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Abstract

Large language models (LLMs) are post-
trained through reinforcement learning (RL)
to evolve into Reasoning Language Models
(RLMs), where the hallmark of this advanced
reasoning is “aha” moments when they start
to perform strategies, such as self-reflection
and deep thinking, within chain of thoughts
(CoTs). Motivated by this, this paper proposes
a novel reinforced strategy injection mecha-
nism (rSIM), that enables any LLM to be-
come an RLM by employing a small planner to
guide the LLM’s CoT through the adaptive in-
jection of reasoning strategies. To achieve this,
the planner (leader agent) is jointly trained
with an LLM (follower agent) using multi-
agent RL (MARL), based on a leader-follower
framework and straightforward rule-based re-
wards. Experimental results show that rSIM
enables Qwen2.5-0.5B to become an RLM and
significantly outperform Qwen2.5-14B. More-
over, the planner is generalizable: it only
needs to be trained once and can be applied as
a plug-in to substantially improve the reason-
ing capabilities of existing LLMs. In addition,
the planner supports continual learning across
various tasks, allowing its planning abilities to
gradually improve and generalize to a wider
range of problems.

1 Introduction

Large language models (LLMs) have been
enhanced with advanced reasoning capabili-
ties, evolving into Reasoning Language Mod-
els (RLMs) (Besta et al., 2025) that solve prob-
lems through step-by-step reasoning, commonly
referred to as chain-of-thought (CoT) (Wei et al.,
2022). A key advancement in RLMs is their abil-
ity to integrate reasoning strategies, such as self-
reflection, decomposition, and deliberative think-
ing, into the CoT process, contributing to im-
proved problem-solving accuracy.

Existing literature (Trung et al., 2024; Havrilla
et al., 2024), especially the recent Group Relative

Policy Optimization (GRPO) (Guo et al., 2025),
primarily post-trains LLMs to evolve into RLMs
purely through reinforcement learning (RL) algo-
rithms. A hallmark of this evolution is the emer-
gence of the “aha moment” where LLMs start to
perform strategies such as self-reflection within
CoTs. We empirically found that the better per-
formance of evolved RLMs correlates with the
higher appearance frequency and more appropri-
ate positions of these strategies compared to those
in LLMs. However, our findings also indicate that
when LLMs, particularly smaller ones, inherently
lack the capacity to perform basic reasoning strate-
gies, RL-based post-training is unable to trans-
form them into capable RLMs.

Therefore, this paper proposes a reinforced strat-
egy injection mechanism (#SIM), which enables
any LLM, in particular those as small as 0.5B,
to evolve into an RLM with minimal or even no
additional training. To achieve this, rSIM intro-
duces only an auxiliary planner that, at each rea-
soning step of an LLM, adaptively selects an ap-
propriate strategy from a predefined set such as
self-reflection, decomposition, and others, and in-
jects it into the chain of thought (CoT) to guide the
next step generation. Specifically, the rSIM offers
the following four key contributions:

* Injecting reasoning strategies adaptively into the
CoT process of any LLM, including small and
large ones, via a planner enables the LLM to di-
rectly gain the advanced reasoning ability like
RLMs.

* Training the planner and LLM jointly as two
agents under multi-agent RL (MARL) with
the leader-follower algorithm (Gerstgrasser and
Parkes, 2023) reinforces the planner’s ability to
inject strategies.

* Planners are pluggable, meaning that a planner
trained on one task can be directly integrated



with another LLM to enhance its reasoning abil-
ity on similar tasks.

* Planners support continual learning, as a plan-
ner in our rSIM can be continuously trained
across tasks to enhance its planning ability over
a broader range of problems.

Our results across seven datasets covering math-
ematics, multi-task reasoning, and code genera-
tion verify the benefits of rSIM. First, even small
LLMs such as Qwen2.5-0.5B, when jointly trained
with a planner (Qwen2.5-0.5B), can evolve into an
RLM, achieving accuracy on par with Qwen2.5-
14B on MATH (Hendrycks et al., 2021). Second,
using the trained planner as a plugin enables an-
other LLM to outperform larger models by a sig-
nificant margin without any additional training.
Third, a planner trained on mathematics can be
continuously fine-tuned on coding tasks such as
CodeAlpaca-20k (Chaudhary, 2023) to further
guide an LLM like Qwen2.5-0.5B, achieving 17%
higher accuracy on code generation.

2 Related Work

Data distillation. Knowledge distilled from large
language models (LLMs) can be transferred to
smaller models to enhance their performance (Xu
et al., 2024). In particular, (Guo et al., 2025) ver-
ifies that larger LLMs can transfer their step-by-
step reasoning abilities to smaller models by dis-
tilling chain-of-thought (CoT) (Wei et al., 2022)
samples, where LLM-generated reasoning traces
serve as additional fine-tuning data. Fine-tuning
with teacher-generated CoT outputs (Magister
etal., 2022; Yu et al., 2024; Dai et al., 2024), ratio-
nalizations (Li et al., 2023a), specialized reason-
ing skills (Liao et al., 2025), CoT and Program of
Thought (PoT) (Chenglin et al., 2024), or even in-
correct CoT samples (Huang et al., 2022; Hosseini
et al., 2024) can significantly improve the reason-
ing abilities of smaller models. In this paper, using
the planner from our DPR framework as a plugin
to improve the reasoning of smaller models can
be viewed as transferring a human-level planning
chain to them.

Reinforcement learning. Reinforcement learn-
ing (RL) (Thrun and Littman, 2000) has been
widely applied to decision-making tasks, as
demonstrated by AlphaGo (Silver et al., 2016)
and AlphaZero (Silver et al., 2017). RLHF
(Ouyang et al., 2022) first leveraged PPO (Schul-

man et al., 2017) to align models with human pref-
erences. ReFT (Trung et al., 2024) pioneered the
use of RL as a fine-tuning paradigm to enhance
LLM reasoning performance. Building on this
progress, DeepSeek-R1-Zero (Guo et al., 2025)
made a breakthrough by demonstrating that self-
verification, reflection, and the ability to generate
long CoTs in LLMs can be incentivized purely
through RL, specifically using GRPO (Shao et al.,
2024). This enables smaller base LLMs, such
as 3B and 7B models, to be trained directly
to achieve reasoning performance comparable to
stronger models. However, as noted by (Havrilla
et al., 2024), models are inherently constrained in
their ability to explore CoT solutions beyond their
existing capabilities. Consequently, weaker base
models as small as 0.5B fail to benefit from RL
training and lag behind in reasoning performance.

Multi-agent LLMs. Building on the devel-
opment of using a single LLM as a planning
or decision-making agent, multi-agent LLMs (Li
et al., 2024) based on MARL (Lowe et al., 2017),
where multiple language models collaborate, have
achieved significant progress in complex problem-
solving (Guo et al., 2024; Li et al., 2023b; Zhang
et al., 2024). As highlighted by (Li et al., 2024),
this structure has been successfully applied to prac-
tical tasks (Hong et al., 2023; Qian et al., 2023;
Mandi et al., 2024). To enhance performance, SO-
CRATIC (Shridhar et al., 2023) trains a combina-
tion of two small distilled models to perform CoT
reasoning in LLMs. In contrast to our DPR frame-
work, SOCRATIC still relies on distilling the abili-
ties of large models into smaller ones. Meanwhile,
ReAct (Yao et al., 2023) enables LLMs to generate
both reasoning traces and task-specific actions in
an interleaved manner. Additionally, CORY (Ma
et al., 2024) fine-tunes LLMs as two autonomous
agents, a pioneer and an observer, which leads to
superior performance compared to standard PPO.
However, our work is the first to decouple plan-
ning from the reasoning process and to build a two-
agent system under the MARL framework that en-
ables any LLM to benefit from the trained planner
agent.

3 Preliminary and Motivation

3.1 Reasoning Language Models via
Reinforcement Learning

Given a question g, the reasoning language model
(RLM), parameterized by 6, generates a sequence



of thoughts, denoted as o = [z1,22,..., 2],
where each z; with ¢ € [1,...,n] is a textual
description of the thought at the i-th reasoning
step. The predicted solution ¥ is extracted from
zn and compared with the ground truth y. In
the reinforcement learning (RL) framework, rep-
resented as [S, A, mg, R], the state s € S corre-
sponds to the tokens generated so far, while the
action a € A is the next token sampled from the
policy a ~ mg (a|s). The corresponding reward
is denoted as » € R. To optimize the policy
model 0, the RL algorithm aims to maximize the
expected cumulative reward, which is formulated
as follows:

mo(als)
i | g, (als)

J(0) = Es,aeo~7r90 A™d (s, a)

old(

where 6,; represents the most recent policy
model. The advantage function A(-) estimates
how much better an action is compared to the
expected return. To balance bias and vari-
ance, we employ Generalized Advantage Esti-
mation (GAE), formulated as A™d (s¢,a;) =

ZT:_Ot (YA)!844; where 6; = 14 + V™ot (5441) —
V74 (sy), where ¢ denotes the token index, and
v € [0, 1] is the discount factor. In general, to mit-
igate the discrepancy between 6 and 6,4, meth-
ods such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017) and Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) incorpo-
rate a KL penalty term.

As demonstrated by GRPO, the policy model
0 is trained using rule-based rewards, where the
rewards encode human-defined rules to guide the
model in adhering to these rules while improving
reasoning accuracy.

3.2 LLMs Without Inherent Reasoning
Strategies Show Limited Improvement

Using a pure RL algorithm like GRPO, a base
model is optimized to achieve an “aha” moment
— learning to exhibit more reasoning strategies,
such as self-reflection and deep thinking, during
training, leading to a sudden increase of model
response length and ultimately to high accuracy.
We argue that (1) when the base LLM is capable
of performing reasoning strategies, reinforcement
learning (RL) algorithms can optimize it to apply
more strategies effectively during reasoning, and
(2) there exists a positive correlation between the
number of strategies and the accuracy.
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Figure 1: (a) Shows the absence of the “aha” moment in
Qwen2.5-0.5B on the MATH dataset (Hendrycks et al.,
2021). (b) Compares performance of LLMs before and
after training with GRPO. By detecting key words, we
count the average number of reasoning strategies, as
presented in Figure 2, that are used in answering each
question.

To prove this, we first define a set of the
most commonly used strategies: self-reflection,
decomposition, deliberative thinking, validation,
summarization, prioritization, continuation, sub-
planning, and termination. Following subsection
A.2, we then count the number of times these
strategies appear in the CoTs generated by the base
LLMs and post-trained models.

As supporting evidence, we train LLMs of
sizes 0.5B, 1.5B, and 7B from both Qwen2 and
Qwen2.5 on the MATH dataset using the GRPO.
First, as shown in Figure 1, when Qwen2.5-0.5B
is used as the base model, the total reward ini-
tially increases to around 0.3 but then abruptly
drops to O under GRPO training. Second, from
Figure 1b, we observe that base models such as
Qwen2-0.5B and Qwen2.5-0.5B, which lack inher-
ent reasoning strategies (i.e., strategy count is 0),
cannot be trained with RL to gain reasoning in-
telligence and show only limited improvement in
accuracy. In contrast, models such as 1.5B and
7B, which demonstrate inherent reasoning strate-
gies (with strategy counts greater than 0), can be
further optimized through RL to apply more strate-
gies during reasoning. More importantly, we ob-
serve that as the number of strategies increases,
model accuracy also improves.

4 Methodology

Motivated by our observations in Subsection 3.2,
we introduce reinforced strategy injection mech-
anism (rSIM), which allows a planner, imple-
mented as a small-sized LLM, to guide another
LLM by adaptively providing strategy instruction
during CoTs. Through rejection, the planner can
incorporate rich human-crafted knowledge and
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Figure 2: Illustration of the cooperative pipeline between the rSIM planner (leader) and the LLM (reasoner/fol-
lower). The planner receives the question and the current reasoning steps, and selects one of nine strategies to
inject into the reasoning process to guide the reasoner in generating the next step. This demo is based on a ques-

tion from the MATH dataset.

prior information, presented as those strategies,
to help the LLM effectively and directly gain ad-
vanced reasoning abilities and evolve toward be-
coming an RLM.

4.1 Training Objective of the Two-Agent
Framework

The planner is designed to guide the reasoner
at each reasoning step by selecting one strategy
from a predefined set of nine human-designed
strategies (Figure 2), which encode core reason-
ing strategies that LLMs should follow. These
strategies, expressed as prompts, help bridge the
gap in weak LLMs that inherently lack such ca-
pabilities, enabling meaningful improvement dur-
ing post-training with reinforcement learning. In
this framework, the base LLM serves as the rea-
soner, responsible for generating the next reason-
ing step based on the planner’s selected strat-
egy. This collaboration is naturally modeled
as a leader-follower paradigm (Gerstgrasser and
Parkes, 2023) within a multi-agent RL system.
The planner, acting as the leader, takes an action
a? ~ w} (a”|s), where m is the policy parame-
terized by ¢, a? is a strategy sampled from the ac-
tion space AP, and sP € SP includes the question
and previous reasoning steps. The reasoner, as the
follower, then takes an action a ~ g (a|s, aP),
where a is the next token and s denotes all to-
kens generated thus far. Eventually, we define the
planner’s reward as R? = Rgce + Rierminal +
Rpenaity and the reasoner’s reward as R = Ree +
Rformat + Rfollow’ where Rterminal = 1if the
final plan is the *Terminal’ strategy, and —1 other-
wise; Rpenaity = — (ratio of the most frequently
selected strategy); Rfoiow 18 the ratio of reason-
ing steps that follow the given plan; and R,.. and

Rformar are the accuracy and format rewards as
defined in GRPO (Shao et al., 2024).

As presented in Figure 2, to answer each ques-
tion, the two agents interact with each other for n
rounds, where n corresponds to the number of rea-
soning steps required to produce the final answer,
leading to o%" = [p1,z1,P2,22,...,Pn, 2],
where p,, is plan selected by the planner for the
n-th reasoning step. In the context of reinforce-
ment learning, we define two advantage functions:
A”Z(st,af ) for the planner and A7 (s, a:, aP)
for the reasoner. Here, ¢t denotes the index of the
generated token. For the planner, we assume that
all tokens within a single reasoning step share the
same advantage, which is set equal to the plan-
level reward. Therefore, we have the following
objective J dpr:

dpr
L AT (malls)
o 2 ey | A (s at)
[ ’t:l 7r¢old(at|3t)

o (at|st, ay)
ﬂ-eold(at|st7 a’i’)

LN ( ) - A™ (84, ay, a?)

dpr ~

P
where o <W¢Old,ﬂgol ,), and we set

A6 (sy,al) = A"6(s;, aP) if the t-th token be-
longs to the reasoning step z;. This means that
the reward of the ¢-th plan is assigned to all tokens
within the reasoning step generated based on that
plan.

We follow the GRPO to define the final objec-
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Figure 3: Accuracy of Qwen2.5 models (0.5B, 1.5B, 7B) on the MATH dataset under various settings. “+GRPO”
indicates training with GRPO (Shao et al., 2024). “+rSIM” denotes joint training with a Qwen2.5 planner, with
the number indicating planner size. “+Planner” refers to using trained planners (0.5B, 7B) in plugin mode, derived
from the MATH dataset (see Figure 5). Qwen2.5-14B is shown as a baseline with gray horizontal lines.

4.2 A Two-Stage Training Scheme

We observe that simultaneously and equally op-
timizing the policies of both agents often leads
to several issues: (1) conflicting policy updates,
where the gradients of the two agents may “pull”
in opposing directions; (2) credit assignment am-
biguity, as it becomes unclear whether success or
failure is due to the leader’s plan or the follower’s
execution; and (3) competing exploration versus
exploitation, where joint exploration may result in
catastrophic miscoordination.

Therefore, to enable effective training, we pro-
pose a two-stage scheme in which the first stage
prioritizes the policy optimization of the planner,
while the second stage shifts focus to optimizing
the policy of the reasoner, i.e., the base model.
Specifically, we ensure a stable training process
by adjusting the weighting parameter A across the
two stages. In the first stage, we set A = 0.7 to
emphasize planner optimization, and in the sec-
ond stage, we reduce it to A = 0.3 to prioritize
the optimization of the reasoner. To keep the main
paper concise, further implementation details are
provided in the appendix.

5 Experiments

Datasets. Experiments are performed on seven
datasets from the HuggingFace website: 1).
MATH (Hendrycks et al., 2021), GSM8K (Cobbe
et al., 2021), AIME2024 for mathematics, 2).
MMLU-Pro (Wang et al.,, 2024), TheoremQA
(Chen et al.,, 2023) for multi-task reasoning,

3) CodeAlpaca-20k (Chaudhary, 2023) and
HumanEval for code generation.

Training Settings. Our experiments uses a
range of LLMs, including Qwen2 models at 0.5B,
1.5B, and 7B scales, as well as Qwen2.5 models
at 0.5B, 1.5B, 7B, and 14B scales. In addition, we
incorporate Open-ol and Deepseek-R1 (Guo et al.,
2025) as base reasoners, which are paired with the
trained planner used as a plugin. We use a batch
size of 16 with gradient accumulation set to 4. For
the GRPO-related hyperparameters, we configure
the temperature at 0.9, the maximum prompt and
completion lengths at 1024 each, G at 16, and the
KL coefficient (beta) at 0.04. The learning rates
for the 0.5B, 1.5B, 3B, 7B, and 14B models are 2e-
5, le-5, 8e-6, Se-6, and 2e-6, respectively. These
settings remain consistent for both the planner and
the reasoner. We employ the AdamW optimizer
with a cosine learning rate scheduler. During eval-
uation, we set the planner’s temperature to 0 and
the reasoner’s temperature to 0.3.

Baselines. We compare S/ with the recent
GRPO method (Shao et al., 2024). In addition,
we include the Plan-and-Solve (PS+) prompting
approach (Wang et al., 2023) and Planner Prompt-
ing as two baselines. Specifically, "w/ prompt-
ing" in the experiments refers to Planner Prompt-
ing, where an LLM is directly prompted to act as
the planner and provide the reasoning strategy for
each step of generation.

Metrics. The primary evaluation metric is accu-
racy, defined as the percentage of correct answers.
Additionally, to assess the planner’s effectiveness



Table 1: Performance of Llama series models with »SIM on four datasets such as TheoremQA, along with compar-
isons to the Plan-and-Solve (PS+) Prompting method (Wang et al., 2023) and Planner Prompting baseline. When
the reasoner (in the Models column) collaborates with a planner, the planner’s size is indicated instead of using
‘No’. When a model name such as Qwen2.5 is specified in the ‘Planner’ column, we perform cross-model eval-
uation, where Llama serves as the reasoner and Qwen2.5 as the planner. When the "Planner” column specifies
‘plug-in’, the planner is used off-the-shelf without training to guide the reasoner. Moreover, the row containing ‘w/
prompting’ indicates that we directly prompt an LLM to act as the planner. The ‘w/* specifies the method used to
enhance reasoning. The ‘-’ indicates that training did not converge, while the ‘x’ denotes missing results due to

untrainable models.

Llama3.2 Planner MATH GSM8K MMLU-Pro TheoremQA
Models Score | #Strategy | Score | #Strategy | Score | #Strategy | Score | #Strategy

1B w/ ZeroCoT No 30.6 0 44.4 0 21.2 0 13.7 0
1B w/ PS+ [4] No 28.2 0 43.7 0 19.4 0 12.2 0
1B w/ prompting 3B 27.4 7 42.6 3 16.8 8 6.6 6
1B w/ prompting 70B 333 5 46.9 3 22 6 14.3 5
3B w/ ZeroCoT No 48 0 71.7 0 30.1 0 20.7 0
3B w/ PS+ [4] No 47.5 0 71.7 0 30 0 18.6 0
3B w/ prompting 3B 46.4 7 77.1 5 28.5 7 19.9 8
3B w/ prompting 70B 55.5 7 81.8 4 31.8 5 22.8 6
1B w/ GRPO No - 0 - 0 X 0 X 0
1B w/ rSIM 1B 57 3 83.9 1 30.8 4 20.9 3
1B w/ rSIM 3B 61.5 4 86.3 3 33 6 25 6
1B w/ rSIM Qwen2.5-1.5B | 59.1 4 84.4 1 31.8 4 24.2 5
Llama3.3 70B w/ ZeroCoT No 77 0 90.5 0 68.9 0 323 0
Llama3.3 70B w/ PS [4] No 78.3 0 90.9 0 70 0 32 0
Llama3.3 70B w/ Prompting 3B 79.1 7 90.5 4 68.9 7 31.9 8
Llama3.3 70B w/ Prompting 70B 84 6 92.9 4 71.5 4 38.6 5
Llama3.3 70B 1B plug-in 83.2 3 91.7 1 71.8 6 39 5
Llama3.3 70B 3B plug-in 86.3 4 92.1 2 72.7 5 41.8 6
Llama3.3 70B Qwen2.5-1.5B | 83.7 4 92 2 72.3 6 40.7 6

as a guidance mechanism, we measure the average
number of strategies applied per problem. For the
baseline models, we include the candidate strate-
gies defined in our rSIM as part of the prompt, al-
lowing the models to select them when appropri-
ate.

5.1 Main Results

With rSIM, any LLM, especially smaller ones, can
be trained to convergence, achieving dramatic im-
provements in reasoning performance, as shown
by the training curve in Figure 5 and the high
problem-solving accuracy in Figure 3. Specifi-
cally, for the base Qwen2.5 models in sizes of
0.5B, 1.5B, and 7B, jointly training with a planner,
either Qwen2.5-0.5B or Qwen?2.5-7B, under the re-
sults in significant accuracy gains over the base
models, even surpassing stronger base models.
For example, all models trained with rSIM (tagged
as “+rSIM” in Figure 3) outperform their GRPO-
trained counterparts (“Qwen2.5+GRPO”). More-
over, the base Qwen2.5-0.5+rSIM0.5B model,
which employs a 0.5B planner, notably outper-
forms the Qwen2.5-7B model.  Overall, all
Qwen2.5+rSIM7B models across different base

sizes achieve a new state-of-the-art (SOTA) perfor-
mance. Moreover, as shown in Table 3, the plan-
ner introduced by our rSIM does not significantly
increase the token cost when facilitating reasoning
in a single LLM.

By comparing the left and right sub-figures of
Figure 3, we observe that after training under
rSIM, every base model learns to execute a vari-
ety of human-level reasoning strategies as defined
by the nine options in Figure 2. In particular,
even weaker base models, such as Qwen2.5-0.5B,
which initially showed no discernible strategy, can
be guided by the planner to employ six or seven
strategies during reasoning. These results also re-
veal a positive correlation between accuracy and
the number of strategies used.

More importantly, as shown in Table 1, apply-
ing rSIM to other types of LLMs, such as a se-
ries of Llama models, still yields consistent per-
formance improvements due to the strategy injec-
tion provided by the planner. For example, when
Llama3.2-1B is used as the reasoner and paired
with a Llama3.2-1B planner, the system achieves
accuracy close to that of Llama3.3-70B. This sug-
gests that the planner in our DPR framework is
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Figure 4: Illustration of accuracy for models of various sizes across different datasets, using the trained rSIM
planner as a plugin. The terms with “+Planner” indicate that the base model collaborates with a trained planner
during reasoning. The trained planners are derived from the MATH dataset, as shown in Figure 5.

transferable across different LLMs, although the
degree of improvement may depend on the base
model used for planning.

In addition, we present cross-model evalua-
tion results in Table 1, where the trained plan-
ner (Qwen2.5-1.5B) is used to assist Llama3.2-1B
and Llama3.3-70B by injecting step-wise strate-
gies. The reasoning performance of the Llama
models shows an improvement, indicating that the
rSIM planner possesses cross-model generaliza-
tion capability.

5.2 Evaluation of the Pluggable Planner

As shown in Figures 3 and 4, which report
the performance of base LLMs on five datasets,
the trained planner can be used as a plugin to
directly introduce human-level reasoning strate-
gies without any additional post-training. In
the MATH dataset (Figure 3), Qwen2.5+Planner
models achieve significantly higher accuracy than
both the base Qwen2.5 models and those post-

trained with GRPO. A similar trend is observed
across all four datasets in Figure 4: once inte-
grated with the pre-trained planner, base models
show substantial accuracy gains and often outper-
form larger counterparts. For instance, Qwen2.5-
1.5B+Planner consistently surpasses the 7B mod-
els, and Qwen2.5-7B+Planner achieves SOTA ac-
curacy, even outperforming more powerful mod-
els such as Llama-3.1-405B-Inst in the final sub-
figure of Figure 3. More importantly, as shown
by the number of strategies used during problem-
solving across all datasets, the trained planner en-
ables any LLM to incorporate effective reasoning
strategies into the reasoning process. This effect is
especially evident in the challenging ATME2024
dataset, where the planner enables LLMs to apply
human-level strategies more than eight times per
problem, resulting in a significant improvement in
accuracy.

These results demonstrate that once planners
are jointly trained with even weak reasoners, they



Planner

(MATH) GSM8K

Reasoner MATH HumanEval | MMLU_Pro | AIME2024

058 0.5B -0.8 +0 +17 +0.4 +0
7B +0 +1.1 +22.3 +0.9 +0
7B 0.5B +1.2 +1.8 +24.4 +0 +0
7B +0 +0.6 +22.8 +0 +0

Table 2: Performance gain of the off-the-shelf plan-
ner after continued training on the coding task
CodeAlpaca-20k under the rSIM . With the en-
hanced planner used as a plugin, the reasoner models
(listed in the “reasoner” column: Qwen2.5-0.5B and
Qwen2.5-7B) address problems across five datasets.

can be directly reused to enhance the perfor-
mance of LLMs on other tasks without any addi-
tional post-training. For instance, planners such
as Qwen2.5-0.5B and Qwen2.5-7B, trained with
the simple Qwen2.5-0.5B reasoner on the MATH
dataset, work adaptively with different LLMs
across various datasets. This opens a new direc-
tion where, instead of fine-tuning LL.Ms for every
task, we can integrate high-intelligence modules
such as the planner in rSIM to directly boost their
reasoning capabilities. In doing so, we shift the
focus from optimizing a coupled planning and rea-
soning process to developing an advanced planner
that can collaborate with any LLM.

Similarly, when using Llama series models as
base LLMs, the trained planner can serve as a
plug-in module to directly inject human-level rea-
soning strategies. As shown in Table 1, without
any additional post-training, Llama3.2-1B, when
guided by strategies provided by the Llama3.2-1B
or Llama3.2-3B planner, achieves consistent and
significant accuracy improvements across all cor-
responding datasets.

5.3 Evaluating the Continuous Learning
Capability of the Planner

Table 2 shows that the planner can be continu-
ously trained to achieve improved performance
on all tasks while preserving its effectiveness on
previously seen tasks. Specifically, the off-the-
shelf planner, originally optimized on the MATH
dataset as shown in Figure 5, is further trained
with Qwen2.5-0.5B (serving as the reasoner) using
the CodeAlpaca—20k dataset under the rSIM to
obtain a coding-enhanced planner. This enhanced
planner is then used as a plugin with the reasoner
models (0.5B and 7B of Qwen2.5) to address ques-
tions from five diverse datasets. Table 2 reports
the performance gains relative to the off-the-shelf
MATH planner. Overall, aside from a small drop
of 0.8 in accuracy on MATH, the performance of

the enhanced planner is either maintained or im-
proved across all tasks. In particular, the improve-
ment on HumanEval is substantial, with gains
ranging from 17% to 24.4%. This demonstrates
that continued training allows the planner to better
guide coding-related reasoning using human-level
strategies. Such a significant advantage highlights
the practical value of the planner, as it can be con-
tinuously trained with a small reasoner on mixed-
task datasets to improve its capabilities in a cu-
mulative way. It is worth noting that the coding-
enhanced planner does not show any accuracy gain
on AIME2024.

6 Ablation Study

In Table 1 and Table 5, we compare the planner
of rSIM with baseline prompting methods, includ-
ing PS+ prompting (Wang et al., 2023) and di-
rect planner prompting. From our results, we ob-
serve that these prompting-based approaches gen-
erally require a powerful language model, such as
Qwen?2.5 14B, to yield even limited improvements.
When the model is smaller, such as LLaMA3.2
3B or Qwen2.5 0.5B, accuracy often decreases,
demonstrating the limited reliability and scalabil-
ity of prompting for plan generation. In addition,
as shown in Table 4 and Figure 6, we examine the
impact of different strategies on reasoning perfor-
mance across various datasets. The results show
that self-reflection is consistently important, while
other strategies’ effectiveness varies across tasks.

7 Concluding Remarks

In this paper, we proposed the reinforced strat-
egy injection mechanism (rSIM), which enables
any large language model (LLM), including small
ones like Qwen2.5-0.5B, to become an advanced
reasoning language model (RLM). rSIM trains a
planner with a reasoner jointly via multi-agent re-
inforcement learning using a leader-follower algo-
rithm. The planner learns to select the best strat-
egy from a set of nine human-designed options
to guide the reasoner step by step. Experiments
showed that rSIM significantly improves reason-
ing accuracy across multiple tasks. Importantly,
the planner can be used as a plugin without ad-
ditional training, enabling any LLM to gain ad-
vanced reasoning capabilities immediately. The
planner also supports continual learning, enabling
its reasoning guidance to improve continuously
across diverse tasks.
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A Implementation Details

This section presents the design, training, and eval-
uation details of our proposed rSIM.

A.1 Finetuning the Reasoner LLM toward
Generating Step-wise Reasoning

We first ensure that the reasoner LLM gener-
ates the reasoning process in a step-by-step for-
mat. To accomplish this, we adopt the mecha-
nism proposed by (Lightman et al., 2023), fine-
tuning the model to use “\n\n’ to clearly separate
each reasoning step in the problem-solving pro-
cess. Specifically, we construct a prompt consist-
ing of five chain-of-thought examples formatted
such that each step is separated by ‘\n \n’. Using
this prompt, we let the reasoner generate reason-
ing processes randomly on the MATH dataset. To
avoid introducing dataset-specific solution infor-
mation into the model, we select only those gen-
erated samples that conform to the desired format
but contain incorrect solutions. Ultimately, we ob-
tain 1,000 such samples and fine-tune the reasoner
on these samples for one epoch. This process en-
sures that the reasoning generated by the model
consistently follows the intended step-by-step for-
matting.

A.2 Counting the Number of Strategies

To determine how many strategies are used by
the LLM during reasoningas shown in Fig. 1(B),
Fig. 4, and Fig. 5Swe adopt a keyword-matching
approach based on strategy names and their syn-
onyms. Specifically, we construct a list of candi-
date keywords for each of the seven main strate-
gies: self-reflection, decomposition, deep thinking,
validation, summarization, prioritization, and sub-
planning, as follows:

» Self-Reflection: review, revisit, reflect, reevalu-
ate, rethink, reexamine, reassess, reconsider, an-
alyze, assess, validate, critique, inspect, exam-
ine, audit, diagnose, cross-check.

* Decomposition: decompose, break down, di-
vide, split, separate, segment, partition, dissect,
analyze, unfold, unwrap, reduce, map out, orga-
nize, structure.

* Deep Thinking: contemplate, deliberate, reflect,
ponder, mull over, reason, deduce, infer, evalu-
ate, scrutinize, meditate, analyze, consider, in-
vestigate, explore.

11

* Validation: validate, verify, confirm, check,
test, justify, prove, cross-check, ensure, affirm,
support, substantiate, corroborate, authenticate,
evaluate.

* Summarization: summarize, recap, restate, para-
phrase, condense, outline, highlight, abstract,
generalize, simplify, extract, distill, encapsulate,
conclude, report.

e Prioritization: prioritize, rank, order, select,
choose, emphasize, highlight, focus on, weigh,
assess, sort, filter, arrange, allocate, favor.

* Sub-planning: plan, outline, design, strategize,
organize, arrange, map out, formulate, structure,
prepare, coordinate, blueprint, set up.

Therefore, once a reasoning step is completed,
indicated by the generation of “\n\n’, we identify
keywords within that sequence. If a match is
found, we increment the count for the correspond-
ing strategy by one.

A.3 Structure of the Planner

The planner is a simple decoder-only LLM
equipped with an action heada linear layer that
outputs a 9-dimensional vector corresponding to
the number of available strategies. The planner
takes as input the question and the current reason-
ing steps. The hidden state of the final token in
the sequence is fed into the action head to pro-
duce a strategy priority vector. The strategy with
the highest score is then selected to guide the rea-
soner’s next reasoning step. For example, when us-
ing Qwen2.5-0.5 as the planner, the action head is
implemented as a fully connected layer with shape
896 x 9. In this case, the hidden vector of the final
token in the input sequence serves as the input to
the action head for strategy selection.

A.4 Interactive Sampling Mechanism

Different from GRPO (Shao et al., 2024), which
generates G samples for each question by directly
forwarding the question through the LLM G times,
our multi-agent framework adopts an interactive
sampling mechanism in which the planner agent
and the reasoner agent of rSIM interact through-
out the reasoning process to generate each sample.
We follow the notation introduced in Subsections
3.1 and 4.1, and thus present the detailed proce-
dure in Algorithm Table 1. It is important to note
that when the planner collaborates with an LLM



Algorithm 1: Interactive Sampling Mech-
anism
Input: Question g, the reasoner policy mg
with its hyperparameters, such as
the temperature, the planner policy
WZ) with its hyperparameters, and
the number of generations G.
QOutput: Generated GG samples.

—

Sample G first strategies from the planner

G
P P (.
{alo} _ ~ )

Begin parallel sampling:
€

~

3 for any af] € {a’fg} do
9 9:1
P P dpr _ _ [P
4 atrace A al’ o = H’ af = [al]’
n<+1

while o}, .. is not Terminal do
Autoregressively Decode with
a ~ 7g (-|g, 0%, ab,..) until
“n\n’ is generated
Collect the sequence of decoded a
as the reasoning step pn, Sn
Append o [odpr, DPn, sn]
Select strategy action
al ~ ﬂz (.|q’ Odpr)
P
Set ayy. 400 < aP,
ap A [ap7 afrace]
Setn<+n+1

10 Append

11

12 end

13 end

dpr p
14 Return {01”@} ) {al...G}

for problem solving, the step-by-step reasoning is
generated following the same procedure.

A.5 Training and Evaluation Details

Algorithm Table 2 presents how to jointly op-
timize the policies of the two agents. During
the Interactive Sampling Mechanism, the temper-
atures for the planner and reasoner are set to
be 0.9. We set the maximum prompt length to
2,048 tokens and the maximum generation length
to 1,024 tokens for all models. It is worth not-
ing that in the training objective (Equation
2), we include only {ocll? TG} for simplicity, al-
though the full formulation should involve both

{0‘11?’. TG} ,{a% .}. We should note that for to-

kens generated guided by the action of the plan-
ner, this action reward is assigned to each to-
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Algorithm 2: Policy Optimization of
Multi-Agent Framework

Input: g, reasoner policy mg, planner
policy 73, dataset D, N.
Output: Optimized 8, ¢.

1 fore=1,...,FEdo
2 Set reference models g, ;& To,
Tpres < Top
lambda + 0.7
for step 1,..., M do
Sample a batch samples D, from D
Update old policy models
9,4 < 76>

S i e W

Tpora <~ T
Perform Interactive Sampling
Mechanism to generate

{Oi@.?fa} ; {a]fmG} for each

question in D,

Compute rule-based rewards
{R?}jl and {R; }jG:l for each

e qP

J J

Compute advantage A6 (8¢, al)for
the t-th token of each j € G
through group relative advantage
estimation.

lambda < 0.3 iff. step < N

Update policy models g, 7T§) by
maximizing the training objective
(Equation 1)

o." a

10
11

12 end

13 end

ken’s reward.

Evaluation setup. We set the maximum
prompt length to 2,048 tokens and the maximum
generation length to 1,024 tokens for all models.
During evaluation, we adopt the zero-shot setting
with a temperature of 0, and report pass@1 (ac-
curacy) using stochastic decoding. When using
the planner as a plugin for evaluation, we strictly
follow the Interactive Sampling Mechanism de-
scribed in Algorithm Table 1.

B Additional Results

As shown in Fig. 5, we train the Qwen2.5-0.5B
model, initially lacking high-level reasoning ca-
pabilities, using rSIM with planners implemented
by both Qwen2.5-0.5B and Qwen2.5-7B mod-
els. With the two-stage training scheme, total re-
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Figure 5: Training and evaluation (Eval) curves of the
rSIM on the MATH dataset, using either the Qwen2.5-
0.5B or Qwen2.5-7B model as the planner, paired with
the Qwen2.5-0.5B model as the reasoner.

Table 3: Evaluation of the average generation to-
ken cost across different methods on MATH and
TheoremQA. We report both the average and stan-
dard deviation (mean =+ std) of the total tokens used
per question, including tokens used for prompting the
LLMs and those generated by the models. This evalu-
ation is conducted on two challenging datasets: MATH
and TheoremQA.

Methods ‘ Planner ‘ MATH ‘ TheoremQA
0.5B w/ ZeroCoT No 221.6 £172.5 | 250.3 +110.2
14B w/ ZeroCoT No 261.8 £192.2 | 308.7 4+ 137.5
0.5B w/ PS+ [4] No 327.5 +£176.7 | 367.5 £ 153.6

0.5B w/ Prompting 14B 815.2 £356.7 | 993.4 £+ 390.5
0.5B w/ rSIM 7B 780.3 +210.9 | 800.7 &+ 230.2
7B w/ ZeroCoT No 246.9 £ 189.5 | 291.2 4+ 160.8
7B w/ PS [4] No 357.2 £200.9 | 390.6 + 190
7B w/ Prompting 14B 934.5 4+390.2 | 1103 4+ 487.5
7B w/ rSIM 7B 900.6 + 350.8 | 970.2 4+ 427.1

wards steadily increase until convergence, stabiliz-
ing around 2.8 for the 0.5B planner and 3.5 for the
7B planner. Crucially, the planner and reasoner
policy models effectively learn to generate and
follow step-wise strategies, respectively, resulting
in improved reasoning performance. Addition-
ally, the 7B planner achieves higher rewards more
rapidly than the 0.5B planner. Consistent train-
ing and evaluation trends confirm effective policy
optimization. Therefore, we conclude that by de-
coupling planning from reasoning, we can in-
troduce human priors in the form of integrated
reasoning strategies into any LLM that lacks
them, significantly enhancing reasoning intelli-
gence through our multi-agent RL framework.
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B.1 Additional Ablation Study

Table 4 presents the importance of different strate-
gies in improving the reasoning accuracy of
Qwen2.5-7B planner in different datasets. Due
to time constraints, we do not re-adjust the strat-
egy set for fine-tuning the LLLMs across various
tasks, nor do we directly compute statistical met-
rics for each strategy. Instead, we evaluate the im-
portance of each strategy by iteratively masking
out one strategy at a time during the evaluation
phase. This allows us to observe how the perfor-
mance is affected when a specific strategy is not
considered by the planner. Specifically, when a
strategy is masked out, the planner selects the al-
ternative strategy with the second-highest score.

C Limitations

The limitations of our proposed »SIM can be cat-
egorized into three main aspects: (1) the human-
defined action space of the planner is not continu-
ously optimizable and (2) the planner exhibits an
imbalanced preference over strategies.

First, the planner’s action space is defined solely
based on human understanding of the task. As a
result, its effectiveness, diversity, and generaliza-
tion depend heavily on expert priors and cannot
be enhanced by the planner itself during reasoning.
Without broader exploration during trainingpartic-
ularly in our multi-agent reinforcement learning
settingthe rSIM’s performance may significantly
degrade when necessary strategies are absent from
the planner’s action space. Furthermore, since
each strategy is encoded as a short prompt describ-
ing the guidance, the quality and robustness of
these prompts directly affect the reasoner’s reason-
ing generation. Misleading, ambiguous, or overly
narrow prompts can harm the reasoning process.
Unfortunately, such issues are common in human-
crafted prompts, including biases and lack of ap-
plicability across tasks. More importantly, we
currently lack a mechanism to dynamically up-
date or expand the planner’s action space. Al-
though this challenge is shared by many reinforce-
ment learning-based approacheswhere any change
to the action space invalidates the underlying poli-
cyit is particularly critical in our context. Enhanc-
ing the strategy space is necessary to improve the
generality of LLM-based reasoning frameworks,
which is essential for their practical deployment
at scale.

Second, we count the total number of strategies



Table 4: Evaluation of the importance of different strategies on reasoning performance when Qwen2.5-0.5 serves
as the reasoner and Qwen2.5-7B acts as the planner during inference. In each row labeled with a strategy name, we
remove the corresponding strategy from the planner’s option set to evaluate its impact on reasoning performance.

Dataset/Strategy | full | self-reection | deep thinking | decomposition | summarization | validation | prioritization | sub-planning
MATH 45.2 36.9 41.3 42.8 43.7 443 44.6 44.8
HumanEval 40.2 323 39 354 384 39 39.6 35.4
MMLU Pro 439 31.3 38.7 34.5 39.6 41.8 42.7 44.1
TheoremQA 38.7 30 353 32.8 38.4 38.6 37.1 36.9

Table 5: Performance of our rSIM on datasets such as TheoremQA, along with comparisons to the Plan-and-Solve
(PS) Prompting method (Wang et al., 2023) and Planner Prompting baseline. We use Qwen2.5 models in sizes
0.5B, 7B, and 14B. The format and experimental setting of this table are consistent with those in Table 1.

Methods Planner MATH MMLU-Pro TheoremQA
Score | #Strategy | Score | #Strategy | Score | #Strategy
0.5B w/ ZeroCoT No 19.5 0 15.7 0 9.5 0
0.5B w/ PS+ [4] No 17.2 0 13 0 8 0
0.5B w/ Prompting B 21.6 7 15.9 8 9.6 8
0.5B w/ Prompting 14B 26.3 6 18.6 6 10 5
14B w/ ZeroCoT No 55.6 0 51.2 0 43 0
14B w/ PS+ [4] No 57.1 0 52.3 0 43.4 0
14B w/ Prompting 7B 56.8 6 53.5 6 43.8 7
14B w/ Prompting 14B 60 5 57 5 474 5
0.5B w/ rSIM 0.5B 40.9 4 38.7 2 34.1 3
0.5B w/ rSIM 7B 45.2 6 439 2 38.7 4
7B w/ ZeroCoT No 49.8 0 40 0 36 0
7B w/ PS [4] No 49.6 0 39.2 0 349 0
7B w/ Prompting 7B 51 6 40.2 8 36.4 7
7B w/ Prompting 14B 56.8 5 46.7 6 41.8 5
7B w/ rSIM 0.5B 60.9 5 58.9 4 48.3 6
7B w/ rSIM 7B 63.8 8 66.9 4 53 5

Strategy Distribution Across Datasets
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Figure 6: Illustration of how many strategies are
used in solving 100 questions from MATH, GSM8K,
HumanEval, and AIME2024.
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used by both the planner (Qwen2.5-0.5B) and the
reasoner (Qwen2.5-0.5B) during problem-solving
across different datasets. As shown in Fig. 6,
the planner consistently emphasizes the use of
Self-Reflection across all four datasets, while plac-
ing less focus on Validation, Prioritization, and
Sub-Planning. Notably, in the MATH dataset, the
second most frequently used strategy is Decom-
position, which is also true for the coding task
HumanEval. In addition, for the complex mathe-
matical problems in AIME2024, Decomposition
again shows a high usage rate, indicating that
breaking down the problem during reasoning is
crucial for arriving at the correct solution. There-
fore, since strategies are not used in a balanced
manner during the problem-solving of questions
across different tasks, the planner may be unable
to comprehensively explore diverse solution paths
to reach a reliable answer.
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