
rSIM: Incentivizing Reasoning Capabilities of LLMs via Reinforced
Strategy Injection

Anonymous ACL submission

Abstract001

Large language models (LLMs) are post-002
trained through reinforcement learning (RL)003
to evolve into Reasoning Language Models004
(RLMs), where the hallmark of this advanced005
reasoning is “aha” moments when they start006
to perform strategies, such as self-reflection007
and deep thinking, within chain of thoughts008
(CoTs). Motivated by this, this paper proposes009
a novel reinforced strategy injection mecha-010
nism (rSIM), that enables any LLM to be-011
come an RLM by employing a small planner to012
guide the LLM’s CoT through the adaptive in-013
jection of reasoning strategies. To achieve this,014
the planner (leader agent) is jointly trained015
with an LLM (follower agent) using multi-016
agent RL (MARL), based on a leader-follower017
framework and straightforward rule-based re-018
wards. Experimental results show that rSIM019
enables Qwen2.5-0.5B to become an RLM and020
significantly outperform Qwen2.5-14B. More-021
over, the planner is generalizable: it only022
needs to be trained once and can be applied as023
a plug-in to substantially improve the reason-024
ing capabilities of existing LLMs. In addition,025
the planner supports continual learning across026
various tasks, allowing its planning abilities to027
gradually improve and generalize to a wider028
range of problems.029

1 Introduction030

Large language models (LLMs) have been031

enhanced with advanced reasoning capabili-032

ties, evolving into Reasoning Language Mod-033

els (RLMs) (Besta et al., 2025) that solve prob-034

lems through step-by-step reasoning, commonly035

referred to as chain-of-thought (CoT) (Wei et al.,036

2022). A key advancement in RLMs is their abil-037

ity to integrate reasoning strategies, such as self-038

reflection, decomposition, and deliberative think-039

ing, into the CoT process, contributing to im-040

proved problem-solving accuracy.041

Existing literature (Trung et al., 2024; Havrilla042

et al., 2024), especially the recent Group Relative043

Policy Optimization (GRPO) (Guo et al., 2025), 044

primarily post-trains LLMs to evolve into RLMs 045

purely through reinforcement learning (RL) algo- 046

rithms. A hallmark of this evolution is the emer- 047

gence of the “aha moment” where LLMs start to 048

perform strategies such as self-reflection within 049

CoTs. We empirically found that the better per- 050

formance of evolved RLMs correlates with the 051

higher appearance frequency and more appropri- 052

ate positions of these strategies compared to those 053

in LLMs. However, our findings also indicate that 054

when LLMs, particularly smaller ones, inherently 055

lack the capacity to perform basic reasoning strate- 056

gies, RL-based post-training is unable to trans- 057

form them into capable RLMs. 058

Therefore, this paper proposes a reinforced strat- 059

egy injection mechanism (rSIM), which enables 060

any LLM, in particular those as small as 0.5B, 061

to evolve into an RLM with minimal or even no 062

additional training. To achieve this, rSIM intro- 063

duces only an auxiliary planner that, at each rea- 064

soning step of an LLM, adaptively selects an ap- 065

propriate strategy from a predefined set such as 066

self-reflection, decomposition, and others, and in- 067

jects it into the chain of thought (CoT) to guide the 068

next step generation. Specifically, the rSIM offers 069

the following four key contributions: 070

• Injecting reasoning strategies adaptively into the 071

CoT process of any LLM, including small and 072

large ones, via a planner enables the LLM to di- 073

rectly gain the advanced reasoning ability like 074

RLMs. 075

• Training the planner and LLM jointly as two 076

agents under multi-agent RL (MARL) with 077

the leader-follower algorithm (Gerstgrasser and 078

Parkes, 2023) reinforces the planner’s ability to 079

inject strategies. 080

• Planners are pluggable, meaning that a planner 081

trained on one task can be directly integrated 082

1

with another LLM to enhance its reasoning abil-083

ity on similar tasks.084

• Planners support continual learning, as a plan-085

ner in our rSIM can be continuously trained086

across tasks to enhance its planning ability over087

a broader range of problems.088

Our results across seven datasets covering math-089

ematics, multi-task reasoning, and code genera-090

tion verify the benefits of rSIM. First, even small091

LLMs such as Qwen2.5-0.5B, when jointly trained092

with a planner (Qwen2.5-0.5B), can evolve into an093

RLM, achieving accuracy on par with Qwen2.5-094

14B on MATH (Hendrycks et al., 2021). Second,095

using the trained planner as a plugin enables an-096

other LLM to outperform larger models by a sig-097

nificant margin without any additional training.098

Third, a planner trained on mathematics can be099

continuously fine-tuned on coding tasks such as100

CodeAlpaca-20k (Chaudhary, 2023) to further101

guide an LLM like Qwen2.5-0.5B, achieving 17%102

higher accuracy on code generation.103

2 Related Work104

Data distillation. Knowledge distilled from large105

language models (LLMs) can be transferred to106

smaller models to enhance their performance (Xu107

et al., 2024). In particular, (Guo et al., 2025) ver-108

ifies that larger LLMs can transfer their step-by-109

step reasoning abilities to smaller models by dis-110

tilling chain-of-thought (CoT) (Wei et al., 2022)111

samples, where LLM-generated reasoning traces112

serve as additional fine-tuning data. Fine-tuning113

with teacher-generated CoT outputs (Magister114

et al., 2022; Yu et al., 2024; Dai et al., 2024), ratio-115

nalizations (Li et al., 2023a), specialized reason-116

ing skills (Liao et al., 2025), CoT and Program of117

Thought (PoT) (Chenglin et al., 2024), or even in-118

correct CoT samples (Huang et al., 2022; Hosseini119

et al., 2024) can significantly improve the reason-120

ing abilities of smaller models. In this paper, using121

the planner from our DPR framework as a plugin122

to improve the reasoning of smaller models can123

be viewed as transferring a human-level planning124

chain to them.125

Reinforcement learning. Reinforcement learn-126

ing (RL) (Thrun and Littman, 2000) has been127

widely applied to decision-making tasks, as128

demonstrated by AlphaGo (Silver et al., 2016)129

and AlphaZero (Silver et al., 2017). RLHF130

(Ouyang et al., 2022) first leveraged PPO (Schul-131

man et al., 2017) to align models with human pref- 132

erences. ReFT (Trung et al., 2024) pioneered the 133

use of RL as a fine-tuning paradigm to enhance 134

LLM reasoning performance. Building on this 135

progress, DeepSeek-R1-Zero (Guo et al., 2025) 136

made a breakthrough by demonstrating that self- 137

verification, reflection, and the ability to generate 138

long CoTs in LLMs can be incentivized purely 139

through RL, specifically using GRPO (Shao et al., 140

2024). This enables smaller base LLMs, such 141

as 3B and 7B models, to be trained directly 142

to achieve reasoning performance comparable to 143

stronger models. However, as noted by (Havrilla 144

et al., 2024), models are inherently constrained in 145

their ability to explore CoT solutions beyond their 146

existing capabilities. Consequently, weaker base 147

models as small as 0.5B fail to benefit from RL 148

training and lag behind in reasoning performance. 149

Multi-agent LLMs. Building on the devel- 150

opment of using a single LLM as a planning 151

or decision-making agent, multi-agent LLMs (Li 152

et al., 2024) based on MARL (Lowe et al., 2017), 153

where multiple language models collaborate, have 154

achieved significant progress in complex problem- 155

solving (Guo et al., 2024; Li et al., 2023b; Zhang 156

et al., 2024). As highlighted by (Li et al., 2024), 157

this structure has been successfully applied to prac- 158

tical tasks (Hong et al., 2023; Qian et al., 2023; 159

Mandi et al., 2024). To enhance performance, SO- 160

CRATIC (Shridhar et al., 2023) trains a combina- 161

tion of two small distilled models to perform CoT 162

reasoning in LLMs. In contrast to our DPR frame- 163

work, SOCRATIC still relies on distilling the abili- 164

ties of large models into smaller ones. Meanwhile, 165

ReAct (Yao et al., 2023) enables LLMs to generate 166

both reasoning traces and task-specific actions in 167

an interleaved manner. Additionally, CORY (Ma 168

et al., 2024) fine-tunes LLMs as two autonomous 169

agents, a pioneer and an observer, which leads to 170

superior performance compared to standard PPO. 171

However, our work is the first to decouple plan- 172

ning from the reasoning process and to build a two- 173

agent system under the MARL framework that en- 174

ables any LLM to benefit from the trained planner 175

agent. 176

3 Preliminary and Motivation 177

3.1 Reasoning Language Models via 178

Reinforcement Learning 179

Given a question q, the reasoning language model 180

(RLM), parameterized by θ, generates a sequence 181

2

of thoughts, denoted as o = [z1, z2, . . . , zn],182

where each zi with i ∈ [1, . . . , n] is a textual183

description of the thought at the i-th reasoning184

step. The predicted solution ỹ is extracted from185

zn and compared with the ground truth y. In186

the reinforcement learning (RL) framework, rep-187

resented as [S,A, πθ,R], the state s ∈ S corre-188

sponds to the tokens generated so far, while the189

action a ∈ A is the next token sampled from the190

policy a ∼ πθ (a|s). The corresponding reward191

is denoted as r ∈ R. To optimize the policy192

model θ, the RL algorithm aims to maximize the193

expected cumulative reward, which is formulated194

as follows:195

J(θ) = Es,a∈o∼πθold

[
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

]
196

where θold represents the most recent policy197

model. The advantage function A(·) estimates198

how much better an action is compared to the199

expected return. To balance bias and vari-200

ance, we employ Generalized Advantage Esti-201

mation (GAE), formulated as Aπθold (st, at) =202 ∑T−t
l=0 (γλ)

lδt+l where δt = rt+ γV πθold (st+1)−203

V πθold (st), where t denotes the token index, and204

γ ∈ [0, 1] is the discount factor. In general, to mit-205

igate the discrepancy between θ and θold, meth-206

ods such as Proximal Policy Optimization (PPO)207

(Schulman et al., 2017) and Group Relative Policy208

Optimization (GRPO) (Shao et al., 2024) incorpo-209

rate a KL penalty term.210

As demonstrated by GRPO, the policy model211

θ is trained using rule-based rewards, where the212

rewards encode human-defined rules to guide the213

model in adhering to these rules while improving214

reasoning accuracy.215

3.2 LLMs Without Inherent Reasoning216

Strategies Show Limited Improvement217

Using a pure RL algorithm like GRPO, a base218

model is optimized to achieve an “aha” moment219

— learning to exhibit more reasoning strategies,220

such as self-reflection and deep thinking, during221

training, leading to a sudden increase of model222

response length and ultimately to high accuracy.223

We argue that (1) when the base LLM is capable224

of performing reasoning strategies, reinforcement225

learning (RL) algorithms can optimize it to apply226

more strategies effectively during reasoning, and227

(2) there exists a positive correlation between the228

number of strategies and the accuracy.229

(a) GRPO-based training fail-
ure on Qwen2.5-0.5B

10 20 30 40 50 60
Test Accuracy

0

1

2

3

4

5

6

Nu
m

be
r o

f S
tra

te
gi

es

0.5B 1.5B

7B

0.5B

1.5B

7B

0.5B

1.5B

7B

0.5B

1.5B

7B
Accuracy vs. Number of Strategies

Qwen2
Qwen2-GRPO
Qwen2.5
Qwen2.5-GRPO

(b) Accuracy vs. number of
strategies across LLMs

Figure 1: (a) Shows the absence of the “aha” moment in
Qwen2.5-0.5B on the MATH dataset (Hendrycks et al.,
2021). (b) Compares performance of LLMs before and
after training with GRPO. By detecting key words, we
count the average number of reasoning strategies, as
presented in Figure 2, that are used in answering each
question.

To prove this, we first define a set of the 230

most commonly used strategies: self-reflection, 231

decomposition, deliberative thinking, validation, 232

summarization, prioritization, continuation, sub- 233

planning, and termination. Following subsection 234

A.2, we then count the number of times these 235

strategies appear in the CoTs generated by the base 236

LLMs and post-trained models. 237

As supporting evidence, we train LLMs of 238

sizes 0.5B, 1.5B, and 7B from both Qwen2 and 239

Qwen2.5 on the MATH dataset using the GRPO. 240

First, as shown in Figure 1, when Qwen2.5-0.5B 241

is used as the base model, the total reward ini- 242

tially increases to around 0.3 but then abruptly 243

drops to 0 under GRPO training. Second, from 244

Figure 1b, we observe that base models such as 245

Qwen2-0.5B and Qwen2.5-0.5B, which lack inher- 246

ent reasoning strategies (i.e., strategy count is 0), 247

cannot be trained with RL to gain reasoning in- 248

telligence and show only limited improvement in 249

accuracy. In contrast, models such as 1.5B and 250

7B, which demonstrate inherent reasoning strate- 251

gies (with strategy counts greater than 0), can be 252

further optimized through RL to apply more strate- 253

gies during reasoning. More importantly, we ob- 254

serve that as the number of strategies increases, 255

model accuracy also improves. 256

4 Methodology 257

Motivated by our observations in Subsection 3.2, 258

we introduce reinforced strategy injection mech- 259

anism (rSIM), which allows a planner, imple- 260

mented as a small-sized LLM, to guide another 261

LLM by adaptively providing strategy instruction 262

during CoTs. Through rejection, the planner can 263

incorporate rich human-crafted knowledge and 264

3

Figure 2: Illustration of the cooperative pipeline between the rSIM planner (leader) and the LLM (reasoner/fol-
lower). The planner receives the question and the current reasoning steps, and selects one of nine strategies to
inject into the reasoning process to guide the reasoner in generating the next step. This demo is based on a ques-
tion from the MATH dataset.

prior information, presented as those strategies,265

to help the LLM effectively and directly gain ad-266

vanced reasoning abilities and evolve toward be-267

coming an RLM.268

4.1 Training Objective of the Two-Agent269

Framework270

The planner is designed to guide the reasoner271

at each reasoning step by selecting one strategy272

from a predefined set of nine human-designed273

strategies (Figure 2), which encode core reason-274

ing strategies that LLMs should follow. These275

strategies, expressed as prompts, help bridge the276

gap in weak LLMs that inherently lack such ca-277

pabilities, enabling meaningful improvement dur-278

ing post-training with reinforcement learning. In279

this framework, the base LLM serves as the rea-280

soner, responsible for generating the next reason-281

ing step based on the planner’s selected strat-282

egy. This collaboration is naturally modeled283

as a leader-follower paradigm (Gerstgrasser and284

Parkes, 2023) within a multi-agent RL system.285

The planner, acting as the leader, takes an action286

ap ∼ πp
ϕ (ap|s), where πp

ϕ is the policy parame-287

terized by ϕ, ap is a strategy sampled from the ac-288

tion space Ap, and sp ∈ Sp includes the question289

and previous reasoning steps. The reasoner, as the290

follower, then takes an action a ∼ πθ (a|s,ap),291

where a is the next token and s denotes all to-292

kens generated thus far. Eventually, we define the293

planner’s reward as Rp = Racc + Rterminal +294

Rpenalty and the reasoner’s reward as R = Racc +295

Rformat + Rfollow, where Rterminal = 1 if the296

final plan is the ’Terminal’ strategy, and −1 other-297

wise; Rpenalty = − (ratio of the most frequently298

selected strategy); Rfollow is the ratio of reason-299

ing steps that follow the given plan; and Racc and300

Rformat are the accuracy and format rewards as 301

defined in GRPO (Shao et al., 2024). 302

As presented in Figure 2, to answer each ques- 303

tion, the two agents interact with each other for n 304

rounds, where n corresponds to the number of rea- 305

soning steps required to produce the final answer, 306

leading to odpr = [p1, z1,p2, z2, . . . ,pn, zn], 307

where pn is plan selected by the planner for the 308

n-th reasoning step. In the context of reinforce- 309

ment learning, we define two advantage functions: 310

Aπp
ϕ(st,a

p
t) for the planner and Aπθ(st, at,a

p) 311

for the reasoner. Here, t denotes the index of the 312

generated token. For the planner, we assume that 313

all tokens within a single reasoning step share the 314

same advantage, which is set equal to the plan- 315

level reward. Therefore, we have the following 316

objective Jodpr : 317

1

|odpr|

|odpr|∑
t=1

[
λ ·

(
πp
ϕ(a

p
t |st)

πp
ϕold

(ap
t |st)

)
·Aπp

ϕ(st,a
p
t)

+(1− λ) ·
(

πθ(at|st,ap
t)

πθold(at|st,a
p
t)

)
·Aπθ(st, at,a

p
t)

] 318

where odpr ∼ (πp
ϕold

, πθold), and we set 319

Aπp
ϕ(st,a

p
t) = Aπp

ϕ(si,a
p
i) if the t-th token be- 320

longs to the reasoning step zi. This means that 321

the reward of the i-th plan is assigned to all tokens 322

within the reasoning step generated based on that 323

plan. 324

We follow the GRPO to define the final objec- 325

tive as E{
odpr
j

}G

j=1
∼(πp

ϕold
,πθold

)

[
1
G

∑G
j=1 Jodpr

j

]
, 326

where Aπp
ϕ(st,a

p
t) =

Rp
j−mean

(
{Rp

j}
G

j=1

)
std

(
{Rp

j}
G

j=1

) . 327

4

0.5B 1.5B 7B
Model Size

10

20

30

40

50

60

70

80
Ac

cu
ra

cy

0.5B 1.5B 7B
Model Size

0

1

2

3

4

5

6

7

8

Nu
m

 S
tra

te
gi

es

Qwen2
Qwen2+GRPO
Qwen2+Planner0.5B

Qwen2+Planner7B
Qwen2.5
Qwen2.5+GRPO

Qwen2.5+rSIM0.5B
Qwen2.5+rSIM7B
Qwen2.5+Planner0.5B

Qwen2.5+Planner7B
Qwen2.5+14B

Figure 3: Accuracy of Qwen2.5 models (0.5B, 1.5B, 7B) on the MATH dataset under various settings. “+GRPO”
indicates training with GRPO (Shao et al., 2024). “+rSIM” denotes joint training with a Qwen2.5 planner, with
the number indicating planner size. “+Planner” refers to using trained planners (0.5B, 7B) in plugin mode, derived
from the MATH dataset (see Figure 5). Qwen2.5-14B is shown as a baseline with gray horizontal lines.

4.2 A Two-Stage Training Scheme328

We observe that simultaneously and equally op-329

timizing the policies of both agents often leads330

to several issues: (1) conflicting policy updates,331

where the gradients of the two agents may “pull”332

in opposing directions; (2) credit assignment am-333

biguity, as it becomes unclear whether success or334

failure is due to the leader’s plan or the follower’s335

execution; and (3) competing exploration versus336

exploitation, where joint exploration may result in337

catastrophic miscoordination.338

Therefore, to enable effective training, we pro-339

pose a two-stage scheme in which the first stage340

prioritizes the policy optimization of the planner,341

while the second stage shifts focus to optimizing342

the policy of the reasoner, i.e., the base model.343

Specifically, we ensure a stable training process344

by adjusting the weighting parameter λ across the345

two stages. In the first stage, we set λ = 0.7 to346

emphasize planner optimization, and in the sec-347

ond stage, we reduce it to λ = 0.3 to prioritize348

the optimization of the reasoner. To keep the main349

paper concise, further implementation details are350

provided in the appendix.351

5 Experiments352

Datasets. Experiments are performed on seven353

datasets from the HuggingFace website: 1).354

MATH (Hendrycks et al., 2021), GSM8K (Cobbe355

et al., 2021), AIME2024 for mathematics, 2).356

MMLU-Pro (Wang et al., 2024), TheoremQA357

(Chen et al., 2023) for multi-task reasoning,358

3) CodeAlpaca-20k (Chaudhary, 2023) and 359

HumanEval for code generation. 360

Training Settings. Our experiments uses a 361

range of LLMs, including Qwen2 models at 0.5B, 362

1.5B, and 7B scales, as well as Qwen2.5 models 363

at 0.5B, 1.5B, 7B, and 14B scales. In addition, we 364

incorporate Open-o1 and Deepseek-R1 (Guo et al., 365

2025) as base reasoners, which are paired with the 366

trained planner used as a plugin. We use a batch 367

size of 16 with gradient accumulation set to 4. For 368

the GRPO-related hyperparameters, we configure 369

the temperature at 0.9, the maximum prompt and 370

completion lengths at 1024 each, G at 16, and the 371

KL coefficient (beta) at 0.04. The learning rates 372

for the 0.5B, 1.5B, 3B, 7B, and 14B models are 2e- 373

5, 1e-5, 8e-6, 5e-6, and 2e-6, respectively. These 374

settings remain consistent for both the planner and 375

the reasoner. We employ the AdamW optimizer 376

with a cosine learning rate scheduler. During eval- 377

uation, we set the planner’s temperature to 0 and 378

the reasoner’s temperature to 0.3. 379

Baselines. We compare rSI with the recent 380

GRPO method (Shao et al., 2024). In addition, 381

we include the Plan-and-Solve (PS+) prompting 382

approach (Wang et al., 2023) and Planner Prompt- 383

ing as two baselines. Specifically, "w/ prompt- 384

ing" in the experiments refers to Planner Prompt- 385

ing, where an LLM is directly prompted to act as 386

the planner and provide the reasoning strategy for 387

each step of generation. 388

Metrics. The primary evaluation metric is accu- 389

racy, defined as the percentage of correct answers. 390

Additionally, to assess the planner’s effectiveness 391

5

Table 1: Performance of Llama series models with rSIM on four datasets such as TheoremQA, along with compar-
isons to the Plan-and-Solve (PS+) Prompting method (Wang et al., 2023) and Planner Prompting baseline. When
the reasoner (in the Models column) collaborates with a planner, the planner’s size is indicated instead of using
‘No’. When a model name such as Qwen2.5 is specified in the ‘Planner’ column, we perform cross-model eval-
uation, where Llama serves as the reasoner and Qwen2.5 as the planner. When the "Planner" column specifies
‘plug-in’, the planner is used off-the-shelf without training to guide the reasoner. Moreover, the row containing ‘w/
prompting’ indicates that we directly prompt an LLM to act as the planner. The ‘w/’ specifies the method used to
enhance reasoning. The ‘-’ indicates that training did not converge, while the ‘×’ denotes missing results due to
untrainable models.

Llama3.2 Planner MATH GSM8K MMLU-Pro TheoremQA
Models Score #Strategy Score #Strategy Score #Strategy Score #Strategy

1B w/ ZeroCoT No 30.6 0 44.4 0 21.2 0 13.7 0
1B w/ PS+ [4] No 28.2 0 43.7 0 19.4 0 12.2 0

1B w/ prompting 3B 27.4 7 42.6 3 16.8 8 6.6 6
1B w/ prompting 70B 33.3 5 46.9 3 22 6 14.3 5
3B w/ ZeroCoT No 48 0 77.7 0 30.1 0 20.7 0
3B w/ PS+ [4] No 47.5 0 77.7 0 30 0 18.6 0

3B w/ prompting 3B 46.4 7 77.1 5 28.5 7 19.9 8
3B w/ prompting 70B 55.5 7 81.8 4 31.8 5 22.8 6

1B w/ GRPO No - 0 - 0 × 0 × 0
1B w/ rSIM 1B 57 3 83.9 1 30.8 4 20.9 3
1B w/ rSIM 3B 61.5 4 86.3 3 33 6 25 6
1B w/ rSIM Qwen2.5-1.5B 59.1 4 84.4 1 31.8 4 24.2 5

Llama3.3 70B w/ ZeroCoT No 77 0 90.5 0 68.9 0 32.3 0
Llama3.3 70B w/ PS [4] No 78.3 0 90.9 0 70 0 32 0

Llama3.3 70B w/ Prompting 3B 79.1 7 90.5 4 68.9 7 31.9 8
Llama3.3 70B w/ Prompting 70B 84 6 92.9 4 71.5 4 38.6 5

Llama3.3 70B 1B plug-in 83.2 3 91.7 1 71.8 6 39 5
Llama3.3 70B 3B plug-in 86.3 4 92.1 2 72.7 5 41.8 6
Llama3.3 70B Qwen2.5-1.5B 83.7 4 92 2 72.3 6 40.7 6

as a guidance mechanism, we measure the average392

number of strategies applied per problem. For the393

baseline models, we include the candidate strate-394

gies defined in our rSIM as part of the prompt, al-395

lowing the models to select them when appropri-396

ate.397

5.1 Main Results398

With rSIM, any LLM, especially smaller ones, can399

be trained to convergence, achieving dramatic im-400

provements in reasoning performance, as shown401

by the training curve in Figure 5 and the high402

problem-solving accuracy in Figure 3. Specifi-403

cally, for the base Qwen2.5 models in sizes of404

0.5B, 1.5B, and 7B, jointly training with a planner,405

either Qwen2.5-0.5B or Qwen2.5-7B, under the re-406

sults in significant accuracy gains over the base407

models, even surpassing stronger base models.408

For example, all models trained with rSIM (tagged409

as “+rSIM” in Figure 3) outperform their GRPO-410

trained counterparts (“Qwen2.5+GRPO”). More-411

over, the base Qwen2.5-0.5+rSIM0.5B model,412

which employs a 0.5B planner, notably outper-413

forms the Qwen2.5-7B model. Overall, all414

Qwen2.5+rSIM7B models across different base415

sizes achieve a new state-of-the-art (SOTA) perfor- 416

mance. Moreover, as shown in Table 3, the plan- 417

ner introduced by our rSIM does not significantly 418

increase the token cost when facilitating reasoning 419

in a single LLM. 420

By comparing the left and right sub-figures of 421

Figure 3, we observe that after training under 422

rSIM, every base model learns to execute a vari- 423

ety of human-level reasoning strategies as defined 424

by the nine options in Figure 2. In particular, 425

even weaker base models, such as Qwen2.5-0.5B, 426

which initially showed no discernible strategy, can 427

be guided by the planner to employ six or seven 428

strategies during reasoning. These results also re- 429

veal a positive correlation between accuracy and 430

the number of strategies used. 431

More importantly, as shown in Table 1, apply- 432

ing rSIM to other types of LLMs, such as a se- 433

ries of Llama models, still yields consistent per- 434

formance improvements due to the strategy injec- 435

tion provided by the planner. For example, when 436

Llama3.2-1B is used as the reasoner and paired 437

with a Llama3.2-1B planner, the system achieves 438

accuracy close to that of Llama3.3-70B. This sug- 439

gests that the planner in our DPR framework is 440

6

40 50 60 70 80 90
Accuracy

0

1

2

3

4

5
Nu

m
 S

tra
te

gi
es

0.5B 1.5B 7B

0.5B

1.5B 7B

0.5B 1.5B

7B

0.5B

1.5B 7B0.5B

1.5B

7B

0.5B

1.5B7B

Accuracy vs Num Strategies On GSM8K

Qwen2
Qwen2+Planner0.5B
Qwen2.5
Qwen2.5+GRPO
Qwen2.5+Planner0.5B
Qwen2.5+Planner7B
Qwen2.5-14B

20 30 40 50 60
Accuracy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Nu
m

 S
tra

te
gi

es

0.5B 1.5B 7B

0.5B 1.5B 7B

0.5B 1.5B 7B

0.5B

1.5B

7B

0.5B

1.5B 7B
Accuracy vs Num Strategies On MMLU-Pro

Qwen2
Qwen2+Planner0.5B
Qwen2.5
Qwen2.5+Planner0.5B
Qwen2.5+Planner7B
Qwen2.5-14B

20 30 40 50 60 70 80
Accuracy

0

1

2

3

4

5

6

Nu
m

 S
tra

te
gi

es

0.5B 1.5B 7B

0.5B1.5B 7B

0.5B 1.5B 7B

0.5B

1.5B 7B

0.5B

1.5B

7B
Accuracy vs Num Strategies On HumanEval

Qwen2
Qwen2+Planner0.5B
Qwen2.5

Qwen2.5+Planner0.5B
Qwen2.5+Planner7B
Qwen2.5-14B

10 20 30 40 50 60 70 80
Accuracy

0

2

4

6

8

10

Nu
m

 S
tra

te
gi

es

0.5B 1.5B
7B

0.5B
1.5B 7B

0.5B
1.5B

7B
Accuracy vs Num Strategies On AIME2024

Qwen2.5
Qwen2.5+Planner0.5B
Qwen2.5+Planner7B
DeepSeek-r1
Openai-o1
Llama-3.1-405B-Inst

Figure 4: Illustration of accuracy for models of various sizes across different datasets, using the trained rSIM
planner as a plugin. The terms with “+Planner” indicate that the base model collaborates with a trained planner
during reasoning. The trained planners are derived from the MATH dataset, as shown in Figure 5.

transferable across different LLMs, although the441

degree of improvement may depend on the base442

model used for planning.443

In addition, we present cross-model evalua-444

tion results in Table 1, where the trained plan-445

ner (Qwen2.5-1.5B) is used to assist Llama3.2-1B446

and Llama3.3-70B by injecting step-wise strate-447

gies. The reasoning performance of the Llama448

models shows an improvement, indicating that the449

rSIM planner possesses cross-model generaliza-450

tion capability.451

5.2 Evaluation of the Pluggable Planner452

As shown in Figures 3 and 4, which report453

the performance of base LLMs on five datasets,454

the trained planner can be used as a plugin to455

directly introduce human-level reasoning strate-456

gies without any additional post-training. In457

the MATH dataset (Figure 3), Qwen2.5+Planner458

models achieve significantly higher accuracy than459

both the base Qwen2.5 models and those post-460

trained with GRPO. A similar trend is observed 461

across all four datasets in Figure 4: once inte- 462

grated with the pre-trained planner, base models 463

show substantial accuracy gains and often outper- 464

form larger counterparts. For instance, Qwen2.5- 465

1.5B+Planner consistently surpasses the 7B mod- 466

els, and Qwen2.5-7B+Planner achieves SOTA ac- 467

curacy, even outperforming more powerful mod- 468

els such as Llama-3.1-405B-Inst in the final sub- 469

figure of Figure 3. More importantly, as shown 470

by the number of strategies used during problem- 471

solving across all datasets, the trained planner en- 472

ables any LLM to incorporate effective reasoning 473

strategies into the reasoning process. This effect is 474

especially evident in the challenging AIME2024 475

dataset, where the planner enables LLMs to apply 476

human-level strategies more than eight times per 477

problem, resulting in a significant improvement in 478

accuracy. 479

These results demonstrate that once planners 480

are jointly trained with even weak reasoners, they 481

7

Reasoner Planner
(MATH)

MATH GSM8K HumanEval MMLU_Pro AIME2024

0.5B
0.5B -0.8 +0 +17 +0.4 +0
7B +0 +1.1 +22.3 +0.9 +0

7B
0.5B +1.2 +1.8 +24.4 +0 +0
7B +0 +0.6 +22.8 +0 +0

Table 2: Performance gain of the off-the-shelf plan-
ner after continued training on the coding task
CodeAlpaca-20k under the rSIM . With the en-
hanced planner used as a plugin, the reasoner models
(listed in the “reasoner” column: Qwen2.5-0.5B and
Qwen2.5-7B) address problems across five datasets.

can be directly reused to enhance the perfor-482

mance of LLMs on other tasks without any addi-483

tional post-training. For instance, planners such484

as Qwen2.5-0.5B and Qwen2.5-7B, trained with485

the simple Qwen2.5-0.5B reasoner on the MATH486

dataset, work adaptively with different LLMs487

across various datasets. This opens a new direc-488

tion where, instead of fine-tuning LLMs for every489

task, we can integrate high-intelligence modules490

such as the planner in rSIM to directly boost their491

reasoning capabilities. In doing so, we shift the492

focus from optimizing a coupled planning and rea-493

soning process to developing an advanced planner494

that can collaborate with any LLM.495

Similarly, when using Llama series models as496

base LLMs, the trained planner can serve as a497

plug-in module to directly inject human-level rea-498

soning strategies. As shown in Table 1, without499

any additional post-training, Llama3.2-1B, when500

guided by strategies provided by the Llama3.2-1B501

or Llama3.2-3B planner, achieves consistent and502

significant accuracy improvements across all cor-503

responding datasets.504

5.3 Evaluating the Continuous Learning505

Capability of the Planner506

Table 2 shows that the planner can be continu-507

ously trained to achieve improved performance508

on all tasks while preserving its effectiveness on509

previously seen tasks. Specifically, the off-the-510

shelf planner, originally optimized on the MATH511

dataset as shown in Figure 5, is further trained512

with Qwen2.5-0.5B (serving as the reasoner) using513

the CodeAlpaca-20k dataset under the rSIM to514

obtain a coding-enhanced planner. This enhanced515

planner is then used as a plugin with the reasoner516

models (0.5B and 7B of Qwen2.5) to address ques-517

tions from five diverse datasets. Table 2 reports518

the performance gains relative to the off-the-shelf519

MATH planner. Overall, aside from a small drop520

of 0.8 in accuracy on MATH, the performance of521

the enhanced planner is either maintained or im- 522

proved across all tasks. In particular, the improve- 523

ment on HumanEval is substantial, with gains 524

ranging from 17% to 24.4%. This demonstrates 525

that continued training allows the planner to better 526

guide coding-related reasoning using human-level 527

strategies. Such a significant advantage highlights 528

the practical value of the planner, as it can be con- 529

tinuously trained with a small reasoner on mixed- 530

task datasets to improve its capabilities in a cu- 531

mulative way. It is worth noting that the coding- 532

enhanced planner does not show any accuracy gain 533

on AIME2024. 534

6 Ablation Study 535

In Table 1 and Table 5, we compare the planner 536

of rSIM with baseline prompting methods, includ- 537

ing PS+ prompting (Wang et al., 2023) and di- 538

rect planner prompting. From our results, we ob- 539

serve that these prompting-based approaches gen- 540

erally require a powerful language model, such as 541

Qwen2.5 14B, to yield even limited improvements. 542

When the model is smaller, such as LLaMA3.2 543

3B or Qwen2.5 0.5B, accuracy often decreases, 544

demonstrating the limited reliability and scalabil- 545

ity of prompting for plan generation. In addition, 546

as shown in Table 4 and Figure 6, we examine the 547

impact of different strategies on reasoning perfor- 548

mance across various datasets. The results show 549

that self-reflection is consistently important, while 550

other strategies’ effectiveness varies across tasks. 551

7 Concluding Remarks 552

In this paper, we proposed the reinforced strat- 553

egy injection mechanism (rSIM), which enables 554

any large language model (LLM), including small 555

ones like Qwen2.5-0.5B, to become an advanced 556

reasoning language model (RLM). rSIM trains a 557

planner with a reasoner jointly via multi-agent re- 558

inforcement learning using a leader-follower algo- 559

rithm. The planner learns to select the best strat- 560

egy from a set of nine human-designed options 561

to guide the reasoner step by step. Experiments 562

showed that rSIM significantly improves reason- 563

ing accuracy across multiple tasks. Importantly, 564

the planner can be used as a plugin without ad- 565

ditional training, enabling any LLM to gain ad- 566

vanced reasoning capabilities immediately. The 567

planner also supports continual learning, enabling 568

its reasoning guidance to improve continuously 569

across diverse tasks. 570

8

References571

Maciej Besta, Julia Barth, Eric Schreiber, Ales Ku-572
bicek, Afonso Catarino, Robert Gerstenberger, Pi-573
otr Nyczyk, Patrick Iff, Yueling Li, Sam Houliston,574
and 1 others. 2025. Reasoning language models: A575
blueprint. arXiv preprint arXiv:2501.11223.576

Sahil Chaudhary. 2023. Code alpaca: An instruction-577
following llama model for code generation.578

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,579
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony580
Xia. 2023. Theoremqa: A theorem-driven question581
answering dataset. In Proc. Conference on Empiri-582
cal Methods in Natural Language Processing.583

Li Chenglin, Qianglong Chen, Liangyue Li, Caiyu584
Wang, Feng Tao, Yicheng Li, Zulong Chen, and Yin585
Zhang. 2024. Mixed distillation helps smaller lan-586
guage models reason better. In Findings of the Asso-587
ciation for Computational Linguistics, pages 1673–588
1690.589

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,590
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias591
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro592
Nakano, and 1 others. 2021. Training verifiers593
to solve math word problems. arXiv preprint594
arXiv:2110.14168.595

Chengwei Dai, Kun Li, Wei Zhou, and Songlin Hu.596
2024. Improve student’s reasoning generalizability597
through cascading decomposed cots distillation. In598
Conference on Empirical Methods in Natural Lan-599
guage Processing.600

Matthias Gerstgrasser and David C Parkes. 2023. Or-601
acles & followers: Stackelberg equilibria in deep602
multi-agent reinforcement learning. In International603
Conference on Machine Learning, pages 11213–604
11236. PMLR.605

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,606
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong607
Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.608
Deepseek-r1: Incentivizing reasoning capability in609
llms via reinforcement learning. arXiv preprint610
arXiv:2501.12948.611

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi612
Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,613
and Xiangliang Zhang. 2024. Large language model614
based multi-agents: A survey of progress and chal-615
lenges. In Proc International Joint Conference on616
Artificial Intelligence, pages 8048–8057.617

Alex Havrilla, Yuqing Du, Sharath Chandra Ra-618
parthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,619
Maksym Zhuravinskyi, Eric Hambro, Sainbayar620
Sukhbaatar, and Roberta Raileanu. 2024. Teaching621
large language models to reason with reinforcement622
learning. In International Conference on Machine623
Learning.624

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 625
Arora, Steven Basart, Eric Tang, Dawn Song, and 626
Jacob Steinhardt. 2021. Measuring mathematical 627
problem solving with the math dataset. arXiv 628
preprint arXiv:2103.03874. 629

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 630
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, 631
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, and 632
1 others. 2023. Metagpt: Meta programming for 633
multi-agent collaborative framework. arXiv preprint 634
arXiv:2308.00352, 3(4):6. 635

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron 636
Courville, Alessandro Sordoni, and Rishabh Agar- 637
wal. 2024. V-star: Training verifiers for self-taught 638
reasoners. In Conference on Language Modeling. 639

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, 640
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022. 641
Large language models can self-improve. Advances 642
in neural information processing systems. 643

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and De- 644
heng Ye. 2024. More agents is all you need. Trans- 645
actions on Machine Learning Research. 646

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang 647
Ren, Kai-Wei Chang, and Yejin Choi. 2023a. Sym- 648
bolic chain-of-thought distillation: Small models 649
can also" think" step-by-step. In The Association 650
for Computational Linguistics. 651

Yuan Li, Yixuan Zhang, and Lichao Sun. 2023b. 652
Metaagents: Simulating interactions of human be- 653
haviors for llm-based task-oriented coordination via 654
collaborative generative agents. arXiv preprint 655
arXiv:2310.06500. 656

Huanxuan Liao, Shizhu He, Yao Xu, Yuanzhe Zhang, 657
Kang Liu, and Jun Zhao. 2025. Neural-symbolic 658
collaborative distillation: Advancing small language 659
models for complex reasoning tasks. In Association 660
for the Advancement of Artificial Intelligence. 661

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri- 662
son Edwards, Bowen Baker, Teddy Lee, Jan Leike, 663
John Schulman, Ilya Sutskever, and Karl Cobbe. 664
2023. Let’s verify step by step. In International 665
Conference on Learning Representations. 666

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, Ope- 667
nAI Pieter Abbeel, and Igor Mordatch. 2017. Multi- 668
agent actor-critic for mixed cooperative-competitive 669
environments. Advances in neural information pro- 670
cessing systems, 30. 671

Hao Ma, Tianyi Hu, Zhiqiang Pu, Liu Boyin, Xiaolin 672
Ai, Yanyan Liang, and Min Chen. 2024. Coevolv- 673
ing with the other you: Fine-tuning llm with sequen- 674
tial cooperative multi-agent reinforcement learning. 675
Advances in Neural Information Processing Systems, 676
37:15497–15525. 677

9

Lucie Charlotte Magister, Jonathan Mallinson, Jakub678
Adamek, Eric Malmi, and Aliaksei Severyn. 2022.679
Teaching small language models to reason. In The680
Association for Computational Linguistics.681

Zhao Mandi, Shreeya Jain, and Shuran Song. 2024.682
Roco: Dialectic multi-robot collaboration with large683
language models. In IEEE International Conference684
on Robotics and Automation, pages 286–299.685

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,686
Carroll Wainwright, Pamela Mishkin, Chong Zhang,687
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1688
others. 2022. Training language models to follow in-689
structions with human feedback. Advances in neural690
information processing systems, 35:27730–27744.691

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,692
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong693
Sun. 2023. Communicative agents for software de-694
velopment. arXiv preprint arXiv:2307.07924, 6(3).695

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec696
Radford, and Oleg Klimov. 2017. Proximal697
policy optimization algorithms. arXiv preprint698
arXiv:1707.06347.699

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,700
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan701
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-702
math: Pushing the limits of mathematical reason-703
ing in open language models. arXiv preprint704
arXiv:2402.03300.705

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya706
Sachan. 2023. Distilling reasoning capabilities into707
smaller language models. In Findings of the Asso-708
ciation for Computational Linguistics, pages 7059–709
7073.710

David Silver, Aja Huang, Chris J Maddison, Arthur711
Guez, Laurent Sifre, George Van Den Driessche, Ju-712
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-713
neershelvam, Marc Lanctot, and 1 others. 2016.714
Mastering the game of go with deep neural networks715
and tree search. nature, 529(7587):484–489.716

David Silver, Thomas Hubert, Julian Schrittwieser,717
Ioannis Antonoglou, Matthew Lai, Arthur Guez,718
Marc Lanctot, Laurent Sifre, Dharshan Kumaran,719
Thore Graepel, and 1 others. 2017. Mastering chess720
and shogi by self-play with a general reinforcement721
learning algorithm. nature.722

Sebastian Thrun and Michael L Littman. 2000. Rein-723
forcement learning: An introduction. AI Magazine,724
21(1):103–103.725

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun,726
Xiaoran Jin, and Hang Li. 2024. Reft: Reasoning727
with reinforced fine-tuning. In Proc Annual Meet-728
ing of the Association for Computational Linguistics,729
pages 7601–7614.730

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, 731
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 732
2023. Plan-and-solve prompting: Improving zero- 733
shot chain-of-thought reasoning by large language 734
models. In Proc. Annual Meeting of the Associa- 735
tion for Computational Linguistics, volume 1, pages 736
2609–2634. 737

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, 738
Abhranil Chandra, Shiguang Guo, Weiming Ren, 739
Aaran Arulraj, Xuan He, Ziyan Jiang, and 1 others. 740
2024. Mmlu-pro: A more robust and challenging 741
multi-task language understanding benchmark. In 742
Conference on Neural Information Processing Sys- 743
tems Datasets and Benchmarks Track. 744

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 745
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 746
and 1 others. 2022. Chain-of-thought prompting 747
elicits reasoning in large language models. Ad- 748
vances in neural information processing systems, 749
35:24824–24837. 750

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, 751
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao, 752
and Tianyi Zhou. 2024. A survey on knowledge dis- 753
tillation of large language models. arXiv preprint 754
arXiv:2402.13116. 755

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 756
Shafran, Karthik Narasimhan, and Yuan Cao. 2023. 757
React: Synergizing reasoning and acting in language 758
models. In International Conference on Learning 759
Representations (ICLR). 760

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. 2024. 761
Distilling system 2 into system 1. In Workshop on 762
Neural Information Processing Systems. 763

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfis- 764
ter, Rui Zhang, and Sercan Arik. 2024. Chain 765
of agents: Large language models collaborating on 766
long-context tasks. Advances in Neural Information 767
Processing Systems, 37:132208–132237. 768

10

A Implementation Details769

This section presents the design, training, and eval-770

uation details of our proposed rSIM.771

A.1 Finetuning the Reasoner LLM toward772

Generating Step-wise Reasoning773

We first ensure that the reasoner LLM gener-774

ates the reasoning process in a step-by-step for-775

mat. To accomplish this, we adopt the mecha-776

nism proposed by (Lightman et al., 2023), fine-777

tuning the model to use ‘\n\n’ to clearly separate778

each reasoning step in the problem-solving pro-779

cess. Specifically, we construct a prompt consist-780

ing of five chain-of-thought examples formatted781

such that each step is separated by ‘\n \n’. Using782

this prompt, we let the reasoner generate reason-783

ing processes randomly on the MATH dataset. To784

avoid introducing dataset-specific solution infor-785

mation into the model, we select only those gen-786

erated samples that conform to the desired format787

but contain incorrect solutions. Ultimately, we ob-788

tain 1,000 such samples and fine-tune the reasoner789

on these samples for one epoch. This process en-790

sures that the reasoning generated by the model791

consistently follows the intended step-by-step for-792

matting.793

A.2 Counting the Number of Strategies794

To determine how many strategies are used by795

the LLM during reasoningas shown in Fig. 1(B),796

Fig. 4, and Fig. 5we adopt a keyword-matching797

approach based on strategy names and their syn-798

onyms. Specifically, we construct a list of candi-799

date keywords for each of the seven main strate-800

gies: self-reflection, decomposition, deep thinking,801

validation, summarization, prioritization, and sub-802

planning, as follows:803

• Self-Reflection: review, revisit, reflect, reevalu-804

ate, rethink, reexamine, reassess, reconsider, an-805

alyze, assess, validate, critique, inspect, exam-806

ine, audit, diagnose, cross-check.807

• Decomposition: decompose, break down, di-808

vide, split, separate, segment, partition, dissect,809

analyze, unfold, unwrap, reduce, map out, orga-810

nize, structure.811

• Deep Thinking: contemplate, deliberate, reflect,812

ponder, mull over, reason, deduce, infer, evalu-813

ate, scrutinize, meditate, analyze, consider, in-814

vestigate, explore.815

• Validation: validate, verify, confirm, check, 816

test, justify, prove, cross-check, ensure, affirm, 817

support, substantiate, corroborate, authenticate, 818

evaluate. 819

• Summarization: summarize, recap, restate, para- 820

phrase, condense, outline, highlight, abstract, 821

generalize, simplify, extract, distill, encapsulate, 822

conclude, report. 823

• Prioritization: prioritize, rank, order, select, 824

choose, emphasize, highlight, focus on, weigh, 825

assess, sort, filter, arrange, allocate, favor. 826

• Sub-planning: plan, outline, design, strategize, 827

organize, arrange, map out, formulate, structure, 828

prepare, coordinate, blueprint, set up. 829

Therefore, once a reasoning step is completed, 830

indicated by the generation of ‘\n\n’, we identify 831

keywords within that sequence. If a match is 832

found, we increment the count for the correspond- 833

ing strategy by one. 834

A.3 Structure of the Planner 835

The planner is a simple decoder-only LLM 836

equipped with an action heada linear layer that 837

outputs a 9-dimensional vector corresponding to 838

the number of available strategies. The planner 839

takes as input the question and the current reason- 840

ing steps. The hidden state of the final token in 841

the sequence is fed into the action head to pro- 842

duce a strategy priority vector. The strategy with 843

the highest score is then selected to guide the rea- 844

soner’s next reasoning step. For example, when us- 845

ing Qwen2.5-0.5 as the planner, the action head is 846

implemented as a fully connected layer with shape 847

896× 9. In this case, the hidden vector of the final 848

token in the input sequence serves as the input to 849

the action head for strategy selection. 850

A.4 Interactive Sampling Mechanism 851

Different from GRPO (Shao et al., 2024), which 852

generates G samples for each question by directly 853

forwarding the question through the LLM G times, 854

our multi-agent framework adopts an interactive 855

sampling mechanism in which the planner agent 856

and the reasoner agent of rSIM interact through- 857

out the reasoning process to generate each sample. 858

We follow the notation introduced in Subsections 859

3.1 and 4.1, and thus present the detailed proce- 860

dure in Algorithm Table 1. It is important to note 861

that when the planner collaborates with an LLM 862

11

Algorithm 1: Interactive Sampling Mech-
anism
Input: Question q, the reasoner policy πθ

with its hyperparameters, such as
the temperature, the planner policy
πp
ϕ with its hyperparameters, and

the number of generations G.
Output: Generated G samples.

1 Sample G first strategies from the planner{
ap1,g

}G

g=1
∼ πp

ϕ (·|q)

2 Begin parallel sampling:

3 for any ap1 ∈
{
ap1,g

}G

g=1
do

4 aptrace ← ap1, odpr = [], ap = [ap1],
n← 1

5 while aptrace is not Terminal do
6 Autoregressively Decode with

a ∼ πθ
(
·|q,odpr, aptrace

)
until

‘\n\n’ is generated
7 Collect the sequence of decoded a

as the reasoning step pn, sn
8 Append odpr ←

[
odpr,pn, sn

]
9 Select strategy action

ap ∼ πp
ϕ

(
·|q,odpr

)
10 Set aptrace ← ap, Append

ap ← [ap, aptrace]
11 Set n← n+ 1

12 end
13 end
14 Return

{
odpr
1...G

}
,
{
ap
1...G

}

for problem solving, the step-by-step reasoning is863

generated following the same procedure.864

A.5 Training and Evaluation Details865

Algorithm Table 2 presents how to jointly op-866

timize the policies of the two agents. During867

the Interactive Sampling Mechanism, the temper-868

atures for the planner and reasoner are set to869

be 0.9. We set the maximum prompt length to870

2,048 tokens and the maximum generation length871

to 1,024 tokens for all models. It is worth not-872

ing that in the training objective (Equation873

2), we include only
{
odpr
1...G

}
for simplicity, al-874

though the full formulation should involve both875 {
odpr
1...G

}
,
{
ap
1...G

}
. We should note that for to-876

kens generated guided by the action of the plan-877

ner, this action reward is assigned to each to-878

Algorithm 2: Policy Optimization of
Multi-Agent Framework
Input: q, reasoner policy πθ, planner

policy πp
ϕ, dataset D, N .

Output: Optimized θ,ϕ.

1 for e = 1, . . . , E do
2 Set reference models πθref ← πθ,

πϕref
← πϕ

3 lambda← 0.7
4 for step 1, . . . ,M do
5 Sample a batch samples Db from D
6 Update old policy models

πθold ← πθ, πϕold
← πϕ

7 Perform Interactive Sampling
Mechanism to generate{
odpr
1...G

}
,
{
ap
1...G

}
for each

question in Db

8 Compute rule-based rewards{
Rp

j

}G

j=1
and {Rj}Gj=1 for each

odpr
j ,ap

j

9 Compute advantage Aπp
ϕ(st,a

p
t)for

the t-th token of each j ∈ G
through group relative advantage
estimation.

10 lambda← 0.3 iff. step < N
11 Update policy models πθ, π

p
ϕ by

maximizing the training objective
(Equation 1)

12 end
13 end

ken’s reward. 879

Evaluation setup. We set the maximum 880

prompt length to 2,048 tokens and the maximum 881

generation length to 1,024 tokens for all models. 882

During evaluation, we adopt the zero-shot setting 883

with a temperature of 0, and report pass@1 (ac- 884

curacy) using stochastic decoding. When using 885

the planner as a plugin for evaluation, we strictly 886

follow the Interactive Sampling Mechanism de- 887

scribed in Algorithm Table 1. 888

B Additional Results 889

As shown in Fig. 5, we train the Qwen2.5-0.5B 890

model, initially lacking high-level reasoning ca- 891

pabilities, using rSIM with planners implemented 892

by both Qwen2.5-0.5B and Qwen2.5-7B mod- 893

els. With the two-stage training scheme, total re- 894

12

0 50 100 150 200 250 300
Training Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Tr

ai
ni

ng
 R

ew
ar

d
Two Training Stages of DPR with Qwen2.5-0.5B

Planner First
Reasoner First

0 50 100 150 200 250 300
Val Step

0.0

0.5

1.0

1.5

2.0

2.5

Va
l R

ew
ar

d

Two Val Stages of DPR with Qwen2.5-0.5B

Planner First
Reasoner First

0 50 100 150 200 250
Training Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 R
ew

ar
d

Two Training Stages of DPR with Qwen2.5-7B

Planner First
Reasoner First

0 50 100 150 200 250
Val Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Va

l R
ew

ar
d

Two Val Stages of DPR with Qwen2.5-7B

Planner First
Reasoner First

Figure 5: Training and evaluation (Eval) curves of the
rSIM on the MATH dataset, using either the Qwen2.5-
0.5B or Qwen2.5-7B model as the planner, paired with
the Qwen2.5-0.5B model as the reasoner.

Table 3: Evaluation of the average generation to-
ken cost across different methods on MATH and
TheoremQA. We report both the average and stan-
dard deviation (mean ± std) of the total tokens used
per question, including tokens used for prompting the
LLMs and those generated by the models. This evalu-
ation is conducted on two challenging datasets: MATH
and TheoremQA.

Methods Planner MATH TheoremQA

0.5B w/ ZeroCoT No 221.6 ± 172.5 250.3 ± 110.2
14B w/ ZeroCoT No 261.8 ± 192.2 308.7 ± 137.5
0.5B w/ PS+ [4] No 327.5 ± 176.7 367.5 ± 153.6

0.5B w/ Prompting 14B 815.2 ± 356.7 993.4 ± 390.5
0.5B w/ rSIM 7B 780.3 ± 210.9 800.7 ± 230.2

7B w/ ZeroCoT No 246.9 ± 189.5 291.2 ± 160.8
7B w/ PS [4] No 357.2 ± 200.9 390.6 ± 190

7B w/ Prompting 14B 934.5 ± 390.2 1103 ± 487.5
7B w/ rSIM 7B 900.6 ± 350.8 970.2 ± 427.1

wards steadily increase until convergence, stabiliz-895

ing around 2.8 for the 0.5B planner and 3.5 for the896

7B planner. Crucially, the planner and reasoner897

policy models effectively learn to generate and898

follow step-wise strategies, respectively, resulting899

in improved reasoning performance. Addition-900

ally, the 7B planner achieves higher rewards more901

rapidly than the 0.5B planner. Consistent train-902

ing and evaluation trends confirm effective policy903

optimization. Therefore, we conclude that by de-904

coupling planning from reasoning, we can in-905

troduce human priors in the form of integrated906

reasoning strategies into any LLM that lacks907

them, significantly enhancing reasoning intelli-908

gence through our multi-agent RL framework.909

B.1 Additional Ablation Study 910

Table 4 presents the importance of different strate- 911

gies in improving the reasoning accuracy of 912

Qwen2.5-7B planner in different datasets. Due 913

to time constraints, we do not re-adjust the strat- 914

egy set for fine-tuning the LLMs across various 915

tasks, nor do we directly compute statistical met- 916

rics for each strategy. Instead, we evaluate the im- 917

portance of each strategy by iteratively masking 918

out one strategy at a time during the evaluation 919

phase. This allows us to observe how the perfor- 920

mance is affected when a specific strategy is not 921

considered by the planner. Specifically, when a 922

strategy is masked out, the planner selects the al- 923

ternative strategy with the second-highest score. 924

C Limitations 925

The limitations of our proposed rSIM can be cat- 926

egorized into three main aspects: (1) the human- 927

defined action space of the planner is not continu- 928

ously optimizable and (2) the planner exhibits an 929

imbalanced preference over strategies. 930

First, the planner’s action space is defined solely 931

based on human understanding of the task. As a 932

result, its effectiveness, diversity, and generaliza- 933

tion depend heavily on expert priors and cannot 934

be enhanced by the planner itself during reasoning. 935

Without broader exploration during trainingpartic- 936

ularly in our multi-agent reinforcement learning 937

settingthe rSIM’s performance may significantly 938

degrade when necessary strategies are absent from 939

the planner’s action space. Furthermore, since 940

each strategy is encoded as a short prompt describ- 941

ing the guidance, the quality and robustness of 942

these prompts directly affect the reasoner’s reason- 943

ing generation. Misleading, ambiguous, or overly 944

narrow prompts can harm the reasoning process. 945

Unfortunately, such issues are common in human- 946

crafted prompts, including biases and lack of ap- 947

plicability across tasks. More importantly, we 948

currently lack a mechanism to dynamically up- 949

date or expand the planner’s action space. Al- 950

though this challenge is shared by many reinforce- 951

ment learning-based approacheswhere any change 952

to the action space invalidates the underlying poli- 953

cyit is particularly critical in our context. Enhanc- 954

ing the strategy space is necessary to improve the 955

generality of LLM-based reasoning frameworks, 956

which is essential for their practical deployment 957

at scale. 958

Second, we count the total number of strategies 959

13

Table 4: Evaluation of the importance of different strategies on reasoning performance when Qwen2.5-0.5 serves
as the reasoner and Qwen2.5-7B acts as the planner during inference. In each row labeled with a strategy name, we
remove the corresponding strategy from the planner’s option set to evaluate its impact on reasoning performance.

Dataset/Strategy full self-reection deep thinking decomposition summarization validation prioritization sub-planning
MATH 45.2 36.9 41.3 42.8 43.7 44.3 44.6 44.8

HumanEval 40.2 32.3 39 35.4 38.4 39 39.6 35.4
MMLU Pro 43.9 31.3 38.7 34.5 39.6 41.8 42.7 44.1
TheoremQA 38.7 30 35.3 32.8 38.4 38.6 37.1 36.9

Table 5: Performance of our rSIM on datasets such as TheoremQA, along with comparisons to the Plan-and-Solve
(PS) Prompting method (Wang et al., 2023) and Planner Prompting baseline. We use Qwen2.5 models in sizes
0.5B, 7B, and 14B. The format and experimental setting of this table are consistent with those in Table 1.

Methods Planner MATH MMLU-Pro TheoremQA
Score #Strategy Score #Strategy Score #Strategy

0.5B w/ ZeroCoT No 19.5 0 15.7 0 9.5 0
0.5B w/ PS+ [4] No 17.2 0 13 0 8 0

0.5B w/ Prompting 7B 21.6 7 15.9 8 9.6 8
0.5B w/ Prompting 14B 26.3 6 18.6 6 10 5
14B w/ ZeroCoT No 55.6 0 51.2 0 43 0
14B w/ PS+ [4] No 57.1 0 52.3 0 43.4 0

14B w/ Prompting 7B 56.8 6 53.5 6 43.8 7
14B w/ Prompting 14B 60 5 57 5 47.4 5

0.5B w/ rSIM 0.5B 40.9 4 38.7 2 34.1 3
0.5B w/ rSIM 7B 45.2 6 43.9 2 38.7 4

7B w/ ZeroCoT No 49.8 0 40 0 36 0
7B w/ PS [4] No 49.6 0 39.2 0 34.9 0

7B w/ Prompting 7B 51 6 40.2 8 36.4 7
7B w/ Prompting 14B 56.8 5 46.7 6 41.8 5

7B w/ rSIM 0.5B 60.9 5 58.9 4 48.3 6
7B w/ rSIM 7B 63.8 8 66.9 4 53 5

Self-Reflectio
n

Deep Thinking

Decompositio
n

Summariza
tion

Validation

Prioritiz
ation

Sub-Planning
0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Strategy Distribution Across Datasets
MATH
GSM8K
HumanEval
AIME2024

Figure 6: Illustration of how many strategies are
used in solving 100 questions from MATH, GSM8K,
HumanEval, and AIME2024.

used by both the planner (Qwen2.5-0.5B) and the 960

reasoner (Qwen2.5-0.5B) during problem-solving 961

across different datasets. As shown in Fig. 6, 962

the planner consistently emphasizes the use of 963

Self-Reflection across all four datasets, while plac- 964

ing less focus on Validation, Prioritization, and 965

Sub-Planning. Notably, in the MATH dataset, the 966

second most frequently used strategy is Decom- 967

position, which is also true for the coding task 968

HumanEval. In addition, for the complex mathe- 969

matical problems in AIME2024, Decomposition 970

again shows a high usage rate, indicating that 971

breaking down the problem during reasoning is 972

crucial for arriving at the correct solution. There- 973

fore, since strategies are not used in a balanced 974

manner during the problem-solving of questions 975

across different tasks, the planner may be unable 976

to comprehensively explore diverse solution paths 977

to reach a reliable answer. 978

14

	Introduction
	Related Work
	Preliminary and Motivation
	Reasoning Language Models via Reinforcement Learning
	LLMs Without Inherent Reasoning Strategies Show Limited Improvement

	Methodology
	Training Objective of the Two-Agent Framework
	A Two-Stage Training Scheme

	Experiments
	Main Results
	Evaluation of the Pluggable Planner
	Evaluating the Continuous Learning Capability of the Planner

	Ablation Study
	Concluding Remarks
	Implementation Details
	Finetuning the Reasoner LLM toward Generating Step-wise Reasoning
	Counting the Number of Strategies
	Structure of the Planner
	Interactive Sampling Mechanism
	Training and Evaluation Details

	Additional Results
	Additional Ablation Study

	Limitations

