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ABSTRACT

We detect out-of-training-distribution sentences in Neural Machine Translation
using the Bayesian Deep Learning equivalent of Transformer models. For this we
develop a new measure of uncertainty designed specifically for long sequences of
discrete random variables—i.e. words in the output sentence. Our new measure
of uncertainty solves a major intractability in the naive application of existing
approaches on long sentences. We use our new measure on a Transformer model
trained with dropout approximate inference. On the task of German-English
translation using WMT13 and Europarl, we show that with dropout uncertainty our
measure is able to identify when Dutch source sentences, sentences which use the
same word types as German, are given to the model instead of German.

1 INTRODUCTION

Statistical Machine Translation (SMT, (Brown et al., 1993; Och, 2003)), built on top of probabilistic
modelling foundations such as the IBM alignment models (Vogel et al., 1996; Brown et al., 1993;
Gal & Blunsom, 2013), has largely been replaced in recent years following the emergence of Neural
Machine Translation approaches (NMT, (Kalchbrenner & Blunsom, 2013; Bahdanau et al., 2015;
Luong et al., 2015; Vaswani et al., 2017)). This change has brought with it huge performance gains
to the field (Sennrich et al., 2016), but at the same time we have lost many desirable properties of
these models. Statistical probabilistic models can inform us when they are guessing at random on
inputs they never saw before (Ghahramani, 2015). This information can be used, for example, to
detect out-of-training-distribution examples for selective classification by referring uncertain inputs
to an expert for annotation (Leibig et al., 2017), or for a human-in-the-loop approach to reduce data
labelling costs (Gal et al., 2017; Walmsley et al., 2019; Kirsch et al., 2019).

With new tools in machine learning we can now incorporate such probabilistic foundations into
deep learning NLP models without sacrificing performance. This field, known as Bayesian Deep
Learning (BDL, (Neal, 2012; Gal, 2016)), is concerned with the development of scalable tools which
capture epistemic uncertainty—the model’s notion of “I don’t know”, a measure of a model’s lack
of knowledge e.g. due to lack of training data, or when an input is given to the model which is very
dissimilar to what the model has seen before. Such BDL tools have been used extensively in the
Computer Vision literature (Kendall & Gal, 2017; Litjens et al., 2017), and have been demonstrated
to be of practical use for applications including medical imaging (Litjens et al., 2017; Nair et al.,
2020), robotics (Gal et al., 2016; Chua et al., 2018), and astronomy (Hon et al., 2018; Soboczenski
et al., 2018; Hezaveh et al., 2017).

In this paper we extend these tools, often used for vision tasks, to the language domain. We
demonstrate how these tools can be used effectively on the task of selective classification in NMT
by identifying source sentences the translation model has never seen before, and referring such
source sentences to an expert for translation. We demonstrate this with state-of-the-art Transformer
models, and show how model performance increases when rejecting sentences the model is uncertain
about—i.e. the model’s measure of epistemic uncertainty correlates with mistranslations.

For this we develop several measures of epistemic uncertainty for applications in natural language
processing, concentrating on the task of machine translation (§3). We compare these measures
both with standard deterministic Transformer models, as well as with Variational Transformers,
a new approach we introduce to capture epistemic uncertainty in sequence models using dropout
approximate inference (Gal, 2016). We give an extensive analysis of the methodology, and compare
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the different approaches quantitatively in the out-of-training-distribution settings (§4), which shows
our proposed uncertainty estimate BLEUVar works well for measuring the epistemic uncertainty
for machine translation. We also analyse the performance of BLEUVar qualitatively from both the
influence of sentence length and from the linguistic perspective. We finish with a discussion in
potential use cases for the new methodogy proposed.

The closest NLP task to the above problem definition is the quality estimation (QE) task in Machine
Translation (Specia et al., 2010; Blatz et al., 2004), which tries to solve a similar problem by predicting
the quality of a translation with a score called Human Translation Error Rate (HTER, (Snover et al.,
2006)). This is done by training a surrogate QE model on source sentences and their corresponding
machine-generated translations in a specific domain, with the target of the surrogate to predict the
the percentage of edits needed to be fixed. While many methods have been shown to successfully
solve the task of estimating the quality of translations (Kim et al., 2017; Martins et al., 2016; 2017;
Kreutzer et al., 2015), by definition QE crucially relies on examples of mistranslations to train the
surrogate. The assumption that such training data is available is often violated in practice though
(e.g. in active learning), thus existing approaches in QE research cannot generally be used to detect
out-of-training-distribution examples (see Appendix C for detail discussion about the differences
between QE and our task, as well as other related work that is similar to ours but not solving the same
problem).

2 BACKGROUND: UNCERTAINTY IN DEEP LEARNING

For most machine learning models, the optimisation objectives give us a point estimate of the
model parameters, which maximise the likelihood of the model generating the training data (i.e.
p(Y |X,ω = ω∗), ω∗ ∈ Ω s.t. Ω is the set of all possible model parameters, Y,X are the training
data). Such point estimate ω∗ gives us a very good prediction when the test data follow the same
distribution as the training data distribution. Given a new input x∗ at test time, the model prediction
for the corresponding y∗ is

ŷ∗ = arg max
y∗

p(y∗|x∗, ω∗). (1)

However, we cannot expect the model to perform well on out-of-distribution (OOD) data which it
never saw before. Instead, we would wish for the model to indicate its uncertainty towards such
inputs. We could use p(ŷ∗|x∗, ω∗) as an estimate for model uncertainty, but as we show below,
it would not be a well calibrated one. It might be the case that many ω might give equally good
predictions on the train set, but might widely disagree with their predictions on OOD data. In fact, ω∗
might give arbitrary predictions on OOD training data which is very dissimilar to previously observed
inputs. Thus, a high score does not distinguish whether x∗ is OOD or not, and whether we should
trust the model’s prediction.

2.1 BAYESIAN INFERENCE

Bayesian probabilistic models capture the notion of uncertainty explicitly. Rather than considering a
single point estimate ω∗, Bayesian models aim to capture the entire distribution of ω from the training
data. The resulting distribution is called posterior distribution

p(ω|X,Y ) =
p(Y |X,ω)p(ω)

p(Y |X)
. (2)

At test time, we can make prediction about the corresponding y∗ by integrating out all possible ω

p(y∗|x∗, X, Y ) =

∫
p(y∗|x∗, ω)p(ω|X,Y )dω. (3)

Using the variance of the predictive distribution p(y∗|x∗, X, Y ) as the uncertainty measure would
have taken into account the variance of ω. Hence, an uncertainty measure based on this quantity
could be a strong indicator for x∗ being OOD.

2.2 APPROXIMATE INFERENCE

The difficulty in doing Bayesian inference comes from the intractability of calculating the evidence

p(Y |X) =

∫
p(Y |X,ω)p(ω)dω. (4)
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There might be a closed form solution for a simple model. But for most interesting problems, it is too
difficult to compute an exact solution. Therefore, approximations are often used for such inference
problems.

Variational inference (VI) is a pragmatic popular method for doing approximate inference (Jordan
et al., 1999). The method involves defining an approximating distribution qθ(ω), and trying to find
the parameter θ for that minimises the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951)
between qθ(ω) and the posterior

KL(qθ(ω)‖p(ω|X,Y )) =

∫
qθ(ω)log

qθ(ω)

p(ω|X,Y )
dω. (5)

The resulting θ∗ gives us the closest approximation for the posterior in the family of distribution
qθ(ω). However, calculating the KL divergence here is also intractable as we still have to do the
integration for the evidence in posterior.

Fortunately, a tractable and equivalent objective for minimising the KL divergence is to maximise the
evidence lower bound (ELBO, (Blei et al., 2017)) of qθ(ω)

ELBO(qθ) =

∫
qθ(ω)log p(Y |X,ω)dω −KL(qθ(ω)‖p(ω)). (6)

This is tractable as we know all the distributions (both qθ(ω), p(Y |X,ω) and p(ω) are defined by the
model or by our assumptions).

2.3 BAYESIAN INFERENCE IN DEEP LEARNING

Almost all deep models treat the units in a deep neural network as deterministic functions. To adapt
Bayesian methods in deep learning, we need to first turn our model into a probabilistic model. It
can be done by modelling the weights in each unit of the network as samples from probability
distributions. Such networks are called Bayesian neural networks (Neal, 2012). One major challenge
with Bayesian neural networks is that the integration in ELBO becomes intractable when we have
more than one hidden layer (Gal, 2016).

Many works have tried tackling this problem. One practical method proposed by Gal (2016) is MC
Dropout. Gal (2016) showed that optimising any neural networks with dropout can be viewed as an
approximate inference in a probabilistic model (when dropout p is tuned correctly), which implies
that a trained neural network with dropout can be interpreted as a Bayesian neural network Gal (2016).
Stochastic forward passes with dropout ‘turned-on’ at test time then correspond to draws from the
predictive distribution. Here we extend on these ideas and propose the Variational Transformer,
which is based on MC Dropout applied to the original Transformer model. We perform extensive
empirical evaluation with this model on the task of NMT. Representing uncertainty in a translation
model is the first step towards detecting OOD data. We next discuss how to use this uncertainty
effectively, and provide the main contribution of this work.

3 MEASURES OF UNCERTAINTY FOR NMT

Principally, we care about measuring the variance of a model’s outputs around some given input
point. In the context of a simple classifier model, the solution is often found by measuring the mutual
information between the predicted discrete distribution and model parameters, evaluating the output’s
entropy, or simply computing the variance of model outputs (Gal, 2016). In the domain of language,
however, there are many semantically equivalent alternatives to the same prediction, and it is a
difficult matter to measure the disagreement between the predicted discrete sequences, which in turn
complicates the estimation of variance in the output space. Much worse, when attempting to naively
use MI or entropy with long sequences or large sets of discrete random variables, we quickly discover
that even approximate integration over the product space becomes prohibitive (Kirsch et al., 2019). In
order to capture epistemic uncertainty in the task of NMT, we propose several measures of uncertainty
appropriate for long sequences of discrete variables (Beam Score and Sequence Probability are
measures similar to (Wang et al., 2019; Fomicheva et al., 2020)):

1. Beam Score: we assign a confidence to output y generated (using beam search) from input x

using the score assigned to y’s beam (Wu et al., 2016), where length_penalty(y;α) =
(

5+|y|
5+1

)α
.

BS =
log (pω∗(y|x))

length_penalty(y; 0.6)
(7)
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2. Sequence Probability: we assign a confidence to the deterministic model output y generated
from input x by taking the log predictive probability under the weight distribution.

SP =
log
(
Eω∼qθ∗ (ω) pω(y|x)

)
length_penalty(y; 0.6)

(8)

3. BLEU Variance: ideally, we would like to measure the variance of outputs y as the uncertainty
at an input x, i.e.:

Var = Eω∼qθ∗ (ω)Ey∼pω(y|x) (y − µ)
2

= Eω∼qθ∗ (ω)Ey,y′∼pω(y|x)
1

2
(y − y′)2 , (9)

where µ = Ey∼pω(y|x)[y]. If we treat sentences as points in some high dimensional space, ||y−y′||
corresponds to a distance between these two points, which is a numerical value representing
the difference between two sentences. Thus, any metric for measuring the difference between
sentences will allow us to calculate the variance of output y. In our experiments we choose BLEU
(Papineni et al., 2002). The BLEU score of a candidate text to the reference text is a number
between 0 and 1, with the value closer to 1 indicating the two texts are more similar1. Now, we can
estimate the variance at an input x by producing pairs of outputs from the model and measuring
the squared complement of the BLEU between them, i.e. ||y − y′||2 := (1− BLEU(y, y′))

2, and
we have:

BLEUVar = Eω∼qθ∗ (ω)Ey,y′∼pω(y|x) (1− BLEU(y, y′))
2 (10)

For the beam score we use the deterministic model found by gradient descent and simply take the
probabilities from under its output probabilities. This will be our baseline. For sequence probability
and BLEU variance we use MC Dropout (Gal, 2016) and take a number of samples (N ) to estimate
the expectations2:

SP ≈
log
(∑N

i=1 pωi(y|x)
)

length_penalty(y; 0.6)
(11)

For the BLEUVar approximation, we opt for decoding outputs using beam search applied to different
model samples (realised by randomising the dropout masks) and measuring the complement BLEU
between pairs of these examples.

BLEUVar ≈
N∑
i=1

N∑
j 6=i

(
1− BLEU(decωi(x),decωj (x))

)2
. (12)

Additionally, out of the N sample sequences generated by BLEUVar, we need to choose one or
generate a new sequence as the result for a specific input. In regression, the mean of the samples
is normally chosen as the result, which is an approximation for the predictive mean. In our case,
the ‘mean’ of N sentences is hard to derive or even not properly defined. Therefore, we use the
sampled sequence that is the closest to the ideal ‘mean’ as an approximation. Since we can measure
the disagreement between any two sentences using BLEU, the sequence that is the closest to the
‘mean’ of the N samples must have the smallest disagreement with rest of the N − 1 samples. Hence,
the final output sequence of the method BLEU Variance is:

µ̃ = arg min
yi

( N∑
∀j 6=i

(
1− BLEU(yi, y

′
j)
)

+

N∑
∀j 6=i

(
1− BLEU(y′j , yi)

))
. (13)

One remark for the above three methods is that the two methods BS and SP have the same resulting
translation y given x, but with different values as its uncertainty estimates. For the method BLEUVar,
it uses µ̃ for the resulting translation, and a value in a different range as the uncertainty estimate.
This is reflected in the plots from the experiments section. For example, in Figure 6 (b), BS and SP
converged into the same value, while BLEUVar converged to a different value.

3.1 EVALUATING UNCERTAINTY IN SEQUENCE MODELS

A number of uncertainty evaluation metrics have been proposed for standard classifier networks such
as the popular ECE and MSE metrics (Guo et al., 2017); however, for sequence modelling these
classification-specific metrics are not applicable. Instead, we opt for the performance versus retention
curve method for evaluating our uncertainty measures following Filos et al. (2019).

1A common practice in the NMT literature is to scale it up by ×100, i.e. in the range of [0, 100].
2The approximations below should have constant scaling factors, but these don’t impact our evaluation metric

(performance-retention curves) so we leave them out for simplicity.
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The performance-retention curve indicates how well an uncertainty measure would perform if the
k% least certain outputs were deleted from the test dataset. The x-axis ranges along the fraction
of data retained, while the y-axis measures some performance metric of the model on the retained
data. A performance-retention curve of a well-calibrated uncertainty measure will see a clear and
sustained improvement in performance as low-confidence predictions are excluded from the test set;
while a poorly-calibrated model will yield a curve that either lacks a trend or tends to lay beneath
the well-calibrated metric’s curve. In addition, we also calculate the area under a curve (AUC) as a
summary statistic for comparing the curves. A larger AUC corresponds to a higher curve on average.

4 EXPERIMENTS

Experiments consist of evaluations on both in-distribution (see Appendix A) and out-of-distribution
test sets. The implementation of the Transformer architecture we use is taken from the Tensor2Tensor
(Vaswani et al., 2018) repository.

As discussed in the previous sections we use performance-retention curves to evaluate the different
uncertainty estimates of our models. We also use scatter plots of the uncertainty versus pairwise
BLEU of the predictions to offer another gauge of model uncertainty (see Appendix A.2) To visualise
the quality of uncertainty estimates for Transformers, we can order the generated sequence based
on their uncertainty estimates from the most confident to the most uncertain, and plot BLEU scores
as a function of the fraction of data retained starting from the least uncertain output. For a good
uncertainty estimate, we are expecting to see the BLEU scores decrease when the fraction of retained
data increases.

The following datasets were used in our experiments: (1) WMT EN↔ DE: The training set for
translation tasks between English (EN) and German (DE) composed of news-commentary-v13 with
284k sentences pairs, wmt13-commoncrawl with 2.4m sentences pairs and europarl-v7 with 1.9m
sentences pairs, in total 4.6m sentences pairs. The test set was the newstest2014 with size 3k from
WMT 2014. (2) WMT NL→ EN: The test set for Dutch (NL) to English (EN) translation was a
subset (size 3k sentences pairs) of news-commentary-v14.

In the experiments below, we denote the results from methods beam score, sequence probability, and
BLEU Variance as BS, SP and BLEUVar respectively. If a suffix is added such as BLEUVar-10, then
the suffix 10 indicates the number of samples taken during MC dropout.

4.1 OUT-OF-DISTRIBUTION EXPERIMENTS

The in-distribution tests showed in Appendix A illustrate that when the training set is large enough,
the three uncertainty estimates have similar performance if the test set is in the same domain as the
training set. However, when the training set only has limited data (e.g. 50k compares to 4.6m),
BLEUVar outperforms BS and SP even though the test set is in the same domain as the training set.
One explanation is that with the limited amount of training data, the model was not able to learn a
distribution that capture the data from the test set. Therefore, to some extend, the test data are slightly
out-of-distribution.

In this section, we will have a look of experiments under two different obviously out-of-distribution
settings (which in our application is equivalent to a domain shift) for evaluating our uncertainty
estimates.

The first experiment exploits the fact that the wordings and the sentence patterns might vary across
different content domains in the same language. For example, sentences from a legal document and
sentences from social media are different in terms of formality, even though they can both be in the
same language. If we train a model using data from one domain and test it with data from another
domain, then such input would be out-of-distribution for the model.

The second experiment explores an extreme case of out-of-distribution setting. Given a trained model
for translation task from languageA to languageB, if we test it on input from language C s.t. C 6= A,
it would be an out-of-distribution input.

4.1.1 UNCERTAINTY CAUSED BY DIFFERENT CONTENT DOMAINS

To evaluate our uncertainty measures on out-of-content-domain test set, we trained a model using
only the news-commentary-v13 data for German to English (DE-EN) task. This training set has 284k
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(a) In-domain test newstest2014 (size 3k)
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(b) Out-of-domain test Europarl (size 3k)
Figure 1: Uncertainty measure comparisons using the same-domain test set newstest2014 (left)
and out-of-training-domain test set Europarl (right). The Transformer model was trained for DE
to EN tasks with the news-commentary-v13 EN-DE training set (size 284k) using 350k steps.

Table 1: Area under a curve (AUC) for all plots in Figure 1.
BS SP-10 BLEUVar-10

(a) Test set newstest2014 25.75 25.78 27.23
(b) Test set Europarl 27.65 28.29 29.46

samples in the domain of news commentary. During test time, we used both the in-domain test data
(newstest2014) and the out-of-domain test data (a subset of Europarl). newstest2014 is in the same
domain as the training set. Europarl contains samples extracted from the proceedings of the European
Parliament, which has a different domain than news commentary.

We expect a good uncertainty measure to perform well in both in-domain and out-of-domain test
set. As shown in Figure 1 and Table 1, BLEUVar outperforms the other two measures by a large
margin for both test sets. In particular, the unstable performance of BS on the out-of-domain test data
indicating such uncertainty measure might be not be reliable on out-of-distribution data, i.e. data it
never saw before.

4.1.2 UNCERTAINTY CAUSED BY DIFFERENT LANGUAGE DOMAINS
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(a) DE to EN (size 3k)
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(b) NL to EN (size 3k)
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(c) DE+NL to EN (size 6k)
Figure 2: Uncertainty measure comparisons using the in-distribution DE-EN test set (a), out-
of-distribution NL-EN test set (b) and the combined DE+NL to EN test set (c). The Reference
line in (c) corresponds to the BS plot from (a), which only has 3k test data. Therefore it only
reaches the fraction 0.5 in this graph. The model was trained for DE to EN task with the full
EN-DE training set (size 4.6m) using 350k steps.

Table 2: AUC for all plots in Figure 2.

BS SP-10 BLEUVar-10
(a) DE to EN 40.22 39.43 38.61
(b) NL to EN 5.14 5.49 6.75
(c) DE+NL to EN 22.55 25.71 29.74

We trained a Transformer model on WMT13 and Europarl DE (German) to EN (English) sentence
pairs (obtaining BLEU 33 on the WMT14 test set). We then evaluated the model on out-of-training-
distribution input sentences in NL (Dutch), which shares a large overlapping vocabulary with German
(hence input sentences look plausible to non-native speakers). One would hope that such data falling
outside of the training distribution would produce model predictions with high uncertainty. A similar
experiment with a different language pair (French, German to English) can be found in Appendix B.

The BLEU scores differences between Figure 2(a) and (b) shows that feeding Dutch (NL) sentences
into a German to English model does not result in meaningful translations in general. Nevertheless,
BLEUVar still provide a better uncertainty estimate with Dutch input (see Figure 2(b), Table 2(b)).
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In addition, Figure 2(c) shows the performance-retention curves for the combined DE+NL test set,
in which BLEUVar outperforms BS and SP by a large margin. The fact that BLEUVar is close to
the DE-EN reference curve indicates most of the DE input has been assigned with high confidence
correctly. As the left half of the BLEUVar curve, which corresponds to the most certain half of the
test data, nearly resembles the result from Figure 2(a).

A more interesting result is shown in Figure 3. Given the combined DE+NL test set, BLEUVar is able
to nicely separate the test set into to two clusters (DE and NL) using only the uncertainty estimates
without evaluating on the target translation.
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(b) SP-10 histogram on a mixed
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(c) BLEUVar-10 histogram3 on a
mixed test set (Right corresponds
to higher uncertainty)

Figure 3: Histograms show uncertainty value for DE-EN (green) and NL-EN (red). Note how
BLEUVar-10 is able to clearly separate the in-distribution (green) from out-of-distribution (red).
The model was trained for DE to EN task with the full EN-DE training set (size 4.6m) using
350k steps.

Note that we do not try to solve the problem of language detection here. Instead, we use it as an
extreme example to show that our uncertainty metric is able to assign very high uncertainty scores
towards out-of-distribution test data while being more confident towards in-distribution data. But our
methodology was not trained specifically nor designed for language detection. However, being able
to separate the two shows that our methods do reflect the uncertainty of the model very well, it also
shows that Bayesian deep NLP models can be very powerful.

4.2 ANALYSIS OF SENTENCE LENGTH VERSUS UNCERTAINTY

Table 3: Average BLEUVar for output sentences of various lengths from Figure 2.

Lengths 1-10 11-20 21-30 31-40 41-50 51+

DE-EN (In-dist) 2579.93 1867.11 1613.95 1507.85 1502.78 2794.11

NL-EN (OOD) 4772.16 5388.25 5579.82 6039.02 6705.95 7042.69

Use sentences with different lengths and uncertainties from section §4.1.2 as examples, we can
see from the Table 3 that long sentences do not necessarily have consistently low/high uncertainty
(BLEUVar). For the in-distribution test data, the model is very certain for sentences of length around
21-50, this is because the training sentences length distribution is centred around these sentence
lengths (with 54% of the training data in this interval). For the OOD test data, the model is very
uncertain across all sentence lengths, and as the sentences get longer the model becomes more
uncertain. Note that average uncertainty for the shortest OOD sentences is ∼4700, which is much
greater than the average uncertainty for the longest in-distribution sentences, ∼2700.

An important point is that it is not necessary that all the short sentences must have low uncertainty,
even for sentences in-distribution. I.e., our uncertainty metric is not simply a measure of sentence
lengths (or even correlated with it).

We further extended the experiment design and added a naive baseline which simply looks at the
sentence length to reject sentences (ordering test data using sentence_length

longest_sentence_length , i.e. from short
sentences to long sentences). Calculating BLEU scores at different retention rates (as in Figure 2(a),
see Table 4), we see that the curve is much lower than BLEUVar. In fact, the performance of sentence
length referral is worse than another naive baseline: randomly referring sentences without looking at
them at all.

3With the common practice of BLEU (i.e. ×100), the BLEUVar value results in ×1002 in the plots.
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Table 4: BLEU scores at different retention rates under three ordering (sentence length here is
system output sentence length; source sentence length behaves the same).

Retention Sentence length Random referral BLEUVar

0.2 29.62 32.06 42.87

0.3 31.48 31.93 41.28

0.4 32.38 32.26 39.39

4.3 INTROSPECTION INTO THE MODEL UNCERTAINTY FROM THE LINGUISTIC PERSPECTIVE

Based on experiments in section §4.1.2, below are some example sentence translations sampled from
the model (and with which we estimate the model uncertainty). As a reminder, the uncertainty here
(BLEUVar) is the level of disagreement between sampled sentences, as determined by pairwise-BLEU
(pairwise between each model output and the other model outputs). For a very confident translation
from an in-distribution input (i.e. German), refer to Appendix D.1 Table 10. We can see that all
translations sampled from the model are consistent with each other, and the model has no uncertainty
at all. For other less certain in-distribution translations as showed in in Appendix D.2 Table 11,
we can see that each translation sampled from the model is inconsistent with the others in subtle
ways, leading to a larger variability in pair-wise BLEU scores. The model has high uncertainty, but
still lower than that of the average OOD sentence. In contrast, Table 5 shows 3 truncated samples
from OOD input (i.e. Dutch), the complete table with 5 full samples can be found in Appendix
D.3. Here each translation sampled from the model is wildly inconsistent with the others, with
some translations reminiscent of nonsense translations often encountered with neural systems when
these are run on inputs they never saw before. We can identify these bad translations by the large
variability in pair-wise BLEU scores. The model has much higher uncertainty than that of the average
in-distribution sentences.

Table 5: Out-of-distribution NL source sentence from the experiment in Figure 2(c).

Source sentence (NL) :
De debiteurenlanden zouden hun concurrentiekracht terugkrijgen; hun schulden zouden in reële termen
afnemen; de dreiging van staatsbankroeten zou - met de ECB onder hun controle - verdwijnen, en hun
leenkosten zouden dalen naar een niveau dat vergelijkbaar is met dat van het Verenigd Koninkrijk.

Reference translation (EN) : (only used to compute “BLEU to reference”)
Debtor countries would regain their competitiveness; their debt would diminish in real terms; and, with
the ECB under their control, the threat of default would disappear and their borrowing costs would fall
to levels comparable to that in the United Kingdom.

Model predictive-mean translation (EN) : (averaging over predictive probabilities during decoding)
The debitenlands were to compete with the rivalrivalrivalrivalrivalrivalrivalrivals of terugkrijgen; they
were in debt in the countries of afafafafafafafafafafafafafafafafafafafafafafafafafaf

Translation “BLEU to reference” : 1.9

Translation uncertainty : 8617

Translations sampled from the model: (3 shorten samples from predictive probabilities during decoding)

1 The debitenlands were the ones to compete in their rivalrivalrivalrivalrivalrivalrivals of them; they were
debt-denominated in their afafafafafafafafen; the tripthirthirthirwent of state bankrbankrbankrbankru -
with the ECB in its control the run - the run-off - the run - the run-run run run run run of the ECB.

2 In the debdebdebdebdebits were competitive in terms of law; those debt owed in debt in debt; the three
of state bankrbankrbankr - with the ECB, in its, in its, in its, in its control - business - business - the ECB,
in its, in the control - the dispute, the - business - the dispute, the dispute,

3 At the time of its independence, it was a rivalrivalrivalrivalrivalrivaleach one; the debts of the poor; the
three-three of the bankrbankrbankrall - with the ECB in its control of the ones - the ones in question -
the parties in question, the countries in the future; the three of the bankrbankrbankrbankrbankr

5 FUTURE DIRECTIONS

With the new tools above we can now develop NMT systems which can be deployed in scenarios
where high trust is required of the system, for example in legal applications. With the new tools
proposed we can integrate expert annotation in the deployment phase of the system by referring
uncertain sentences to human annotation instead of automatic one. Further, with these new tools
future research could examine human-in-the-loop approaches to NLP. Such approaches will allow us
to develop NLP tools in scenarios when hand-labelling of data is too costly, for example language
with scarce resources.
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A IN-DISTRIBUTION EXPERIMENTS

This section details our experiments on data that lays within the training distribution for the WMT
English (EN)→German (DE) and English (EN)→Vietnamese (VI) tasks. We explore the calibration
of Transformer models in this setting and evaluate the effectiveness of using MC Dropout and the
proposed methods to measure the model uncertainty.

In addition to WMT13 dataset for EN→ DE tasks mentioned in the previous section, we use the
IWSLT 2015 dataset for translation tasks from EN to VI. There are 133k sentences pairs in the
IWSLT 2015 training set and 1.3k sentences pairs in the IWSLT 2015 test set. Both the training and
test data for IWSLT 2015 come from the domain of TED talks.

A.1 EVALUATING MODEL CALIBRATION
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Figure 4: Uncertainty estimator comparisons for different number of samples. The model is
trained for EN to DE tasks with 4.6m training data using 350k steps.

Table 6: AUC for plots in Figure 4 and Figure 5.

BS SP-10 SP-50 BLEUVar-10 BLEUVar-50
35.78 34.86 34.93 34.14 34.68

The first question we hope to answer is the quality of calibration in Transformers models and to
evaluate the effectiveness of MC Dropout in improving uncertainty estimates.

The Transformer was trained on the full EN-DE training set (4.6 million samples) for 350k steps. We
evaluate on the newstest2014 test set.
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Figure 5: BLEU scores for different uncertainty estimators under various retained data rates.
The model is trained for EN to DE tasks with 4.6m training data using 350k steps.

The results from Figures 4 and 5 suggest that the beam search score provides a well-calibrated
uncertainty metric on the in-distribution test data. The second observation is that MC Dropout-based
methods seem to slightly under-perform beam score in this setting (see Table 6), even when the
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number of samples is increased fivefold. In this setting, our proposed metric (BLEUVar) benefits
more from increasing the number of dropout samples relative to sequence probability.

A.2 THE IMPACT OF TRAINING SET SIZE
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Figure 6: BLEU scores for different uncertainty estimators under various retained data rates.
The model is trained for EN to VI tasks with 133k training data using 350k steps.

Table 7: AUC for plots in Figure 6.

BS SP-10 SP-50 BLEUVar-10 BLEUVar-50
35.55 36.25 36.33 35.66 36.92

The WMT EN-DE training set is fairly large and one would assume that most test sentences (or very
similar ones) have been observed during training time. Hence we do not expect much epistemic
uncertainty to exist in this testing scenario, which the experiments seem to confirm. A natural question
to ask is on the effect of training set size on the calibration of models. We explore this question by
considering the WMT English to Vietnamese (EN-VI) task which has 133k samples in the training
set (approx. 2.6% of EN-DE), and down-sampling the EN-DE training set to 50k and 100k samples.

The performance-retention plots in Figure 6 and the AUC in Table 7 indicate that, while a large
training set yields curves that seem to suggest beam score is a sufficient uncertainty metric, when a
small dataset is used the MC Dropout-based uncertainty metrics begin to outperform the beam score
(note the retention range 0.0 to 0.2). Moreover, in the small training set setting increasing the number
of samples drawn from MC dropout results in a significant improvement for BLEUVar.
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(a) 50k training data
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Figure 7: Uncertainty estimator comparisons for models with different sizes of training set.
The models were trained for EN to DE tasks with 50k and 100k training data using 350k steps.

The experiments depicted in Figures 7 and 8 consist of down-sampling the EN-DE training set. Figure
7 and Table 8 demonstrates a similar pattern to the above EN-VI experiment when down-sampling
the EN-DE data to 50k and 100k examples. Again, in the low-data regime BLEUVar substantially
out-performs beam score and sequence probability. Figure 8 demonstrates the impact of data size
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Table 8: AUC for plots in Figure 7.

BS SP-10 BLEUVar-10
(a) 50k training data 13.97 13.61 14.89
(b) 100k training data 19.88 19.64 20.44

0 2000 4000 6000 8000
Uncertainty : BLEUVar-10

0

20

40

60

80

100

In
di

vi
du

al
 B

LE
U

0

10

20

30

40

50

60

Count

(a) 50k training data
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(b) 100k training data
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Figure 8: The density of individual BLEU score versus uncertainty (BLEUVar-10) for all
sentences in the same test set newstest2014 produced by models trained with various size of
data set. The sentences are ordered by their uncertainty from low (left) to high (right) using
BLEUVar-10. Following the calculation of BLEUVar, since we have 10 samples, the uncertainty
estimate BLEUVar-10 has the value in range [0, 90]. And we scale it up by ×100, which results
in the x-axis has the range [0, 9000]. The models were trained for EN to DE tasks with 50k,
100k and 4.6m training data using 350k steps.

on the distribution of example uncertainty versus performance. We see that low data regimes lead
to a low-entropy distribution with high uncertainty across the entire test set; as data availability
is increased, uncertainty decreases, and average model performance increases for all rates of data
retention.
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B ADDITIONAL OUT-OF-DISTRIBUTION EXPERIMENTS (FR+DE TO EN)

We have done similar experiments as section §4.1.2 on other language pair. Figure 9 here uses a
similar experiment design as Figure 2 in §4.1.2. Instead of testing DE and NL on model trained with
DE-EN task, here the model is trained with FR (French) to EN (English) task and tests on FR to EN
(in-distribution), DE to EN (OOD) and FR+DE to EN test sets. The pair FR and EN has much less
overlap in vocabulary than DE and NL.

The BLEU on the full combined test set (see Figure 9(c)) is the best the models can do; then BLEUVar
rejects German sentences until it has mostly French sentences left and it has peak performance (data
retained=0.3), after which it is forced to reject French sentences as well. Note that performance goes
down for small retain rate because there is a small number of DE (OOD) data erroneously being
assigned with high confidence, which our metric captures well.

This result is similar to the DE+NL experiments in §4.1.2, with BLEUVar outperforms the rest by a
large margin in the mixed test set (see Figure 9(c) and Table 9(c)). Further, the BLEU scores of OOD
test is roughly flat compared to the amount of data retained (see Figure 9(b)).
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Figure 9: Uncertainty measure comparisons using the in-distribution FR-EN test set (a), out-
of-distribution DE-EN test set (b) and the combined FR+DE to EN test set (c). The Reference
line in (c) corresponds to the BS plot from (a), which only has 3k test data. Therefore it only
reaches the fraction 0.5 in this graph. The model was trained for FR to EN task with the WMT
2014 English-French training set (size 36m) using 350k steps.

Table 9: AUC for all plots in Figure 9.

BS SP-10 BLEUVar-10
(a) FR to EN 38.18 38.02 38.53
(b) DE to EN 3.56 3.78 3.82
(c) FR+DE to EN 14.70 17.67 25.10

15



Under review as a conference paper at ICLR 2021

C RELATED WORK

Our work might look similar to quality estimation (QE) task in MT (Specia et al., 2010; Blatz et al.,
2004), but the problem of QE is fairly different to what we do in this paper. QE assumes the existence
of a fixed translation system (e.g., an in-house encoder-decoder attention-based NMT system, as in
WMT19’s shared task in Quality Estimation). The QE models then have to determine the quality of
the system’s output. In contrast, we look at the problem of “introspection” where the system has to
decide the the confidence (“quality”) of its own output. This confidence can then be used for selective
classification where the model can reject some uncertain translation. Further, standard approaches
in QE might assume access to privileged data (e.g., the NMT translations for the source sentences
and their corresponding human post-edition, as in task 2 in WMT19’QE), which we do not require.
In addition, most existing approaches for QE require additional model to be trained to estimate the
translation quality of a MT model, while our method does not have such requirement. Therefore, our
method is able to provide uncertainty estimate simply with the parallel corpus used for training the
translation model without the need for additional data and training procedure.

The closest to our paper is task 3 in WMT19’QE: a metric to score sentences is sought, which must
correlate to human judgement. We would like to stress that a system’s confidence in its own prediction
does not have to be correlated to human judgement. Indeed, we demonstrate this in Appendix A.2
where a model can indicate that it does not have enough training data, and requires additional data to
increase its confidence (the model’s subjective view of its uncertainty does not have to correlate with
empirical mistakes - Bayesian epistemology (Zalta et al., 1995)).

In addition, QE tasks are mainly focus on estimating the in-distribution translation quality, since the
test sets are in the same domain as the training sets provided by WMT QE tasks (e.g. both in the
IT domain for English-German WMT18,19). In contrast, the goal for our uncertainty estimate is
to identify the out-of-distribution translations, rather then estimating the quality of in-distribution
translation. Therefore, our tasks are fundamentally different to QE.

There have been some prior attempts at investigating the similar problem as ours. In particular,
Kumar & Sarawagi (2019) investigated the calibration of various NMT models at the token level.
Kumar & Sarawagi found that many models are ill-calibrated at the token level, leading to the
resulting probability distribution over the vocabulary used during decoding is not a good reference
for model uncertainty. To correct for this, Kumar & Sarawagi design a recalibration strategy that
applies an adaptive temperature to the logits, determined by the token identities, attention entropies,
and other relevant components. Desai & Durrett (2020) looked into the calibration of pre-trained
Transformers, and discovered that pre-trained Transformers are well calibrated for in-distribution
data but ill-calibrated for out-of-distribution data. Such observations on NMT calibration further
motivate us to design better uncertainty measures for NMT models.

Another study of uncertainty in NMT models comes from Ott et al. (2018); they found models tend
to have overly high uncertainty in their output distribution over sequences. Note that both do not
consider epistemic uncertainty, not OOD settings. There are some work consider epistemic uncertainty
(Fomicheva et al., 2020; Wang et al., 2019) and propose MC Dropout-based measures similar to our
Sequence Probability (SP). Our work explores this direction and offers a new uncertainty estimation
technique (i.e.BLEUVar) that empirically out-performs existing methods by a significant margin.
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D TRANSLATION SAMPLES

D.1 IN-DISTRIBUTION CERTAIN SAMPLES

Table 10: (Low uncertainty) In-distribution DE source sentence from the experiment in Figure
2(a).

Source sentence (DE) :
Nevada hat bereits ein Pilotprojekt abgeschlossen.

Reference translation (EN) : (only used to compute “BLEU to reference”)
Nevada has already completed a pilot.

Model predictive-mean translation (EN) : (averaging over predictive probabilities during decoding)
Nevada has already completed a pilot project.

Translation “BLEU to reference” : 70.7

Translation uncertainty : 0

Translations sampled from the model: (5 samples from predictive probabilities during decoding)

1 Nevada has already completed a pilot project.
2 Nevada has already completed a pilot project.
3 Nevada has already completed a pilot project.
4 Nevada has already completed a pilot project.
5 Nevada has already completed a pilot project.

D.2 IN-DISTRIBUTION UNCERTAIN SAMPLES

Table 11: (High uncertainty) In-distribution DE source sentence from the experiment in Figure
2(a).

Source sentence (DE) :
Im Grunde genommen sind vegane Gerichte für alle da.

Reference translation (EN) : (only used to compute “BLEU to reference”)
Essentially, vegan dishes are for everyone.

Model predictive-mean translation (EN) : (averaging over predictive probabilities during decoding)
Basically vegan dishes are there for everyone.

Translation “BLEU to reference” : 34.5

Translation uncertainty : 3122

Translations sampled from the model: (5 samples from predictive probabilities during decoding)

1 Basically vegan dishes are for everyone.
2 Basically, vegan dishes are there for everyone.
3 Essentially, vegan dishes are available for everyone.
4 Basically, vegane dishes are there for all.
5 Basically vegan dishes are there for everyone.
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D.3 OUT-OF-DISTRIBUTION SAMPLES

Table 12: Out-of-distribution NL source sentence from the experiment in Figure 2(c).

Source sentence (NL) :
De debiteurenlanden zouden hun concurrentiekracht terugkrijgen; hun schulden zouden in
reële termen afnemen; de dreiging van staatsbankroeten zou - met de ECB onder hun controle
- verdwijnen, en hun leenkosten zouden dalen naar een niveau dat vergelijkbaar is met dat van
het Verenigd Koninkrijk.

Reference translation (EN) : (only used to compute “BLEU to reference”)
Debtor countries would regain their competitiveness; their debt would diminish in real terms;
and, with the ECB under their control, the threat of default would disappear and their borrowing
costs would fall to levels comparable to that in the United Kingdom.

Model predictive-mean translation (EN) : (averaging over predictive probabilities during decoding)
The debitenlands were to compete with the rivalrivalrivalrivalrivalrivalrivalrivals of terugkrij-
gen; they were in debt in the countries of afafafafafafafafafafafafafafafafafafafafafafafafafafaf
afafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafa
fafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafafaf
afafafafafafafaf

Translation “BLEU to reference” : 1.9

Translation uncertainty : 8617

Translations sampled from the model: (5 samples from predictive probabilities during decoding)

1 The debitenlands were the ones to compete in their rivalrivalrivalrivalrivalrivalrivalrival-
rivalrivalrivalrivals of them; they were debt-denominated in their afafafafafafafafen; the
tripthirthirthirwent of state bankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankr-
bankrbankrbankrbankru - with the ECB in its control - the run - the run - the run - the run - the
run - the run - the run - the run - the run-off - the run - the run-run run run run run of the ECB.

2 In the debdebdebdebdebdebdebdebdebdebdebdebdebdebdebdebdebdebdebdebdebdebdebdebd
ebdebdebdebdebdebdebdebdebits, the debdebdebdebdebdebdebdebdebits were competitive in
terms of law; those debt owed in debt in debt; the three of state bankrbankrbankrbankrbankrba
nkrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrban
krbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrbankrban
krbankrbankrbankrbankrbankr - with the ECB, in its, in its, in its, in its control - business -
business - the ECB, in its, in the control - the dispute, the - business - the dispute, the dispute,
the - business - the dispute, the sovereign

3 At the time of its independence, it was a rivalrivalrivalrivalrivalrivalrivalrivalrivalrivalrival-
rivalrivalrivalrivalrivalrivalrivalrivaleach one; the debts of the poor; the three-three of the
bankrbankrbankrall - with the ECB in its control of the ones - the ones in question - the parties
in question, the countries in the future; the three of the bankrbankrbankrbankrbankrbankr-
bankrbankrbankr ( with the ECB in its control, with the ECB in its control, in the face, the
disputes, the financial crises, the financial crisis, the financial crisis, the financial crisis, the
financial crisis, the financial crisis, the financial crisis, the financial crisis, the financial crisis,
the financial crisis, the financial crisis, the financial crisis, the financial crisis.

4 De debitenlanden zouden hun concconcurrentierivalrival terugkrijgen; hun levlevlevlevlevlevl
ev levlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevl
evlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevl
evlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevl
evlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevlevl
evlevlevlevlevlevlevlevlevlevlevlev
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5 The debitenland gambgambgambgambgambgambgambgambgambgambgambgambgambgam
bgambgamble in their own countries; the gambgambgambgambgambgambgambgambgambga
mbgambgambgambgambgambgambgambgambgambgambgambgambgambgambgambgamb
gambgambgambgambgambgambgambgambgambgambgambgambgambgambgambgambga
mbgambgambgambgambgambgambgambgambgambgambgambgambgambgambgambgamb
gambgambgambgambgambgambgambgambgambgambgambgambgambgambgambgambga
mbgambgambgambgambgambgambgambgambgambgambgambgambgambgambgambgamb
gambgambgambgambgambgambgambgambgambgambgambgambgambgambgambgambga
mbgambgambgambgambgambgambgambgambgambgambgambgambgambgambgambgamb
gambgambgambgambgambgambgambgambgambgambgamb
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