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Abstract

We present SOLO, a single transformer for Scalable visiOn-Language mOdeling. Current large
vision-language models (LVLMs) such as LLaVA mostly employ heterogeneous architectures
that connect pre-trained visual encoders with large language models (LLMs) to facilitate
visual recognition and complex reasoning. Although achieving remarkable performance
with relatively lightweight training, we identify four primary scalability limitations: (1)
The visual capacity is constrained by pre-trained visual encoders, which are typically an
order of magnitude smaller than LLMs. (2) The heterogeneous architecture complicates
the use of established hardware and software infrastructure. (3) Study of scaling laws on
such architecture must consider three separate components — visual encoder, connector,
and LLMs, which complicates the analysis. (4) The use of existing visual encoders typically
requires following a pre-defined specification of image inputs pre-processing, for example, by
reshaping inputs to fixed-resolution square images. This inflexibility can create bottlenecks
and impede scalability. A unified single Transformer architecture, like SOLO, effectively
addresses these scalability concerns in LVLMs; however, its limited adoption in the modern
context likely stems from the absence of reliable training recipes that balance both modalities
and ensure stable training for billion-scale models. In this paper, we introduce the first
open-source training recipe for developing SOLO, an open-source 7B LVLM with the single
Transformer architecture using moderate academic resources (8 x A100 80GB GPUs). The
training recipe involves initializing from LLMs, sequential pre-training on ImageNet and web-
scale data, and instruction fine-tuning on our curated high-quality datasets. On extensive
evaluation, SOLO demonstrates performance comparable to LLaVA-v1.5-7B, particularly
excelling in visual mathematical reasoning1.

1 Introduction

Large vision-language models (LVLMs) demonstrate remarkable performance on downstream tasks (Li et al.,
2023c; Zhu et al., 2023; Liu et al., 2023c; Chen et al., 2023c; Kim & Ji, 2024). They can effectively extract
visual information (Wang et al., 2023b) and follow human instructions to generate insightful responses (Li
et al., 2023b; Chen et al., 2024d). Two established approaches for vision-language modeling include: (1)
Connecting pre-trained visual encoders (Dosovitskiy et al., 2021b; Radford et al., 2021) and large language
models (LLMs) (Touvron et al., 2023; Jiang et al., 2023) via a learned projection module that maps the
visual embeddings to the embedding space of LLMs (Dai et al., 2023; Gao et al., 2023; Liu et al., 2023c),
or an intermediate symbolic layer Wang et al. (2024c). (2) Leveraging a pre-trained visual encoder to extract
features and aligning feature embeddings with a pre-defined codebook (Esser et al., 2021) to convert each
image into a sequence of discrete visual tokens, thus enabling LVLMs to process both images and language
tokens (Wang et al., 2022b; Peng et al., 2022; Anil et al., 2023; Team, 2024; Diao et al., 2023).

∗Equal contribution.
1The code is made public at https://github.com/Yangyi-Chen/SOLO.
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Figure 1: (Previous work) The mainstream approaches for vision-language modeling rely on pre-trained
visual encoders for visual feature extraction, which exhibits scalability limitations. (Our work) We advocate
for a unified transformer architecture that processes both images and text, employing a simple linear projection
to directly handle raw image pixels. <vision>, </vision>, and <vrow_sep> are special tokens designed
explicitly for visual modality encoding.

However, despite their effectiveness, these approaches have limitations that make them hard to scale. We
define an architecture as scalable when it exhibits consistent performance improvements as computational
resources and training data increase, maintaining a positive scaling law relationship up to practical limits.
This is in contrast to architectures that show diminishing returns or performance plateaus at larger scales
due to fundamental architectural limitations such as information bottlenecks (i.e., structural limitations in
information transmission) in visual perception. The scalability limitations in prevalent LVLMs is evident
across four dimensions (§2.1), primarily due to their reliance on a pre-trained visual encoder:

(1) Constrained visual capabilities: The visual capacities of a pre-trained vision encoder are largely
pre-determined and limited by the data distribution and volume used during pre-training. Due to the
significantly smaller size of visual encoders—approximately over ten times smaller than LLMs—they
can be a performance bottleneck in solving complex vision-language tasks.

(2) Challenges in efficient training and deployment: The heterogeneous architecture of LVLMs with
vision encoders complicates adaptation to standard frameworks and hardware optimized for unified Trans-
former architectures, resulting in reduced computational efficiency in terms of training and inference speed.

(3) Multiple components complicate the scaling analysis: The analysis of scaling laws, which are
crucial for the development of foundation models, is complicated by the necessity to consider the size
of several distinct components independently: the visual encoder, the connector, and the LLMs.

(4) Limited image pre-processing flexibility: Most vision encoders pre-define a specification on
how image inputs should be pre-processed. For example, the widely used visual backbones, such as
CLIP-ViT-336 (Radford et al., 2021), require a square image input with a resolution of 336 × 336. The
inflexibility of image pre-processing can cause bottlenecks that hinder scalability.

To address these limitations, we present SOLO, which employs a single Transformer architecture for
unified and end-to-end vision-language modeling. SOLO accepts both raw image patches (in pixels)
and texts as inputs, without using a separate pre-trained vision encoder (Fig. 1). This simplifies the model
design and enhances the scalability and adaptability of the LVLM architecture. By simplifying from multi-
component LVLM to a single Transformer model, this architecture is unconstrained on the capabilities of
visual encoders, easier to train and deploy using existing hardware and software, allows more straightforward
scaling law analysis, and can easily scale to image data with diverse resolutions and aspect ratio. SOLO, with a
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7-billion parameter count, is initialized from Mistral LLM v0.1 (Jiang et al., 2023) and leverages its extensive
pre-trained knowledge.

This modeling strategy is inspired by the foundational modeling framework of VisualBERT (Li et al.,
2019) and industry efforts to scale unified LVLMs to the billion-scale (Bavishi et al., 2023). Despite the
simplicity and scalability, its limited contemporary adoption can be attributed to the lack of reliable
training recipes, as balancing vision and language modalities in unified LVLMs often leads to training
divergence. This paper details the first open-source recipe for developing scalable unified LVLMs, using
modest academic computational resources, specifically 8 NVIDIA A100 80GB GPUs (§3). Our training recipe
involves initializing with pre-trained LLMs, sequential pre-training on ImageNet and web-scale datasets,
and instruction fine-tuning on our curated high-quality data mixture.

While still lags behind recent state-of-the-art LVLMs on evaluation benchmarks, SOLO exhibits performance
on par with LLaVA-v1.5-7B (§4) and the variant LLaVA-7B∗ (§6), which is created following our training
recipe in the controlled setting. In particular, SOLO distinguishes itself in the domain of visual mathematical
reasoning. Further scalability analysis reveals SOLO’s better scaling behaviors, inference speed advantages,
easier scaling laws analysis, and the scalability and benefits of our flexible image preprocessing pipeline
(§6.2). In addition, through comprehensive ablation studies, we validate the design choices of our training
recipe. Our empirical results confirm that the sequential pre-training on ImageNet and web-scale datasets
and instruction fine-tuning on our carefully curated data mixture are both essential for the training of such
single Transformer LVLMs (§5). Interestingly, we find that after removing the first stage of pre-training
on ImageNet, the LVLM will produce outputs of drastically different quality while exhibiting similar
image-conditioned language modeling loss (§5.1, Fig. 3).

2 Tackling Scalability Limitations via Integrated Architectures

2.1 Scalability Limitations in Existing LVLMs

The scalability constraints of existing LVLMs are currently articulated from four critical perspectives that
limit their efficiency in utilizing expanded computational resources and larger datasets due to the bottlenecks
in the system design:

Fixed and Constrained Visual Capabilities The fixed nature of visual encoders severely limits the
adaptability of LVLMs to novel visual data distribution and more complex vision-language tasks since these
encoders are trained on specific distributions and training objectives. Current approaches address this issue
by continuing the training of visual encoders (Bai et al., 2023) or by integrating features derived from
various visual encoders (Lin et al., 2023). Nonetheless, the scope of data used for continued pre-training is
substantially less than that used initially, which only marginally enhances encoder adaptability, and employing
multiple encoders complicates the process of image feature extraction, thereby impeding the scalability of
LVLMs. Moreover, the smaller scale of visual encoders compared to LLMs frequently results in the visual
understanding component becoming a bottleneck. Consequently, visual representation learning is limited to
the smaller visual encoders, hindering the full utilization of LLM capabilities in existing LVLMs.

Challenges in Efficient Training and Deployment The heterogeneous architecture with multiple
components complicates the implementation of machine learning systems for efficient training and deployments
in terms of speed. (1) Training challenge: At large training scale (i.e., multi-node clusters), it is necessary
to distribute not only the Transformer-based LLMs but also the vision model and the MLP connector across
multiple devices, employing techniques such as tensor and pipeline parallelism. Thus, prevalent LVLMs cannot
directly use existing industry-grade training frameworks optimized for the Transformer architecture (Shoeybi
et al., 2019; Cano et al., 2023), thus necessitating the development of new tensor-sharding mechanisms. In
addition, AI alignment typically employs algorithms such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017), which necessitate simultaneously maintaining multiple models (e.g., reward and critic models)
in GPU memory and cause difficulty in the algorithm implementations for heterogeneous architectures. (2)
Deployment: The heterogeneous architecture complicates the deployment process due to similar model and
tensor sharding challenges described above. Consequently, this hampers the large-scale services of existing
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LVLMs. Moreover, existing specialized AI chips (Techcrunch) and inference libraries, such as vLLM (Kwon
et al., 2023) and MLC-LLM (team, 2023), are mostly optimized for Transformer architectures, presenting
significant challenges in the deployment of these models on end devices.

Multiple Components Complicate the Scaling Analysis The complexity introduced by the multiple
components of LVLMs is a significant barrier to understanding and improving these systems. Each component

—the visual encoder, the connector, and the language models—operates with its own parameters and training
strategies (Radford et al., 2021; 2019; Brown et al., 2020a), which can lead to a lack of cohesion in the
overall model behavior. Scaling laws are crucial for guiding the development of large foundational models by
forecasting the performance of a target model using data from several sampled models that are significantly
smaller in sizes (Kaplan et al., 2020; Bahri et al., 2021). However, applying these approaches to existing
LVLMs requires simultaneous consideration and scaling of various components, hereby increasing complexity.

Limited Image Pre-Processing Flexibility The strict requirements for image pre-processing imposed
by the specifications of visual encoders may create bottlenecks that hinder the scalability. For instance,
the requirement of a consistent input resolution can make it difficult to process images that are naturally
high-resolution or have non-standard aspect ratios without compromising on the quality or representational
fidelity of the input. Current mitigation strategies involve splitting the original image into multiple sub-
images, independently extracting visual features from each sub-image using pre-trained visual encoders and
subsequently aggregating the representation embeddings (Xu et al., 2024a; Liu et al., 2024a; Dong et al., 2024).
However, these approaches seem ad-hoc and can be suboptimal as the visual backbone is not pre-trained to
handle these inputs, potentially impacting the effective handling of these high-resolution images.

2.2 Unified Vision-Language Modeling with Integrated Architectures

We revisit the foundational modeling framework of VisualBERT (Li et al., 2019), initially proposed in the
early stages of research on pre-trained vision-language models. The key idea is to use one single Transformer,
initialized from BERT (Devlin et al., 2018) in VisualBERT, to uniformly process the image patches and
language tokens. Fuyu-8B exemplifies the industry’s effort to scale this modeling approach (Li et al., 2019)
to billion-scale models (Bavishi et al., 2023). However, the limited widespread implementation of this unified
architecture may be due to the lack of an established training recipe, as only the pre-trained model is released
by Bavishi et al. (2023) without training details. Training such unified LVLMs presents significant challenges in
balancing the two modalities and maintaining stable training, for which clear solutions are currently lacking. In
this paper, we present SOLO with full details of its unified and integrated architecture design and training recipe.

3 SOLO: Scalable Vision-Language Modeling

SOLO consolidates image and language capabilities into a single model, enables data-driven determination of
visual representations and parameter allocation across visual and language modalities, simplifies the scaling
laws analysis, and allows it to handle high-resolution images and those with uncommon aspect ratios flexibly.
For large-scale training (§3.2), SOLO also seamlessly integrates with established software frameworks for
large-scale Transformer pre-training (Shoeybi et al., 2019).

3.1 Model Architecture

The architecture of SOLO is shown in Fig. 1, which diverges from earlier models primarily in the extraction of
visual features. Instead of resizing the image into a fixed resolution adapted to the pre-trained image encoders,
SOLO keeps their original resolutions and aspect ratios. The feature extraction involves splitting the image into
patches with a pre-defined size. Through a trainable linear projection, these raw image patches (in pixels) are
transformed to obtain continuous embeddings that represent the visual features of the images. Thus, we can
integrate image and language processing within a single model. We maintain a list of special tokens designed
explicitly for visual modality encoding: <vision> and </vision> tokens mark the beginning and end of
a span of image patches respectively; <vrow_sep> acts as a row separator within the image patches and helps
the model distinguish between different rows of image patches, aiding in structured visual understanding.
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Table 1: Summary of datasets used in the three stages of pre-training. Each image patch counts as a vision
token. Number of instances is calculated after packing them into sequences with 32K length.

Training Stage Dataset #Instances #Image #Token #Text Tokens #Vision Tokens

Stage-1
ImageNet21K (Ridnik et al., 2021b) 74, 283 13, 151, 276 2, 423, 203, 108 212, 745, 573 2, 210, 457, 535
SlimPajama, subset (Soboleva et al., 2023) 120, 839 0 4, 340, 877, 587 4, 340, 877, 587 0

Total 195, 122 - 6, 764, 080, 695 (67.32%) 4, 553, 623, 160 (32.68%) 2, 210, 457, 535

Stage-2

Capfusion (subset) (Yu et al., 2024) 204, 978 23, 681, 864 6, 664, 351, 863 1, 172, 726, 505 1, 172, 726, 505
Websight (Laurençon et al., 2024) 71, 579 1, 922, 671 2, 300, 945, 215 1, 087, 060, 511 1, 213, 884, 704
CC3M (Sharma et al., 2018b) 32, 760 2, 331, 439 1, 064, 477, 314 76, 092, 147 988, 385, 167
Detailed Captions (lz) 6, 225 368, 767 202, 016, 770 44, 788, 200 157, 228, 570
LLaVAR (Zhang et al., 2023b) 3, 602 422, 315 117, 448, 784 31, 390, 556 86, 058, 228
DVQA (Kafle et al., 2018) 2, 917 200, 000 94, 853, 796 55, 653, 796 39, 200, 000
OCR-VQA (Mishra et al., 2019) 1, 593 165, 746 51, 920, 705 21, 161, 018 30, 759, 687
FigureQA (Kahou et al., 2017) 1, 526 100, 000 49, 586, 305 24, 803, 256 24, 783, 049
SlimPajama, a different subset (Soboleva et al., 2023) 120, 385 0 4, 300, 998, 161 4, 300, 998, 161 0

Total 445, 565 - 14, 846, 598, 913 (45.90%) 6, 814, 674, 150 (54.10%) 8, 031, 924, 763

Stage-3

ALLaVA-LAION (Chen et al., 2024a) 13, 725 438, 992 442, 509, 490 176, 660, 898 265, 848, 592
ALLaVA-VLFLAN (Xu et al., 2024b) 4, 469 207, 549 144, 577, 377 77, 835, 919 66, 741, 458
LLaVAR (Zhang et al., 2023b) 3, 602 422, 315 117, 448, 784 31, 390, 556 86, 058, 228
DVQA (Kafle et al., 2018) 2, 917 200, 000 94, 853, 796 55, 653, 796 39, 200, 000
FigureQA (Kahou et al., 2017) 1, 526 100, 000 49, 586, 305 24, 803, 256 24, 783, 049
SlimPajama, a different subset (Soboleva et al., 2023) 12, 085 0 430, 688, 442 430, 688, 442 0

Total 38, 324 - 1, 279, 664, 194 (62.28%) 797, 032, 867 (37.72%) 482, 631, 327

PATCH_SIZE = 32
MAX_RESOLUTION = 1024 # 32 x 32

def get_resize_output_image_size(image_size):
l1, l2 = image_size
if l2 <= l1:

short, long = l2, l1
else:

short, long = l1, l2

requested_new_long = min(
int(long / PATCH_SIZE + 1) * PATCH_SIZE,
MAX_RESOLUTION

)
new_long = requested_new_long
new_short = int(new_long * short / long)
new_short = int(new_short / PATCH_SIZE + 1)

* PATCH_SIZE

if l2 <= l1:
return new_long, new_short

else:
return new_short, new_long

Figure 2: The input image resize algorithm
to maintain the aspect ratio.

Formally, we define the patch size P and the maximal resolu-
tion M . For an image of dimension size (W, H), it is resized
to (W ′, H ′) to ensure divisibility by P . Fig. 2 details the
resizing process, which adjusts the W and H to the nearest
multiples of P while preserving the original aspect ratio to the
extent possible and complying with the constraints imposed by
M . Subsequently, the image is divided into N patches, where
N = (W ′/P ) × (H ′/P ), each with dimensions P × P × 3. A
trainable linear projector then maps each patch from a flattened
P × P × 3 vector to an output dimension compatible with the
embedding space of LLMs, extracting N embeddings as the
image’s feature representation. These visual embeddings, along
with special visual modality tokens and embeddings of the text
tokens, are concatenated and processed through a single Trans-
former, facilitating unified vision-language modeling. Notably,
compared to prevalent LVLMs, this modeling strategy facilitates
a much earlier fusion of visual and language modalities, allowing LVLMs to extract relevant information
conditioned on the given instructions. In our implementation, we initialize SOLO from the Mistral-7B-v0.1
base LLM. The max resolution M of processed images is set as 1024. The patch size P is set as 32.

3.2 Training Recipe

We describe our approach for training unified billion-scale LVLMs, including pre-training (§3.2.1) and
instruction fine-tuning (§3.2.2). For both stages, we optimize exclusively the language modeling loss on
natural language tokens, without optimizing loss on image patches and special image tokens (e.g., <vision>).
We substantiate the essential ingredients in our recipe in §5.

3.2.1 Pre-Training

We introduce a three-stage pre-training curriculum that progressively enhances the visual capabilities of
LVLMs while preserving their fundamental language capabilities. We present datasets and their statistics for
each stage in Tab. 1.

Stage-1 ImageNet Pre-Training for Initialization We leverage ImageNet21K (Ridnik et al., 2021a),
encompassing a broad spectrum of fine-grained visual categories, for the initial pre-training stage. In this
process, we train SOLO to predict only fine-grained labels in natural language tokens (class name of images,
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e.g., “golden retriever”) conditioned on the image patches, thereby developing visual representations that
initialize subsequent pre-training runs. In §5, we demonstrate the critical role of this stage in training unified
LVLMs: when this stage is removed, the LVLM pre-trained on web-scale data from stage 2 (e.g., captioning)
failed to generate meaningful captions (Fig. 4).

Stage-2 Pre-Training on Web-Scale Data ImageNet21K, composed chiefly of visual concept data
annotated by humans, faces scalability constraints in both knowledge breadth and data volume. In Stage-2,
we scale up the pre-training data to encompass web-scale data, primarily consisting of image-caption pairs
from sources like Capfusion (Yu et al., 2024) and CC3M (Sharma et al., 2018a). Additionally, we include
synthetically generated web pages with associated HTML code from Websight (Laurençon et al., 2024) to
improve OCR performance, and we also include a small set of supervised datasets to improve the data diversity.
In this stage, the language modeling loss is applied uniformly across all language tokens, encompassing
captions, HTML code, and questions and responses within the supervised datasets.

Stage-3 Annealing Following MiniCPM (Hu et al., 2024a), we perform a final annealing stage to conclude
the pre-training. In this stage, we incorporate a limited selection of supervised datasets–either down-sampled
or omitted from the instruction fine-tuning dataset mixture (e.g., ALLaVA, Chen et al. 2024a)–to prime SOLO
for the subsequent instruction fine-tuning stage. The primary purpose of this stage is to transition SOLO from
a noisy web data to being trained on high-quality data mixtures.

Balancing Text and Vision Capability Through Language Corpus Blending Initiating with a
base LLM and performing full-parameters training necessitates carefully preserving its inherent language
comprehension abilities while performing image representation learning since most real-world vision-language
tasks require text-only capabilities such as instruction comprehension and complex reasoning. At each stage of
SOLO’s pre-training, we mix in a non-trivial proportion of text-only pre-training data (SlimPajama, Soboleva
et al. 2023) to maintain the text capability. We present more empirical results on how data mixture affects
image and text loss trade-offs in §7.2.

Pre-Training Infrastructure We modify the standard Megatron-LLM (Cano et al., 2023) to support
arbitrary image patch inputs. We use one node with 8 NVIDIA A100 80G GPU for pre-training. We use
2-way tensor parallelism (Shoeybi et al., 2019) and 4-way data parallelism for training. Following Shoeybi
et al. (2019), we adopt distributed optimizer to shard optimizer states across different GPUs for memory
efficiency. In our test on an 8xA100 server with identical image-caption pre-training, Megatron achieves 20K
tokens per second, 67% higher than DeepSpeed, making it more suitable for our pre-training requirements.

Training Hyperparameter We use a global batch size of 128 examples (i.e., 4M tokens) and each
pre-training example is packed to 32, 768 tokens. We adopt a learning rate of 5e-5 with cosine decay to a
minimum learning rate of 5e-6 and warm up for 200 steps. We use weight decay of 0.1. For training efficiency,
we pack shorter sequences into one longer sequence and re-adjust the attention mask to make sure tokens
from different examples cannot attend to each other. The training process consists of 1525 steps in Stage 1,
3480 steps in Stage 2, and 300 steps in Stage 3.

3.2.2 Instruction Fine-Tuning

Dataset Curation We meticulously select a diverse range of supervised datasets to perform instruction
fine-tuning, aiming to enhance their performance across various domains of vision-language tasks. Our
dataset selection strategy is based on the empirical analysis derived in Laurençon et al. (2024); Lin et al.
(2024); Lu et al. (2024), and is mainly driven by the objective to cover a comprehensive range of data types,
including language-only data, detailed image captions, scientific documents, tables, documents, charts, OCR
and text-rich images, and general visual question-answering (VQA) tasks. In §A, we present datasets and
their statistics in Tab. 7 and more details regarding data curation.

Implementation Details We utilize DeepSpeed (Rasley et al., 2020), as implemented in Accelerate (Gugger
et al., 2022), for instruction fine-tuning. The choice to use Accelerate over Megatron for fine-tuning is
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based on practical efficiency. Accelerate enables quick experimentation with data mixtures by modifying
a few lines of code, while Megatron demands extensive preprocessing for each run, complicating ablation
studies. Additionally, Megatron’s complex, multi-layered implementation hinders customization, presenting
challenges in potential further extension, such as introducing advanced methods like RLHF for alignment.
For hyperparameters, the global batch size is configured at 640, with a weight decay parameter of 0.1. We
train for 1 epoch with a maximum learning rate of 1e-5, which follows a linear warm-up phase and transitions
to a cosine decay schedule.

4 Comparison to Existing LVLMs

4.1 Model

We select various open-source LVLMs for comparison to better understand the capabilities of SOLO. Based
on the release time and capabilities of LVLMs, we select 3 groups of LVLMs to better understand the
current development phase of SOLO. Level-1 LVLMs represent the pioneering generation, which initiate
the integration of visual encoders with pre-trained LLMs, with releases prior to October 2023. Level-2
LVLMs, released before early 2024, typically feature a more refined selection of instruction fine-tuning data to
enhance performance. Level-3 marks the state-of-the-art (SoTA) LVLMs, released within the last five months,
incorporating advanced training recipes, superior LLM backbones, and support for high-resolution images.

• Level-1: (1) OpenFlamingo v2 (Awadalla et al., 2023), (2) MiniGPT4 v2 (Chen et al., 2023a), (3)
VisualGLM (Du et al., 2022), (4) InstructBLIP (Dai et al., 2023), (5) LLaVA v1 (Liu et al., 2023a).

• Level-2: (6) LLaVA v1.5 (Liu et al., 2024a), (7) mPLUG-Owl v2 (Ye et al., 2024), (8) InternLM-
XComposer (Zhang et al., 2023a), (9) MiniCPM-v1 (Hu et al., 2023),

• Level-3: (10) Monkey (Li et al., 2024b). (11) LLaVA-NEXT (Liu et al., 2024b), (12) MiniCPM-v2 (Hu
et al., 2024b), (13) DeepSeek-VL (Lu et al., 2024).

Each LVLM may have multiple variants based on different LLM sizes and architectures. If possible, we opt
for the variant equipped with a 7B Mistral LLM. For the remaining LVLMs, we select the variant whose
configuration most closely aligns with our specifications (Mistral-7B-LLM). We directly present the evaluation
results of existing LVLMs from the leaderboard (OpenCompass) when available, to ensure a fair comparison.

4.2 Benchmarks

We select a wide range of benchmarks, encompassing both general vision-language tasks and specific task-
oriented datasets, for evaluation and analysis. For general vision-language capability evaluation, we choose
MMStar (Chen et al., 2024b), MME (Fu et al., 2024), and SEED-Bench (Li et al., 2024a). Specifically, MMStar
measures elite vision-indispensable capabilities, MME measures both the perception and cognition capabilities,
and SEED-Bench covers 12 evaluation dimensions covering various aspects of LVLMs capabilities. For scientific
document understanding, we choose AI2D (Kembhavi et al., 2016) and ScienceQA (Lu et al., 2022a). For
visual mathematical reasoning, we choose MathVista (Lu et al., 2023). We adopt VLMEvalKit (Contributors,
2023; Duan et al., 2024) to perform the unified evaluation.

4.3 Results

The experimental results are shown in Tab. 2. We find that SOLO significantly outperforms Level-1 LVLMs and
also performs comparably to Level-2 LVLMs, despite slightly underperforming Level-3 LVLMs. Furthermore,
SOLO excels in task-oriented benchmarks, especially in areas requiring scientific knowledge and mathematical
reasoning, due to its successful integration of image representation and complex reasoning within a single
unified model. Overall, while SOLO does not yet meet the SoTA performance of the leading LVLMs (Level-3)
within the prevalent multi-component LVLM framework, it marks a substantial progression in unified
vision-language modeling. It is important to consider that SOLO is trained using limited academic resources,
specifically 8 A100 GPUs. This is in sharp contrast with the resources used to produce SoTA LVLMs. For
example, the technical report of DeepSeek-VL (Lu et al., 2024) mentions that DeepSeek-VL-7B is trained on
a cluster of 64 nodes, each comprising 8 Nvidia A100 GPUs, totaling 512 GPUs—this represents a resource
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Table 2: The main experimental results of SOLO. We compare with LVLMs with diverse capabilities, released
at different times and categorized into three levels. SOLO aligns with the second level of prior LVLMs
advancements focusing on LLaVA-Style modeling, and distinguishes itself in visual mathematical reasoning.
(C) denotes the visual encoders from CLIP.

Level Model Visual Language MMStar MME SEED ScienceQA MathVista AI2D
OpenFlamingo v2 (C) ViT-L/14 MPT-7B 26.9 607.2 28.8 44.8 18.6 31.7
MiniGPT-4-v2 EVA-G Llama2-13B 21.3 968.4 29.4 54.7 23.1 30.5
VisualGLM EVA-CLIP ChatGLM-6B 5.9 738.1 47.0 56.1 21.9 41.2
InstructBLIP EVA-G Vicuna-7B 32.7 1391.4 44.5 54.1 24.4 40.6

Level-1

LLaVA-v1-7b (C) ViT-L/14 Llama-7B 27.1 1075.5 50.4 61.8 25.2 48.3
LLaVA-v1.5 7b (C) ViT-L/14 Vicuna-V1.5-7B 33.1 1808.4 65.8 69.2 25.6 55.5
mPLUG-OWL v2 (C) ViT-L/14 Llama2-7B 34.8 1786.4 64.5 69.5 25.4 55.7
XComposer EVA-G InternLM-7B 6.9 1874.2 66.1 89.8 29.8 56.9Level-2
MiniCPM-V SigLIP-400M MiniCPM-2.4B 38.6 1650.2 65.6 77.0 30.6 56.3
Monkey ViT-BigHuge Qwen-7B 37.0 1759.9 64.3 72.1 33.5 62.5
LLaVA-Next (C) ViT-L/14 Mistral-7B 38.4 1821.2 72.4 73.0 34.6 69.0
MiniCPM-v2 SigLIP-400M MiniCPM-2.4B 39.1 1808.2 67.1 80.7 39.8 62.9Level-3
DeepSeek-VL Hybrid DeepSeek-7B 40.5 1765.4 70.1 80.9 36.9 65.3

Ours SOLO Mistral-7B 35.5 1260.0 64.4 73.3 34.4 61.4

scale 64 times greater than that used for SOLO. SOLO serves as a pivotal model, showcasing the scientific
value of training LVLMs with unified architectures. This establishes SOLO as a viable candidate for future
developments aimed at closing the performance gap with SoTA LVLMs, with more flexibility and scalability
by avoiding issues in prior architectures (§2.1).

5 Validating Key Ingredients in Our Recipe

5.1 LVLMs Generate Meaningless Captions without Stage-1 Pre-training

We assess the necessity of Stage-1 pre-training by comparing the Stage-2 LVLM checkpoints with and without
undergoing Stage-1 ImageNet pre-training. In Fig. 3, we observe that these two variants overall achieve
similar pre-training loss curves on vision-language modeling and (text) language modeling.

Select Checkpoints for Comparison We select two checkpoints for comparison: one using caption-only
pre-training (Stage-2 only) and the other utilizing SOLO’s two-stage pre-training, both of which achieve an
equivalent vision-language modeling loss of 2.1.

Qualitative Comparison We randomly select one example for qualitative analysis (in Fig. 4). Despite the
equivalent loss of the selected checkpoints in Fig. 3, we find that without ImageNet pre-training (Stage-2
only), the model generates irrelevant and meaningless image captions, indicates a training divergence.

Quantitative Comparison We perform a quantitative comparison on the same two checkpoints by training
them on the instruction fine-tuning data mixture for 800 steps (see Fig. 5a). Compared to the two-stage
pre-trained SOLO, we observe a performance degradation across multiple benchmarks on the checkpoint
without Stage-1 pre-training, further validating the importance of the first stage.

Discussion We hypothesize that discrepancies between a model’s vision and language capabilities can lead
to the observed behaviors. Specifically, when there is a significant imbalance—such as with the Mistral 7B
model, which possesses advanced language abilities but lacks vision understanding—the model may reduce
loss by replicating caption patterns, including redundant text tokens irrelevant to the visual content. For
instance, in a caption like “This is a dog”, the essential element is “dog”. Focusing solely on minimizing
language modeling loss without a robust initialized vision representation may lead the model to favor generic
phrases like “This is a" over the more discriminative “dog”. This is because the former includes more tokens,
disproportionately influencing the overall language modeling loss. Pre-training on ImageNet at Stage 1,
which emphasizes predicting only the “dog” token, helps the model develop a solid visual representation,
effectively narrowing the gap between vision and language capabilities and mitigating this issue. In addition,
the results indicate that pre-training loss on vision-language data does not reliably indicate the performance of
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Figure 3: Image captioning loss using two differently initialized checkpoints: (1) caption-only pre-training
(green) initialized from the LLM; (2) two-stage pre-training (blue) initialized from the Stage-1 ImageNet
pre-trained LVLM.

Figure 4: Qualitative analysis of caption-only pre-training and SOLO’s two-stage pre-training. Comparisons
are made on two checkpoints with comparable vision-language modeling loss (i.e., 2.1). Specifically, we select
the caption-only checkpoint at pre-training step 150, and SOLO at step 100.

LVLMs. Detailed analysis are provided in §7.1, which also demonstrates that training loss on the instruction
fine-tuning data mixture is similarly unreliable as an indicator.

5.2 Stage-2 Pre-Training on Web-Scale Data

Stage-2 Pre-Training Improves Performance on Top of Stage-1 We verify the effectiveness of
Stage-2 pre-training on web-scale data by comparing the performance of two LVLMs. Each model is fine-tuned
for 800 steps using the same instruction fine-tuning data mixture but initialized differently—one from the
end of Stage 1 and the other from Stage 2. In Fig. 5b, we observe significant improvement on all evaluation
datasets after pre-training on web-scale data, showing the substantial advantages of Stage 2 pre-training
compared to solely using ImageNet data (Stage 1 only).

Combining ImageNet and Captioning at Stage-2 Hurts Performance In addition, it is pertinent
to ask whether ImageNet21K data can be combined with web-scale data for Stage 2. We include an ablation
with SOLO trained on ImageNet21K and the web-scale data included in the second stage. Fig. 6 illustrates the
training curves for comparison. The results suggest that while ImageNet pre-training effectively establishes an
initial visual representation, it may not be optimal for subsequent Stage-2 pre-training on web-scale data, as
it potentially impedes the optimization of vision-language modeling on image captions (i.e., vision language
modeling loss stop improving). This discrepancy may arise from the divergence in image classification and
captioning capabilities; the former is emphasized in the first stage. This two-stage approach aligns with the
principles of continual curriculum learning, where the model must maintain proficiency in familiar tasks
while integrating new ones. This conclusion is also supported by our evaluation of downstream tasks (see
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(a) The effectiveness of Stage-1 pre-training on ImageNet
data for initialization.

(b) The effectiveness of Stage-2 pre-training on web-scale
data for knowledge breadth and data volume.

(c) The ineffectiveness of including ImageNet data in
Stage-2 pre-training.

(d) The performance across training steps on the fine-
tuning dataset.

Figure 5: The evaluation performance of various ablations to validate key ingredients of our recipe. The
MME scores are normalized for better illustration.

Fig. 5c). We train two different checkpoints with and without ImageNet21K data in the second stage on
the instruction fine-tuning data mixture (§3.2.2) for 800 steps. Note that we select two checkpoints with
comparable vision-language modeling losses for analysis. The results indicate that incorporating ImageNet21K
data in the second stage may detrimentally impact overall performance by inhibiting adaptation to and
learning from web-scale data.

5.3 Performance Boost via Instruction Fine-Tuning

We evaluate the performance of SOLO on different training steps throughout the instruction fine-tuning stage
(see Fig. 5d). The results indicate a consistent improvement in SOLO’s performance with prolonged training
on the fine-tuning dataset, although the MME scores exhibit some fluctuations. This outcome contrasts with
the findings of Liu et al. (2024a), where the performance quickly plateaus upon training with a limited subset
of the fine-tuning dataset. This illustrates the increased scalability of SOLO during the instruction fine-tuning
stage, suggesting that acquiring additional high-quality supervised datasets for fine-tuning could consistently
enhance performance.

5.4 Additional Validation Experiments

We present the results to demonstrate the effectiveness of Stage-3 annealing in §B and to validate the curated
data mixture for instruction fine-tuning in §C.
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Figure 6: Stage-2 language modeling loss when trained on (1) Image captioning objective only (blue); (2)
Image captioning objective and image classification objective used in Stage-1 (orange).

6 Further Analysis

6.1 Controlled Analysis of Fuyu and LLaVA

Figure 7: The controlled analysis of Fuyu-8B and
LLaVA-7B.

We conduct a controlled analysis to compare SOLO
with LLaVA and Fuyu (see Fig. 7). SOLO with
our training recipe consistently outperforms Fuyu-
8B, which adopts the same unified modeling strat-
egy, across all evaluation benchmarks. To facilitate
a controlled comparison with LLaVA, we develop
LLaVA-7B∗, which integrates CLIP-ViT-336 and
Mistral-7B-base-v0.1, utilizing our specific training
procedure and data. The results reveal that LLaVA-
7B∗ achieves performance similar with LLaVA-v1.5-
7B (Liu et al., 2024a), indicating that our training
recipe, which utilizes large-scale datasets and exten-
sive training, may not significantly impact LLaVA-
style LVLMs. Notably, while LLaVA-7B∗ excels in
general visual-language tasks, SOLO demonstrates su-
perior capabilities in visual mathematical reasoning,
with overall performance being similar.

6.2 Scalability Analysis

Superior Scaling Properties of SOLO We demonstrate that existing LVLMs with heterogeneous ar-
chitectures exhibit diminishing returns despite increases in high-quality instruction fine-tuning data while
SOLO shows better scaling behaviors. We perform instruction fine-tuning on pre-trained LLaVA obtained in
§6.1 and compare its scaling behaviors with SOLO by measuring the performance improvement per training
token. For evaluation, we fine-tune both models for 50 steps as their initial checkpoints, as their pre-trained
versions are not effective at following instructions. Given that both models are fine-tuned on the same dataset,
we can directly compare their average improvement in benchmark performance per training token during
training. In the implementation, we measure performance improvement every 500 steps, normalized by the
number of training tokens encountered during those steps, and average this to calculate the final metric.
Fig. 8 shows that SOLO outperforms mLLaVA on the “performance improvement per token” metric across all
evaluation benchmarks. This suggests SOLO benefits more from high-quality instruction fine-tuning data and
demonstrates better scalability, indicating that its performance could further be improved more compared to
mLLaVA with more data.
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Figure 8: We compare the scaling behaviors of SOLO
and LLaVA by measuring the improvement on bench-
mark performance per token.

Figure 9: The performance of SOLO when trained
and tested on different resolutions of images. R@X
denotes the resolution of X.

Table 3: Inference latency comparison.

Model Inference Latency (seconds)
LLaVA-Next 0.0641
LLaVA-Interleave 0.0691
Qwen2-VL 0.0588
SOLO 0.0235

SOLO Exhibits Training and Inference Speed Advantage
We measure the training speed of SOLO compared to LVLMs
with heterogeneous architectures by measuring throughput. Us-
ing the same 8xA100 server, we compare the number of tokens
processed per second during SOLO training and the official
LLaVA implementation (Liu et al., 2023a). Our SOLO imple-
mentation achieves a throughput of 20K tokens per second,
while LLaVA reaches 10.5K tokens per second, highlighting
SOLO’s significant advantage in training speed. We also measure the inference speed of SOLO compared to
several LVLMs with heterogeneous architectures, including LLaVA-Next, LLaVA-Interleave, and Qwen-VL.
The evaluation is conducted on a single A100 GPU using 10,000 COCO images and a consistent prompt:
“Generate the Caption for the <image>”. All inference code is implemented using HuggingFace, and the
inference latency is measured from the input being provided to the model and the output of the first token for
fair comparison among all models since they may generate free-form responses in different lengths. The results,
shown in Tab. 3, indicate that SOLO consistently outperforms other LVLMs with heterogeneous architectures
by a significant margin, demonstrating its clear advantage in inference speed and large-scale development.

Table 4: Predictability of the performance gains comparison
between SOLO and mLLAVA on various benchmarks.

R2 MMStar MME SEEDBENCH ScienceQA MathVista AI2D
mLLAVA 40.32 92.52 92.89 89.25 62.73 83.29
SOLO 88.75 92.36 98.59 97.75 84.70 96.55

SOLO Facilitates Easier Scaling Laws Anal-
ysis We conduct a simplified scaling laws ex-
periment to show that the performance gains
from scaling up data for SOLO is more pre-
dictable compared to LLaVA-Style LVLMs.
Specifically, we follow Kaplan et al. (2020) to
fit the analytical function that LVLMs trained
with a limited dataset (instruction fine-tuning in our case):

L(D) =
(

Dc

D

)αD

,

where Dc and αD are constants to be estimated, D is the number of training tokens, L(D) is the benchmark
performance in our case. We use data points from the instruction fine-tuning of SOLO and mLLaVA to
fit this function and report the coefficient of determination R2, which reflects the quality of the fit and is
equivalent to the predictability of performance. The results below demonstrate that SOLO ’s performance
is more predictable compared to mLLaVA, indicating that SOLO facilitates easier scaling laws analysis. We
further provide more discussion about the better scalability of SOLO in §7.3.
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(a) The training curves of two variants.
(b) The downstream performance of two variants.

Figure 10: The training curves and downstream performance evaluation of two variants of SOLO. We find that
they show significant performance differences although achieving a similar loss on the instruction fine-tuning
data mixture.

SOLO Demonstrates Improved Performance when Scaling up Image Resolution We train SOLO
on different image resolutions during the instruction fine-tuning stage for 1,000 steps due to the compute
limits (see Fig. 9). The image resolution during inference matches that used in the instruction fine-tuning
stage. We find that SOLO continues to improve the performance with increasing image resolution, especially
for the visual mathematical reasoning task. In addition, there is no significant difference in performance
between the 1024-square resolution and the adapted resolution with 1024 as the maximum used in SOLO. This
demonstrates the efficiency and scalability of our flexible image pre-processing pipeline.

Table 5: Comparison of performance on ScienceQA and MathVista
under conditions of extreme image resolutions.

Resolution > 800 ScienceQA MathVista Aspect Ratio > 3 ScienceQA MathVista
LLaVA-Next 69.53 30.18 LLaVA-Next 43.28 25.00
mLLAVA 67.09 28.87 mLLAVA 34.45 21.88
SOLO 71.19 32.02 SOLO 50.42 28.13

SOLO Benefits from its Dynamic
High-Resolution Capability We eval-
uate LVLMs on high-resolution images
and images with extreme aspect ratios
that diverge from those found in natu-
ral images. For a controlled analysis,
we select two benchmark datasets (Sci-
enceQA, MathVista) where SOLO and
LLaVA-Next achieve comparable performance (within 1 absolute point). In addition, we implement mLLaVA,
which follows LLaVA’s modeling framework but is trained using SOLO ’s recipe for further comparison. We
select subsets from the original benchmarks that include images with either a width or height exceeding 800
pixels. Also, we select those subsets with a ratio (width/height) greater than 3 or less than 1/3 for extreme
aspect ratio analysis. We evaluate LVLMs’ performance on these subsets. Our results, as shown in Tab. 5,
verify SOLO ’s advantages regarding the performance on high-resolution images and images with extreme
aspect ratios. The poorer performance of mLLaVA and LLaVA-Next is likely due to their heuristic resizing
rules, which constrain images to predefined resolution settings. In contrast, SOLO retains the original aspect
ratios, which appears to be a more optimal approach.

7 Discussion

7.1 (Pre-)training Loss on Vision-Language Data is Not a Reliable Indicator of the Actual Performance

We find that both the pre-training loss and the instruction fine-tuning loss on the vision-language data are
not reliable for the estimation of LVLMs’ actual performance. References to support this claim regarding
the pre-training loss include observations detailed in Fig. 3, Fig. 4, and Fig. 5a. Despite achieving similar
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Figure 11: Stage 2 language modeling loss when trained on a mixture with different quantities of text data. 1x
reflects the data mixture in Tab. 1, 2x and 3x represent mixtures with 2 or 3 times more text data compared
to 1x while keeping the amount of vision data unchanged.

language modeling losses when conditioned on visual inputs, LVLMs exhibit markedly different behaviors
and performance across various downstream tasks. This contrasts with findings from pure language modeling,
where pre-training loss strongly correlates with various downstream task performance (Du et al., 2024).

We also demonstrate that the loss associated with the instruction fine-tuning data mixture does not reliably
indicate task performance. We train a variant of SOLO with a learning rate of 1e-4, deviating from the
prescribed rate of 1e-5 in our recipe. We show the training curves (Fig. 10a) and the downstream performance
evaluation (Fig. 10b) of these two variants. The two variants exhibit similar training behaviors and losses on
the instruction fine-tuning data mixture, yet they display significant performance disparities in downstream
evaluation benchmarks.

Overall, our analysis highlights the need to identify a dependable metric for evaluating LVLMs with the
unified architecture in pre-training, particularly for establishing scaling laws in future research.

7.2 Balancing Vision and Language Capabilities during Pre-Training is Challenging

Figure 12: The evaluation of language capability.

We find that on a 7B scale, balancing vision and
text capabilities can be challenging. Specifically, we
observe that during Stage-2 pre-training, despite the
inclusion of text-only pre-training data (§3.2.1) to
maintain the language capability of the original LLM,
the language modeling loss on the language-only pre-
training subset still steadily increases as training
continues. In Fig. 11, we introduce a setting where
we gradually increase the proportion of text-only
data per batch (Tab. 1) and monitor the language
modeling loss for text. The results suggest that aug-
menting text data proportions does not alleviate the
rise in language modeling loss, indicating challenges
in achieving balanced vision and text capabilities in
a 7B-scale model.

To further understand the degradation in language ability of SOLO, we evaluate SOLO on standard LLM evalu-
ation benchmarks, including MMLU (Hendrycks et al., 2020), GSM8k (Cobbe et al., 2021), HellaSwag (Zellers
et al., 2019), and RACE (Lai et al., 2017). Our analysis includes comparisons with the backbone LLM
of SOLO, specifically Mistral-7B-v0.1-base, as well as Mistral-7B-v0.1-Instruct (see Fig. 12). We observe a
decline in language capabilities, particularly in knowledge-intensive benchmarks such as MMLU. There are
two potential reasons: (1) Integrating vision capabilities may compromise language performance. (2) The
quality of Mistral’s pre-training corpus is better than the open-source Slimpajama we employ. Overall, the
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Table 6: Comparison between SOLO and LVLMs with heterogeneous architectures regarding the complexity
of scaling laws analysis.

Comparison SOLO LVLMs with Heterogeneous Architecture
Architecture Homogeneous Heterogeneous (visual encoder, connector, LLM)
Scaling laws analysis Standard approach (Hoffmann et al., 2022) Requires extra “parameter allocation law” (an additional factor in the scaling law formulation)
Key challenge N/A (widely explored in Hoffmann et al. (2022)) Optimal parameter allocation and consistency issues
Impact on computation Moderate High, due to multiple configurations and additional experiments for parameter allocation law
Risk of error propagation Low Higher due to additional complexities

current results indicate a limitation in the current version of SOLO, as effective performance in real-world
vision-language tasks often necessitates strong foundational language capabilities, including knowledge and
reasoning. Thus, we plan to maintain the language capabilities of SOLO in the upcoming version by enriching
the pre-training dataset with a higher-quality text corpus and increasing the proportion of text data.

7.3 Scaling Laws Analysis with SOLO

We demonstrate how SOLO ’s unified architecture facilitates easier analysis by comparing its experimental
plan for deriving scaling laws to those of heterogeneous-architecture LVLMs. To simplify the analysis process,
we follow the standard experimental setup in Hoffmann et al. (2022) to proportionally scale up the model
size and training tokens by a factor of 20.
For SOLO, we can follow the standard scaling laws approach by selecting sampling models of varying sizes and
assigning the appropriate number of training tokens based on the predefined scaling factor (e.g., 20 times).
After training each model on its designated tokens, the pre-training loss can thus be measured to obtain the
(expended FLOPs, performance) data point. The obtained data points can be used to fit the power law curve
that predicts the performance of the target model (e.g., a model with 70B parameters) given the FLOPs
expected to expend.
In contrast, for LVLMs with heterogeneous architectures, such as LLaVA, scaling laws analysis introduces
additional complexity. Two key issues arise: (1) Parameter allocation: How should the model’s parameters
be distributed among the three components (visual encoder, connector, LLM)? (2) Consistency during
scaling: Will this parameter allocation (e.g., a 0.05:0.01:0.94 ratio) remain fixed as model size, data size, and
compute scale up? To address these, an additional “parameter allocation law” must be derived to predict the
optimal distribution of parameters based on model size and training tokens. In implementation, for each size
of the sampling model, multiple configurations regarding parameter allocation must be tested to determine
the optimal pre-training loss and the corresponding best allocation, significantly increasing computational
demands. Moreover, it’s challenging to figure out the best analytical form to map the model size and training
tokens to the parameter allocation ratios. Consequently, the introduction of the parameter allocation law
complicates analysis and increases the risk of error propagation.

8 Related Work

Model Architecture Existing research advances the development of LVLMs capable of addressing di-
verse tasks via a unified interface that can directly generate natural language, thus avoiding task-specific
modifications (Wang et al., 2021; 2022a; Li et al., 2023c). Utilizing pre-trained LLMs (Brown et al., 2020b;
Bubeck et al., 2023) as the language component paired with pre-trained visual encoders (Radford et al.,
2021; Dosovitskiy et al., 2021a), recent approaches further enhance the instruction-following, user-friendly
responses generation, and complex reasoning ability of LVLMs (Liu et al., 2023c; Zhu et al., 2023; Dai
et al., 2023; Alayrac et al., 2022; Li et al., 2023a; Ye et al., 2024). Concurrently, Wang et al. (2022b); Peng
et al. (2022); Anil et al. (2023); Team (2024); Ge et al. (2023) propose to further learn a codebook in the
initial stage to discretize the continuous embeddings extracted by visual encoders into a sequence of image
tokens. These approaches enable a uniform vision-language modeling strategy for image and language tokens.
However, the dependence on pre-trained visual encoders restricts the scalability of LVLMs. In this study, we
address this challenge by readopting the conventional vision-language modeling approach that utilizes a single
Transformer for both image and text processing (Li et al., 2019). Furthermore, while Bavishi et al. (2023)
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extend this approach to billion-scale models, they do not disclose the specifics of their training processes. We
address this gap by offering reproducible training recipes, complete with publicly released code, for scalable
vision-language modeling on a 7-billion LVLM.

Training Data Typically, LVLMs leverage extensive image-caption pair datasets (Lin et al., 2014a;
Schuhmann et al., 2021; 2022; Yu et al., 2024; Chen et al., 2023b) to train a projector or a codebook that
map continuous image features into the embedding space of LLMs, thereby aligning the two modalities (Li
et al., 2023c; Gong et al., 2023; Zeng et al., 2023; Sun et al., 2023a). Furthermore, large-scale vision-language
instruction tuning datasets (Su et al., 2023; Wei et al., 2023; Liu et al., 2023b; Gong et al., 2023; Gao
et al., 2023; Li et al., 2023a) and feedback datasets (Li et al., 2023d; Sun et al., 2023b; Chen et al., 2024c;
Zhang et al., 2024b) are utilized to further boost the fundamental capabilities of LVLMs and align LVLMs
with human preferences, ensuring their ability to comprehend instructions and generate responses that are
user-friendly. In this work, we propose a recipe that encompasses the selection of pre-training and instruction
fine-tuning datasets, along with corresponding multi-stage paradigms, to facilitate the training of billion-scale
LVLMs of a single Transformer architecture.

Evaluation Benchmarks The progress of LVLMs is guided and measured by the continuous development
of evaluation benchmarks (Ferraro et al., 2015; Kafle et al., 2019; Gan et al., 2022; Chen et al., 2024d). Initially,
evaluation primarily concentrates on fundamental visual-language skills, such as image captioning (Lin et al.,
2014b; Plummer et al., 2015), basic visual information recognition (Antol et al., 2015; Goyal et al., 2017),
compositional visual understanding (Hudson & Manning, 2019), and knowledge reasoning based on visual
information (Marino et al., 2019; Schwenk et al., 2022). Current benchmarks are advancing to encompass more
intricate capabilities, requiring LVLMs to perform detailed visual analysis and complex reasoning (Uppal et al.,
2022; Zhang et al., 2024a). These benchmarks range from general assessments across various domains and
skills (Li et al., 2024a; Fu et al., 2024; Chen et al., 2024b; Yu et al., 2023) to specific tests targeting particular
abilities, such as scientific document understanding (Kembhavi et al., 2016; Lu et al., 2022a), mathematical
reasoning (Lu et al., 2023; Wang et al., 2024a), multi-discipline understanding and reasoning (Yue et al.,
2023; Wu et al., 2024), hallucination (Li et al., 2023e), and OCR ability (Liu et al., 2023d). In this work, we
select the advanced general and skill-specific benchmarks for evaluation.

9 Conclusion

This work revisits the simple vision-language modeling framework with a single Transformer. We argue that
this approach effectively mitigates the scalability limitations inherent in prevailing models. With academic
resources, we build SOLO, a 7B LVLM initialized from the Mistral LLM. We detail the training recipe and
conduct extensive analysis and evaluation to validate the ingredients in our recipe. Experimental results show
that SOLO demonstrates performance comparable to LLaVA-v1.5, supporting the continued investigation into
this unified vision-language modeling approach for improved scalability.

Limitations and Broader Impact Statement

The investigation into large-scale vision-language modeling using a unified transformer architecture remains
nascent, with our model not yet reaching optimal performance across diverse benchmarks. Continued
advancements in the direction of unified LVLMs for scalable vision-language modeling are anticipated.
However, although developing LVLMs with strong capabilities brings significant advancements in AI, it also
poses potential negative impacts. One concern is the risk of misuse, where the model could be employed for
malicious purposes, such as generating misleading content that could manipulate public opinion or deceive
individuals. Additionally, the model may inadvertently exacerbate biases present in the training data, leading
to unfair or discriminatory outcomes in decision-making processes.
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Table 7: Summary of datasets used in the supervised fine-tuning stage.

Category Dataset #Sample

Language-Only
CodeAct-General (Wang et al., 2024b) 71K
UltraInteract-SFT (Yuan et al., 2024) 288K
UltraChat (Ding et al., 2023) 207K

Detailed Image Caption

LVIS-Instruct4V (Wang et al., 2023a) 223K
ShareGPT4V (Chen et al., 2023b) 102K
LAION-GPT4V (LAION) 12K
Localized Narratives (Pont-Tuset et al., 2020) 200K
VSR (Liu et al., 2023a) 2K

Scientific Document TQA (Kembhavi et al., 2017) 2K
ScienceQA (Lu et al., 2022a) 5K

Table, Document, and Chart

IconQA (Lu et al., 2021) 27K
TabMWP (Lu et al., 2022b) 23K
ChartQA (Masry et al., 2022) 18K
VisText (Tang et al., 2023) 7K
Chart2Text (Obeid & Hoque, 2020) 27K
DVQA (Kafle et al., 2018) 20K
FigureQA (Kahou et al., 2017) 20K

OCR and Text-Rich Images

Diagram Image-to-Text (Kamizuru) 300
Infographic VQA (Mathew et al., 2022) 2K
ST-VQA (Biten et al., 2019) 17K
TextCaps (Sidorov et al., 2020) 22K
TextVQA (Singh et al., 2019) 22K
OCR-VQA (Mishra et al., 2019) 17K
Rendered-Text (Wendler) 10K

General VQA

HatefulMemes (Kiela et al., 2020) 8.5K
OK-VQA (Marino et al., 2019) 9K
AOK-VQA (Schwenk et al., 2022) 16.5K
TallyQA (Acharya et al., 2019) 100K
Visual7W (Zhu et al., 2016) 14K
COCO-QA (Ren et al., 2015) 46K
VQAV2 (Goyal et al., 2017) 82K
GQA (Hudson & Manning, 2019) 72K

Appendix

A Details of Instruction-tuning Data Curation
The curated instruction fine-tuning data mixture is shown in Tab. 7. Each category is chosen to address
specific challenges and capabilities of SOLO. For instance, datasets like UltraInteract-SFT (Yuan et al., 2024)
and CodeAct-General (Wang et al., 2024b) enable the refinement of language processing and reasoning abilities,
while visually rich datasets such as LVIS-Instruct4V (Wang et al., 2023a) and Localized Narratives (Pont-Tuset
et al., 2020) enhance the model’s basic image understanding and recognition abilities. Scientific document
datasets like TQA (Kembhavi et al., 2017) are included to bolster the model’s ability to parse and reason with
academic visual information. Furthermore, OCR and text-heavy image datasets such as TextCaps (Sidorov
et al., 2020) and OCR-VQA (Mishra et al., 2019) provide a crucial source for the model’s ability to interpret
text within complex images. By selecting datasets with a broad range of complexities, sizes, and focuses, we
ensure a robust fine-tuning process that prepares SOLO to handle real-world applications effectively, reflecting
a deep and detailed understanding of both vision and language data. Additionally, we conduct a thorough
manual inspection and comparisons of the fine-tuning datasets, employing random sampling techniques on
some datasets such as DVQA (Kafle et al., 2018) and FigureQA (Kahou et al., 2017) to guarantee diversity
and prevent data imbalance.
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(a) The effectiveness of Stage-3 pre-training in priming
SOLO for the instruction fine-tuning stage.

(b) The ablation study of the fine-tuning data mixture.

Figure 13: The evaluation performance of various ablations to validate the effectiveness of Stage-3 pre-training
and the fine-tuning data mixture.

B Stage-3 Annealing

We directly perform instruction fine-tuning on the pre-trained SOLO finished at Stage-2 to understand the
effect of the annealing stage. The results shown in Fig. 13a indicate that introducing an annealing stage to
conclude pre-training can slightly promote the performance across all evaluation benchmarks.

C Effectiveness of Curated Data Mixture for Instruction Fine-Tuning

We conduct an ablation study to validate the curated data mixture for instruction fine-tuning. The ablations
included are: (1) Without GPT-4V Data: All data generated by GPT-4V, including detailed captions and
instructional fine-tuning samples, is excluded from the fine-tuning mixture. (2) With Additional OCR Data:
Additional OCR data from LLaVAR is incorporated into the fine-tuning mixture to enhance OCR capabilities,
which are crucial for tasks like require extract text information from charts. (3) With More GPT-4V Data:
Data from GPT-4V used in the third stage of pre-training is added to the fine-tuning mixture. (4) Extended
Training Duration: SOLO is trained for an additional epoch to investigate the effects of prolonged training.

The results are presented in Fig. 13b. Our analysis indicates that incorporating additional OCR data does
not significantly enhance performance in scientific document comprehension or visual mathematical reasoning
tasks, which rely extensively on visual text understanding. This lack of improvement can be attributed to
the discrepancy between general OCR data and the specific demands of scientific charts. Identifying effective
methods for collecting OCR data pertinent to scientific chart comprehension remains a critical area for
future research. Furthermore, incorporating this OCR data seems to adversely affect overall visual-language
capabilities, as demonstrated by general benchmarks. Regarding the use of GPT-4V data, our findings suggest
that a measured inclusion during the pre-training annealing stage enhances performance (see §B), whereas
excessive incorporation during fine-tuning can hurt the overall performance. We also find that SOLO exhibits
minimal performance decline when trained solely on existing supervised datasets, excluding all data generated
by GPT-4V. This demonstrates that GPT-4V data is not essential for enhancing the core capabilities of
SOLO. The results overall justify the choice of datasets included in the supervised fine-tuning data mixture.
However, although we observe a continual performance improvement across training steps within one epoch
(see Fig. 5d), prolonged training on repetitive samples could lead to overfitting and decreased performance.
This suggests that while extended exposure to diverse training data generally enhances model performance,
overfitting remains a critical challenge when models are exposed repeatedly to a limited data subset. Overall,
the ablation study proves the effectiveness of our curated data mixture.
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