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ABSTRACT

We present SpectroMotion, a novel approach that combines 3D Gaussian Splat-
ting (3DGS) with physically-based rendering (PBR) and deformation fields to
reconstruct dynamic specular scenes. Previous methods extending 3DGS to model
dynamic scenes have struggled to accurately represent specular surfaces. Our
method addresses this limitation by introducing a residual correction technique
for accurate surface normal computation during deformation, complemented by
a deformable environment map that adapts to time-varying lighting conditions.
We implement a coarse-to-fine training strategy that significantly enhances both
scene geometry and specular color prediction. We demonstrate that our model
outperforms prior methods for view synthesis of scenes containing dynamic specu-
lar objects and that it is the only existing 3DGS method capable of synthesizing
photorealistic real-world dynamic specular scenes, outperforming state-of-the-art
methods in rendering complex, dynamic, and specular scenes.

1 INTRODUCTION

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as a groundbreaking technique in 3D
scene reconstruction, offering fast training and real-time rendering capabilities. By representing 3D
space using a collection of 3D Gaussians and employing a point-based rendering approach, 3DGS has
significantly improved efficiency in novel-view synthesis. However, extending 3DGS to accurately
model dynamic scenes, especially those containing specular surfaces, has remained a significant
challenge.

Existing extensions of 3DGS have made progress in either dynamic scene reconstruction or specular
object rendering, but none have successfully combined both aspects. Methods tackling dynamic
scenes often struggle with accurate representation of specular surfaces, while those focusing on
specular rendering are limited to static scenes. This gap in capabilities has hindered the application
of 3DGS to real-world scenarios where both motion and specular reflections are present.

NeRF-DS
Normal Normal NormalRGB RGB RGB

Deformable 3DGS Ours Ground truth

Figure 1: Our method, SpectroMotion, recovers and renders dynamic scenes with higher-
quality reflections compared to prior work. It introduces physical normal estimation, deformable
environment maps, and a coarse-to-fine training strategy to achieve superior results in rendering
dynamic scenes with reflections. Here we present a rendered test image along with its corresponding
normal maps and a ground-truth image. For Deformable 3DGS, we use the shortest axes of the
deformed 3D Gaussians as the normals. We have highlighted the specular regions for a scene from
the NeRF-DS dataset (Yan et al., 2023) to demonstrate the effectiveness of our approach.
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We present SpectroMotion, a novel approach that addresses these limitations by combining 3D Gaus-
sian Splatting with physically-based rendering (PBR) and deformation fields. Our method introduces
three key innovations: a residual correction technique for accurate surface normal computation during
deformation, a deformable environment map that adapts to time-varying lighting conditions, and a
coarse-to-fine training strategy that significantly enhances both scene geometry and specular color
prediction.

Our evaluations demonstrate that SpectroMotion outperforms prior methods in view synthesis of
scenes containing dynamic specular objects, as illustrated in Figure 1. It is the only existing 3DGS
method capable of synthesizing photorealistic real-world dynamic specular scenes, surpassing state-of-
the-art techniques in rendering complex, dynamic, and specular content. This advancement represents
a significant leap in 3D scene reconstruction, particularly for challenging scenarios involving moving
specular objects.

In summary, we make the following contributions:

• We propose SpectroMotion, a physically-based rendering (PBR) approach combining defor-
mation fields and 3D Gaussian Splatting for real-world dynamic specular scenes.

• We introduce a residual correction method for accurate surface normals during deformation,
coupled with a deformable environment map to handle time-varying lighting conditions in
dynamic scenes.

• We develop a coarse-to-fine training strategy enhancing scene geometry and specular color
prediction, outperforming state-of-the-art methods.

2 RELATED WORK

Dynamic Scene Reconstruction. Recent works have leveraged NeRF representations to jointly
solve for canonical space and deformation fields in dynamic scenes using RGB supervision (Guo
et al., 2023; Li et al., 2021; Park et al., 2021a;b; Pumarola et al., 2020; Tretschk et al., 2021; Xian
et al., 2021). Further advancements in dynamic neural rendering include object segmentation (Song
et al., 2023), incorporation of depth information (Attal et al., 2021), utilization of 2D CNNs for
scene priors (Lin et al., 2022; Peng et al., 2023), and multi-view video compression (Li et al., 2022).
However, these NeRF-based methods are computationally intensive. To address this, recent research
has adapted 3D Gaussians for dynamic scenes (Yang et al., 2023c; Wu et al., 2023; Huang et al.,
2024; Liang et al., 2023c; Wang et al., 2024; Mihajlovic et al., 2024; Stearns et al., 2024), primarily
focusing on deforming spatial coordinates through deformation fields. Nevertheless, these approaches
do not explicitly account for changes in object surface during the deformation process. Our work
extends this line of research by combining specular object rendering based on normal estimation with
a deformation field, enabling each 3D Gaussian to effectively model dynamic specular scenes.

Reflective Object Rendering. While significant progress has been made in rendering reflective
objects, challenges arising from complex light interactions persist. Recent years have seen numerous
studies addressing these issues, primarily by decomposing appearance into lighting and material
properties (Bi et al., 2020; Boss et al., 2021; Li & Li, 2022; Srinivasan et al., 2020; Zhang et al.,
2021b; Munkberg et al., 2022; Zhang et al., 2021a; Verbin et al., 2024a; Zhao et al., 2024). Building
on this foundation, some research has focused on improving the capture and reproduction of specular
reflections (Verbin et al., 2022; Ma et al., 2023; Verbin et al., 2024b), while others have leveraged
signed distance functions (SDFs) to enhance normal estimation (Ge et al., 2023; Liang et al., 2023a;b;
Liu et al., 2023; Zhang et al., 2023). The emergence of 3D Gaussian Splatting (3DGS) has sparked a
new wave of techniques (Jiang et al., 2023; Liang et al., 2023d; Yang et al., 2024; Ye et al., 2024;
Zhu et al., 2024; Shi et al., 2023) that integrate Gaussian splatting with physically-based rendering.
Nevertheless, accurately modeling dynamic environments and time-varying specular reflections
remains a significant challenge. To address this limitation, our work introduces a novel approach
incorporating a deformable environment map and additional explicit Gaussian attributes, specifically
designed to capture specular color changes over time.
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Figure 2: Method Overview. Our method stabilizes the scene geometry through three stages. In
the static stage, we stabilize the geometry of the static scene by minimizing photometric loss Lcolor
between vanilla 3DGS renders and ground truth images. The dynamic stage combines canonical 3D
Gaussians G with a deformable Gaussian MLP to model dynamic scenes while simultaneously mini-
mizing normal loss Lnormal between rendered normal map Nt and gradient normal map from depth
map Dt, thus further enhancing the overall scene geometry. Finally, the specular stage introduces a
deformable reflection MLP to handle changing environment lighting, deforming reflection directions
ωt
r to query a canonical environment map for specular color cts. It is then combined with diffuse

color cd (using zero-order spherical harmonics) and learnable specular tint stint per 3D Gaussian to
obtain the final color ctfinal. This approach enables the modeling of dynamic specular scenes and
high-quality novel view rendering.

3 METHOD

Overview of the approach. The overview of our method is illustrated in Fig. 2. Given an input
monocular video sequence of frames and corresponding camera poses, we design a three-stage
approach to reconstruct the dynamic specular scene, as detailed in Section 3.2. Accurate specular
reflection requires precise normal estimation, so Section 3.3 elaborates on how we estimate normals in
dynamic scenes. Finally, we introduce the losses used throughout the training process in Section 3.4.

3.1 PRELIMINARY

3D Gaussian Splatting. Each 3D Gaussian is defined by a center position x ∈ R3 and a covariance
matrix Σ. 3D Gaussian Splatting (Kerbl et al., 2023) optimizes the covariance matrix using scaling
factors s ∈ R3 and rotation unit quaternion r ∈ R4. For novel-view rendering, 3D Gaussians are
projected onto 2D camera planes using differentiable splatting (Yifan et al., 2019):

Σ′=JWΣWTJT . (1)

Pixel colors are computed using point-based volumetric rendering:

C =
∑
i∈N

Tiαici, αi = σie
− 1

2 (x)
TΣ′(x), (2)

where Ti =
∏i−1

j=1(1 − αj) is the transmittance, σi is the opacity, and ci is the color of each 3D
Gaussian.

3
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3.2 SPECULAR RENDERING

Limitations of existing methods. The current Dynamic 3DGS-based methods (Wu et al., 2023;
Yang et al., 2023c;b) encounter limitations in accurately modeling environments that include specular
objects. This issue arises from the inherent low-frequency characteristics of low-order spherical
harmonics (SH), which are inadequate for capturing complex visual effects such as specular highlights.
In contrast, other specialized 3DGS-based methods for static specular object scenes (Jiang et al.,
2023; Liang et al., 2023d) often incorporate environment maps to model lighting, which is then
combined with BRDF to simulate the entire scene. However, vanilla environment maps are not
suitable for modeling lighting scenarios that involve time-variant elements. This results in the existing
3DGS-based methods being insufficient for effectively modeling dynamic specular object scenes.

Proposed solution overview. To address these challenges, we introduce physical normal estimation
(Section 3.3) and deformable environment maps to model the specular color of real-world dynamic
scenes. However, this approach alone is insufficient, as precise scene geometry is crucial for accurate
reflections. Therefore, we introduce our coarse-to-fine training strategy, which helps stabilize scene
geometry while simultaneously predicting accurate specular color. Our coarse-to-fine training strategy
is divided into three stages: the static stage, the dynamic stage, and the specular stage. In the following
paragraphs, we will introduce each of these stages in detail.

3.2.1 COARSE-TO-FINE TRAINING STRATEGY

Static stage. In the static stage, we employ vanilla 3DGS (Kerbl et al., 2023) for static scene
reconstruction to stabilize the geometry of the static scene. Specifically, we optimize the position x,
scaling s, rotation r, opacity α, and coefficients of spherical harmonics (SH) of the 3D Gaussians by
minimizing the photometric loss Lcolor between the rendered image and the corresponding image:

Lcolor = (1− λD-SSIM)L1 + λD-SSIMLD-SSIM. (3)

Dynamic stage. Following the static stage, we address dynamic objects using Deformable
3DGS (Yang et al., 2023c). For each 3D Gaussian in canonical 3D Gaussians G, we input its
position x and time t into a deformable Gaussian MLP with parameters θG to predict position,
rotation, and scaling residuals:

(∆xt,∆rt,∆st) = FθG(γ(x), γ(t)), (4)

where γ denotes positional encoding. Attributes of the corresponding 3D Gaussian in deformed 3D
Gaussians Gt at time t is obtained by:

(xt, rt, st) = (∆xt,∆rt,∆st) + (x, r, s). (5)

This approach separates motion and geometric structural learning, allowing accurate simulation
of dynamic behaviors while maintaining a stable geometric reference. To further enhance scene
geometry, we estimate normals of deformed 3D Gaussians and optimize them using:

Lnormal = 1−Nt · N̂t, (6)

where Nt is the rendered normal map and N̂t is the normal map derived from the rendered depth
map Dt. This process improves local associations among 3D Gaussians and optimizes both depth
and normal information across the entire scene.

Specular stage. We adopt an image-based lighting (IBL) model with a learnable cube map. Inspired
by the rendering equation (Kajiya, 1986), split-sum approximation (Karis & Games, 2013), and
Cook-Torrance reflectance model (Cook & Torrance, 1982), we formulate the outgoing radiance of
the specular component Ls as:

Ls =

∫
Ω

DGF

4(ωt
o · nt)(ωi · nt)

(ωi · nt)dωi

∫
Ω

Li(ωi)D(ωi, ω
t
o)(ωi · nt)dωi, (7)

where Ω is the hemisphere around the surface normal nt. D, G, and F represent the GGX normal
distribution function (Walter et al., 2007), geometric attenuation, and Fresnel term, respectively. ωt

o is
the view direction, and Li(ωi) is the incident radiance. The first term, representing the specular BSDF
with a solid white environment light, is precomputed and stored in a look-up table. The second term is

4
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pre-integrated in a filtered cubemap, where each mip-level corresponds to a specific roughness value.
Roughness ρ ∈ [0, 1] is a learnable parameter for each 3D Gaussian. After the static and dynamic
stages, the geometry is well-defined. This allows us to accurately calculate reflection directions ωt

r:
ωt
r = 2(ωt

o · nt)nt − ωt
o. (8)

Reflection directions can query the environment map for the specular color of static environment
light. To handle time-varying lighting in dynamic scenes, we introduce a deformable environment
map, detailed in the following section.

3.2.2 DEFORMABLE ENVIRONMENT MAP FOR DYNAMIC LIGHTING.

The concept of a deformable environment map involves treating the vanilla environment map as a
canonical environment map and combining it with a deformation field. This approach enables us
to model time-varying lighting conditions effectively. To implement this, we first apply positional
encoding to the reflection direction ωt

r and time t. These encoded values are then input into a
deformable reflection MLP with parameters θR. This process allows us to obtain the deformed
reflection residual ∆ω̄t

r for each specified time t:
∆ω̄t

r = FθR(γ(ω
t
r), γ(t)). (9)

Subsequently, we add the deformed reflection residual ∆ω̄t
r to the reflection direction ωt

r, yielding
the deformed reflection direction ω̄t

r. This can be expressed as:
ω̄t
r = ∆ω̄t

r + ωt
r (10)

We can then use this deformed reflection direction ω̄t
r to query the canonical environment map,

allowing us to obtain time-varying specular color cts. This approach effectively captures the dynamic
nature of lighting in the scene while maintaining a stable canonical reference.

3.2.3 COLOR DECOMPOSITION AND STAGED TRAINING STRATEGY.

We decompose the final color ctfinal into diffuse and specular components to better distinguish
between high and low-frequency information:

ctfinal = cd + cts ⊙ stint, (11)
where cd is the diffuse color (using zero-order spherical harmonics as view-independent color),
stint ∈ [0, 1]3 is the learnable specular tint stored in each 3D Gaussian, and cs

t is the view-dependent
color component. To manage the transition from spherical harmonics to ctfinal and mitigate potential
geometry disruptions, in the early specular stage, we fix the deformable Gaussian MLP and most 3D
Gaussian attributes, optimizing only zero-order SH, specular tint, and roughness. We temporarily
suspend densification during this phase. As ctfinal becomes more complete, we gradually resume
optimization of all parameters and reinstate the densification process.

We further split the specular stage into two parts, applying a coarse-to-fine strategy to the environment
map. In the first part, we focus on optimizing the canonical environment map for time-invariant
lighting. This establishes a stable foundation for the overall lighting structure. In the second part, we
proceed to optimize the deformable reflection MLP for dynamic elements. This approach ensures a
more robust learning process, allowing us to capture the static lighting conditions before introducing
the complexities of dynamic components.

3.3 PHYSICAL NORMAL ESTIMATION

Challenges in normal estimation for 3D Gaussians. Normal estimation is crucial for modeling
specular objects, as it directly affects surface reflections. However, the discrete nature of 3D Gaussians
makes this process challenging, as it typically requires a continuous surface. GaussianShader (Jiang
et al., 2023) observed that 3D Gaussians tend to flatten during training, leading to the use of the
shortest axis as an initial approximation of the surface normal. To improve accuracy, they introduced
a residual normal ∆n for each 3D Gaussian to compensate for errors in this approximation. However,
this method alone is insufficient for deformed 3D Gaussians, as the residual should vary at each
time step. A straightforward approach of rotating the residual based on the quaternion difference
between canonical and deformed Gaussians proves inadequate, as it fails to account for shape changes
during deformation. If the shortest axis of the canonical 3D Gaussian is no longer the shortest after
deformation, this method results in incorrect rotation. Consequently, a more sophisticated approach
is needed to accurately model the normals of deformed 3D Gaussians. This approach must consider
both the rotation and the change in shape during the deformation process, ensuring accurate normal
estimation for dynamic specular objects.

5
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Figure 3: Normal estimation. (a) shows that flatter 3D Gaussians align better with scene surfaces,
their shortest axis closely matching the surface normal. In contrast, less flat 3D Gaussians fit less
accurately, with their shortest axis diverging from the surface normal. (b) shows that when the
deformed 3D Gaussian becomes flatter (t = t1), normal residual ∆n is rotated by Rt

1 and scaled
down by β

βt
1

, as flatter Gaussians require smaller normal residuals. Conversely, when the deformation

results in a less flat shape (t = t2), ∆n is rotated by Rt
2 and amplified by β

βt
2

, requiring a larger

correction to align the shortest axis with the surface normal. (c) shows how γk changes with w

(where w =
|vt

s|
|vt

l |
) for k = 1, k = 5, and k = 50. Larger w indicates less flat Gaussians, while smaller

w represents flatter Gaussians. As k increases, γk decreases more steeply as w rises. For k = 5,
we observe a balanced behavior: γk approaches 1 for low w and 0 for high w, providing a nuanced
penalty adjustment across different Gaussian shapes.

Improved rotation calculation for deformed 3D Gaussians. To overcome the limitations of
naive methods and accurately model the normal of deformed 3D Gaussians, we propose using both
the shortest and longest axes of canonical and deformed Gaussians to compute the rotation matrix.
This approach accounts for both rotation and shape changes during deformation. We first align the
deformed Gaussian’s axes with those of the canonical Gaussian using the following method:

vt
s =

{
vt
s if vs · vt

s > 0,

−vt
s otherwise.

, vt
l =

{
vt
l if vl · vt

l > 0,

−vt
l otherwise.

, (12)

where vs and vl represent the shortest and longest axes of canonical 3D Gaussians, while vt
s and

vt
l denote the same for deformed 3D Gaussians. We then construct orthogonal matrices using these

aligned axes and their cross products:

U = [vs vl vs × vl] , Vt =
[
vt
s vt

l vt
s × vt

l

]
. (13)

Finally, we derive the rotation matrix:

Rt = VtU⊤. (14)

This method provides a robust solution for calculating the rotation of deformation process, ensuring
accurate normal estimation for dynamic specular objects.

Adjusting normal residuals and ensuring accuracy. To account for shape changes during de-
formation, we scale the normal residual based on the ratio of oblateness β

βt between canonical and
deformed 3D Gaussians.

β =
|vl| − |vs|

|vl|
, βt =

|vt
l | − |vt

s|
|vt

l |
, (15)

where β and βt represent the oblateness of canonical and deformed 3D Gaussians, respectively. This
is because flatter 3D Gaussians tend to align more closely with the surface, meaning their shortest
axis becomes more aligned with the surface normal, as shown in Fig. 3(a). In such cases, less
compensation from the normal residual is needed. Conversely, less flat Gaussians require more
compensation, as illustrated in Fig. 3(b). We then obtain deformed normal residuals:

∆nt =
β

βt
Rt∆n. (16)

The final normal nt is computed by adding this residual to the shortest axis and ensuring outward
orientation:

nt = ∆nt + vt
s, nt =

{
nt if nt · ωt

o > 0,

−nt otherwise.
(17)

This approach adjusts for Gaussian flatness and ensures accurate normal estimation.

6
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Table 1: Quantitative comparison on the NeRF-DS (Yan et al., 2023) dataset. We report the
average PSNR, SSIM, and LPIPS (VGG) of several previous models on test images. The best , the
second best , and third best results are denoted by red, orange, yellow.

As Basin Bell Cup

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS (Yang et al., 2023c) 26.04 0.8805 0.1850 19.53 0.7855 0.1924 23.96 0.7945 0.2767 24.49 0.8822 0.1658
4DGS (Wu et al., 2023) 24.85 0.8632 0.2038 19.26 0.7670 0.2196 22.86 0.8015 0.2061 23.82 0.8695 0.1792
GaussianShader (Jiang et al., 2023) 21.89 0.7739 0.3620 17.79 0.6670 0.4187 20.69 0.8169 0.3024 20.40 0.7437 0.3385
GS-IR (Liang et al., 2023d) 21.58 0.8033 0.3033 18.06 0.7248 0.3135 20.66 0.7829 0.2603 20.34 0.8193 0.2719
NeRF-DS (Yan et al., 2023) 25.34 0.8803 0.2150 20.23 0.8053 0.2508 22.57 0.7811 0.2921 24.51 0.8802 0.1707
HyperNeRF (Park et al., 2021b) 17.59 0.8518 0.2390 22.58 0.8156 0.2497 19.80 0.7650 0.2999 15.45 0.8295 0.2302
Ours 26.80 0.8851 0.1761 19.75 0.7922 0.1896 25.46 0.8497 0.1600 24.65 0.8879 0.1588

Plate Press Sieve Mean
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS (Yang et al., 2023c) 19.07 0.7352 0.3599 25.52 0.8594 0.1964 25.37 0.8616 0.1643 23.43 0.8284 0.2201
4DGS (Wu et al., 2023) 18.77 0.7709 0.2721 24.82 0.8355 0.2255 25.16 0.8566 0.1745 22.79 0.8235 0.2115
GaussianShader (Jiang et al., 2023) 14.55 0.6423 0.4955 19.97 0.7244 0.4507 22.58 0.7862 0.3057 19.70 0.7363 0.3819
GS-IR (Liang et al., 2023d) 15.98 0.6969 0.4200 22.28 0.8088 0.3067 22.84 0.8212 0.2236 20.25 0.7796 0.2999
NeRF-DS (Yan et al., 2023) 19.70 0.7813 0.2974 25.35 0.8703 0.2552 24.99 0.8705 0.2001 23.24 0.8384 0.2402
HyperNeRF (Park et al., 2021b) 21.22 0.7829 0.3166 16.54 0.8200 0.2810 19.92 0.8521 0.2142 19.01 0.8167 0.2615
Ours 20.84 0.8180 0.2198 26.49 0.8665 0.1889 25.22 0.8712 0.1513 24.17 0.8529 0.1778

NeRF-DSGaussianShader GS-IRDeformable 3DGS 4DGSOursGround truth

A
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Figure 4: Qualitative comparison on the NeRF-DS Yan et al. (2023) dataset.

3.4 LOSS FUNCTIONS

Normal regularization. To allow the normal residual to correct the normal while not excessively
influencing the optimization of the shortest axis towards the surface normal, we introduce a penalty
term for the normal residual:

Lreg = γk∥∆n∥22 where γ =

√
1− |vt

s|2
|vt

l |2
. (18)

In our experiments, we set k = 5. When k = 5, less flatter 3D Gaussians have γk approaching 0.
Their shortest axis aligns poorly with the surface normal, requiring more normal residual correction
and smaller penalties. Conversely, flatter Gaussians have γk near 1. Their shortest axis aligns better
with the surface normal, needing less normal residual correction and allowing larger penalties, as
shown in Fig. 3(c).

Total training loss. To refine all parameters in the dynamic and specular stages, we employ the
total training loss:

L = Lcolor + λnormalLnormal + Lreg, (19)

where Lcolor and Lnormal are obtained as described in Section 3.2.1. In our experiments, we set
λnormal = 0.01.

4 EXPERIMENTS

4.1 EVALUATION RESULTS

We evaluate our method on two real-world datasets: NeRF-DS dataset (Yan et al., 2023) and
HyperNeRF dataset (Park et al., 2021b).
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Table 2: Quantitative comparison on the NeRF-DS (Yan et al., 2023) dataset with our labeled dy-
namic specular masks. We report PSNR, SSIM, and LPIPS (VGG) of previous methods on dynamic
specular objects using the dynamic specular objects mask generated by Track Anything (Yang et al.,
2023a). The best , the second best , and third best results are denoted by red, orange, yellow.

As Basin Bell Cup

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS (Yang et al., 2023c) 24.14 0.7432 0.2957 17.45 0.5530 0.3138 19.42 0.5516 0.2940 20.10 0.5446 0.3312
4DGS (Wu et al., 2023) 22.70 0.6993 0.3517 16.61 0.4797 0.4084 14.64 0.2596 0.4467 18.90 0.4132 0.4032
GaussianShader (Jiang et al., 2023) 19.27 0.5652 0.5232 15.71 0.4163 0.5941 12.10 0.1676 0.6764 14.90 0.3634 0.6146
GS-IR (Liang et al., 2023d) 19.32 0.5857 0.4782 15.21 0.4009 0.5644 12.09 0.1757 0.6722 14.80 0.3445 0.6046
NeRF-DS (Yan et al., 2023) 23.67 0.7478 0.3635 17.98 0.5537 0.4211 14.73 0.2439 0.5931 19.95 0.5079 0.3494
HyperNeRF (Park et al., 2021b) 17.37 0.6934 0.3834 18.75 0.5671 0.4125 13.93 0.2292 0.6051 15.07 0.4860 0.4183
Ours 24.51 0.7534 0.2896 17.71 0.5675 0.3048 19.60 0.5680 0.2862 20.28 0.5473 0.3176

Plate Press Sieve Mean
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS (Yang et al., 2023c) 16.12 0.5192 0.3544 19.64 0.6384 0.3268 20.74 0.5283 0.3109 19.66 0.5826 0.3181
4DGS (Wu et al., 2023) 13.93 0.4095 0.4229 20.17 0.5434 0.4339 19.70 0.4498 0.3879 18.09 0.4649 0.4078
GaussianShader (Jiang et al., 2023) 9.87 0.2992 0.6812 16.84 0.4408 0.6093 16.19 0.3241 0.5862 14.98 0.3681 0.6121
GS-IR (Liang et al., 2023d) 11.09 0.3254 0.6270 16.43 0.4083 0.5776 16.42 0.3339 0.5749 15.05 0.3678 0.5856
NeRF-DS (Yan et al., 2023) 14.80 0.4518 0.3987 19.77 0.5835 0.5035 20.28 0.5173 0.4067 18.74 0.5151 0.4337
HyperNeRF (Park et al., 2021b) 16.03 0.4629 0.3775 14.10 0.5365 0.5023 18.39 0.5296 0.3949 16.23 0.5007 0.4420
Ours 16.53 0.5369 0.3041 21.70 0.6630 0.3252 20.36 0.5089 0.3190 20.10 0.5921 0.3066

NeRF-DSGaussianShader GS-IRDeformable 3DGS 4DGSOursGround truth

B
el

l
C

u
p

S
ie

v
e

HyperNeRF

Figure 5: Qualitative comparison on NeRF-DS dataset with labeled dynamic specular masks.

Entire scene of the NeRF-DS dataset. The NeRF-DS dataset (Yan et al., 2023) is a monocular
video dataset comprising seven real-world scenes from daily life, featuring various types of moving
or deforming specular objects. We compare our method with the most relevant state-of-the-art
approaches. As shown in Tab. 1 and Fig. 4, the quantitative results demonstrate that our method
decisively outperforms baselines in reconstructing and rendering real-world highly reflective dynamic
specular scenes.

Dynamic specular object of NeRF-DS dataset. Since each scene in the NeRF-DS dataset (Yan
et al., 2023) contains not only dynamic specular objects but also static background objects, we use
Track Anything (Yang et al., 2023a) to obtain masks for the dynamic specular objects. This allows us
to evaluate only the dynamic specular objects. As shown in Tab. 2 and Fig. 5, our method outperforms
baselines when evaluating the dynamic specular objects in these monocular sequences.

HyperNeRF dataset. The HyperNeRF dataset, while also containing real-world dynamic scenes,
does not include specular objects. As shown in Tab. 3 and appendix Fig. 14, the results demonstrate
that we are on par with state-of-the-art techniques for rendering novel views and our method’s
performance is not limited to shiny scenes.

This strong performance across different types of real-world datasets further confirms the effectiveness
of our approach in handling a wide range of scene characteristics. The success can be attributed
to our key innovations: physical normal estimation, deformable environment map, and coarse-to-
fine training strategy, which together enable robust reconstruction and rendering of diverse scenes.
Notably, unlike NeRF-DS, our approach does not require mask supervision to clearly distinguish
between static and dynamic objects, as illustrated in Fig. 6. Additionally, Fig. 7 illustrates our
method’s decomposition results. As shown, our approach consistently achieves a realistic separation
of specular and diffuse components across different scenes in the NeRF-DS dataset.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Quantitative comparison on the HyperNeRF (Park et al., 2021b) dataset. We report the
average PSNR, SSIM, and LPIPS (VGG) of several previous models. The best , the second best ,
and third best results are denoted by red, orange, yellow.

Broom 3D printer Chicken Peel Banana Mean
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS (Yang et al., 2023c) 22.35 0.4952 0.5148 21.47 0.6921 0.2147 23.55 0.6747 0.2334 21.28 0.5302 0.4472 22.16 0.5981 0.3525
4DGS (Wu et al., 2023) 21.21 0.3555 0.5669 21.90 0.6993 0.3198 28.69 0.8143 0.2772 27.77 0.8431 0.2049 24.89 0.6781 0.3422
GaussianShader (Jiang et al., 2023) 17.21 0.2263 0.5812 17.31 0.5926 0.5054 19.70 0.6520 0.5004 19.99 0.7097 0.3308 18.55 0.5452 0.4795
GS-IR (Liang et al., 2023d) 20.46 0.3420 0.5229 18.24 0.5745 0.5204 20.64 0.6592 0.4536 20.15 0.7159 0.3021 19.87 0.5729 0.4498
NeRF-DS (Yan et al., 2023) 22.37 0.4371 0.5694 22.16 0.6973 0.3134 27.32 0.7949 0.3139 22.75 0.6328 0.3919 23.65 0.6405 0.3972
HyperNeRF (Park et al., 2021b) 20.72 0.4276 0.5773 21.94 0.7003 0.3090 27.40 0.8013 0.3052 22.36 0.6257 0.3956 23.11 0.6387 0.3968
Ours 22.04 0.5145 0.4494 19.96 0.6444 0.2397 22.20 0.6203 0.1970 27.34 0.8895 0.1290 22.89 0.6672 0.2538

Table 4: Ablation studies on dif-
ferent coarse to fine training
strategy stages.
Stage PSNR ↑ SSIM ↑ LPIPS ↓

Static 20.26 0.7785 0.2953
St. + Dynamic 24.02 0.8508 0.1831
St. + Dy. + Specular 24.17 0.8529 0.1778

Table 5: Ablation study on
coarse-to-fine and losses.
C2F Lnormal Lreg γ

k PSNR↑ SSIM↑ LPIPS↓

✓ ✓ ✓ 23.16 0.8294 0.2156
✓ 23.40 0.8277 0.2278
✓ ✓ 24.15 0.8510 0.1845
✓ ✓ ✓ 24.09 0.8515 0.1818
✓ ✓ ✓ ✓ 24.17 0.8529 0.1778

Table 6: Ablation studies on SH,
Static and Deformable environ-
ment map.

PSNR ↑ SSIM ↑ LPIPS ↓

SH 23.63 0.8453 0.1844
Static Env. map 24.02 0.8508 0.1831
Deformable Env. map 24.17 0.8529 0.1778

(a) Ground truth dynamic masks (b) Our rendered deformation magnitudes

Figure 6: Visualization our deformation magnitudes. (a) The left side shows the ground truth of
the dynamic object, while (b) on the right side, we render the magnitude of the output of the position
residual by our deformable Gaussian MLP. The brighter areas indicate greater movement of the 3D
Gaussians. The figure shows that even without mask supervision, our method can still effectively
distinguish which objects are dynamic.

4.2 ABLATION STUDY

Different coarse to fine training strategy stages. As shown in the Tab. 4 and Fig. 8 , each stage
contributes effectively to the model’s performance. The Dynamic stage enhances object stability
compared to the Static stage alone, while the Specular stage improves reflection clarity beyond the
combined Static and Dynamic stages. This coarse-to-fine approach establishes a stable geometric
foundation before addressing complex specular effects. Note that the total iterations for each row in
the Tab. 4 are 40,000.

Ablation study on coarse-to-fine, and loss function. The model’s performance was evaluated
without key components: the coarse-to-fine training strategy, normal loss Lnormal, normal regulariza-
tion Lreg, and γk. Fig. 9 and Tab. 5 illustrate the effects of these omissions. Without the coarse-to-fine
approach, the model, trained directly at the specular stage, produces incomplete scene geometry,
affecting environment map queries for specular color. Omitting normal loss Lnormal removes direct
supervision on normals, impeding geometric refinement and reducing rendering quality. This also
leads to inaccurate reflection directions and less precise specular colors. Removing normal regular-
ization Lreg allows the normal residual to dominate normal optimization, resulting in insufficient
optimization of the 3D Gaussians’ shortest axis towards the correct normal , which in turn reduces
the rendering quality. Without γk in normal regularization, the normal residual decreases for both
non-flattened and flat Gaussians. This particularly affects less flat 3D Gaussians whose shortest axis
significantly deviates from the surface normal. The insufficient normal residual correction causes
these 3D Gaussians’ shortest axes to deviate greatly from their original direction in an attempt to
align with the surface normal, ultimately reducing rendering quality.

Ablation study on SH, Static environment map, and Deformable enviorment map. Fig. 10 and
Tab. 6 demonstrate the superiority of the deformable environment map over the static environment
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Ground truth Render test image Specular color Diffuse color

A
s

B
as

in

Figure 7: Visualization our specular and diffuse color. Specular regions are emphasized while
non-specular areas are dimmed to highlight the results of specular region color decomposition.

Static Static + Dynamic Static + Dynamic + Specular Ground-truth

Figure 8: Qualitative comparison of each training stage in our coarse-to-fine approach.

Full model

w/o Coarse-to-fine w/o ℒnormal w/o ℒreg w/o 𝛾𝑘

Full model Full model Full model

Figure 9: Qualitative comparison of ablation study without different components.

Static Env. map Deformable Env. map (Full model) Spherical Harmonics (SH) Ground-truth

Figure 10: Qualitative comparison of ablation study on SH, Static environment map, and
Deformable enviorment map.

map, which in turn outperforms Spherical Harmonics (SH). SH struggles to accurately model high-
frequency specular colors. While the static environment map can model high-frequency colors, it
is best suited for static lighting conditions. In contrast, the deformable environment map excels in
modeling time-varying lighting, offering superior performance for dynamic scenes.

5 CONCLUSION

SpectroMotion enhances 3D Gaussian Splatting for dynamic specular scenes by combining specular
rendering with deformation fields. Using normal residual correction, coarse-to-fine training, and
deformable environment map, it achieves superior accuracy and visual quality in novel view synthesis,
outperforming existing methods while maintaining geometric consistency.

Limitations. Though we stabilize the entire scene’s geometry using a coarse-to-fine training
strategy, some failure cases still occur. Please refer to the appendix for visual results of failure cases.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 IMPLEMENTATION DETAILS

We use PyTorch as our framework and 3DGS (Kerbl et al., 2023) as our codebase. Our coarse-to-fine
approach is divided into three sequential stages: static, dynamic, and specular. In the static stage, we
train the vanilla 3D Gaussian Splatting (3DGS) for 3000 iterations to stabilize the static geometry.
The dynamic stage then introduces a deformable Gaussian MLP to model dynamic objects. We
first optimize both the canonical Gaussians and the deformable Gaussian MLP for 3000 iterations
until the scene becomes relatively stable. Subsequently, we introduce Lnormal, enabling simultaneous
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Figure 11: Architecture of the deformable Gaussian MLP
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Figure 12: Architecture of the deformable reflection MLP

optimization of the scene’s normal and depth, further refining the geometry for another 3000 iterations.
After the dynamic stage concludes, we transition to the specular stage, which involves changing the
color representation from complete spherical harmonics to cfinal. To mitigate potential geometry
disruptions due to the initially incomplete cfinal, we fix the deformable Gaussian MLP and all
3D Gaussian attributes except for zero-order SH, specular tint, and roughness, while temporarily
suspending densification. After 6000 iterations, once cfinal becomes more complete, we resume
optimization of all parameters and reinstate the densification process. Concurrently, during the first
2000 iterations of the specular stage, we optimize only the canonical environment map to learn
time-invariant lighting. For the canonical environment, we use 6× 128× 128 learnable parameters.
Subsequently, we begin optimizing the deformable reflection MLP to capture time-varying lighting
effects. We train total iterations 40,000. All training and rendering are conducted on an NVIDIA
RTX 4090 GPU.

A.1.1 NETWORK ARCHITECTURE OF THE DEFORMABLE GAUSSIAN MLP AND DEFORMABLE
REFLECTION MLP

We use deformable Gaussian MLP to predict each coordinate of 3D Gaussians and time to their
corresponding deviations in position, rotation, and scaling. As shown in Fig. 11, the MLP initially
processes the input through eight fully connected layers that employ ReLU activations, featuring
256-dimensional hidden layers, and outputs a 256-dimensional feature vector. This vector is then
passed through three additional fully connected layers combined with ReLU activation to separately
output the offsets over time for position, rotation, and scaling. Notably, similar to NeRF, the feature
vector and the input are concatenated in the fourth layer. For the deformable reflection MLP, we
utilize the same network architecture, as shown in Fig. 12.
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A.2 ADDITIONAL EXPERIMENT RESULTS

We provide an HTML interface in the supplementary material zip file for browser-rendered video
results of all compared methods. This includes qualitative comparisons on the NeRF-DS dataset
for each scene, as shown in Fig. 13, as well as qualitative comparisons on the NeRF-DS dataset for
each scene with labeled dynamic specular masks, as shown in Fig. 15. Additionally, failure cases are
presented in Fig. 16.
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Figure 13: Qualitative comparison on NeRF-DS dataset per-scene.
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Figure 14: Qualitative comparison on the HyperNeRF Park et al. (2021b) dataset.
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Figure 15: Qualitative comparison on NeRF-DS dataset per-scene with labeled dynamic specular
masks.

Dramatic scenes
Figure 16: Failure cases. In some dramatic scenes, relying solely on the Deformable Gaussian MLP
is insufficient, such as when an arm enters or exits the scene, leading to many floaters occurring.
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