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Abstract

As learning systems increasingly influence everyday decisions, user-side steering
via Algorithmic Collective Action (ACA)—coordinated changes to shared data—
offers a complement to regulator-side policy and firm-side model design. Although
real-world actions have been traditionally decentralized and fragmented into multi-
ple collectives despite sharing overarching objectives-with each collective differing
in size, strategy, and actionable goals, most of the ACA literature focused on single
collective settings. In this work, we present the first theoretical framework for
ACA with multiple collectives acting on the same system. In particular, we focus
on collective action in classification, studying how multiple collectives can plant
signals, i.e., bias a classifier to learn an association between an altered version of
the features and a chosen, possibly overlapping, set of target classes. We provide
quantitative results about the role and the interplay of collectives’ sizes and their
alignment of goals. Our framework, by also complementing previous empirical
results, opens a path for a holistic treatment of ACA with multiple collectives.

1 Introduction

AI’s rapid spread rides on massive training datasets, yielding stronger predictors, and wider applica-
tions. However, as data-driven systems shape and guide more aspects of life they raise acute risks:
privacy violations, leakage of sensitive information, and biased decisions that entrench inequality.

Responses span firms, regulators, and users. At the firm’s level, “Trustworthy AI” programs embed
fairness checks, bias mitigation, privacy audits, and red teaming across the lifecycle [1], but often
clash with performance and engagement goals. At the regulators’ level, privacy laws—e.g., GDPR
[7], PIPEDA [9], and CPRA [19]—set floors, yet compliance alone rarely ensures socially responsible
outcomes [16, 20]. Finally, at the user’s level, Algorithmic Collective Action (ACA) has recently
emerged as an appealing paradigm to empower grassroots efforts by organizing users to coordinate
data contributions or refusals to steer models [11, 6].

This work is motivated by the fact that the ACA literature has almost entirely focused on scenarios
where only a single collective acts. However, real-world actions have traditionally been carried out
by multiple collectives, resulting in decentralized and fragmented practices. Different collectives
often vary widely in size, strategy, and even actionable goals, yet they can still align on common
overarching objectives (e.g. climate justice or gender equality). Bruno Latour’s actor-network theory
[13] conceptualized why such movements rarely behave as a single unit: what is regarded as a global
campaign is really a web of local interactions with no singular center. These loose networks manage
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to act together only through continual coordination. Indeed, they are inherently dynamic and not
intrinsically unified. An interesting example is the cyberfeminist struggle, which has never been one
monolithic front; instead, it consists of distributed efforts ranging from feminist hacker-art collectives
to global hashtag campaigns. Donna Haraway’s Cyborg Manifesto [10] famously proposed the cyborg
as a metaphor for coalition across difference, emphasizing affinity over rigid identity categories. In
that spirit, cyberfeminism has taken many decentralized forms around the world while still sharing
core aims of challenging patriarchal tech culture and gender inequality. Environmental activism
provides another strong example: the climate justice movement is a patchwork of groups employing
diverse tactics (from youth-led social media strikes to militant direct-action cells) to achieve various
actionable goals (from permit denials to pipeline stoppages and enforcement actions), but they all
strive toward the same overarching objective of halting climate breakdown. Here, we aim to reflect
and model the need for considering multiple collectives in ACA.

Related Works. ACA as users steering ML outputs toward a group goal was recently rigorously
formalized in [11], building on the Data Leverage framework’s view of data as an active instrument
rather than a passive input [21]. In [17], the authors proposed a combinatorial model for ACA to
study the strategic interaction between drivers and delivery platforms, inspired by the #DeclineNow
DoorDash campaign. The work in [3] studied how the firm’s chosen learning algorithms affect the
success of ACA. Motivated by the growing regulatory focus on privacy and data protection, [18]
studied the effectiveness of ACA if AI firms train differentially private models. The work in [2]
focused on ACA in recommender systems. The authors of [8] proposed an alternative theoretical
framework to [11] that empowers collectives via statistical inference, enabling them to learn better
ACA strategies and infer the parameters that determine their success. The closest work to ours is [12],
in which a conceptual framework for ACA with multiple collectives is introduced, and experiments
are performed. However, no theoretical treatment is provided, and most of the focus is on ACA with
two collectives. Our work is inspired by the empirical findings of [12] and, partly, by its conceptual
framing. We move further by designing the first rigorous treatment for ACA with multiple collectives,
generalizing the original theoretical framework from [11].

Contribution. We introduce the first theoretical framework for ACA with multiple collectives. We
focus on collective action in classification, studying how M collectives can plant signals, i.e., bias a
classifier to learn an association between an altered version of the features x and a chosen, possibly
overlapping, set of target classes {yc}S≤M

c=1 . We analyze two regimes: when collectives can act on
both features and labels, and when collectives are limited to acting on features only. For each regime,
we derive lower bounds on the per-collective and global success, revealing interesting trade-offs
driven by the interplay of the sizes of the collectives and by how closely their actionable goals align.
We illustrate the framework with a use case in climate adaptation. Finally, we discuss what future
methodological and empirical directions are needed to enrich our approach and make it a holistic
framework for ACA with multiple collectives.

2 Algorithmic Collective Action with Multiple Collectives

We start from the definition of ACA with a single collective as given in [11, 8]. A firm deploys a
learning algorithm on data coming from a certain user population. Within the overall user population,
a collective forms that represents a given share of users (a positive fraction, but not the whole).
This collective wants to steer the platform’s outcome toward a certain objective. To do so, the
collective agrees on one strategy for editing their contributions—potentially changing features, labels,
or both—before those contributions reach the platform. The platform then receives a training set that
blends unmodified data from the baseline process with the collective’s edited data, and it deploys its
algorithm on this blended data. The collective’s impact is evaluated by a tailored success measure.
Given its size, the collective’s problem is to choose the editing rule that maximizes this success
once the platform has trained on the blended data. Here, we rigorously generalize ACA [11] to a
setting with multiple collectives, each acting with a possibly different strategy and actionable goal,
but attempting to maximize both per-collective and global measures of success.

Data space. We define the data space Z = X × Y as the product of two finite spaces X and Y ,
being the feature and label spaces, respectively. All probability measures on Z will be defined on the
discrete σ-algebra 2Z of Z.
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Population. We define the the population as a probability space (Ω, 2Ω, π), with |Ω| = N finite.
Let f0 : Ω → Z be a random variable. We define the population distribution as the push-forward
measure P0 := (f0)#π. Intuitively, Ω is the user population, with each element of Ω being a user,
and π is the sampling distribution. Then, f0 assigns a feature-label pair to each user, and P0 is the
induced distribution over feature–label pairs, i.e., it records, for each (x, y) ∈ Z, the π-fraction of
users whose assigned pair is (x, y).

Collectives, Strategies, and Masses. We define an ensemble of M collectives as M disjoint subsets
Ω1, . . . ,ΩM of Ω such that π(Ωc) = αc > 0 for all c. We refer to αc as the mass of the c-th
collective. If π is the normalizing counting measure and |Ωc| = Nc, then αc is exactly the fraction
of the population Nc/N belonging to the collective Ωc. Each collective Ωc agrees on a potentially
randomized strategy hc : Z → Z from a space of available strategies, i.e., feasible changes to the data.
We define the total mass as ᾱ :=

∑M
c=1 αc. For every collective Ωc and every z ∈ Z, we assume

P0(f(ω) = z) = P0(f(ω) = z | ω ∈ Ωc), i.e., before applying the strategy hc, every collective Ωc

is just a random slice of the same underlying population.

Mixture Distribution. In this setting, the action of a collective Ωc of applying its strategy hc steers
P0 towards Pc := (hc)#P0 with strength αc. As such, a firm aiming to train a model m : X → Y
on data coming from Ω will observe the mixture distribution:

P ({αc}c, {hc}c) =
(
1− ᾱ

)
P0 +

M∑
c=1

αcPc. (1)

Per-collective and Global Success. Given a strategy hc for each collective, we denote by Sc(αc) and
S({Sc}c) the measure of per-collective and global success, respectively. In this work, we study how
per-collective success Sc(αc) is maximized as a function of the mass αc, and how global success
S({Sc}c) is maximized as a function of the per-collective successes {Sc}c.

3 ACA with Multiple Collectives in Classification

Following [11, 8], we start by studying the case where the firm’s learning algorithm m is a classifier.
We assume that the firm chooses an approximately optimal classifier on the distribution P .

ε-suboptimal Classifier.[11] A classifier m : X → Y is ε-suboptimal on a set X ′ ⊆ X under the
distribution P if there exists a P ′ with TV

(
PY |X=x, P

′
Y |X=x

)
≤ ε such that for all x ∈ X ′

m(x) = argmax
y∈Y

P ′(y | x). (2)

Since any classifier is at worst 0.5-suboptimal, we assume ε < 0.5 without loss of generality.

Planting Signals. We focus on the setting in which each collective Ωc wants the classifier m to
learn an association between an altered version of the features gc(x) and a chosen target class y∗c .
Formally, given a transformation gc : X → X induced by the strategy hc, each collective Ωc

measures per-collective success as

Sc(αc) = Prx∼P0
[m(gc(x)) = y∗c ] . (3)

As explained in the Sec.2 , the ensemble of M collective then adopts and aims to maximize a measure
of global success S({Sc}c). In this work, we propose and study two different choices for S({Sc}c):

(No One is Left Behind) We first consider an egalitarian metric, which takes the per-collective
success of the least successful collective as the global measure os success (for example, worst-group
accuracy, group DRO [15]), i.e.,

Smin(Sc) := min
c∈[M ]

Sc(αc). (4)

where [M ] = {1, . . . ,M}.
(The Bigger the Better) We then consider a metric proportional to each collective’s mass, which
averages the per-collective successes of all the collectives, weighting them with their masses, i.e.,

Sw(Sc) :=
1

ᾱ

M∑
c=1

αc Sc(αc). (5)
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Generalizing the single collective case [11], we investigate simple strategies for planting signals. We
then study their success as a function of four key sets of parameters: the collectives’ masses {αc}c,
the per-collective uniqueness {ξc}c of each signal they aim to plant, the global uniqueness ξ of the
signals they aim to plant, and their target alignments {βc}c. Let us define the marginal distributions
PX
0 and PY

0 of P0 as PX
0 := (γX)# P0 and PY

0 := (γY )# P0, where γX : X × Y → X and
γY : X × Y → X are the projections γX(x, y) = x and γY (x, y) = y. If there is no risk of
ambiguity, we denote PX

0 (x) and PY
0 (y) simply with P0(x) and P0(y), respectively. Similarly, we

will employ the same shorthand notation for any other involved marginal distribution when possible.
Furthermore, let us denote with X∗ ⊆ X the subset of the feature space representing the image of
the elegible set under hc, i.e., the image of the features alterable by the adoption of hc.

Per-collective ξc-Unique Signals.[11] For each collective Ωc, we say that a signal of the collective
Ωc is individually ξc-unique if it satisfies P0 (X

∗
c ) ≤ ξc. Intuitively, ξc is a measure of the rarity of

the signal Ωc is trying to plant.

Global ξ-Unique Signals. For each collective Ωc, the marginal PX
c models where Ωc deposits

feature mass after its editing action gc. We say signals are globally ξ-unique if, for all c and all j ̸= c,

PX
j (X∗

c ) ≤ ξ. (6)
Intuitively, the signals are globally ξ-unique if it is rare that collectives emit the same feature point
under their "actioned" distribution PX

c .

Target Alignment. For each collective Ωc, we define the target alignment as

βc :=
∑

j ̸=c:y∗
j=y∗

c

αj . (7)

Therefore, βc measures the total mass of all the collectives that have the same target as Ωc.

Suboptimality Gap.[11] For each collective Ωc, we define the suboptimality gap of y∗c as

∆c = max
x∈X∗

c

(
max
y∈Y

P0(y | x)− P0 (y
∗
c | x)

)
(8)

Intuitively, ∆c measures how suboptimal the target label y∗c is on the signal set under the base
distribution P0.

As usually done [11, 8, 18], we consider (i) the case in which the users can modify both features
and labels, referring to the resulting strategies as feature-label strategies, and (ii) the case in which
the users can access both features and labels, but modify only the features, referring to the resulting
strategies as feature-only strategies.

Feature-label Signal Strategy. For each collective Ωc, the feature-label signal strategy is given by
hc(x, y) = (gc(x), y

∗
c ) . (9)

In this case, X∗ = gc(X).

We derive the following lower bound on the per-collective success of each collective as a function of
the key parameters described above.
Theorem 1. For each collective Ωc, under the feature-label strategy in (9), ε-suboptimality of the
classifier m, and (ξc, ξ)-uniqueness, it holds:

Sc (αc) ≥ 1 − ξc ·
∆c + 2ε

1− 2ε
· 1− ᾱ

αc
− ξ · 1 + 2ε

1− 2ε
· ᾱ− αc − βc

αc
. (10)

Proof. See Appendix A.

Feature-only Signal Strategy. For each collective Ωc, the feature-only signal strategy is given by

hc(x, y) =

{
(gc(x), y

∗
c ) , if y = y∗c

(x, y), otherwise
. (11)

In this case, X∗
c = gc(suppP0(· | y = y∗c )).

Again, we derive a lower bound on the per-collective success of each collective as a function of
the key parameters. For a collective Ωc, feature-only strategies can fail when the base distribution
strongly favors some label y ̸= y∗c , leaving little label uncertainty. To avoid this degenerate case, we
make the positivity assumption P0(y

∗
c | x) ≥ pc > 0 for all x ∈ X [11].
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Theorem 2. For each collective Ωc, under the feature-only strategy in (11), ε-suboptimality of the
classifier m, (ξc, ξ)-uniqueness, and pc ≤ (1 + 2ε)/2, it holds:

Sc(αc) ≥ 1 − ξc
(1− ᾱ)(1 + 2ε− 2pc) + 2ε ᾱ

(1− 2ε) pc
· 1

αc
− ξ

1 + 2ε

1− 2ε

ᾱ− αc − βc

αc pc
. (12)

Proof. See Appendix A.

Discussion. The bounds in (10) and (12) are the complement of the sum of two products. The first
product can be interpreted as a “rarity × difficulty × mass”. In particular, is scales linearly with:

(Rarity) How rare the signal of the collective is under the baseline, ξc;

(Difficulty) How hard it is to flip the baseline on that signal, ∆c+2ε
1−2ε and (1−ᾱ)(1+2ε−2pc) + 2ε ᾱ

(1−2ε) ;

(Mass) How much effective mass the collective brings, 1−ᾱ
αc

and 1
αc pc

.

The second product can be interpreted as a "competition" penalty given by “signal overlap × mis-
alignment”. In particular, it scales linearly with:

(Signal Overlap) How often others land on the collective’s signal, ξ;

(Misalignment) The fraction of collectives not aligned with the target y∗c , ᾱ−αc−βc

αc
and ᾱ−αc−βc

αc pc
.

We now derive lower bounds for the global success measures in (4)-(5) under both feature-label and
feature-only strategies, as direct consequences of Theorems 1-2, respectively.

Corollary 1. For each collective Ωc, under the feature-label strategy in (9), ε-suboptimality of m,
and (ξc, ξ)-uniqueness, it holds:

Smin(Sc) ≥ 1− max
c∈[M ]

[
ξc ·

∆c + 2ε

1− 2ε
· 1− ᾱ

αc
+ ξ · 1 + 2ε

1− 2ε
· ᾱ− αc − βc

αc

]
, (13)

Sw(Sc) ≥ 1− 1− ᾱ

ᾱ

M∑
c=1

ξc ·
∆c + 2ε

αc(1− 2ε)
− ξ · 1 + 2ε

1− 2ε
· 1
ᾱ

M∑
c=1

ᾱ− αc − βc

αc
. (14)

Corollary 2. For each collective Ωc, under the feature-only strategy in (11), ε-suboptimality of m,
(ξc, ξ)-uniqueness, and the positivity assumption, it holds:

Smin(Sc) ≥ 1− max
c∈[M ]

[
ξc

(1− ᾱ)(1 + 2ε− 2pc) + 2ε ᾱ

(1− 2ε) pc
· 1

αc
+ ξ

1 + 2ε

1− 2ε

ᾱ− αc − βc

αc pc

]
,

(15)

Sw(Sc) ≥ 1− 1

ᾱ

M∑
c=1

[
ξc

(1− ᾱ)(1 + 2ε− 2pc) + 2ε ᾱ

(1− 2ε) pc
· 1

αc
+ ξ

1 + 2ε

1− 2ε

ᾱ− αc − βc

αc pc

]
.

(16)

On Critical Masses and Alignment. A core quantity of ACA with a single collective is the
critical mass, i.e., the smallest mass required to ensure a target level S∗ of success for the collective.
However, as one could intuitively expect and as our theoretical results confirm, if multiple collectives
are present, then not only their masses but also their alignment on target classes are especially
important to determine the success of an action. As such, in ACA with multiple collectives, two key
questions can be investigated to derive conditions about when a target global success threshold S∗ is
met: (i) "Given a certain alignment, how big should the masses be to achieve S∗?, and (ii) "Given
certain masses, how big should the alignment be to achieve S∗?. These questions naturally suggest
leveraging the bounds in (13)-(14)-(15)-(16) to derive lower bounds on collectives’ masses (given
a certain alignment) and alignment (given certain masses), for a fixed S∗. We will explore this key
aspect in an extended version of this work.
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4 A Real-World Use Case in Climate Adaptation

In this section, we provide a key real-world use case for ACA with multiple collectives in the
space of interventions for climate adaptation. Consider a city that uses a text classifier trained on
neighborhood-level records to identify necessary interventions. The neighborhood-level records
encompass both official statistics and community-driven forum discussions. In this case, if V is
the vocabulary of the text classifier, then X = 2V . The model recommends one intervention per
neighborhood from a finite menu Y (e.g., street trees and shade, cool roofs or pavement, expanded
cooling centers, or targeted heat-health outreach). Assume to have M collectives, being grassroots
neighborhood associations. Each collective is run by neighborhood residents and therefore has a
nuanced, ground-level understanding of local conditions—including qualitative, hard-to-measure
factors—and seeks to coordinately change its related shared data to steer the classifier toward the
intervention y∗c ∈ Y it has judged to be most necessary. Each collective thus deploys an editing
strategy hc to achieve its actionable goal. For example, in a feature–label regime, a collective of a
waterfront neighborhood documents chronic flooding with household infiltration tests and evidence
collected by interviewing community members. The collective then edits its features and labels using
that documentation to bias the forum discussions in a coordinated way and explicitly request rain
gardens/bioswales. Similarly, collectives would likely need to resort to feature-only strategies if the
city’s intake pipeline does not allow community label edits, i.e., if the intervention field is locked
and labeled by staff/administrative codes. Citywide (a.k.a. global) success would then emphasize
equity (lifting the worst-served neighborhood with Smin) or scale (a mass-weighted average with
Sw). Even if this example is presented in a didactic way, there is precedence for community-reported
concerns to be ingested into decision-making tools. NOAA– and CAPA-led "Heat Watch" campaigns
have produced neighborhood-scale heat maps in 120+ communities and feed them into planning and
public-health practice [14, 4]. European cities are deploying city-scale digital twins: Rotterdam’s
Open Urban Platform with a Digital Twin underpins climate-resilience analysis and participatory
planning, with citywide availability announced from January 2025 [5].

5 Future Directions

The theoretical framework we designed is just the first step to comprehensively characterize ACA
with multiple collectives. Several research directions can be pursued.

On the theoretical and methodological side, as we mention in Sec. 2, it is needed to properly
characterize how the notion of critical mass from [11] evolves in the multiple collectives setting.
Moreover, it would be interesting to generalize the statistical framework of [8] to a multi-collective
setting. Another possibility is studying scenarios where collectives seek to erase [11, 8] or unplant [8]
signals, as well as mixed-objective settings in which some collectives plant signals while others erase
or unplant them. Similarly, a relevant case is also when collectives have heterogeneous capabilities,
thus some collectives can use feature–label strategies while others are restricted to feature-only
strategies.

On the applied side, it is crucial to design other meaningful use-cases, beyond the one proposed
in Sec. 4. Moreover, it is necessary to perform exhaustive experiments to validate the proposed
bounds and study the impact of the proposed strategies in real-world scenarios. Finally, it would
be interesting to formally reconcile our theoretical framework with the conceptual characterization
presented in [12], fostering mutual enrichment.

6 Conclusion

In this work, we introduced the first theoretical framework for Algorithmic Collective Action with
multiple collectives. We focused on collective action in classification, studying how multiple col-
lectives can bias a classifier to learn an association between an altered version of their features and
a chosen, possibly overlapping, set of target classes. We provided quantitative results showcasing
the interesting interplay of collectives’ sizes and their alignment of values. Finally, we discussed a
potential use case for our framework in the space of interventions for climate adaptation, validating
the importance of taking into account the actions of multiple collectives and their interaction.
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A Proofs

Lemma 1. If m is ε-suboptimal on a set X , then for any x ∈ X:

P (y∗ | x) ≥ max
y ̸=y∗

P (y | x) + 2ε =⇒ m(x) = y∗.

Proof. By ε-suboptimality on X , for every x ∈ X there exists a conditional distribution P ′(· | x) on
Y such that

m(x) ∈ argmax
y∈Y

P ′(y | x) and
1

2

∑
y∈Y

∣∣P ′(y | x)− P (y | x)
∣∣ ≤ ε.

For every y ∈ Y , it then holds
P ′(y∗ | x) ≥ P (y∗ | x)− ε and P ′(y | x) ≤ P (y | x) + ε.

Fix x ∈ X and assume P (y∗ | x) ≥ maxy ̸=y∗ P (y | x) + 2ε. Then, for every y ̸= y∗,
P ′(y∗ | x) ≥ P (y∗ | x)− ε ≥ max

z ̸=y∗
P (z | x) + ε ≥ P (y | x) + ε ≥ P ′(y | x).

Hence y∗ is an (in fact, the) maximizer of P ′(· | x), so m(x) = y∗.

Lemma 2. For a, b > 0, it holds that

1{a<b} ≤ b

a
.

Proof. If a < b, then 1{a<b} = 1 and b/a > 1, so 1 ≤ b/a. If a ≥ b, then 1{a<b} = 0 and 0 ≤ b/a
since a > 0. In both cases, the inequality holds.

Theorem 1. For each collective Ωc, under the feature-label strategy in (9), ε-suboptimality of the
classifier m, and (ξc, ξ)-uniqueness, it holds:

Sc (αc) ≥ 1 − ξc ·
∆c + 2ε

1− 2ε
· 1− ᾱ

αc
− ξ · 1 + 2ε

1− 2ε
· ᾱ− αc − βc

αc
. (10)

Proof. We are going to prove the theorem in two steps: first we will provide a point wise estimate for
x ∈ X and then we will proceed to bound the expectation over X .

First step: Fix a collective Ωc and x ∈ X . For every y ∈ Y we define the unnormalized score
N(y | x):

N(y | x) := (1− ᾱ)P0(y | x)P0(x) +

M∑
j=1

αjPj(x, y).

Under the feature label strategy we have that Pc(x, y) = 1{Y=y∗
c}Pc(x). So for any y ̸= y∗c we have

that:
N(y∗c | x)−N(y | x) = (1−ᾱ)(P0(y

∗
c | x)−P0(y | x))P0(x)+

∑
j:y∗

j=y∗
c

αjPj(x)

︸ ︷︷ ︸
Sal

−
∑

j:y∗
j=y

αjPj(x)

︸ ︷︷ ︸
Sy

.
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In this context we can apply lemma 1 as follows: if for every y ̸= y∗ it holds that

N(y∗ | x)−N(y | x) ≥ 2ε P (x) (A1)

where

P (x) = (1− ᾱ)P0(x) +

M∑
j=1

αjPj(x)

then m(x) = y∗.

Now in order to get A1 we find a lower bound for the left-hand side using the following two
observations:

• for x ∈ X∗
c , by definition of ∆c

P0(y
∗
c | x)− P0(y | x) ≥ −∆c

hence:
(1− ᾱ)(P0(y

∗
c | x)− P0(y | x))P0(x) ≥ −(1− ᾱ)∆cP0(x);

• for every y ̸= y∗c :

Sctr :=
∑

j:y∗
j ̸=y∗

c

αjPj(x) ≥
∑

j:y∗
j=y

αjPj(x) = Sy.

With these two observations, we can lower-bound the left-hand term of A1:

N(y∗c | x)−N(y | x) ≥ −(1− ᾱ)∆c P0(x) + Sal − Sctr

which is independent from y. We also use Sctr to rewrite the right hand term as:

2ε P (x) = 2ε
(
(1− ᾱ)P0(x) + Sal + Sctr

)
.

So we now have the following sufficient condition:

−(1− ᾱ)∆cP0(x) + Sal − Sctr ≥ 2ε
(
(1− ᾱ)P0(x) + Sal + Sctr

)
.

We can now rearrange to get:

(1− 2ε)Sal − (1 + 2ε)Sctr ≥ (1− ᾱ)
(
∆c + 2ε

)
P0(x),

and since Sal ≥ αcPc(x), a stricter sufficient condition is

αcP
X
c (x) ≥ (1− ᾱ)

∆c + 2ε

1− 2ε︸ ︷︷ ︸
:=Ac(ε,∆c)

P0(x) +
1 + 2ε

1− 2ε︸ ︷︷ ︸
=:C(ε)

Sctr(x) =: R(x).

This sufficient condition can be expressed in terms of characteristic functions as:

1{m(x)=y∗} ≥ 1{αcPX
c (x)≥R(x)}. (A2)

Second step: First we apply lemma 2 to the right hand side of A2 we get:

1{m(x) ̸=y∗} ≤ 1{αcPX
c (x)<R(x)} ≤ R(x)

αcPX
c (x)

.

now we can take the expectation over x ∼ Pc(x):

1− Sc = EPc(x)

[
1{m(x)̸=y∗}

]
≤ 1

αc
EPc(x)

(1− ᾱ)Ac
P0(x)

Pc(x)
+ C(ε)

∑
j:y∗

j ̸=y∗
c

αj
Pj(x)

Pc(x)

 .

Now we use the following facts:

• Rarity identity (FL): EPX
c

[
P0(x)
PX

c (x)

]
= P0(X

∗
c ) ≤ ξc.
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• Overlap control: EPX
c

[
PX

j (x)

PX
c (x)

]
=

∑
x∈X∗

c
PX
j (x) ≤ ξ for each j ̸= c.

And since ∑
j:y∗

j ̸=y∗
c

αj = ᾱ− αc − βc

we get:

Sc (αc) ≥ 1 − ξc ·
∆c + 2ε

1− 2ε
· 1− ᾱ

αc
− ξ · 1 + 2ε

1− 2ε
· ᾱ− αc − βc

αc
.

Theorem 2. For each collective Ωc, under the feature-only strategy in (11), ε-suboptimality of the
classifier m, (ξc, ξ)-uniqueness, and pc ≤ (1 + 2ε)/2, it holds:

Sc(αc) ≥ 1 − ξc
(1− ᾱ)(1 + 2ε− 2pc) + 2ε ᾱ

(1− 2ε) pc
· 1

αc
− ξ

1 + 2ε

1− 2ε

ᾱ− αc − βc

αc pc
. (12)

Proof. We follow similar steps as the proof of 1.

First step: Fix a collective c and x ∈ X . For every y ∈ Y define

N(y | x) := (1− ᾱ)P0(y | x)P0(x) +

M∑
j=1

αj Pj(x, y).

Under the feature-only strategy, each j modifies only the slice y∗j and leaves all other pairs (x, y ̸= y∗j )
unchanged. Writing

QX
j := (gj)#P0( · | y = y∗j ),

we have
Pj(x, y) = 1{y=y∗

j } P0(y
∗
j )Q

X
j (x) + 1{y ̸=y∗

j } P0(x, y).

Hence, for any y ̸= y∗c ,

N(y∗c | x)−N(y | x) ≥ (1− ᾱ)
(
P0(y

∗
c | x)− P0(y | x)

)
P0(x)

+
∑

j: y∗
j=y∗

c

αj P0(y
∗
c )Q

X
j (x)

︸ ︷︷ ︸
Sal(x)

−
∑

j: y∗
j=y

αj P0(y)Q
X
j (x)

︸ ︷︷ ︸
Sy(x)

. (17)

Moreover,

P (x) = (1− ᾱ)P0(x) +

M∑
j=1

αjP
X
j (x), (18)

PX
j (x) =

∑
y ̸=y∗

j

P0(x, y) + P0

(
y∗j
)
QX

j (x) = P0(x)− P0(x, y
∗
j ) + P0(y

∗
j )Q

X
j (x). (19)

By Lemma 1, a sufficient condition for m(x) = y∗c is

N(y∗c | x)−N(y | x) ≥ 2ε P (x) ∀ y ̸= y∗c . (A3)

We bound the two sides of (A3) pointwise, using:

• Uniform positivity: For the maximizer y ̸= y∗c of P0(y | x), P0(y
∗
c | x) ≥ pc implies

P0(y
∗
c | x)− P0(y | x) ≥ 2pc − 1.

• Contradictors: Sy(x) ≤ Sctr(x) for all y ̸= y∗c , where

Sctr(x) :=
∑

j: y∗
j ̸=y∗

c

αj P
X
j (x).

• Aligned mass: Keep only the self-aligned contribution: Sal(x) ≥ αc P0(y
∗
c )Q

X
c (x).
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• Mixture upper bound: Using (19), we can write

P (x) = P0(x) −
∑
j

αj P0(x, y
∗
j ) +

∑
j

αj P0(y
∗
j )Q

X
j (x) ≤ P0(x) +

∑
j

αj P0(y
∗
j )Q

X
j (x).

Remembering that P0(y
∗
j )Q

X
j (x) ≤ PX

j (x) and splitting the last sum into aligned and
contradicting indices, we obtain

P (x) ≤ P0(x) + Sal(x) + Sctr(x).

Hence 2ε P (x) ≤ 2ε
(
P0(x) + Sal(x) + Sctr(x)

)
.

Tightening the sufficient condition (A3) by setting the bound in (17) ≥ 2ϵP (x), combining this with
the four bullets above, and rearranging, we obtain

(1−2ε)αc P0(y
∗
c )Q

X
c (x) − (1+2ε)Sctr(x) ≥

(
(1−ᾱ)(1+2ε−2pc)+2ε ᾱ

)
P0(x), x ∈ X∗

c .

(A4)

For x ∈ X∗
c define the preimage ratios

rc(x) :=
P0(x)

P0

(
g−1
c (x)

) , tc(x) :=
Sctr(x)

P0

(
g−1
c (x)

) .
Using P0(y

∗
c )Q

X
c (x) = P0

(
g−1
c (x), y∗c

)
and uniform positivity,

P0

(
g−1
c (x), y∗c

)
P0

(
g−1
c (x)

) =

∑
x′∈g−1

c (x) P0(y
∗
c | x′)P0(x

′)

P0

(
g−1
c (x)

) ≥ 1

P0

(
g−1
c (x)

) ∑
x′∈g−1

c (x)

pc P0(x
′) = pc.

Dividing (A4) by P0(g
−1
c (x)) and rearranging then yields the preimage sufficient condition

αc pc ≥ (1− ᾱ)
1 + 2ε− 2pc

1− 2ε︸ ︷︷ ︸
=:By∗

c
(ε,pc)

rc(x) +
2ε ᾱ

1− 2ε
rc(x) +

1 + 2ε

1− 2ε︸ ︷︷ ︸
=:C(ε)

tc(x), x ∈ X∗
c . (A5)

Second step: Define the post–action feature law as the pushforward λc := (gc)#P
X
0 of PX

0 through
gc. With this notation, the per–collective success can be written as the expectation under λc (law of
the unconscious statistician):

Sc(αc) = Pr
x∼PX

0

[
m(gc(x)) = y∗c

]
=

∑
x∈X

1{m(x) = y∗c}λc(x).

By Lemma 2 and the preimage margin condition (A5) proved in the first step, we have for all x ∈ X ,

1{m(x) ̸= y∗c} ≤ 1{x ∈ X∗
c }

(1− ᾱ)By∗
c
(ε, pc) rc(x) +

2ε ᾱ

1− 2ε
rc(x) + C(ε) tc(x)

αc pc
.

Summing over x ∈ X and using that supp(λc) ⊆ X∗
c , we obtain

1− Sc(αc) =
∑
x∈X

1{m(x) ̸= y∗c}λc(x)

≤
(1− ᾱ)By∗

c
(ε, pc)

αc pc

∑
x∈X∗

c

rc(x)λc(x) +
2ε ᾱ

(1− 2ε)αc pc

∑
x∈X∗

c

rc(x)λc(x)

+
C(ε)

αc pc

∑
x∈X∗

c

tc(x)λc(x).

Since rc(x) =
P0(x)

λc(x)
and tc(x) =

Sctr(x)

λc(x)
, it holds∑

x∈X∗
c

rc(x)λc(x) =
∑
x∈X∗

c

P0(x) =: P0(X
∗
c ) ≤ ξc,
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and ∑
x∈X∗

c

tc(x)λc(x) =
∑
x∈X∗

c

Sctr(x) =
∑

j: y∗
j ̸=y∗

c

αj

∑
x∈X∗

c

PX
j (x) ≤ ξ

(
ᾱ− αc − βc

)
,

where the last inequality uses global ξ–uniqueness assumption.

Combining the displays yields

Sc(αc) ≥ 1 − ξc ·
(1− ᾱ)By∗

c
(ε, pc) +

2ε ᾱ

1− 2ε
αc pc

− ξ · C(ε) · ᾱ− αc − βc

αc pc
.

Recalling By∗
c
(ε, pc) =

1 + 2ε− 2pc
1− 2ε

and C(ε) =
1 + 2ε

1− 2ε
, we obtain

Sc(αc) ≥ 1 − ξc
(1− ᾱ)(1 + 2ε− 2pc) + 2ε ᾱ

(1− 2ε)αc pc
− ξ

1 + 2ε

1− 2ε

ᾱ− αc − βc

αc pc
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