 -3.33 +12.22

College mathematics
Base 57.00 38.00 41.00 40.00 36.00 33.00 39.00 36.00 44.00 35.00 41.00 24.00 32.00 52.00 34.00
+ DCO -0.36 +11.00 +15.00 +8.00 +22.00 +10.00 +11.00 +18.00 +16.00 +11.00 +13.00 +15.00 +4.00 +10.00 +9.00

High school world history
Base 89.45 81.43 82.28 84.81 84.39 70.46 79.32 83.97 80.59 80.17 82.70 46.84 33.33 81.86 68.78
+ DCO +0.55 +1.27 -0.85 0.00 -0.85 +0.43 +1.69 -1.69 +1.27 -2.95 -0.42 -2.96 +0.85 +0.42 +2.53

Table 12: Accuracy under cross-domain settings using Qwen2.5-14B. The model is post-trained with
data of ‘high school microeconomics’.
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