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Abstract

We present a detailed study of H-consistency
bounds for regression. We first present new theo-
rems that generalize the tools previously given to
establish H-consistency bounds. This generaliza-
tion proves essential for analyzing H-consistency
bounds specific to regression. Next, we prove
a series of novel H-consistency bounds for sur-
rogate loss functions of the squared loss, under
the assumption of a symmetric distribution and
a bounded hypothesis set. This includes positive
results for the Huber loss, all `p losses, p ≥ 1, the
squared ε-insensitive loss, as well as a negative
result for the ε-insensitive loss used in Support
Vector Regression (SVR). We further leverage
our analysis of H-consistency for regression and
derive principled surrogate losses for adversarial
regression (Section 5). This readily establishes
novel algorithms for adversarial regression, for
which we report favorable experimental results in
Section 6.

1. Introduction
Learning algorithms often optimize loss functions that dif-
fer from the originally specified task. In classification,
this divergence typically arises due to the computational
intractability of optimizing the original loss or because it
lacks certain desirable properties like differentiability or
smoothness. In regression, the shift may occur because the
surrogate loss used exhibits more favorable characteristics,
such as handling outliers or ensuring sparser solutions. For
instance, the Huber loss and `1 loss are used to mitigate
the impact of outliers since the squared loss is known to
be sensitive to the presence of outliers, while ε-insensitive
losses promote sparsity. But, what guarantees do we have
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when training with a loss function distinct from the target
squared loss?

Addressing this question can have significant implications
in the design of regression algorithms. It can also strongly
benefit the design of useful surrogate losses for other related
problems, such as adversarial regression, as we shall see.

The statistical properties of surrogate losses have been
extensively studied in the past. In particular, the Bayes-
consistency of various convex loss functions, includ-
ing margin-based surrogate losses in binary classification
(Zhang, 2004a; Bartlett, Jordan, and McAuliffe, 2006), and
other loss function families for multi-classification (Zhang,
2004b; Tewari & Bartlett, 2007; Steinwart, 2007), has been
examined in detail.

However, prior work by Long & Servedio (2013) has high-
lighted the limitations of Bayes-consistency, since it does
not account for the hypothesis set adopted. They established
that for some hypothesis sets and distributions, algorithms
minimizing Bayes-consistent losses may retain a constant
expected error, while others minimizing inconsistent losses
tend to have an expected error approaching zero. This in-
dicates the significant role of the chosen hypothesis set in
consistency.

Recent seminal work by Awasthi, Mao, Mohri, and Zhong
(2022a;b) and Mao, Mohri, and Zhong (2023f;c;e;b) has
analyzed H-consistency bounds for broad families of surro-
gate losses in binary classication, multi-class classification,
structured prediction, and abstention (Mao et al., 2023a).
These bounds are more informative than Bayes-consistency
since they are hypothesis set-specific and do not require the
entire family of measurable functions. Moreover, they offer
finite sample, non-asymptotic guarantees. In light of these
recent guarantees, the following questions naturally arise:
Can we derive a non-asymptotic analysis of regression tak-
ing into account the hypothesis set? How can we benefit
from that analysis?

While there is some previous work exploring Bayes-
consistency in regression (Caponnetto, 2005; Christmann
& Steinwart, 2007; Steinwart, 2007), we are not aware of
any prior H-consistency bounds or similar finite sample
guarantees for surrogate losses in regression, such as, for
example, the Huber loss or the squared ε-insensitive loss.
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This paper presents the first in-depth study of H-consistency
bounds in the context of regression. We first present new the-
orems that generalize the tools previously given by Awasthi
et al. (2022a;b) and Mao et al. (2023f;c;e;b) to establish H-
consistency bounds (Section 3). This generalization proves
essential in regression for analyzing H-consistency bounds
for surrogate losses such as Huber loss and the squared
ε-insensitive loss. It also provides finer bounds for the `1
loss.

Next, we prove a series of H-consistency bounds for surro-
gate loss functions of the squared loss, under the assumption
of a symmetric distribution and a bounded hypothesis set
(Section 4). We prove the first H-consistency bound for
the Huber loss, which is a commonly used surrogate loss
used to handle outliers, contingent upon a specific condition
concerning the Huber loss parameter δ and the distribution
mass around the mean. We further prove that this condition
is necessary when H is realizable.

We then extend our analysis to cover H-consistency bounds
for `p losses, for all values of p ≥ 1. In particular, remark-
ably, we give guarantees for the `1 loss and `p losses with
p ∈ (1,2). We further analyze the ε-insensitive and the
squared ε-insensitive losses integral to the definition of the
SVR (Support Vector Regression) and quadratic SVR al-
gorithms (Vapnik, 2000). These loss functions and SVR
algorithms admit the benefit of yielding sparser solutions.
We give the first H-consistency bound for the quadratic
ε-insensitive loss. We also prove a negative result for the
ε-insensitive loss: this loss function used in the definition of
SVR does not admit H-consistency bounds with respect to
the squared loss, even under some additional assumptions
on the parameter ε and the distribution.

Subsequently, leveraging our analysis of H-consistency for
regression, we derive principled surrogate losses for adver-
sarial regression (Section 5). This readily establishes a novel
algorithm for adversarial regression, for which we report
favorable experimental results in Section 6.

Previous work. Bayes-consistency has been extensively
studied in various learning problems. These include binary
classification (Zhang, 2004a; Bartlett et al., 2006), multi-
class classification (Zhang, 2004b; Tewari & Bartlett, 2007;
Narasimhan et al., 2015; Finocchiaro et al., 2019; Wang &
Scott, 2020; Frongillo & Waggoner, 2021; Wang & Scott,
2023), ranking (Menon & Williamson, 2014; Gao & Zhou,
2015; Uematsu & Lee, 2017), multi-label classification (Gao
& Zhou, 2011; Koyejo et al., 2015; Zhang et al., 2020),
structured prediction (Ciliberto et al., 2016; Osokin et al.,
2017; Blondel, 2019), and ordinal regression (Pedregosa
et al., 2017). The concept of H-consistency has been studied
under the realizable assumption in (Long & Servedio, 2013;
Zhang & Agarwal, 2020). The notion of H-consistency
bounds in classification is due to Awasthi et al. (2022a;b). H-

consistency bounds have been further analyzed in scenarios
such as multi-class classification (Mao et al., 2023f; Zheng
et al., 2023; Mao et al., 2023b; 2024f), ranking (Mao et al.,
2023c;d), structured prediction (Mao et al., 2023e), top-k
classification (Mao et al., 2024e), abstention and deferral
(Mao et al., 2023a; 2024b;c;a;d; Mohri et al., 2024).

However, in the context of regression, there is limited work
on the consistency properties of surrogate losses. The main
related work we are aware are (Caponnetto, 2005; Christ-
mann & Steinwart, 2007; Steinwart, 2007). In particular,
Steinwart (2007) studied Bayes-consistency for a family of
regression surrogate losses including `p, but without pre-
senting any non-asymptotic bound. Nevertheless, we partly
benefit from this previous work. In particular, we adopt the
same symmetric and bounded distribution assumption.

2. Preliminaries
Bounded regression. We first introduce the learning sce-
nario of bounded regression. We denote by X the input
space, Y a measurable subset of R, and D a distribution over
X×Y. As for other supervised learning problems, the learner
receives a labeled sample S = ((x1, y1), . . . , (xm, ym))

drawn i.i.d. according to D.

The measure of error is based on the magnitude of the dif-
ference between the predicted real-valued label and the
true label. The function used to measure the error is de-
noted as L∶Y × Y → R+. Let L∶ (h,x, y) ↦ L(h(x), y)
be the associated loss function. Some common examples
of loss functions used in regression are the squared loss
`2, defined by L(y′, y) = ∣y′ − y∣

2 for all y, y′ ∈ Y; or
more generally the `p loss defined by L(y′, y) = ∣y′ − y∣

p,
for p ≥ 1. The squared loss is known to be quite sen-
sitive to outliers. An alternative more robust surrogate
loss is the Huber loss `δ (Huber, 1964), which is defined
for a parameter δ > 0 as the following combination of
the `2 and `1 loss functions: L(y′, y) = 1

2
(y′ − y)2 if

∣y′ − y∣ ≤ δ, (δ∣y′ − y∣ − 1
2
δ2) otherwise. The ε-insensitive

loss `ε and the squared ε-insensitive loss `sq−ε (Vapnik,
2000) are defined by L(y′, y) = max{∣y′ − y∣ − ε,0} and
L(y′, y) = max{∣y′ − y∣2 − ε2,0}, for some ε > 0.

Bayes-Consistency. Given a loss function L, we denote by
EL(h) the generalization error of a hypothesis h ∈H, and
by E∗L(H) the best-in-class error for a hypothesis set H:

EL(h) = E
(x,y)∼D

[L(h,x, y)] E∗L(H) = inf
h∈H

EL(h).

A desirable property of surrogate losses in regression is
Bayes-consistency (Zhang, 2004a; Bartlett et al., 2006; Stein-
wart, 2007), that is, minimizing the surrogate losses L over
the family of all measurable functions Hall leads to the min-
imization of the squared loss `2 over Hall. We say that L
is Bayes-consistent with respect to `2, if, for all distribu-
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tions and sequences of {hn}n∈N ⊂Hall, limn→+∞ EL(hn)−
E∗L(Hall) = 0 implies limn→+∞ E`2(hn) − E∗`2(Hall) = 0.
Bayes-consistency stands as an essential prerequisite for a
surrogate loss. Nonetheless, it has some shortcomings: it is
only an asymptotic property and it fails to account for the
hypothesis set H (Awasthi et al., 2022a;b).

H-Consistency bounds. In contrast with Bayes-
consistency, H-Consistency bounds take into account the
specific hypothesis set H and are non-asymptotic. Given
a hypothesis set H, we say that a regression loss func-
tion L admits an H-consistency bound with respect to `2
(Awasthi et al., 2022a;b), if for some non-decreasing func-
tion f ∶R+ → R+, for all distributions and all h ∈ H, the
following inequality holds:

E`2(h) − E∗`2(H) ≤ f(EL(h) − E∗L(H)).

Thus, when the L-estimation error can be reduced to some
η > 0, the squared loss estimation error is upper bounded by
f(η). An H-Consistency bound is a stronger and more in-
formative property than Bayes-consistency, which is implied
by taking the limit.

In the next section, we will prove H-consistency bounds for
several common surrogate regression losses with respect to
the squared loss `2. A by-product of these guarantees is the
Bayes-consistency of these losses.

For a regression loss function L and a hypothesis h, the
generalization error can be expressed as follows:

EL(h) = E
x
[E
y
[L(h(x), y) ∣ x]] = E

x
[CL(h,x)],

where CL(h,x) is the conditional error Ey[L(h(x), y) ∣ x].
We also write C∗L(H, x) to denote the best-in-class condi-
tional error defined by C∗L(H, x) = infh∈H CL(h,x). The
conditional regret or calibration gap, ∆CL,H(h,x), mea-
sures the difference between the conditional error of h
and the best-in-class conditional error: ∆CL,H(h,x) =

CL(h,x)−C
∗
L(H, x). A generalization of conditional regret

is the conditional ε-regret, defined as: [∆CL,H(h,x)]ε =
∆CL,H(h,x)1∆CL,H(h,x)>ε.

A key term appearing in our bounds is the minimizability
gap, defined for a loss function L and a hypothesis set H
as ML(H) = E∗L(H) − Ex[C∗L(H, x)]. It quantifies the
discrepancy between the best-in-class generalization error
and the expected best-in-class conditional error. An alter-
native expression for the minimizability gap is: ML(H) =

infh∈H Ex[CL(H, x)] −Ex[infh∈H CL(H, x)]. Due to the
super-additivity of the infimum, the minimizability gap is
always non-negative. As shown by Steinwart (2007, Lemma
2.5, Theorem 3.2), for the family of all measurable functions,
the equality E∗L(Hall) = Ex[C∗L(Hall, x)] holds. Thus, the
minimizability gap can be bounded above by the approxi-
mation error E∗L(H) − E∗L(Hall). The minimizability gap

becomes zero when when H =Hall or, more broadly, when
E∗L(H) = E∗L(Hall).

3. General H-Consistency Theorems
To derive H-consistency bounds for regression, we first give
two key theorems establishing that if a convex or concave
function provides an inequality between the conditional
regrets of regression loss functions L1 and L2, then this
inequality translates into an H-consistency bound involving
the minimizability gaps of L1 and L2.

Theorem 3.1 (General H-consistency bound – convex func-
tion). Let D denote a distribution over X × Y. Assume that
there exists a convex function Ψ∶R+ → R with Ψ(0) ≥ 0, a
positive function α∶H × X → R∗

+ with supx∈X α(h,x) <

+∞ for all h ∈ H, and ε ≥ 0 such that the following
holds for all h ∈ H, x ∈ X: Ψ([∆CL2,H(h,x)]ε) ≤

α(h,x)∆CL1,H(h,x). Then, for any hypothesis h ∈ H,
the following inequality holds:

Ψ(EL2(h) − E∗L2
(H) +ML2(H))

≤ [sup
x∈X

α(h,x)](EL1(h) − E∗L1
(H) +ML1(H))

+max{Ψ(0),Ψ(ε)}.

Theorem 3.2 (General H-consistency bound – concave
function). Let D denote a distribution over X × Y. Assume
that there exists a concave function Γ∶R+ → R, a positive
function α∶H ×X→ R∗

+ with supx∈X α(h,x) < +∞ for all
h ∈H, and ε ≥ 0 such that the following holds for all h ∈H,
x ∈ X: [∆CL2,H(h,x)]ε ≤ Γ(α(h,x)∆CL1,H(h,x)).
Then, for any hypothesis h ∈ H, the following inequality
holds

EL2(h) − E∗L2
(H) +ML2(H)

≤ Γ([sup
x∈X

α(h,x)](EL1(h) − E∗L1
(H) +ML1(H))) + ε.

In the special case where Γ(x) = x
1
q for some q ≥ 1 with

conjugate p ≥ 1, that is 1
p
+ 1
q
= 1, for any h ∈ H, the

following inequality holds, assuming EX[α
p
q (h,x)]

1
p <

+∞ for all h ∈H:

EL2(h) − E∗L2
(H) +ML2(H)

≤ E
X
[α

p
q (h,x)]

1
p E
X
[EL1(h) − E∗L1

(H) +ML1(H)]
1
q + ε.

Theorems 3.1 and 3.2 provide significantly more general
tools for establishing H-consistency bounds than previous
results from (Awasthi et al., 2022a, Theorems 1 and 2)
and (Awasthi et al., 2022b, Theorems 1 and 2) for binary
and multi-class classification. They offer a more general
framework for establishing consistency bounds by allowing
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for non-constant functions α. This generalization is crucial
for analyzing consistency bounds in regression, where α
may not be constant for certain surrogate losses (e.g., Huber
loss, squared ε-insensitive loss). Our generalized theorems
also enable finer consistency bounds, as demonstrated later
in the case of the `1 loss. The proofs of Theorems 3.1
and 3.2 are included in Appendix A.

To leverage these general theorems, we will characterize the
best-in-class conditional error and the conditional regret of
the squared loss. We first introduce some definitions we will
need. We say that the conditional distribution is bounded
by B > 0 if, for all x ∈ X,P(∣Y ∣ ≤ B ∣X = x) = 1. We say
that a hypothesis set H is bounded by B > 0 if, ∣h(x)∣ ≤ B
for all h ∈ H and x ∈ X, and all values in [−B,+B] are
attainable by h(x), h ∈ H. The conditional mean of the
distribution at x is denoted as: µ(x) = E[y ∣ x].
Theorem 3.3. Assume that the conditional distribution and
the hypothesis set H are bounded by B > 0. Then, the best-
in-class conditional error and the conditional regret of the
squared loss can be characterized as: for all h ∈H, x ∈ X,

C∗`2(H, x) = C`2(µ(x), x) = E[y2
∣ x] − (µ(x))

2

∆C`2,H(h,x) = (h(x) − µ(x))
2
.

Refer to Appendix A for the proof. As in (Steinwart, 2007),
for our analysis, we will focus specifically on symmetric dis-
tributions, where the conditional mean and the conditional
median coincide. This is because, otherwise, as shown by
Steinwart (2007, Proposition 4.14) the squared loss is essen-
tially the only distance-based and locally Lipschitz contin-
uous loss function that is Bayes-consistent with respect to
itself for all bounded conditional distributions.

A distribution D over X × Y is said to be symmetric if and
only if for all x ∈ X, there exits y0 ∈ R such that Dy∣x(y0 −

A) = Dy∣x(y0 + A) for all measurable A ⊂ [0,+∞). The
next result characterizes the best-in-class predictor for any
symmetric regression loss functions for such distributions.
Theorem 3.4. Let ψ∶R→ R be a symmetric function such
that ψ(x) = ψ(−x) for all x ∈ R. Furthermore, ψ(x) ≥ 0
for all x in its domain and it holds that ψ(0) = 0. Assume
that the conditional distribution and the hypothesis set H is
bounded byB > 0. Assume that the distribution is symmetric
and the regression loss function is given by L(y′, y) = ψ(y′−
y). Then, we have C∗L(H, x) = CL(µ(x), x).

The proof is included in Appendix A. It is straightforward
to see that all the previously mentioned regression loss func-
tions satisfy the assumptions in Theorem 3.4. Therefore,
for these loss functions, the best-in-class conditional error
is directly characterized by Theorem 3.4. Furthermore, if
we have x ↦ µ(x) ∈ H, then under the same assumption,
we have E∗L(H) = Ex[C∗L(H, x)] = Ex[CL(µ(x), x)] and
thus the minimizability gap vanishes: ML(H) = 0.

Definition 3.5. A hypothesis set H is said to be realizable
if the function that maps x to the conditional mean µ(x) is
included in H: x↦ µ(x) ∈H.

Corollary 3.6. Under the same assumption as in Theo-
rem 3.4, for realizable hypothesis sets, we have ML(H) = 0.

4. H-Consistency Bounds for Regression
In this section, we will analyze the H-consistency of several
regression loss functions with respect to the squared loss.

4.1. Huber Loss

The Huber loss `δ ∶ (h,x, y) ↦ 1
2
(h(x) − y)21∣h(x)−y∣≤δ +

(δ∣h(x) − y∣ − 1
2
δ2)1∣h(x)−y∣>δ is a frequently used loss

function in regression for dealing with outliers. It imposes
quadratic penalties on small errors and linear penalties on
larger ones. The next result provides H-consistency bounds
for the Huber loss with respect to the squared loss.

Theorem 4.1. Assume that the distribution is symmetric,
the conditional distribution and the hypothesis set H are
bounded by B > 0. Assume that pmin(δ) = infx∈X P(0 ≤

µ(x) − y ≤ δ ∣ x) is positive. Then, for all h ∈ H, the
following H-consistency bound holds:

E`2(h) − E∗`2(H) +M`2(H) ≤

max{ 2B
δ
,2}

pmin(δ)
(E`δ(h) − E∗`δ(H) +M`δ(H)).

The proof is presented in Appendix B.1. It leverages the
general Theorem 3.1 with α(h,x) = P(0 ≤ µ(x) − y ≤ δ ∣

x). Note that the previous established general tools for H-
consistency bounds (Awasthi et al., 2022a;b) require α to
be constant, which is not applicable in this context. This
underscores the necessity of generalizing previous tools to
accommodate any positive function α.

As shown by Corollary 3.6, when H is realizable, the mini-
mizability gap vanishes. Thus, by Theorem 4.1, we obtain
the following corollary.

Corollary 4.2. Assume that the distribution is symmetric,
the conditional distribution is bounded byB > 0, and the hy-
pothesis set H is realizable and bounded by B > 0. Assume
that pmin(δ) = infx∈X P(0 ≤ µ(x) − y ≤ δ ∣ x) is positive.
Then, for all h ∈ H, the following H-consistency bound
holds:

E`2(h) − E∗`2(H) ≤
max{ 2B

δ
,2}

pmin(δ)
(E`δ(h) − E∗`δ(H)).

Corollary 4.2 implies the Bayes-consistency of the Huber
loss when pmin(δ) > 0, by taking the limit on both sides
of the bound. Note that, as the value of δ increases, 2B

δ
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decreases and pmin(δ) increases, which improves the linear
dependency on the Huber loss estimation error in this bound.
However, this comes at the price of an Huber loss more
similar to the squared loss and thus a higher sensitivity to
outliers. Thus, selecting an appropriate value for δ involves
considering these trade-offs.

The bound is uninformative when the probability mass
pmin(δ) is zero. However, the following theorem shows
that the condition pmin(δ) > 0 is necessary and that other-
wise, in general, the Huber loss is not H-consistent with
respect to the squared loss.

Theorem 4.3. Assume that the distribution is symmetric,
the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Then,
the Huber loss `δ is not H-consistent with respect to the
squared loss.

Refer to Appendix B.1 for the proof, which consists of
considering a distribution that concentrates on an input x
with P(Y = y ∣ x) = 1

2
= P(Y = 2µ(x)−y ∣ x), where −B ≤

y < µ(x) ≤ B and µ(x) − y > δ. Then, we show that both
h∶x ↦ y + δ and h∗∶x ↦ µ(x) are best-in-class predictors
of the Huber loss, while the best-in-class-predictor of the
squared loss is uniquely h∗∶x↦ µ(x).

4.2. `p Loss

Here, we analyze `p loss functions for any p ≥ 1:
`p∶ (h,x, y) ↦ ∣h(x) − y∣

p. We show that this family of
loss functions benefits from H-consistency bounds with re-
spect to the squared loss assuming, when adopting the same
symmetry and boundedness assumptions as in the previous
section.

Theorem 4.4. Assume that the distribution is symmetric,
and that the conditional distribution and the hypothesis set
H are bounded by B > 0. Then, for all h ∈H and p ≥ 1, the
following H-consistency bound holds:

E`2(h) − E∗`2(H) +M`2(H)

≤ Γ(E`p(h) − E∗`p(H) +M`p(H)),

where Γ(t) = supx∈X,y∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} t for p =

1, Γ(t) = 2
(8B)p−2p(p−1) t for p ∈ (1,2], and Γ(t) = t

2
p for

p ≥ 2.

The proof is included in Appendix B.2. Note that for
p = 1, Γ can be further upper bounded as follows:
Γ(t) = supx∈X supy∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} t ≤ 4B t
since the conditional distribution and the hypothesis set
H are bounded by B > 0. This upper bound can also be
obtained by using general theorems in Section 3 with α ≡ 1.
However, our generalized theorems, which apply to any
positive function α, yield a finer bound for the `1 loss. This

further shows that our generalized theorems are not only
useful but can also yield finer bounds.

The key term appearing in the bounds is the minimizability
gap M`p(H) = E∗`p(H) −Ex[C∗`p(H, x)], which is helpful
for comparing the bounds between `p losses for different
p ≥ 1. For example, for the `1 and `2 loss, by Theorem 3.4,
we have M`1(H) = E∗`1(H) − Ex[Ey[∣µ(x) − y∣]] and

M`2(H) = E∗`2(H)−Ex[Ey[∣µ(x) − y∣
2
]]. Thus, in the de-

terministic case, both Ey[∣µ(x) − y∣] and Ey[∣µ(x) − y∣
2
]

vanish, and M`2 = E∗`2(H) ≥ (E∗`1(H))
2
= (M`1)

2.

In particular, when H is realizable, we have M`p(H) =

M`2(H) = 0. This yields the following result.

Corollary 4.5. Assume that the distribution is symmetric,
the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Then,
for all h ∈H and p ≥ 1, the following H-consistency bound
holds:

E`2(h) − E∗`2(H) ≤ Γ(E`p(h) − E∗`p(H)),

where Γ(t) = supx∈X,y∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} t for p =

1, Γ(t) = 2
(8B)p−2p(p−1) t for p ∈ (1,2], and Γ(t) = t

2
p for

p ≥ 2.

Corollary 4.5 shows that when the estimation error of `p
is reduced to ε, the estimation error of the squared loss
(E`2(h) − E∗`2(H)) is upper bounded by ε

2
p for p > 2, and

by ε for 1 ≤ p ≤ 2, which is more favorable, modulo a
multiplicative constant.

4.3. Squared ε-Insensitive Loss

The ε-insensitive loss and the squared ε-insensitive loss
functions are used in the support vector regression (SVR)
algorithms (Vapnik, 2000). The use of these loss functions
results in sparser solutions, characterized by fewer support
vectors for the SVR algorithms. Moreover, the selection of
the parameter ε determines a trade-off between accuracy and
sparsity: larger ε values yield increasingly sparser solutions.
We first provide a positive result for the squared ε-insensitive
loss `sq−ε∶ (h,x, y)↦max{∣h(x) − y∣

2
−ε2,0}, by showing

that it admits an H-consistency bound with respect to `2.

Theorem 4.6. Assume that the distribution is symmetric,
and that the conditional distribution and the hypothesis
set H are bounded by B > 0. Assume that pmin(ε) =

infx∈X P(µ(x) − y ≥ ε ∣ x) is positive. Then, for all h ∈H,
the following H-consistency bound holds:

E`2(h) − E∗`2(H) +M`2(H)

≤
E`sq−ε(h) − E∗`sq−ε(H) +M`sq−ε(H)

2pmin(ε)
.
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The proof is presented in Appendix B.3. It requires the use
of Theorem 3.1 with α(h,x) = P(µ(x) − y ≥ ε ∣ x). As in
the case of the Huber loss, the previous established general
tools for H-consistency bounds (Awasthi et al., 2022a;b) do
not apply here. Our generalization of previous tools proves
essential for analyzing H-consistency bounds in regression.
By Corollary 3.6, for realizable hypothesis sets, the mini-
mizability gap vanishes. Thus, by Theorem 4.6, we obtain
the following corollary.

Corollary 4.7. Assume that the distribution is symmetric,
the conditional distribution is bounded byB > 0, and the hy-
pothesis set H is realizable and bounded by B > 0. Assume
that pmin(ε) = infx∈X P(µ(x) − y ≥ ε ∣ x) is positive. Then,
for all h ∈H, the following H-consistency bound holds:

E`2(h) − E∗`2(H) ≤
E`sq−ε(h) − E∗`sq−ε(H)

2pmin(ε)
.

By taking the limit on both sides of the bound of Corol-
lary 4.7, we can infer the H-consistency of the squared
ε-insensitive loss under the assumption pmin(ε) > 0. Note
that increasing ε diminishes pmin(ε), making the bound less
favorable. Conversely, smaller ε values enhance the linear
dependency bound but may hinder solution sparsity. There-
fore, selecting the optimal ε involves balancing the trade-off
between linear dependency and sparsity. When pmin(ε)
approaches zero, the bound derived from Corollary 4.7 be-
comes less informative. However, as demonstrated in the
subsequent theorem, the squared ε-insensitive loss fails to
exhibit H-consistency with the squared loss if the condition
pmin(ε) > 0 is not satisfied.

Theorem 4.8. Assume that the distribution is symmetric,
the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Then,
the squared ε-insensitive loss `sq−ε is not H-consistent.

The proof is given in Appendix B.3. It consists of consid-
ering a distribution that concentrates on an input x with
P(Y = y ∣ x) = 1

2
= P(Y = 2µ(x) − y ∣ x), where

−B ≤ y < µ(x) ≤ B and µ(x) − y < ε. Then, we show
that both h∶x ↦ y + ε and h∗∶x ↦ µ(x) are best-in-class
predictors of the squared ε-insensitive loss, while the best-in-
class-predictor of the squared loss is uniquely h∗∶x↦ µ(x).

4.4. ε-Insensitive Loss

Here, we present negative results for the ε-insensitive loss
`ε∶ (h,x, y) ↦ max{∣h(x) − y∣ − ε,0} used in the SVR
algorithm, by showing that even under the assumption
infx∈X P(µ(x) − y ≥ ε) > 0 or infx∈X P(0 ≤ µ(x) − y ≤

ε) > 0, it is not H-consistent with respect to the squared
loss. The proofs of Theorems 4.9 and 4.10 are included
in Appendix B.4. In the proof, we consider distributions
that concentrate on an input x, leading to both h∶x↦ y + ε

and h∗∶x↦ µ(x) being the best-in-class predictors for the
ε-insensitive loss.

Theorem 4.9. Assume that the distribution is symmetric
and satisfies infx∈X P(µ(x) − y ≥ ε ∣ x) > 0. Assume that
the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Then,
the ε-insensitive loss `ε is not H-consistent with respect to
the squared loss.

Theorem 4.10. Assume that the distribution is symmetric
and satisfies pmin(ε) = infx∈X P(0 ≤ µ(x) − y ≤ ε ∣ x) > 0.
Assume further that the conditional distribution is bounded
by B > 0, and the hypothesis set H is realizable and
bounded by B > 0. Then, the ε-insensitive loss `ε is not
H-consistent with respect to the squared loss.

Tightness. Our H-consistency bounds are uniform bounds
that hold for all distributions meeting the conditions of the
theorems and for every hypothesis within the hypothesis
set. The boundedness of the hypothesis set ensures that
all values in [−B,+B] are attainable by h(x), h ∈H. This
means our bounds can be achieved with a specific hypothesis
and a distribution that concentrates on a single point that
fulfills the conditions. Therefore, our bounds are, in fact,
tight. In Lemma B.4 of Appendix B.5, we show an example
illustrating the tightness of our bounds for the Huber loss
and `1 loss.

In Table 1, we provide a summary of the surrogate losses
discussed above.

4.5. Generalization Bounds

We can use our H-consistency bounds to derive bounds on
the squared loss estimation error of a surrogate loss mini-
mizer. For a labeled sample S = ((x1, y1), . . . , (xm, ym))

drawn i.i.d. according to D, let ĥS ∈ H be the empiri-
cal minimizer of a regression loss function L over S and
RL
m(H) the Rademacher complexity of the hypothesis set

{(x, y)↦ L(h(x), y)∶h ∈H}. We denote by BL an upper
bound of the regression loss function L. Then, the following
generalization bound holds.

Theorem 4.11. Assume that the distribution is symmetric,
the conditional distribution and the hypothesis set H are
bounded by B > 0. Then, for any δ > 0, with probability at
least 1 − δ over the draw of an i.i.d. sample S of size m, the
following squared loss estimation bound holds for ĥS:

E`2(ĥS) − E∗`2(H)

≤ Γ(ML(H) + 4RL
m(H) + 2BL

√
log 2

δ

2m
) −M`2(H).

where Γ(t) = supx∈X supy{∣̂hS(x) − y∣ + ∣µ(x) − y∣} t for
L = `1, Γ(t) = 2

(8B)p−2p(p−1) t for L = `p, p ∈ (1,2], Γ(t) =
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Table 1. Summary of surrogate losses in standard regression.
Surrogates Γ(t) α(h,x) supx∈X α(h,x) Main results

Huber loss max{ 2B
δ
,2} t 1

P(0≤µ(x)−y≤δ∣x)
1

pmin(δ) Theorem 4.1 and Corollary 4.2

`p, p ≥ 2 t
p
2 1 1 Theorem 4.4 and Corollary 4.5

`p, 1 < p ≤ 2 2
(8B)p−2p(p−1) t 1 1 Theorem 4.4 and Corollary 4.5

`p, p = 1 t supy∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} supx∈X,y∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} Theorem 4.4 and Corollary 4.5

Squared ε-insensitive t 1
2P(µ(x)−y≥ε∣x)

1
2pmin(ε) Theorem 4.6 and Corollary 4.7

t
2
p for L = `p, p ≥ 2, Γ(t) =

max{ 2B
δ ,2}

pmin(δ) t for L = `δ, and
Γ(t) = 1

2pmin(ε) t for L = `sq−ε.

The proof is included in Appendix C. Theorem 4.11 pro-
vides the first finite-sample guarantees for the squared loss
estimation error of the empirical minimizer of the Huber
loss, squared ε-insensitive loss, `1 loss, and more generally
`p loss. The proof leverages the H-consistency bounds of
Theorems 4.1, 4.4, 4.6, along with standard Rademacher
complexity bounds (Mohri et al., 2018). Under the bound-
edness assumption, we have ∣h(x) − y∣ ≤ ∣h(x)∣ + ∣y∣ ≤ 2B.
Thus, an upper bound BL for the regression loss function
can be derived. For example, for the `p loss, we have
∣h(x) − y∣

p
≤ (2B)p and thus BL = (2B)p.

5. Application to Adversarial Regression
In this section, we show how the H-consistency guarantees
we presented in the previous section can be applied to the
design of new algorithms for adversarial regression. Deep
neural networks are known to be vulnerable to small ad-
versarial perturbations around input data (Krizhevsky et al.,
2012; Szegedy et al., 2013; Sutskever et al., 2014).

Despite extensive previous work aimed at improving the
robustness of neural networks, this often comes with a re-
duction in standard (non-adversarial) accuracy, leading to
a trade-off between adversarial and standard generalization
errors in both the classification (Madry et al., 2017; Tsipras
et al., 2018; Zhang et al., 2019; Raghunathan et al., 2019;
Awasthi et al., 2021a;b; Min et al., 2021; Javanmard &
Soltanolkotabi, 2022; Ma et al., 2022; Taheri et al., 2022;
Dobriban et al., 2023; Awasthi et al., 2023b;a) and regres-
sion scenarios (Javanmard et al., 2020; Dan et al., 2020;
Xing et al., 2021; Hassani & Javanmard, 2022; Liu et al.,
2023; Ribeiro & Schön, 2023; Ribeiro et al., 2023).

In the context of adversarial classification, Zhang et al.
(2019) proposed algorithms seeking a trade-off between
these two types of errors, by using the theory of Bayes-
consistent binary classification surrogate losses functions.
More recently, Mao et al. (2023f) introduced enhanced algo-
rithms by minimizing smooth adversarial comp-sum losses,
leveraging the H-consistency guarantee of comp-sum losses

in multi-class classification.

Building on the insights from these previous studies, we aim
to leverage our novel H-consistency theory tailored for stan-
dard regression to introduce a family of new loss functions
for adversarial regression, termed as smooth adversarial
regression losses. Minimizing these loss functions readily
leads to new algorithms for adversarial regression.

5.1. Adversarial Squared Loss

In adversarial regression, the target adversarial generaliza-
tion error is measured by the worst squared loss under
the bounded γ perturbation of x. This is defined for any
(h,x, y) ∈H ×X × Y as follows:

̃̀
2(h,x, y) = sup

x′∶∥x′−x∥≤γ
(h(x′) − y)2

where ∥ ⋅ ∥ denotes a norm on X, typically an `p norm for
p ≥ 1. We refer to ̃̀

2 as the adversarial squared loss. By
adding and subtracting the standard squared loss `2, for
any (h,x, y) ∈ H × X × Y, we can write ̃̀

2 as follows:
̃̀
2(h,x, y) = (h(x) − y)2 + supx′∶∥x′−x∥≤γ(h(x

′) − y)2 −

(h(x) − y)2. Then, assuming that the conditional distribu-
tion and the hypothesis set H are bounded by B > 0, we can
write

sup
x′∶∥x′−x∥≤γ

(h(x′) − y)2
− (h(x) − y)2

= sup
x′∶∥x′−x∥≤γ

(h(x′) − h(x))(h(x′) + h(x) + y)

≤ sup
x′∶∥x′−x∥≤γ

3B ∣h(x′) − h(x)∣. (∣h(x)∣ ≤ B, ∣y∣ ≤ B)

Thus, the ̃̀
2 loss can be upper bounded as follows for all

(x, y):

̃̀
2(h,x, y) ≤ (h(x)−y)2

+ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣, (1)

where ν ≥ 3B is a positive constant.

5.2. Smooth Adversarial Regression Losses

Let L be a standard regression loss function that admits an
H-consistency bound with respect to the squared loss:

E`2(h) − E∗`2(H) ≤ Γ(EL(h) − E∗L(H)).
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To trade-off the adversarial and standard generalization er-
rors in regression, by using (1), we can upper bound the
difference between the adversarial generalization and the
best-in-class standard generalization error as follows:

Ẽ̀
2
(h) − E∗`2(H)

≤ E`2(h) − E∗`2(H) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣

≤ Γ(EL(h) − E∗L(H)) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣.

Thus, by Corollaries 4.2, 4.5 and 4.7, we obtain the follow-
ing guarantees with respect to the adversarial squared loss.
The proofs are presented in Appendix D.
Theorem 5.1. Assume that the distribution is symmetric,
the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. As-
sume that pmin(δ) = infx∈X P(0 ≤ µ(x) − y ≤ δ ∣ x) is
positive. Then, for any ν ≥ 3B and all h ∈H, the following
bound holds:

Ẽ̀
2
(h) − E∗`2(H) ≤

max{ 2B
δ
,2}

pmin(δ)
(E`δ(h) − E∗`δ(H))

+ ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣.

Theorem 5.2. Assume that the distribution is symmetric,
the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Then,
for any ν ≥ 3B and all h ∈H, the following bound holds:

Ẽ̀
2
(h) − E∗`2(H)

≤ Γ(E`p(h) − E∗`p(H)) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣,

where Γ(t) = t
2
p if p ≥ 2, 2

(8B)p−2p(p−1) t for p ∈ (1,2) and
4B t, if p = 1.

Theorem 5.3. Assume that the distribution is symmetric,
the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. As-
sume that pmin(ε) = infx∈X P(µ(x) − y ≥ ε ∣ x) is positive.
Then, for any ν ≥ 3B and all h ∈ H, the following bound
holds:

Ẽ̀
2
(h) − E∗`2(H)

≤
E`sq−ε(h) − E∗`sq−ε(H)

2pmin(ε)
+ ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣.

Theorems 5.1, 5.2 and 5.3 suggest minimizing

L(h,x, y) + τ sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣ (2)

where L can be chosen as `δ, `p and `sq−ε and τ > 0 is a
parameter. For simplicity, we use the parameter τ to approx-
imate the effect of the functional form Γ in these bounds,

as with the approach adopted in (Zhang et al., 2019). This
approach could help trade-off the standard part and the
adversarial (regularization) part. Given that L is a con-
vex function of h, the minimization of (2) can be achieved
equivalently and more efficiently by applying the standard
Lagrange method. This allows for the replacement of the `1
norm with its square, since the regularization term can be
moved to a constraint, where it can then be squared.

We refer to (2) as smooth adversarial regression loss func-
tions. They can be obtained by augmenting the standard
regression loss function such as the Huber loss, the `p loss
and the ε-insensitive loss with a natural smoothness term.
Minimizing the regularized empirical smooth adversarial
regression loss functions leads to a new family of algorithms
for adversarial regression, smooth adversarial regression
algorithms. In the next section, we report experimental re-
sults illustrating the effectiveness of these new algorithms,
in particular in terms of the trade-off between the adver-
sarial accuracy and standard accuracy, as guaranteed by
Theorems 5.1, 5.2 and 5.3. We will show that these algo-
rithms outperform the direct minimization of the adversarial
squared loss.

6. Experiments
In this section, we demonstrate empirically the effectiveness
of the smooth adversarial regression algorithms introduced
in the previous section.

Experimental settings. We studied two real-world datasets:
the Diabetes dataset (Efron et al., 2004) and the Diverse
MAGIC wheat dataset (Scott et al., 2021), and adopted the
same exact settings for feature engineering as (Ribeiro et al.,
2023, Example 3 and Example 5 in Appendix D). For the
sake of a fair comparison, we used a linear hypothesis set.
We considered an `∞ perturbation with perturbation size
γ ∈ {0.001,0.005,0.01} for adversarial training. For our
smooth adversarial regression losses (2), we chose L = `2,
the squared loss, and L = `δ with δ = 0.2, the Huber loss,
setting τ = 1 as the default. Other choices for the regression
loss functions and the value of τ may yield better perfor-
mance, which can typically be selected by cross-validation
in practice. Both our smooth adversarial regression losses
and the adversarial squared loss were optimized using the
CVXPY library (Diamond & Boyd, 2016).

Evaluation. We report the standard error, measured by
the squared loss (or MSE) on the test data, and the robust
error, measured by the adversarial squared loss with `∞
perturbation and the corresponding perturbation size used
for training. We averaged both errors over five runs and
report the standard deviation for both our smooth adversarial
regression losses and the adversarial squared loss.

Results. Tables 2 and 3 present the experimental results of
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Table 2. Comparison of the performance of the ADV-SQ algorithm
and our smooth adversarial regression algorithms for L = `2 and
L = `δ for `∞ adversarial training with perturbation size γ ∈

{0.001,0.005,0.01} on the Diverse MAGIC wheat dataset.

METHOD SIZE CLEAN ROBUST

ADV-SQ
0.001

1.28 ± 0.10 1.32 ± 0.11
OURS (L = `2) 1.28 ± 0.09 1.32 ± 0.09
OURS (L = `δ ) 1.30 ± 0.08 1.34 ± 0.09

ADV-SQ
0.005

1.30 ± 0.09 1.53 ± 0.10
OURS (L = `2) 1.26 ± 0.09 1.46 ± 0.10
OURS (L = `δ ) 1.03 ± 0.09 1.12 ± 0.10

ADV-SQ
0.01

1.30 ± 0.08 1.78 ± 0.11
OURS (L = `2) 1.22 ± 0.11 1.62 ± 0.14
OURS (L = `δ ) 0.97 ± 0.02 1.01 ± 0.02

Table 3. Comparison of the performance of the ADV-SQ algorithm
and our smooth adversarial regression algorithms for L = `2 and
L = `δ for `∞ adversarial training with perturbation size γ ∈

{0.001,0.005,0.01} on the Diabetes dataset.

METHOD SIZE CLEAN ROBUST

ADV-SQ
0.001

2.53 ± 0.48 2.57 ± 0.49
OURS (L = `2) 1.24 ± 0.21 1.26 ± 0.21
OURS (L = `δ ) 1.31 ± 0.15 1.32 ± 0.15

ADV-SQ
0.005

1.12 ± 0.12 1.18 ± 0.13
OURS (L = `2) 0.80 ± 0.04 0.82 ± 0.04
OURS (L = `δ ) 0.78 ± 0.06 0.79 ± 0.06

ADV-SQ
0.01

0.83 ± 0.05 0.87 ± 0.05
OURS (L = `2) 0.74 ± 0.05 0.76 ± 0.05
OURS (L = `δ ) 0.81 ± 0.05 0.82 ± 0.05

our adversarial regression algorithms with both the squared
(L = `2) and Huber (L = `δ) losses. The results suggest that
these algorithms consistently surpass the adversarial squared
loss in clean and robust error metrics across various settings.
In particular, on the Diabetes dataset with a perturbation
size of γ = 0.01, our method (L = `2) outperforms the
adversarial squared loss by more than 0.5% in both robust
error and clean error. Similarly, on the Diverse MAGIC
wheat dataset with a perturbation size of γ = 0.01, our
method (L = `δ) surpasses the adversarial squared loss by
more than 0.3% in terms of robust and clean errors.

Remarkably, the surrogate loss using the Huber loss occa-
sionally outperforms the squared loss variant. This high-
lights the importance of using surrogate losses, even within
the adversarial training framework, to enhance performance.

7. Discussion
Benefits of surrogate losses in regression. As already un-
derscored, the main benefit of surrogate losses in regres-
sion, such as the Huber loss and the `1 loss, is to reduce
the influence of outliers. Our experimental results further
demonstrate their advantage in adversarial regression set-
tings, where we see the Huber loss-based surrogate occa-
sionally outperforming the squared loss-based one.

Smooth adversarial regression losses. The analysis of
Section 5.1 can be used to derive surrogate losses for adver-
sarial regression scenarios beyond the adversarial squared
loss, such as the adversarial `1 loss. In this context, the
formulation of the smooth adversarial regression loss re-
places the absolute value with the local Lipschitz constant
of the target loss. To establish guarantees for these new
surrogate losses, the H-consistency bounds shown in Sec-
tion 4 can be extended to other target losses in regression,
such as the `1 loss, an analysis we have already undertaken.
For instance, we can establish H-consistency bounds for
`2 losses with respect to `1. Additionally, it would also
be interesting to explore the connection between the surro-
gate losses and Moreau envelope theory (see, for example,
(Zhou et al., 2022)). We note that the regularization term
supx′∶∥x′−x∥≤γ ∣h(x

′) − h(x)∣ in the smooth adversarial re-
gression loss closely relates to the local Lipschitz constant
and the gradient norm, which are established methods in ad-
versarially robust training (Hein & Andriushchenko, 2017;
Finlay & Oberman, 2019; Yang et al., 2020; Gouk et al.,
2021).

Technical significance and novelty. In Section 3 we pre-
sented a more general framework crucial for establishing H-
consistency bounds by allowing for non-constant functions
α. Our proof techniques for establishing H-consistency
bounds are entirely novel and differ significantly from those
of the previous work on H-consistency bounds in the clas-
sification setting, due to the continuity of the target loss
function and the infinite nature of the label space. This
requires, in particular, proving a series of inequalities (e.g.,
Lemma B.1, Lemma B.2, Lemma B.3) adapted to each sur-
rogate loss case to lower bound the conditional regret of the
surrogate by the conditional regret of the squared loss.

8. Conclusion
We presented the first study of H-consistency bounds for
regression, by generalizing existing tools to prove such guar-
antees. Leveraging our generalized tools, we proved a se-
ries of novel H-consistency bounds for surrogate losses of
the squared loss. These theoretical insights have immedi-
ate practical implications, illustrated by the formulation of
principled surrogate losses for adversarial regression and
the subsequent design of effective new algorithms. Our
H-consistency guarantees can guide the design of new algo-
rithms for adversarial regression and inform future analyses
of surrogate losses for other target losses in regression.

Impact Statement
This work aims to advance the field of Machine Learning.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
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A. Proofs of general H-consistency theorems
A.1. Proof of Theorem 3.1

Theorem 3.1 (General H-consistency bound – convex function). Let D denote a distribution over X×Y. Assume that there
exists a convex function Ψ∶R+ → R with Ψ(0) ≥ 0, a positive function α∶H ×X → R∗

+ with supx∈X α(h,x) < +∞ for all
h ∈H, and ε ≥ 0 such that the following holds for all h ∈H, x ∈ X: Ψ([∆CL2,H(h,x)]ε) ≤ α(h,x)∆CL1,H(h,x). Then,
for any hypothesis h ∈H, the following inequality holds:

Ψ(EL2(h) − E∗L2
(H) +ML2(H)) ≤ [sup

x∈X
α(h,x)](EL1(h) − E∗L1

(H) +ML1(H)) +max{Ψ(0),Ψ(ε)}.

Proof. For any h ∈H, we can write

Ψ(EL2(h) − E∗L2,H +ML2,H)

= Ψ(E
X
[∆CL2,H(h,x)])

≤ E
X
[Ψ(∆CL2,H(h,x))] (Jensen’s ineq.)

= E
X
[Ψ(∆CL2,H(h,x)1∆CL2,H

(h,x)>ε +∆CL2,H(h,x)1∆CL2,H
(h,x)≤ε)]

≤ E
X
[Ψ(∆CL2,H(h,x)1∆CL2,H

(h,x)>ε) +Ψ(∆CL2,H(h,x)1∆CL2,H
(h,x)≤ε)] (Ψ(0) ≥ 0)

≤ E
X
[α(h,x)∆CL1,H(h,x)] + sup

t∈[0,ε]
Ψ(t) (assumption)

≤ [sup
x∈X

α(h,x)]E
x
[∆CL1,H(h,x)] + sup

t∈[0,ε]
Ψ(t) (Hölder’s ineq.)

= [sup
x∈X

α(h,x)](EL1(h) − E∗L1,H +ML1,H) +max{Ψ(0),Ψ(ε)}, (convexity of Ψ)

which completes the proof.

A.2. Proof of Theorem 3.2

Theorem 3.2 (General H-consistency bound – concave function). Let D denote a distribution over X × Y. Assume that
there exists a concave function Γ∶R+ → R, a positive function α∶H ×X → R∗

+ with supx∈X α(h,x) < +∞ for all h ∈ H,
and ε ≥ 0 such that the following holds for all h ∈H, x ∈ X: [∆CL2,H(h,x)]ε ≤ Γ(α(h,x)∆CL1,H(h,x)). Then, for any
hypothesis h ∈H, the following inequality holds

EL2(h) − E∗L2
(H) +ML2(H) ≤ Γ([sup

x∈X
α(h,x)](EL1(h) − E∗L1

(H) +ML1(H))) + ε.

In the special case where Γ(x) = x
1
q for some q ≥ 1 with conjugate p ≥ 1, that is 1

p
+ 1
q
= 1, for any h ∈H, the following

inequality holds, assuming EX[α
p
q (h,x)]

1
p < +∞ for all h ∈H:

EL2(h) − E∗L2
(H) +ML2(H) ≤ E

X
[α

p
q (h,x)]

1
p E
X
[EL1(h) − E∗L1

(H) +ML1(H)]
1
q + ε.

14
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Proof. For any h ∈H, we can write

EL2(h) − E∗L2,H +ML2,H

= E
X
[CL2(h,x) − C∗L2,H(x)]

= E
X
[∆CL2,H(h,x)]

= E
X
[∆CL2,H(h,x)1∆CL2,H

(h,x)>ε +∆CL2,H(h,x)1∆CL2,H
(h,x)≤ε]

≤ E
X
[Γ(α(h,x)∆CL1,H(h,x))] + ε (assumption)

≤ Γ(E
X
[α(h,x)∆CL1,H(h,x)]) + ε (Jensen’s ineq.)

≤ Γ([sup
x∈X

α(h,x)]E
X
[∆CL1,H(h,x)]) + ε (Hölder’s ineq.)

= Γ([sup
x∈X

α(h,x)](EL1(h) − E∗L1,H +ML1,H)) + ε.

When Γ(x) = x
1
q for some q ≥ 1 with conjugate number p, starting from the fourth inequality above, we can write

EL2(h) − E∗L2,H +ML2,H ≤ E
X
[α

1
q (h,x)∆C

1
q

L2,H
(h,x)] + ε

≤ E
X
[α

p
q (h,x)]

1
p E
X
[∆CL1,H(h,x)]

1
q + ε (Hölder’s ineq)

= E
X
[α

p
q (h,x)]

1
p E
X
[EL1(h) − E∗L1,H +ML1,H]

1
q + ε.

This completes the proof.

A.3. Proof of Theorem 3.3

Theorem 3.3. Assume that the conditional distribution and the hypothesis set H are bounded by B > 0. Then, the
best-in-class conditional error and the conditional regret of the squared loss can be characterized as: for all h ∈H, x ∈ X,

C∗`2(H, x) = C`2(µ(x), x) = E[y2
∣ x] − (µ(x))

2

∆C`2,H(h,x) = (h(x) − µ(x))
2
.

Proof. By definition,

C∗`2(H, x) = inf
h∈H

E[(h(x) − y)
2
∣ x]

= inf
h∈H

[(h(x) −E[y ∣ x])
2
+E[y2

∣ x] − (E[y ∣ x])
2
]

= E[y2
∣ x] − (E[y ∣ x])

2

∆C`2,H(h,x) = E[(h(x) − y)
2
∣ x] − inf

h∈H
E[(h(x) − y)

2
∣ x]

= (h(x) −E[y ∣ x])
2
+E[y2

∣ x] − (E[y ∣ x])
2
− (E[y2

∣ x] − (E[y ∣ x])
2
)

= (h(x) −E[y ∣ x])
2
.

This completes the proof.

A.4. Proof of Theorem 3.4

Theorem 3.4. Let ψ∶R→ R be a symmetric function such that ψ(x) = ψ(−x) for all x ∈ R. Furthermore, ψ(x) ≥ 0 for all
x in its domain and it holds that ψ(0) = 0. Assume that the conditional distribution and the hypothesis set H is bounded by
B > 0. Assume that the distribution is symmetric and the regression loss function is given by L(y′, y) = ψ(y′ − y). Then, we
have C∗L(H, x) = CL(µ(x), x).
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Proof. By the symmetry of the distribution, we can write

E
y
[ψ(h(x) − y) ∣ x] =

Ey[ψ(h(x) − y) ∣ x] +Ey[ψ(h(x) − 2µ(x) + y) ∣ x]

2

=
Ey[ψ(h(x) − y) ∣ x] +Ey[ψ(−h(x) + 2µ(x) − y) ∣ x]

2
(ψ is symmetric)

=
Ey[ψ(h(x) − y) + ψ(−h(x) + 2µ(x) − y) ∣ x]

2
≥ E
y
[ψ(µ(x) − y)] (Jensen’s inequality)

where the equality is achieved when h(x) = µ(x) ∈H. This completes the proof.

B. Proofs of H-consistency bounds for common surrogate losses
B.1. H-consistency of `δ with respect to `2

Define the function g as g∶ t↦ 1
2
t21∣t∣≤δ + (δ∣t∣ − 1

2
δ2)1∣t∣>δ . Consider the function F defined over [−B,B]

2 by F (x, y) =
g(x+y)+g(x−y)

2
− g(y). We prove a useful lemma as follows.

Lemma B.1. For any x, y ∈ [−B,B] and ∣y∣ ≤ δ, the following inequality holds:

F (x, y) ≥ min{
δ

2B
,
1

4
}x2.

Proof. Given the definition of g and the symmetry of F with respect to y = 0, we can assume, without loss of generality,
that y ≥ 0. Next, we will analyze case by case.

Case I: ∣x + y∣ ≤ δ, ∣x − y∣ ≤ δ, 0 ≤ y ≤ δ. In this case, we have

F (x, y) =
1
2
(x + y)2 + 1

2
(x − y)2

2
−

1

2
y2

=
1

2
x2

≥ min{
δ

2B
,
1

4
}x2.

Case II: ∣x + y∣ ≤ δ, ∣x − y∣ > δ, 0 ≤ y ≤ δ. In this case, we must have −y − δ ≤ x < y − δ and δ ≥ y ≥ max{−x − δ, x + δ} ≥
x + δ. Thus,

F (x, y) =
1
2
(x + y)2 + δ∣x − y∣ − 1

2
δ2

2
−

1

2
y2

=

1
2
(x + y)2 + δ(y − x) − 1

2
δ2

2
−

1

2
y2 (x − y < 0)

=
− 1

2
y2 + (x + δ)y + 1

2
x2 − δx − 1

2
δ2

2

≥
− 1

2
δ2 + (x + δ)δ + 1

2
x2 − δx − 1

2
δ2

2
(the minimum of the quadratic function is attained when y = δ)

=
x2

4

≥ min{
δ

2B
,
1

4
}x2.

Case III: ∣x + y∣ > δ, ∣x − y∣ ≤ δ, 0 ≤ y ≤ δ. In this case, we must have −y + δ ≤ x ≤ y + δ and δ ≥ y ≥ max{−x + δ, x − δ} ≥
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−x + δ. Thus,

F (x, y) =
δ∣x + y∣ − 1

2
δ2 + 1

2
(x − y)2

2
−

1

2
y2

=
δ(x + y) − 1

2
δ2 + 1

2
(x − y)2

2
−

1

2
y2 (x + y > 0)

=
− 1

2
y2 + (−x + δ)y + 1

2
x2 + δx − 1

2
δ2

2

≥
− 1

2
δ2 + (−x + δ)δ + 1

2
x2 + δx − 1

2
δ2

2
(the minimum of the quadratic function is attained when y = δ)

=
x2

4

≥ min{
δ

2B
,
1

4
}x2.

Case IV: x+ y > δ, ∣x − y∣ > δ, 0 ≤ y ≤ δ. In this case, we must have x > y + δ ≥ δ and 0 ≤ y < min{x − δ, δ}. Thus, we have

F (x, y) =
δ∣x + y∣ − 1

2
δ2 + δ∣x − y∣ − 1

2
δ2

2
−

1

2
y2

=
δ(x + y) − 1

2
δ2 + δ(x − y) − 1

2
δ2

2
−

1

2
y2 (x + y > 0 and x − y > 0)

=
−y2 + 2δx − δ2

2
.

Then, if δ < x ≤ 2δ and min{x − δ, δ} = x − δ,

F (x, y) =
−y2 + 2δx − δ2

2

≥
−(x − δ)2 + 2δx − δ2

2
(the minimum of the quadratic function is attained when y = x − δ)

=
−x2 + 4δx − 2δ2

2

≥
x2

4
(δ < x ≤ 2δ)

≥ min{
δ

2B
,
1

4
}x2.

If 2δ < x ≤ B and min{x − δ, δ} = δ,

F (x, y) =
−y2 + 2δx − δ2

2

≥
−δ2 + 2δx − δ2

2
(the minimum of the quadratic function is attained when y = δ)

= δx − δ2

≥
δ

2B
x2 (2δ < x ≤ B)

≥ min{
δ

2B
,
1

4
}x2.

Case V: x + y < −δ, ∣x − y∣ > δ, 0 ≤ y ≤ δ. In this case, we must have x < −y − δ ≤ −δ, and 0 ≤ y < min{−x − δ, δ}. Thus,
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we have

F (x, y) =
δ∣x + y∣ − 1

2
δ2 + δ∣x − y∣ − 1

2
δ2

2
−

1

2
y2

=
−δ(x + y) − 1

2
δ2 − δ(x − y) − 1

2
δ2

2
−

1

2
y2 (x + y < 0 and x − y < 0)

=
−y2 − 2δx − δ2

2
.

Then, if −2δ ≤ x < −δ and min{−x − δ, δ} = −x − δ,

F (x, y) =
−y2 − 2δx − δ2

2

≥
−(−x − δ)2 − 2δx − δ2

2
(the minimum of the quadratic function is attained when y = −x − δ)

=
−x2 − 4δx − 2δ2

2

≥
x2

4
(−2δ ≤ x < −δ)

≥ min{
δ

2B
,
1

4
}x2.

If −B ≤ x < −2δ and min{−x − δ, δ} = δ,

F (x, y) =
−y2 − 2δx − δ2

2

≥
−δ2 − 2δx − δ2

2
(the minimum of the quadratic function is attained when y = δ)

= −δx − δ2

≥
δ

2B
x2 (−B ≤ x < −2δ)

≥ min{
δ

2B
,
1

4
}x2.

In summary, we complete the proof.

Theorem 4.1. Assume that the distribution is symmetric, the conditional distribution and the hypothesis set H are bounded
byB > 0. Assume that pmin(δ) = infx∈X P(0 ≤ µ(x)−y ≤ δ ∣ x) is positive. Then, for all h ∈H, the following H-consistency
bound holds:

E`2(h) − E∗`2(H) +M`2(H) ≤
max{ 2B

δ
,2}

pmin(δ)
(E`δ(h) − E∗`δ(H) +M`δ(H)).
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Proof. By Theorem 3.4, we can write ∀h ∈H, x ∈ X,

∆C`δ(h,x)

= E
y
[

1

2
(h(x) − y)

2
1∣h(x)−y∣≤δ + (δ∣h(x) − y∣ −

1

2
δ2

)1∣h(x)−y∣>δ ∣ x]

−E
y
[

1

2
(µ(x) − y)

2
1∣µ(x)−y∣≤δ + (δ∣µ(x) − y∣ −

1

2
δ2

)1∣µ(x)−y∣>δ ∣ x]

= E
y
[
g(h(x) − µ(x) + µ(x) − y) + g(h(x) − µ(x) − (µ(x) − y))

2
− g(µ(x) − y) ∣ x]

(distribution is symmetric with respect to µ(x))

= E
y
[F (h(x) − µ(x), µ(x) − y) ∣ x]

≥ 2P(0 ≤ µ(x) − y ≤ δ ∣ x)E
y
[F (h(x) − µ(x), µ(x) − y) ∣ 0 ≤ µ(x) − y ≤ δ]

≥ P(0 ≤ µ(x) − y ≤ δ ∣ x)min{
δ

2B
,
1

2
}(h(x) − µ(x))

2 (∣h(x) − µ(x)∣ ≤ 2B, ∣µ(x) − y∣ ≤ 2B)

= P(0 ≤ µ(x) − y ≤ δ ∣ x)min{
δ

2B
,
1

2
}∆C`2(h,x).

By Theorems 3.1 or 3.2 with α(h,x) = 1
P(0≤µ(x)−y≤δ∣x) , we have

E`2(r) − E∗`2(R) +M`2(R) ≤
max{ 2B

δ
,2}

pmin(δ)
(E`δ(r) − E∗`δ(R) +M`δ(R)).

Theorem 4.3. Assume that the distribution is symmetric, the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Then, the Huber loss `δ is not H-consistent with respect to the squared
loss.

Proof. Consider a distribution that concentrates on an input x. Choose y, µ(x), δ ∈ R such that −B ≤ y < µ(x) ≤ B and
µ(x) − y > δ. Consider the conditional distribution as P(Y = y ∣ x) = 1

2
= P(Y = 2µ(x) − y ∣ x). Thus, the distribution is

symmetric with respect to y = µ(x). For such a distribution, the best-in-class predictor for the squared loss is h∗(x) = µ(x).
However, for the Huber loss, we have

C`δ(h,x)

= E
y
[

1

2
(h(x) − y)

2
1∣h(x)−y∣≤δ + (δ∣h(x) − y∣ −

1

2
δ2

)1∣h(x)−y∣>δ ∣ x]

=
1

2
(

1

2
(h(x) − y)

2
1∣h(x)−y∣≤δ + (δ∣h(x) − y∣ −

1

2
δ2

)1∣h(x)−y∣>δ)

+
1

2
(

1

2
(h(x) − 2µ(x) + y)

2
1∣h(x)−2µ(x)+y∣≤δ + (δ∣h(x) − 2µ(x) + y∣ −

1

2
δ2

)1∣h(x)−2µ(x)+y∣>δ).

Thus, plugging h∶x↦ y + δ and h∗∶x↦ µ(x), we obtain that

C`δ(h,x) =
1

2
(

1

2
δ2

) +
1

2
(δ∣2y + δ − 2µ(x)∣ −

1

2
δ2

) (h(x) − y = δ and h(x) − 2µ(x) + y < −δ)

= δ(µ(x) −
1

2
δ − y)

C`δ(h
∗, x) =

1

2
(δ∣µ(x) − y∣ −

1

2
δ2
+ δ∣−µ(x) + y∣ −

1

2
δ2

) (h∗(x) − y > δ and h∗(x) − 2µ(x) + y < −δ)

= δ(µ(x) −
1

2
δ − y).

Therefore, C`δ(h,x) = C`δ(h
∗, x), and both h and h∗ are the best-in-class predictors for the Huber loss. This implies that

the Huber loss is not H-consistent with respect to the squared loss.
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B.2. H-consistency of `p with respect to `2

Theorem 4.4. Assume that the distribution is symmetric, and that the conditional distribution and the hypothesis set H are
bounded by B > 0. Then, for all h ∈H and p ≥ 1, the following H-consistency bound holds:

E`2(h) − E∗`2(H) +M`2(H) ≤ Γ(E`p(h) − E∗`p(H) +M`p(H)),

where Γ(t) = supx∈X,y∈Y{∣h(x) − y∣ + ∣µ(x) − y∣} t for p = 1, Γ(t) = 2
(8B)p−2p(p−1) t for p ∈ (1,2], and Γ(t) = t

2
p for

p ≥ 2.

Proof. We will analyze case by case.

Case I: p ≥ 2. By Theorem 3.4, we can write

∀h ∈H, x ∈ X, ∆C`p(h,x)

= E
y
[∣h(x) − y∣

p
− ∣µ(x) − y∣

p
∣ x]

= E
y
[
∣h(x) − y∣

p
+ ∣h(x) − 2µ(x) + y∣

p

2
− ∣µ(x) − y∣

p
∣ x]

(distribution is symmetric with respect to µ(x))

= E
y
[
∣h(x) − µ(x) + µ(x) − y∣

p
+ ∣h(x) − µ(x) − (µ(x) − y)∣

p

2
− ∣µ(x) − y∣

p
∣ x]

≥ ∣h(x) − µ(x)∣
p (by Clarkson’s inequality (Clarkson, 1936))

= ((h(x) − µ(x))
2
)

p
2

= (∆C`2(h,x))
p
2 .

By Theorem 3.1, we have

E`2(r) − E∗`2(R) +M`2(R) ≤ (E`p(r) − E∗`p(R) +M`p(R))
2
p .

Case II: 1 < p ≤ 2. In this case, the Clarkson’s inequality cannot be used directly. We first prove a useful lemma as follows.

Lemma B.2. For any x, y ∈ [−B,B] and 1 < p ≤ 2, the following inequality holds:

∣x + y∣p + ∣x − y∣p

2
− ∣y∣p ≥

(2B)p−2p(p − 1)

2
x2.

Proof. For any y ∈ [−B,B], consider the function fy ∶x ↦
∣x+y∣p+∣x−y∣p

2
− ∣y∣p − (2B)p−2p(p−1)

2
x2. We compute the first

derivative and second derivative of fy as follows:

f ′y(x) =

p∣x+y∣p
x+y +

p∣x−y∣p
x−y

2
− (2B)

p−2p(p − 1)x

f ′′y (x) =

p(p−1)
∣x+y∣2−p +

p(p−1)
∣x−y∣2−p

2
− (2B)

p−2p(p − 1).

Thus, using the fact that 1 < p ≤ 2 and ∣x + y∣ ≤ 2B, ∣x − y∣ ≤ 2B, we have

∀x ∈ [−B,B], f ′′y (x) ≥

p(p−1)
(2B)2−p +

p(p−1)
(2B)2−p

2
− (2B)

p−2p(p − 1) = 0.

Therefore, fy(x) is convex. Since f ′y(0) = 0, x = 0 achieves the minimum:

∀x, y ∈ [−B,B], fy(x) ≥ fy(0) = 0.

This completes the proof.
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By Theorem 3.4, we can write

∀h ∈H, x ∈ X, ∆C`p(h,x)

= E
y
[∣h(x) − y∣

p
− ∣µ(x) − y∣

p
∣ x]

= E
y
[
∣h(x) − y∣

p
+ ∣h(x) − 2µ(x) + y∣

p

2
− ∣µ(x) − y∣

p
∣ x]

(distribution is symmetric with respect to µ(x))

= E
y
[
∣h(x) − µ(x) + µ(x) − y∣

p
+ ∣h(x) − µ(x) − (µ(x) − y)∣

p

2
− ∣µ(x) − y∣

p
∣ x]

≥
(8B)p−2p(p − 1)

2
(h(x) − µ(x))

2 (by Lemma B.2 and ∣h(x) − µ(x)∣ ≤ 4B, ∣µ(x) − y∣ ≤ 4B)

=
(8B)p−2p(p − 1)

2
∆C`2(h,x).

By Theorem 3.1, we have

E`2(r) − E∗`2(R) +M`2(R) ≤
2

(8B)p−2p(p − 1)
(E`p(r) − E∗`p(R) +M`p(R)).

Case III: p = 1. By Theorem 3.4, we can write

∀h ∈H, x ∈ X, ∆C`2(h,x) = E
y
[(h(x) − y)2

− (µ(x) − y)2
∣ x]

= E
y
[(∣h(x) − y∣ + ∣µ(x) − y∣)(∣h(x) − y∣ − ∣µ(x) − y∣) ∣ x]

≤ sup
y∈Y

{∣h(x) − y∣ + ∣µ(x) − y∣}E
y
[∣h(x) − y∣ − ∣µ(x) − y∣ ∣ x]

= sup
y∈Y

{∣h(x) − y∣ + ∣µ(x) − y∣}∆C`1(h,x).

By Theorems 3.1 or 3.2 with α(h,x) = supy∈Y{∣h(x) − y∣ + ∣µ(x) − y∣}, we have

E`2(r) − E∗`2(R) +M`2(R) ≤ sup
x∈X

sup
y∈Y

{∣h(x) − y∣ + ∣µ(x) − y∣}(E`1(r) − E∗`1(R) +M`1(R)).

B.3. H-consistency of `sq−ε with respect to `2

Define the function g as g∶ t↦max{t2 − ε2,0}. Consider the function F defined over R2 by F (x, y) = g(x+y)+g(x−y)
2

−g(y).
We first prove a useful lemma as follows.

Lemma B.3. For any x ∈ R and ∣y∣ ≥ ε, the following inequality holds:

F (x, y) ≥ x2.

Proof. Given the definition of g and the symmetry of F with respect to y = 0, we can assume, without loss of generality,
that y ≥ 0. Next, we will analyze case by case.

Case I: ∣x + y∣ > ε, ∣x − y∣ > ε, y ≥ ε. In this case, we have

F (x, y) =
(x + y)2 − ε2 + (x − y)2 − ε2

2
− y2

+ ε2 = x2.

Case II: ∣x + y∣ > ε, ∣x − y∣ ≤ ε, y ≥ ε. In this case, we must have y − ε ≤ x ≤ y + ε and x + ε ≥ y ≥ max{x − ε, ε} ≥ x − ε.
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Thus,

F (x, y) =
(x + y)2 − ε2 + 0

2
− y2

+ ε2

=
−y2 + 2xy + x2 + ε2

2

≥
−(x + ε)2 + 2x(x + ε) + x2 + ε2

2
(the minimum of the quadratic function is attained when y = x + ε)

= x2.

Case III: ∣x + y∣ ≤ ε, ∣x − y∣ > ε, y ≥ ε. In this case, we must have −y−ε ≤ x ≤ −y+ε and −x+ε ≥ y ≥ max{−x − ε, ε} ≥ −x−ε.
Thus,

F (x, y) =
0 + (x − y)2 − ε2

2
− y2

+ ε2

=
−y2 − 2xy + x2 + ε2

2

≥
−(−x + ε)2 − 2x(−x + ε) + x2 + ε2

2
(the minimum of the quadratic function is attained when y = −x + ε)

= x2.

Case IV: ∣x + y∣ ≤ ε, ∣x − y∣ ≤ ε, y ≥ ε. In this case, we must have x = 0 and y = ε. Thus,

F (x, y) =
0 + 0

2
− 0 = 0 = x2.

In summary, we complete the proof.

Theorem 4.6. Assume that the distribution is symmetric, and that the conditional distribution and the hypothesis set H
are bounded by B > 0. Assume that pmin(ε) = infx∈X P(µ(x) − y ≥ ε ∣ x) is positive. Then, for all h ∈ H, the following
H-consistency bound holds:

E`2(h) − E∗`2(H) +M`2(H) ≤
E`sq−ε(h) − E∗`sq−ε(H) +M`sq−ε(H)

2pmin(ε)
.

Proof. By Theorem 3.4, we can write ∀h ∈H, x ∈ X,

∆C`sq−ε(h,x)

= E
y
[max{(h(x) − y)

2
, ε2} ∣ x] −E

y
[max{(µ(x) − y)

2
, ε2} ∣ x]

= E
y
[
g(h(x) − µ(x) + µ(x) − y) + g(h(x) − µ(x) − (µ(x) − y))

2
− g(µ(x) − y) ∣ x]

(distribution is symmetric with respect to µ(x))

= E
y
[F (h(x) − µ(x), µ(x) − y) ∣ x]

≥ 2P(µ(x) − y ≥ ε ∣ x)E
y
[F (h(x) − µ(x), µ(x) − y) ∣ µ(x) − y ≥ ε]

≥ 2P(µ(x) − y ≥ ε ∣ x)(h(x) − µ(x))2 (by Lemma B.3)
= 2P(µ(x) − y ≥ ε ∣ x)∆C`2(h,x).

By Theorems 3.1 or 3.2 with α(h,x) = 1
2P(µ(x)−y≥ε∣x) , we have

E`2(r) − E∗`2(R) +M`2(R) ≤
E`sq−ε(r) − E∗`sq−ε(R) +M`sq−ε(R)

2pmin(ε)
.
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Theorem 4.8. Assume that the distribution is symmetric, the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Then, the squared ε-insensitive loss `sq−ε is not H-consistent.

Proof. Consider a distribution that concentrates on an input x. Choose y, µ(x), ε ∈ R such that −B ≤ y < µ(x) ≤ B and
µ(x) − y < ε. Consider the conditional distribution as P(Y = y ∣ x) = 1

2
= P(Y = 2µ(x) − y ∣ x). Thus, the distribution is

symmetric with respect to y = µ(x). For such a distribution, the best-in-class predictor for the squared loss is h∗(x) = µ(x).
However, for the ε-insensitive loss, we have

C`sq−ε(h,x)

= E
y
[max{(h(x) − y)

2
− ε2,0} ∣ x]

=
1

2
max{(h(x) − y)

2
− ε2,0} +

1

2
max{(h(x) − 2µ(x) + y)

2
− ε2,0}.

Thus, plugging h∶x↦ y + ε and h∗∶x↦ µ(x), we obtain that

C`sq−ε(h,x) =
1

2
(0) +

1

2
(0) (h(x) − y = ε and ε > h(x) − 2µ(x) + y > −ε)

= 0

C`sq−ε(h
∗, x) =

1

2
(0) +

1

2
(0) (0 < h∗(x) − y < ε and 0 > h∗(x) − 2µ(x) + y > −ε)

= 0.

Therefore, C`sq−ε(h,x) = C`sq−ε(h
∗, x), and both h and h∗ are the best-in-class predictors for the ε-insensitive loss. This

implies that the ε-insensitive loss is not H-consistent with respect to the squared loss.

B.4. H-consistency of `ε with respect to `2

Here, we present negative results for the ε-insensitive loss `ε∶ (h,x, y)↦max{∣h(x) − y∣ − ε,0} used in the SVR algorithm,
by showing that even under the assumption infx∈X P(µ(x) − y ≥ ε) > 0 or infx∈X P(0 ≤ µ(x) − y ≤ ε) > 0, it is not
H-consistent with respect to the squared loss. In the proof, we consider distributions that concentrate on an input x, leading
to both h∶x↦ y + ε and h∗∶x↦ µ(x) being the best-in-class predictors for the ε-insensitive loss.

Theorem 4.9. Assume that the distribution is symmetric and satisfies infx∈X P(µ(x) − y ≥ ε ∣ x) > 0. Assume that the
conditional distribution is bounded by B > 0, and the hypothesis set H is realizable and bounded by B > 0. Then, the
ε-insensitive loss `ε is not H-consistent with respect to the squared loss.

Proof. Consider a distribution that concentrates on an input x. Choose y, µ(x), ε ∈ R such that −B ≤ y < µ(x) ≤ B and
µ(x) − y > ε. Consider the conditional distribution as P(Y = y ∣ x) = 1

2
= P(Y = 2µ(x) − y ∣ x). Thus, the distribution is

symmetric with respect to y = µ(x). For such a distribution, the best-in-class predictor for the squared loss is h∗(x) = µ(x).
However, for the ε-insensitive loss, we have

C`sq−ε(h,x)

= E
y
[max{∣h(x) − y∣ − ε,0} ∣ x]

=
1

2
max{∣h(x) − y∣ − ε,0} +

1

2
max{∣h(x) − 2µ(x) + y∣ − ε,0}.

Thus, plugging h∶x↦ y + ε and h∗∶x↦ µ(x), we obtain that

C`sq−ε(h,x) =
1

2
(0) +

1

2
(2µ(x) − 2y − 2ε) (h(x) − y = ε and h(x) − 2µ(x) + y < −ε)

= µ(x) − y − ε.

C`sq−ε(h
∗, x) =

1

2
(µ(x) − y − ε) +

1

2
(µ(x) − y − ε) (h∗(x) − y > ε and h∗(x) − 2µ(x) + y < −ε)

= µ(x) − y − ε.
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Therefore, C`sq−ε(h,x) = C`sq−ε(h
∗, x), and both h and h∗ are the best-in-class predictors for the ε-insensitive loss. This

implies that the ε-insensitive loss is not H-consistent with respect to the squared loss.

Theorem 4.10. Assume that the distribution is symmetric and satisfies pmin(ε) = infx∈X P(0 ≤ µ(x) − y ≤ ε ∣ x) > 0.
Assume further that the conditional distribution is bounded by B > 0, and the hypothesis set H is realizable and bounded by
B > 0. Then, the ε-insensitive loss `ε is not H-consistent with respect to the squared loss.

Proof. Consider a distribution that concentrates on an input x. Choose y, µ(x), ε ∈ R such that −B ≤ y < µ(x) ≤ B and
µ(x) − y < ε. Consider the conditional distribution as P(Y = y ∣ x) = 1

2
= P(Y = 2µ(x) − y ∣ x). Thus, the distribution is

symmetric with respect to y = µ(x). For such a distribution, the best-in-class predictor for the squared loss is h∗(x) = µ(x).
However, for the ε-insensitive loss, we have

C`sq−ε(h,x)

= E
y
[max{∣h(x) − y∣ − ε,0} ∣ x]

=
1

2
max{∣h(x) − y∣ − ε,0} +

1

2
max{∣h(x) − 2µ(x) + y∣ − ε,0}.

Thus, plugging h∶x↦ y + ε and h∗∶x↦ µ(x), we obtain that

C`sq−ε(h,x) =
1

2
(0) +

1

2
(0) (h(x) − y = ε and ε > h(x) − 2µ(x) + y > −ε)

= 0.

C`sq−ε(h
∗, x) =

1

2
(0) +

1

2
(0) (0 < h∗(x) − y < ε and 0 > h∗(x) − 2µ(x) + y > −ε)

= 0.

Therefore, C`sq−ε(h,x) = C`sq−ε(h
∗, x), and both h and h∗ are the best-in-class predictors for the ε-insensitive loss. This

implies that the ε-insensitive loss is not H-consistent with respect to the squared loss.

B.5. Tightness

Lemma B.4. Suppose that the distribution and the hypothesis set H satisfy the condition of Theorem 4.1. Then,
for any t ∈ [0, δ2], there exist a distribution and a hypothesis h ∈ H such that E`2(h) − E∗`2(H) + M`2(H) =

max{ 2B
δ ,2}

pmin(δ) (E`δ(h) − E∗`δ(H) +M`δ(H)) = t; For any t ∈ [0,4B2], there exist a distribution and a hypothesis h ∈ H

such that E`2(h) − E∗`2(H) +M`2(H) = supx∈X supy∈Y{∣h(x) − y∣ + ∣µ(x) − y∣}(E`1(h) − E∗`1(H) +M`1(H)) = t.

Proof. Consider a distribution D that concentrates on an input x. For the Huber loss, choose the distribution
D and y, µ(x), δ ∈ R such that µ(x) = y and δ = B. Let h be a hypothesis such that ∣h(x) − y∣

2
=

t ≤ δ2. In this case, ∆C`2(h,x) = Ey[(h(x) − y)2 − (µ(x) − y)2 ∣ x] = (h(x) − y)2 and ∆C`δ(h,x) =

Ey[ 1
2
(h(x) − y)

2
1∣h(x)−y∣≤δ + (δ∣h(x) − y∣ − 1

2
δ2)1∣h(x)−y∣>δ ∣ x] = 1

2
(h(x) − y)

2. Thus, E`2(h) − E∗`2(H) +M`2(H) =

∆C`2(h,x) = t
2 and max{ 2B

δ ,2}
pmin(δ) (E`δ(h) − E∗`δ(H) +M`δ(H)) = 2∆C`δ(h,x) = t

2.

For the `1 loss, choose the distribution D and y, µ(x) ∈ R such that µ(x) = y. Let h be a hypothesis such
that ∣h(x) − y∣

2
= t ≤ 4B2. In this case, ∆C`2(h,x) = Ey[(h(x) − y)2 − (µ(x) − y)2 ∣ x] = (h(x) − y)2 and

∆C`1(h,x) = Ey[∣h(x) − y∣ − ∣µ(x) − y∣ ∣ x] = ∣h(x) − y∣. Thus, E`2(h) − E∗`2(H) +M`2(H) = ∆C`2(h,x) = t2 and
supx∈X supy∈Y{∣h(x) − y∣ + ∣µ(x) − y∣}(E`1(h) − E∗`1(H) +M`1(H)) = ∣h(x) − y∣∆C`1(h,x) = t

2.

C. Proofs of generalization bound
Theorem 4.11. Assume that the distribution is symmetric, the conditional distribution and the hypothesis set H are bounded
by B > 0. Then, for any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample S of size m, the following
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squared loss estimation bound holds for ĥS:

E`2(ĥS) − E∗`2(H) ≤ Γ(ML(H) + 4RL
m(H) + 2BL

√
log 2

δ

2m
) −M`2(H).

where Γ(t) = supx∈X supy{∣̂hS(x) − y∣ + ∣µ(x) − y∣} t for L = `1, Γ(t) = 2
(8B)p−2p(p−1) t for L = `p, p ∈ (1,2], Γ(t) = t

2
p

for L = `p, p ≥ 2, Γ(t) =
max{ 2B

δ ,2}
pmin(δ) t for L = `δ , and Γ(t) = 1

2pmin(ε) t for L = `sq−ε.

Proof. By using the standard Rademacher complexity bounds (Mohri et al., 2018), for any δ > 0, with probability at least
1 − δ, the following holds for all h ∈H:

∣EL(h) − ÊL,S(h)∣ ≤ 2RL
m(H) +BL

√
log(2/δ)

2m
.

Fix ε > 0. By the definition of the infimum, there exists h∗ ∈H such that EL(h∗) ≤ E∗L(H)+ ε. By definition of ĥS , we have

EL(ĥS) − E∗L(H)

= EL(ĥS) − ÊL,S(ĥS) + ÊL,S(ĥS) − E∗L(H)

≤ EL(ĥS) − ÊL,S(ĥS) + ÊL,S(h
∗
) − E∗L(H)

≤ EL(ĥS) − ÊL,S(ĥS) + ÊL,S(h
∗
) − E∗L(h

∗
) + ε

≤ 2[2RL
m(H) +BL

√
log(2/δ)

2m
] + ε.

Since the inequality holds for all ε > 0, it implies:

EL(ĥS) − E∗L(H) ≤ 4RL
m(H) + 2BL

√
log(2/δ)

2m
.

Plugging in this inequality in the bound of Theorems 4.1, 4.4, 4.6 completes the proof.

D. Proofs of adversarial regression
D.1. Proof of Theorem 5.1

Theorem 5.1. Assume that the distribution is symmetric, the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Assume that pmin(δ) = infx∈X P(0 ≤ µ(x) − y ≤ δ ∣ x) is positive.
Then, for any ν ≥ 3B and all h ∈H, the following bound holds:

Ẽ̀
2
(h) − E∗`2(H) ≤

max{ 2B
δ
,2}

pmin(δ)
(E`δ(h) − E∗`δ(H)) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣

Proof. By (1), we have

Ẽ̀
2
(h) − E∗`2(H) ≤ E`2(h) − E∗`2(H) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣

≤
max{ 2B

δ
,2}

pmin(δ)
(E`δ(h) − E∗`δ(H)) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣. (Corollary 4.2)

This completes the proof.

D.2. Proof of Theorem 5.2

Theorem 5.2. Assume that the distribution is symmetric, the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Then, for any ν ≥ 3B and all h ∈H, the following bound holds:

Ẽ̀
2
(h) − E∗`2(H) ≤ Γ(E`p(h) − E∗`p(H)) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣,

where Γ(t) = t
2
p if p ≥ 2, 2

(8B)p−2p(p−1) t for p ∈ (1,2) and 4B t, if p = 1.
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Proof. By (1), we have

Ẽ̀
2
(h) − E∗`2(H) ≤ E`2(h) − E∗`2(H) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣

≤ Γ(E`p(h) − E∗`p(H)) + ν sup
x′∶∥x′−x∥≤γ

∣h(x′) − h(x)∣. (Corollary 4.5)

where Γ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

t
2
p p > 2

2
(8B)p−2p(p−1) t p ∈ (1,2]

4B t p = 1.

. This completes the proof.

D.3. Proof of Theorem 5.3

Theorem 5.3. Assume that the distribution is symmetric, the conditional distribution is bounded by B > 0, and the
hypothesis set H is realizable and bounded by B > 0. Assume that pmin(ε) = infx∈X P(µ(x) − y ≥ ε ∣ x) is positive. Then,
for any ν ≥ 3B and all h ∈H, the following bound holds:

Ẽ̀
2
(h) − E∗`2(H) ≤

E`sq−ε(h) − E∗`sq−ε(H)

2pmin(ε)
+ ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣.

Proof. By (1), we have

Ẽ̀
2
(h) − E∗`2(H) ≤ E`2(h) − E∗`2(H) + ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣

≤
E`sq−ε(h) − E∗`sq−ε(H)

2pmin(ε)
+ ν sup

x′∶∥x′−x∥≤γ
∣h(x′) − h(x)∣. (Corollary 4.7)

This completes the proof.
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