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Abstract

We present SOLO, a single transformer for Scalable visiOn-Language mOdeling. Current large
vision-language models (LVLMs) such as LLaVA mostly employ heterogeneous architectures
that connect pre-trained visual encoders with large language models (LLMs) to facilitate
visual recognition and complex reasoning. Although achieving remarkable performance
with relatively lightweight training, we identify four primary scalability limitations: (1)
The visual capacity is constrained by pre-trained visual encoders, which are typically an
order of magnitude smaller than LLMs. (2) The heterogeneous architecture complicates
the use of established hardware and software infrastructure. (3) Study of scaling laws on
such architecture must consider three separate components — visual encoder, connector,
and LLMs, which complicates the analysis. (4) The use of existing visual encoders typically
requires following a pre-defined specification of image inputs pre-processing, for example, by
reshaping inputs to fixed-resolution square images. This inflexibility can create bottlenecks
and impede scalability. A unified single Transformer architecture, like SOLO, effectively
addresses these scalability concerns in LVLMs; however, its limited adoption in the modern
context likely stems from the absence of reliable training recipes that balance both modalities
and ensure stable training for billion-scale models. In this paper, we introduce the first
open-source training recipe for developing SOLO, an open-source 7B LVLM with the single
Transformer architecture using moderate academic resources (8 x A100 80GB GPUs). The
training recipe involves initializing from LLMs, sequential pre-training on ImageNet and web-
scale data, and instruction fine-tuning on our curated high-quality datasets. On extensive
evaluation, SOLO demonstrates performance comparable to LLaVA-v1.5-7B, particularly
excelling in visual mathematical reasoning1.

1 Introduction

Large vision-language models (LVLMs) demonstrate remarkable performance on downstream tasks (Li et al.,
2023c; Zhu et al., 2023; Liu et al., 2023c; Chen et al., 2023c; Kim & Ji, 2024). They can effectively extract
visual information (Wang et al., 2023b) and follow human instructions to generate insightful responses (Li
et al., 2023b; Chen et al., 2024d). Two established approaches for vision-language modeling include: (1)
Connecting pre-trained visual encoders (Dosovitskiy et al., 2021b; Radford et al., 2021) and large language
models (LLMs) (Touvron et al., 2023; Jiang et al., 2023) via a learned projection module that maps the
visual embeddings to the embedding space of LLMs (Dai et al., 2023; Gao et al., 2023; Liu et al., 2023c),
or an intermediate symbolic layer Wang et al. (2024c). (2) Leveraging a pre-trained visual encoder to extract
features and aligning feature embeddings with a pre-defined codebook (Esser et al., 2021) to convert each
image into a sequence of discrete visual tokens, thus enabling LVLMs to process both images and language
tokens (Wang et al., 2022b; Peng et al., 2022; Anil et al., 2023; Team, 2024; Diao et al., 2023).

∗Equal contribution.
1The code is made public at https://github.com/Yangyi-Chen/SOLO.
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Figure 1: (Previous work) The mainstream approaches for vision-language modeling rely on pre-trained
visual encoders for visual feature extraction, which exhibits scalability limitations. (Our work) We advocate
for a unified transformer architecture that processes both images and text, employing a simple linear projection
to directly handle raw image pixels. <vision>, </vision>, and <vrow_sep> are special tokens designed
explicitly for visual modality encoding.

However, despite their effectiveness, these approaches have limitations that make them hard to scale. We
define an architecture as scalable when it exhibits consistent performance improvements as computational
resources and training data increase, maintaining a positive scaling law relationship up to practical limits.
This is in contrast to architectures that show diminishing returns or performance plateaus at larger scales
due to fundamental architectural limitations such as information bottlenecks (i.e., structural limitations in
information transmission) in visual perception. The scalability limitations in prevalent LVLMs is evident
across four dimensions (§2.1), primarily due to their reliance on a pre-trained visual encoder:

(1) Constrained visual capabilities: The visual capacities of a pre-trained vision encoder are largely
pre-determined and limited by the data distribution and volume used during pre-training. Due to the
significantly smaller size of visual encoders—approximately over ten times smaller than LLMs—they
can be a performance bottleneck in solving complex vision-language tasks.

(2) Challenges in efficient training and deployment: The heterogeneous architecture of LVLMs with
vision encoders complicates adaptation to standard frameworks and hardware optimized for unified Trans-
former architectures, resulting in reduced computational efficiency in terms of training and inference speed.

(3) Multiple components complicate the scaling analysis: The analysis of scaling laws, which are
crucial for the development of foundation models, is complicated by the necessity to consider the size
of several distinct components independently: the visual encoder, the connector, and the LLMs.

(4) Limited image pre-processing flexibility: Most vision encoders pre-define a specification on
how image inputs should be pre-processed. For example, the widely used visual backbones, such as
CLIP-ViT-336 (Radford et al., 2021), require a square image input with a resolution of 336 × 336. The
inflexibility of image pre-processing can cause bottlenecks that hinder scalability.

To address these limitations, we present SOLO, which employs a single Transformer architecture for
unified and end-to-end vision-language modeling. SOLO accepts both raw image patches (in pixels)
and texts as inputs, without using a separate pre-trained vision encoder (Fig. 1). This simplifies the model
design and enhances the scalability and adaptability of the LVLM architecture. By simplifying from multi-
component LVLM to a single Transformer model, this architecture is unconstrained on the capabilities of
visual encoders, easier to train and deploy using existing hardware and software, allows more straightforward
scaling law analysis, and can easily scale to image data with diverse resolutions and aspect ratio. SOLO, with a
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7-billion parameter count, is initialized from Mistral LLM v0.1 (Jiang et al., 2023) and leverages its extensive
pre-trained knowledge.

This modeling strategy is inspired by the foundational modeling framework of VisualBERT (Li et al.,
2019) and industry efforts to scale unified LVLMs to the billion-scale (Bavishi et al., 2023). Despite the
simplicity and scalability, its limited contemporary adoption can be attributed to the lack of reliable
training recipes, as balancing vision and language modalities in unified LVLMs often leads to training
divergence. This paper details the first open-source recipe for developing scalable unified LVLMs, using
modest academic computational resources, specifically 8 NVIDIA A100 80GB GPUs (§3). Our training recipe
involves initializing with pre-trained LLMs, sequential pre-training on ImageNet and web-scale datasets,
and instruction fine-tuning on our curated high-quality data mixture.

While still lags behind recent state-of-the-art LVLMs on evaluation benchmarks, SOLO exhibits performance
on par with LLaVA-v1.5-7B (§4) and the variant LLaVA-7B∗ (§6), which is created following our training
recipe in the controlled setting. In particular, SOLO distinguishes itself in the domain of visual mathematical
reasoning. Further scalability analysis reveals SOLO’s better scaling behaviors, inference speed advantages,
easier scaling laws analysis, and the scalability and benefits of our flexible image preprocessing pipeline
(§6.2). In addition, through comprehensive ablation studies, we validate the design choices of our training
recipe. Our empirical results confirm that the sequential pre-training on ImageNet and web-scale datasets
and instruction fine-tuning on our carefully curated data mixture are both essential for the training of such
single Transformer LVLMs (§5). Interestingly, we find that after removing the first stage of pre-training
on ImageNet, the LVLM will produce outputs of drastically different quality while exhibiting similar
image-conditioned language modeling loss (§5.1, Fig. 3).

2 Tackling Scalability Limitations via Integrated Architectures

2.1 Scalability Limitations in Existing LVLMs

The scalability constraints of existing LVLMs are currently articulated from four critical perspectives that
limit their efficiency in utilizing expanded computational resources and larger datasets due to the bottlenecks
in the system design:

Fixed and Constrained Visual Capabilities The fixed nature of visual encoders severely limits the
adaptability of LVLMs to novel visual data distribution and more complex vision-language tasks since these
encoders are trained on specific distributions and training objectives. Current approaches address this issue
by continuing the training of visual encoders (Bai et al., 2023) or by integrating features derived from
various visual encoders (Lin et al., 2023). Nonetheless, the scope of data used for continued pre-training is
substantially less than that used initially, which only marginally enhances encoder adaptability, and employing
multiple encoders complicates the process of image feature extraction, thereby impeding the scalability of
LVLMs. Moreover, the smaller scale of visual encoders compared to LLMs frequently results in the visual
understanding component becoming a bottleneck. Consequently, visual representation learning is limited to
the smaller visual encoders, hindering the full utilization of LLM capabilities in existing LVLMs.

Challenges in Efficient Training and Deployment The heterogeneous architecture with multiple
components complicates the implementation of machine learning systems for efficient training and deployments
in terms of speed. (1) Training challenge: At large training scale (i.e., multi-node clusters), it is necessary
to distribute not only the Transformer-based LLMs but also the vision model and the MLP connector across
multiple devices, employing techniques such as tensor and pipeline parallelism. Thus, prevalent LVLMs cannot
directly use existing industry-grade training frameworks optimized for the Transformer architecture (Shoeybi
et al., 2019; Cano et al., 2023), thus necessitating the development of new tensor-sharding mechanisms. In
addition, AI alignment typically employs algorithms such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017), which necessitate simultaneously maintaining multiple models (e.g., reward and critic models)
in GPU memory and cause difficulty in the algorithm implementations for heterogeneous architectures. (2)
Deployment: The heterogeneous architecture complicates the deployment process due to similar model and
tensor sharding challenges described above. Consequently, this hampers the large-scale services of existing
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LVLMs. Moreover, existing specialized AI chips (Techcrunch) and inference libraries, such as vLLM (Kwon
et al., 2023) and MLC-LLM (team, 2023), are mostly optimized for Transformer architectures, presenting
significant challenges in the deployment of these models on end devices.

Multiple Components Complicate the Scaling Analysis The complexity introduced by the multiple
components of LVLMs is a significant barrier to understanding and improving these systems. Each component

—the visual encoder, the connector, and the language models—operates with its own parameters and training
strategies (Radford et al., 2021; 2019; Brown et al., 2020a), which can lead to a lack of cohesion in the
overall model behavior. Scaling laws are crucial for guiding the development of large foundational models by
forecasting the performance of a target model using data from several sampled models that are significantly
smaller in sizes (Kaplan et al., 2020; Bahri et al., 2021). However, applying these approaches to existing
LVLMs requires simultaneous consideration and scaling of various components, hereby increasing complexity.

Limited Image Pre-Processing Flexibility The strict requirements for image pre-processing imposed
by the specifications of visual encoders may create bottlenecks that hinder the scalability. For instance,
the requirement of a consistent input resolution can make it difficult to process images that are naturally
high-resolution or have non-standard aspect ratios without compromising on the quality or representational
fidelity of the input. Current mitigation strategies involve splitting the original image into multiple sub-
images, independently extracting visual features from each sub-image using pre-trained visual encoders and
subsequently aggregating the representation embeddings (Xu et al., 2024a; Liu et al., 2024a; Dong et al., 2024).
However, these approaches seem ad-hoc and can be suboptimal as the visual backbone is not pre-trained to
handle these inputs, potentially impacting the effective handling of these high-resolution images.

2.2 Unified Vision-Language Modeling with Integrated Architectures

We revisit the foundational modeling framework of VisualBERT (Li et al., 2019), initially proposed in the
early stages of research on pre-trained vision-language models. The key idea is to use one single Transformer,
initialized from BERT (Devlin et al., 2018) in VisualBERT, to uniformly process the image patches and
language tokens. Fuyu-8B exemplifies the industry’s effort to scale this modeling approach (Li et al., 2019)
to billion-scale models (Bavishi et al., 2023). However, the limited widespread implementation of this unified
architecture may be due to the lack of an established training recipe, as only the pre-trained model is released
by Bavishi et al. (2023) without training details. Training such unified LVLMs presents significant challenges in
balancing the two modalities and maintaining stable training, for which clear solutions are currently lacking. In
this paper, we present SOLO with full details of its unified and integrated architecture design and training recipe.

3 SOLO: Scalable Vision-Language Modeling

SOLO consolidates image and language capabilities into a single model, enables data-driven determination of
visual representations and parameter allocation across visual and language modalities, simplifies the scaling
laws analysis, and allows it to handle high-resolution images and those with uncommon aspect ratios flexibly.
For large-scale training (§3.2), SOLO also seamlessly integrates with established software frameworks for
large-scale Transformer pre-training (Shoeybi et al., 2019).

3.1 Model Architecture

The architecture of SOLO is shown in Fig. 1, which diverges from earlier models primarily in the extraction of
visual features. Instead of resizing the image into a fixed resolution adapted to the pre-trained image encoders,
SOLO keeps their original resolutions and aspect ratios. The feature extraction involves splitting the image into
patches with a pre-defined size. Through a trainable linear projection, these raw image patches (in pixels) are
transformed to obtain continuous embeddings that represent the visual features of the images. Thus, we can
integrate image and language processing within a single model. We maintain a list of special tokens designed
explicitly for visual modality encoding: <vision> and </vision> tokens mark the beginning and end of
a span of image patches respectively; <vrow_sep> acts as a row separator within the image patches and helps
the model distinguish between different rows of image patches, aiding in structured visual understanding.
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Table 1: Summary of datasets used in the three stages of pre-training. Each image patch counts as a vision
token. Number of instances is calculated after packing them into sequences with 32K length.

Training Stage Dataset #Instances #Image #Token #Text Tokens #Vision Tokens

Stage-1
ImageNet21K (Ridnik et al., 2021b) 74; 283 13; 151; 276 2; 423; 203; 108 212; 745; 573 2; 210; 457; 535
SlimPajama, subset (Soboleva et al., 2023) 120; 839 0 4; 340; 877; 587 4; 340; 877; 587 0

Total 195; 122 - 6; 764; 080; 695 (67:32%) 4; 553; 623; 160 (32:68%) 2; 210; 457; 535

Stage-2

Capfusion (subset) (Yu et al., 2024) 204; 978 23; 681; 864 6; 664; 351; 863 1; 172; 726; 505 1; 172; 726; 505
Websight (Laurençon et al., 2024) 71; 579 1; 922; 671 2; 300; 945; 215 1; 087; 060; 511 1; 213; 884; 704
CC3M (Sharma et al., 2018b) 32; 760 2; 331; 439 1; 064; 477; 314 76; 092; 147 988; 385; 167
Detailed Captions (lz) 6; 225 368; 767 202; 016; 770 44; 788; 200 157; 228; 570
LLaVAR (Zhang et al., 2023b) 3; 602 422; 315 117; 448; 784 31; 390; 556 86; 058; 228
DVQA (Ka�e et al., 2018) 2; 917 200; 000 94; 853; 796 55; 653; 796 39; 200; 000
OCR-VQA (Mishra et al., 2019) 1; 593 165; 746 51; 920; 705 21; 161; 018 30; 759; 687
FigureQA (Kahou et al., 2017) 1; 526 100; 000 49; 586; 305 24; 803; 256 24; 783; 049
SlimPajama, a di�erent subset (Soboleva et al., 2023) 120; 385 0 4; 300; 998; 161 4; 300; 998; 161 0

Total 445; 565 - 14; 846; 598; 913 (45:90%) 6; 814; 674; 150 (54:10%) 8; 031; 924; 763

Stage-3

ALLaVA-LAION (Chen et al., 2024a) 13; 725 438; 992 442; 509; 490 176; 660; 898 265; 848; 592
ALLaVA-VLFLAN (Xu et al., 2024b) 4; 469 207; 549 144; 577; 377 77; 835; 919 66; 741; 458
LLaVAR (Zhang et al., 2023b) 3; 602 422; 315 117; 448; 784 31; 390; 556 86; 058; 228
DVQA (Ka�e et al., 2018) 2; 917 200; 000 94; 853; 796 55; 653; 796 39; 200; 000
FigureQA (Kahou et al., 2017) 1; 526 100; 000 49; 586; 305 24; 803; 256 24; 783; 049
SlimPajama, a di�erent subset (Soboleva et al., 2023) 12; 085 0 430; 688; 442 430; 688; 442 0

Total 38; 324 - 1; 279; 664; 194 (62:28%) 797; 032; 867 (37:72%) 482; 631; 327

PATCH_SIZE = 32
MAX_RESOLUTION = 1024# 32 x 32

def get_resize_output_image_size(image_size):
l1, l2 = image_size
if l2 <= l1:

short, long = l2, l1
else :

short, long = l1, l2

requested_new_long = min(
int(long / PATCH_SIZE + 1) * PATCH_SIZE,
MAX_RESOLUTION

)
new_long = requested_new_long
new_short = int(new_long * short / long)
new_short = int(new_short / PATCH_SIZE + 1)

* PATCH_SIZE

if l2 <= l1:
return new_long, new_short

else :
return new_short, new_long

Figure 2: The input image resize algorithm
to maintain the aspect ratio.

Formally, we de�ne the patch size P and the maximal resolu-
tion M . For an image of dimension size(W; H ), it is resized
to (W 0; H 0) to ensure divisibility by P. Fig. 2 details the
resizing process, which adjusts theW and H to the nearest
multiples of P while preserving the original aspect ratio to the
extent possible and complying with the constraints imposed by
M . Subsequently, the image is divided intoN patches, where
N = ( W 0=P) � (H 0=P), each with dimensionsP � P � 3. A
trainable linear projector then maps each patch from a �attened
P � P � 3 vector to an output dimension compatible with the
embedding space of LLMs, extractingN embeddings as the
image's feature representation. These visual embeddings, along
with special visual modality tokens and embeddings of the text
tokens, are concatenated and processed through a single Trans-
former, facilitating uni�ed vision-language modeling. Notably,
compared to prevalent LVLMs, this modeling strategy facilitates
a much earlier fusion of visual and language modalities, allowing LVLMs to extract relevant information
conditioned on the given instructions. In our implementation, we initialize SOLOfrom the Mistral-7B-v0.1
base LLM. The max resolution M of processed images is set as 1024. The patch sizeP is set as 32.

3.2 Training Recipe

We describe our approach for training uni�ed billion-scale LVLMs, including pre-training (Ÿ3.2.1) and
instruction �ne-tuning (Ÿ3.2.2). For both stages, we optimize exclusively the language modeling loss on
natural language tokens, without optimizing loss on image patches and special image tokens (e.g., <vision> ).
We substantiate the essential ingredients in our recipe in Ÿ5.

3.2.1 Pre-Training

We introduce a three-stage pre-training curriculum that progressively enhances the visual capabilities of
LVLMs while preserving their fundamental language capabilities. We present datasets and their statistics for
each stage in Tab. 1.

Stage-1 ImageNet Pre-Training for Initialization We leverage ImageNet21K (Ridnik et al., 2021a),
encompassing a broad spectrum of �ne-grained visual categories, for the initial pre-training stage. In this
process, we trainSOLOto predict only �ne-grained labels in natural language tokens (class name of images,
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e.g., �golden retriever�) conditioned on the image patches, thereby developing visual representations that
initialize subsequent pre-training runs. In Ÿ5, we demonstrate the critical role of this stage in training uni�ed
LVLMs: when this stage is removed, the LVLM pre-trained on web-scale data from stage 2 (e.g., captioning)
failed to generate meaningful captions (Fig. 4).

Stage-2 Pre-Training on Web-Scale Data ImageNet21K, composed chie�y of visual concept data
annotated by humans, faces scalability constraints in both knowledge breadth and data volume. In Stage-2,
we scale up the pre-training data to encompass web-scale data, primarily consisting of image-caption pairs
from sources like Capfusion (Yu et al., 2024) and CC3M (Sharma et al., 2018a). Additionally, we include
synthetically generated web pages with associated HTML code from Websight (Laurençon et al., 2024) to
improve OCR performance, and we also include a small set of supervised datasets to improve the data diversity.
In this stage, the language modeling loss is applied uniformly across all language tokens, encompassing
captions, HTML code, and questions and responses within the supervised datasets.

Stage-3 Annealing Following MiniCPM (Hu et al., 2024a), we perform a �nal annealing stage to conclude
the pre-training. In this stage, we incorporate a limited selection of supervised datasets�either down-sampled
or omitted from the instruction �ne-tuning dataset mixture ( e.g., ALLaVA, Chen et al. 2024a)�to prime SOLO
for the subsequent instruction �ne-tuning stage. The primary purpose of this stage is to transition SOLOfrom
a noisy web data to being trained on high-quality data mixtures.

Balancing Text and Vision Capability Through Language Corpus Blending Initiating with a
base LLM and performing full-parameters training necessitates carefully preserving its inherent language
comprehension abilities while performing image representation learning since most real-world vision-language
tasks require text-only capabilities such as instruction comprehension and complex reasoning. At each stage of
SOLO's pre-training, we mix in a non-trivial proportion of text-only pre-training data (SlimPajama, Soboleva
et al. 2023) to maintain the text capability. We present more empirical results on how data mixture a�ects
image and text loss trade-o�s in Ÿ7.2.

Pre-Training Infrastructure We modify the standard Megatron-LLM (Cano et al., 2023) to support
arbitrary image patch inputs. We use one node with 8 NVIDIA A100 80G GPU for pre-training. We use
2-way tensor parallelism (Shoeybi et al., 2019) and 4-way data parallelism for training. Following Shoeybi
et al. (2019), we adopt distributed optimizer to shard optimizer states across di�erent GPUs for memory
e�ciency. In our test on an 8xA100 server with identical image-caption pre-training, Megatron achieves 20K
tokens per second, 67% higher than DeepSpeed, making it more suitable for our pre-training requirements.

Training Hyperparameter We use a global batch size of 128 examples (i.e., 4M tokens) and each
pre-training example is packed to32; 768 tokens. We adopt a learning rate of 5e-5 with cosine decay to a
minimum learning rate of 5e-6 and warm up for 200 steps. We use weight decay of 0.1. For training e�ciency,
we pack shorter sequences into one longer sequence and re-adjust the attention mask to make sure tokens
from di�erent examples cannot attend to each other. The training process consists of1525steps in Stage 1,
3480steps in Stage 2, and300 steps in Stage 3.

3.2.2 Instruction Fine-Tuning

Dataset Curation We meticulously select a diverse range of supervised datasets to perform instruction
�ne-tuning, aiming to enhance their performance across various domains of vision-language tasks. Our
dataset selection strategy is based on the empirical analysis derived in Laurençon et al. (2024); Lin et al.
(2024); Lu et al. (2024), and is mainly driven by the objective to cover a comprehensive range of data types,
including language-only data, detailed image captions, scienti�c documents, tables, documents, charts, OCR
and text-rich images, and general visual question-answering (VQA) tasks. In ŸA, we present datasets and
their statistics in Tab. 7 and more details regarding data curation.

Implementation Details We utilize DeepSpeed (Rasley et al., 2020), as implemented in Accelerate (Gugger
et al., 2022), for instruction �ne-tuning. The choice to use Accelerate over Megatron for �ne-tuning is
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based on practical e�ciency. Accelerate enables quick experimentation with data mixtures by modifying
a few lines of code, while Megatron demands extensive preprocessing for each run, complicating ablation
studies. Additionally, Megatron's complex, multi-layered implementation hinders customization, presenting
challenges in potential further extension, such as introducing advanced methods like RLHF for alignment.
For hyperparameters, the global batch size is con�gured at 640, with a weight decay parameter of 0.1. We
train for 1 epoch with a maximum learning rate of 1e-5, which follows a linear warm-up phase and transitions
to a cosine decay schedule.

4 Comparison to Existing LVLMs

4.1 Model

We select various open-source LVLMs for comparison to better understand the capabilities ofSOLO. Based
on the release time and capabilities of LVLMs, we select 3 groups of LVLMs to better understand the
current development phase ofSOLO. Level-1 LVLMs represent the pioneering generation, which initiate
the integration of visual encoders with pre-trained LLMs, with releases prior to October 2023. Level-2
LVLMs, released before early 2024, typically feature a more re�ned selection of instruction �ne-tuning data to
enhance performance. Level-3 marks the state-of-the-art (SoTA) LVLMs, released within the last �ve months,
incorporating advanced training recipes, superior LLM backbones, and support for high-resolution images.

ˆ Level-1 : (1) OpenFlamingo v2 (Awadalla et al., 2023), (2) MiniGPT4 v2 (Chen et al., 2023a), (3)
VisualGLM (Du et al., 2022), (4) InstructBLIP (Dai et al., 2023), (5) LLaVA v1 (Liu et al., 2023a).

ˆ Level-2 : (6) LLaVA v1.5 (Liu et al., 2024a), (7) mPLUG-Owl v2 (Ye et al., 2024), (8) InternLM-
XComposer (Zhang et al., 2023a), (9) MiniCPM-v1 (Hu et al., 2023),

ˆ Level-3 : (10) Monkey (Li et al., 2024b). (11) LLaVA-NEXT (Liu et al., 2024b), (12) MiniCPM-v2 (Hu
et al., 2024b), (13) DeepSeek-VL (Lu et al., 2024).

Each LVLM may have multiple variants based on di�erent LLM sizes and architectures. If possible, we opt
for the variant equipped with a 7B Mistral LLM. For the remaining LVLMs, we select the variant whose
con�guration most closely aligns with our speci�cations (Mistral-7B-LLM). We directly present the evaluation
results of existing LVLMs from the leaderboard (OpenCompass) when available, to ensure a fair comparison.

4.2 Benchmarks

We select a wide range of benchmarks, encompassing both general vision-language tasks and speci�c task-
oriented datasets, for evaluation and analysis. For general vision-language capability evaluation, we choose
MMStar (Chen et al., 2024b), MME (Fu et al., 2024), and SEED-Bench (Li et al., 2024a). Speci�cally, MMStar
measures elite vision-indispensable capabilities, MME measures both the perception and cognition capabilities,
and SEED-Bench covers 12 evaluation dimensions covering various aspects of LVLMs capabilities. For scienti�c
document understanding, we choose AI2D (Kembhavi et al., 2016) and ScienceQA (Lu et al., 2022a). For
visual mathematical reasoning, we choose MathVista (Lu et al., 2023). We adopt VLMEvalKit (Contributors,
2023; Duan et al., 2024) to perform the uni�ed evaluation.

4.3 Results

The experimental results are shown in Tab. 2. We �nd that SOLOsigni�cantly outperforms Level-1 LVLMs and
also performs comparably to Level-2 LVLMs, despite slightly underperforming Level-3 LVLMs. Furthermore,
SOLOexcels in task-oriented benchmarks, especially in areas requiring scienti�c knowledge and mathematical
reasoning, due to its successful integration of image representation and complex reasoning within a single
uni�ed model. Overall, while SOLOdoes not yet meet the SoTA performance of the leading LVLMs (Level-3)
within the prevalent multi-component LVLM framework, it marks a substantial progression in uni�ed
vision-language modeling. It is important to consider that SOLOis trained using limited academic resources,
speci�cally 8 A100 GPUs. This is in sharp contrast with the resources used to produce SoTA LVLMs. For
example, the technical report of DeepSeek-VL (Lu et al., 2024) mentions that DeepSeek-VL-7B is trained on
a cluster of 64 nodes, each comprising 8 Nvidia A100 GPUs, totaling 512 GPUs�this represents a resource
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Table 2: The main experimental results of SOLO. We compare with LVLMs with diverse capabilities, released
at di�erent times and categorized into three levels. SOLOaligns with the second level of prior LVLMs
advancements focusing on LLaVA-Style modeling, and distinguishes itself in visual mathematical reasoning.
(C) denotes the visual encoders from CLIP.

Level Model Visual Language MMStar MME SEED ScienceQA MathVista AI2D

OpenFlamingo v2 (C) ViT-L/14 MPT-7B 26.9 607.2 28.8 44.8 18.6 31.7
MiniGPT-4-v2 EVA-G Llama2-13B 21.3 968.4 29.4 54.7 23.1 30.5
VisualGLM EVA-CLIP ChatGLM-6B 5.9 738.1 47.0 56.1 21.9 41.2
InstructBLIP EVA-G Vicuna-7B 32.7 1391.4 44.5 54.1 24.4 40.6

Level-1

LLaVA-v1-7b (C) ViT-L/14 Llama-7B 27.1 1075.5 50.4 61.8 25.2 48.3

LLaVA-v1.5 7b (C) ViT-L/14 Vicuna-V1.5-7B 33.1 1808.4 65.8 69.2 25.6 55.5
mPLUG-OWL v2 (C) ViT-L/14 Llama2-7B 34.8 1786.4 64.5 69.5 25.4 55.7
XComposer EVA-G InternLM-7B 6.9 1874.2 66.1 89.8 29.8 56.9Level-2
MiniCPM-V SigLIP-400M MiniCPM-2.4B 38.6 1650.2 65.6 77.0 30.6 56.3

Monkey ViT-BigHuge Qwen-7B 37.0 1759.9 64.3 72.1 33.5 62.5
LLaVA-Next (C) ViT-L/14 Mistral-7B 38.4 1821.2 72.4 73.0 34.6 69.0
MiniCPM-v2 SigLIP-400M MiniCPM-2.4B 39.1 1808.2 67.1 80.7 39.8 62.9Level-3
DeepSeek-VL Hybrid DeepSeek-7B 40.5 1765.4 70.1 80.9 36.9 65.3

Ours SOLO Mistral-7B 35.5 1260.0 64.4 73.3 34.4 61.4

scale 64 times greater than that used forSOLO. SOLOserves as a pivotal model, showcasing the scienti�c
value of training LVLMs with uni�ed architectures. This establishes SOLOas a viable candidate for future
developments aimed at closing the performance gap with SoTA LVLMs, with more �exibility and scalability
by avoiding issues in prior architectures (Ÿ2.1).

5 Validating Key Ingredients in Our Recipe

5.1 LVLMs Generate Meaningless Captions without Stage-1 Pre-training

We assess the necessity of Stage-1 pre-training by comparing the Stage-2 LVLM checkpointswith and without
undergoing Stage-1 ImageNet pre-training. In Fig. 3, we observe that these two variants overall achieve
similar pre-training loss curves on vision-language modeling and (text) language modeling.

Select Checkpoints for Comparison We select two checkpoints for comparison: one using caption-only
pre-training (Stage-2 only) and the other utilizing SOLO's two-stage pre-training, both of which achieve an
equivalent vision-language modeling loss of 2.1.

Qualitative Comparison We randomly select one example for qualitative analysis (in Fig. 4). Despite the
equivalent loss of the selected checkpoints in Fig. 3, we �nd that without ImageNet pre-training (Stage-2
only), the model generates irrelevant and meaningless image captions, indicates a training divergence.

Quantitative Comparison We perform a quantitative comparison on the same two checkpoints by training
them on the instruction �ne-tuning data mixture for 800 steps (see Fig. 5a). Compared to the two-stage
pre-trained SOLO, we observe a performance degradation across multiple benchmarks on the checkpoint
without Stage-1 pre-training, further validating the importance of the �rst stage.

Discussion We hypothesize that discrepancies between a model's vision and language capabilities can lead
to the observed behaviors. Speci�cally, when there is a signi�cant imbalance�such as with the Mistral 7B
model, which possesses advanced language abilities but lacks vision understanding�the model may reduce
loss by replicating caption patterns, including redundant text tokens irrelevant to the visual content. For
instance, in a caption like �This is a dog�, the essential element is �dog�. Focusing solely on minimizing
language modeling loss without a robust initialized vision representation may lead the model to favor generic
phrases like �This is a" over the more discriminative �dog�. This is because the former includes more tokens,
disproportionately in�uencing the overall language modeling loss. Pre-training on ImageNet at Stage 1,
which emphasizes predicting only the �dog� token, helps the model develop a solid visual representation,
e�ectively narrowing the gap between vision and language capabilities and mitigating this issue. In addition,
the results indicate that pre-training loss on vision-language data does not reliably indicate the performance of
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Figure 3: Image captioning loss using two di�erently initialized checkpoints: (1) caption-only pre-training
(green) initialized from the LLM; ( 2) two-stage pre-training (blue) initialized from the Stage-1 ImageNet
pre-trained LVLM.

Figure 4: Qualitative analysis of caption-only pre-training and SOLO's two-stage pre-training. Comparisons
are made on two checkpoints with comparable vision-language modeling loss (i.e., 2.1). Speci�cally, we select
the caption-only checkpoint at pre-training step 150, andSOLOat step 100.

LVLMs. Detailed analysis are provided in Ÿ7.1, which also demonstrates that training loss on the instruction
�ne-tuning data mixture is similarly unreliable as an indicator.

5.2 Stage-2 Pre-Training on Web-Scale Data

Stage-2 Pre-Training Improves Performance on Top of Stage-1 We verify the e�ectiveness of
Stage-2 pre-training on web-scale data by comparing the performance of two LVLMs. Each model is �ne-tuned
for 800 steps using the same instruction �ne-tuning data mixture but initialized di�erently�one from the
end of Stage 1 and the other from Stage 2. In Fig. 5b, we observe signi�cant improvement on all evaluation
datasets after pre-training on web-scale data, showing the substantial advantages of Stage 2 pre-training
compared to solely using ImageNet data (Stage 1 only).

Combining ImageNet and Captioning at Stage-2 Hurts Performance In addition, it is pertinent
to ask whether ImageNet21K data can be combined with web-scale data for Stage 2. We include an ablation
with SOLOtrained on ImageNet21K and the web-scale data included in the second stage. Fig. 6 illustrates the
training curves for comparison. The results suggest that while ImageNet pre-training e�ectively establishes an
initial visual representation, it may not be optimal for subsequent Stage-2 pre-training on web-scale data, as
it potentially impedes the optimization of vision-language modeling on image captions (i.e., vision language
modeling loss stop improving). This discrepancy may arise from the divergence in image classi�cation and
captioning capabilities; the former is emphasized in the �rst stage. This two-stage approach aligns with the
principles of continual curriculum learning, where the model must maintain pro�ciency in familiar tasks
while integrating new ones. This conclusion is also supported by our evaluation of downstream tasks (see
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(a) The e�ectiveness of Stage-1 pre-training on ImageNet
data for initialization.

(b) The e�ectiveness of Stage-2 pre-training on web-scale
data for knowledge breadth and data volume.

(c) The ine�ectiveness of including ImageNet data in
Stage-2 pre-training.

(d) The performance across training steps on the �ne-
tuning dataset.

Figure 5: The evaluation performance of various ablations to validate key ingredients of our recipe. The
MME scores are normalized for better illustration.

Fig. 5c). We train two di�erent checkpoints with and without ImageNet21K data in the second stage on
the instruction �ne-tuning data mixture (Ÿ3.2.2) for 800 steps. Note that we select two checkpoints with
comparable vision-language modeling losses for analysis. The results indicate that incorporating ImageNet21K
data in the second stage may detrimentally impact overall performance by inhibiting adaptation to and
learning from web-scale data.

5.3 Performance Boost via Instruction Fine-Tuning

We evaluate the performance ofSOLOon di�erent training steps throughout the instruction �ne-tuning stage
(see Fig. 5d). The results indicate a consistent improvement inSOLO's performance with prolonged training
on the �ne-tuning dataset, although the MME scores exhibit some �uctuations. This outcome contrasts with
the �ndings of Liu et al. (2024a), where the performance quickly plateaus upon training with a limited subset
of the �ne-tuning dataset. This illustrates the increased scalability of SOLOduring the instruction �ne-tuning
stage, suggesting that acquiring additional high-quality supervised datasets for �ne-tuning could consistently
enhance performance.

5.4 Additional Validation Experiments

We present the results to demonstrate the e�ectiveness of Stage-3 annealing in ŸB and to validate the curated
data mixture for instruction �ne-tuning in ŸC.
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