H-Consistency Guarantees for Regression

Anqi Mao 1 Mehryar Mohri 2 1 Yutao Zhong 1

Abstract

We present a detailed study of H-consistency bounds for regression. We first present new theorems that generalize the tools previously given to establish H-consistency bounds. This generalization proves essential for analyzing H-consistency bounds specific to regression. Next, we prove a series of novel H-consistency bounds for surrogate loss functions of the squared loss, under the assumption of a symmetric distribution and a bounded hypothesis set. This includes positive results for the Huber loss, all ℓ_p losses, p ≥ 1, the squared ϵ-insensitive loss, as well as a negative result for the ϵ-insensitive loss used in Support Vector Regression (SVR). We further leverage our analysis of H-consistency for regression and derive principled surrogate losses for adversarial regression (Section 5). This readily establishes novel algorithms for adversarial regression, for which we report favorable experimental results in Section 6.

1. Introduction

Learning algorithms often optimize loss functions that differ from the originally specified task. In classification, this divergence typically arises due to the computational intractability of optimizing the original loss or because it lacks certain desirable properties like differentiability or smoothness. In regression, the shift may occur because the surrogate loss used exhibits more favorable characteristics, such as handling outliers or ensuring sparser solutions. For instance, the Huber loss and ℓ_1 loss are used to mitigate the impact of outliers since the squared loss is known to be sensitive to the presence of outliers, while ϵ-insensitive losses promote sparsity. But, what guarantees do we have when training with a loss function distinct from the target squared loss?

Addressing this question can have significant implications in the design of regression algorithms. It can also strongly benefit the design of useful surrogate losses for other related problems, such as adversarial regression, as we shall see.

The statistical properties of surrogate losses have been extensively studied in the past. In particular, the Bayes-consistency of various convex loss functions, including margin-based surrogate losses in binary classification (Zhang, 2004a; Bartlett, Jordan, and McAuliffe, 2006), and other loss function families for multi-classification (Zhang, 2004b; Tewari & Bartlett, 2007; Steinwart, 2007), has been examined in detail.

However, prior work by Long & Servedio (2013) has highlighted the limitations of Bayes-consistency, since it does not account for the hypothesis set adopted. They established that for some hypothesis sets and distributions, algorithms minimizing Bayes-consistent losses may retain a constant expected error, while others minimizing inconsistent losses tend to have an expected error approaching zero. This indicates the significant role of the chosen hypothesis set in consistency.

Recent seminal work by Awasthi, Mao, Mohri, and Zhong (2022a;b) and Mao, Mohri, and Zhong (2023f;c:e;b) has analyzed H-consistency bounds for broad families of surrogate losses in binary classification, multi-classification, structured prediction, and abstention (Mao et al., 2023a). These bounds are more informative than Bayes-consistency since they are hypothesis set-specific and do not require the entire family of measurable functions. Moreover, they offer finite sample, non-asymptotic guarantees. In light of these recent guarantees, the following questions naturally arise: Can we derive a non-asymptotic analysis of regression taking into account the hypothesis set? How can we benefit from that analysis?

While there is some previous work exploring Bayes-consistency in regression (Caponnetto, 2005; Christmann & Steinwart, 2007; Steinwart, 2007), we are not aware of any prior H-consistency bounds or similar finite sample guarantees for surrogate losses in regression, such as, for example, the Huber loss or the squared ϵ-insensitive loss.
This paper presents the first in-depth study of \mathcal{H}-consistency bounds in the context of regression. We first present new theorems that generalize the tools previously given by Awasthi et al. (2022a;b) and Mao et al. (2023c;d) to establish \mathcal{H}-consistency bounds (Section 3). This generalization proves essential in regression for analyzing \mathcal{H}-consistency bounds for surrogate losses such as Huber loss and the squared ϵ-insensitive loss. It also provides finer bounds for the ℓ_1 loss.

Next, we prove a series of \mathcal{H}-consistency bounds for surrogate loss functions of the squared loss, under the assumption of a symmetric distribution and a bounded hypothesis set (Section 4). We prove the first \mathcal{H}-consistency bound for the Huber loss, which is a commonly used surrogate loss used to handle outliers, contingent upon a specific condition concerning the Huber loss parameter δ and the distribution mass around the mean. We further prove that this condition is necessary when \mathcal{H} is realizable.

We then extend our analysis to cover \mathcal{H}-consistency bounds for ℓ_p losses, for all values of $p \geq 1$. In particular, remarkably, we give guarantees for the ℓ_1 loss and ℓ_p losses with $p \in (1, 2)$. We further analyze the ϵ-insensitive and the squared ϵ-insensitive losses integral to the definition of the SVR (Support Vector Regression) and quadratic SVR algorithms (Vapnik, 2000). These loss functions and SVR algorithms admit the benefit of yielding sparser solutions.

We give the first \mathcal{H}-consistency bound for the quadratic ϵ-insensitive loss. We also prove a negative result for the ϵ-insensitive loss: this loss function used in the definition of SVR does not admit \mathcal{H}-consistency bounds with respect to the squared loss, even under some additional assumptions on the parameter ϵ and the distribution.

Subsequently, leveraging our analysis of \mathcal{H}-consistency for regression, we derive principled surrogate losses for adversarial regression (Section 5). This readily establishes a novel algorithm for adversarial regression, for which we report favorable experimental results in Section 6.

Previous work. Bayes-consistency has been extensively studied in various learning problems. These include binary classification (Zhang, 2004a; Bartlett et al., 2006), multi-class classification (Zhang, 2004b; Tewari & Bartlett, 2007; Narasimhan et al., 2015; Finocchiaro et al., 2019; Wang & Scott, 2020; Frongillo & Waggoner, 2021; Wang & Scott, 2023), ranking (Menon & Williamson, 2014; Gao & Zhou, 2015; Uematsu & Lee, 2017), multi-label classification (Gao & Zhou, 2011; Koyejo et al., 2015; Zhang et al., 2020), structured prediction (Ciliberto et al., 2016; Osokin et al., 2017; Blondel, 2019), and ordinal regression (Pedregosa et al., 2017). The concept of \mathcal{H}-consistency has been studied under the realizable assumption in (Long & Servedio, 2013; Zhang & Agarwal, 2020). The notion of \mathcal{H}-consistency bounds in classification is due to Awasthi et al. (2022a;b). \mathcal{H}-consistency bounds have been further analyzed in scenarios such as multi-class classification (Mao et al., 2023a; Zheng et al., 2023; Mao et al., 2023b; 2024), ranking (Mao et al., 2023c;d), structured prediction (Mao et al., 2023e), top-k classification (Mao et al., 2024b), abstention and deferral (Mao et al., 2023a; 2024b;c;d; Mohri et al., 2024).

However, in the context of regression, there is limited work on the consistency properties of surrogate losses. The main related work we are aware of are (Caponnetto, 2005; Christmann & Steinwart, 2007; Steinwart, 2007). In particular, Steinwart (2007) studied Bayes-consistency for a family of regression surrogate losses including ℓ_p, but without presenting any non-asymptotic bound. Nevertheless, we partly benefit from this previous work. In particular, we adopt the same symmetric and bounded distribution assumption.

2. Preliminaries

Bounded regression. We first introduce the learning scenario of bounded regression. We denote by X the input space, Y a measurable subset of \mathbb{R}, and \mathcal{D} a distribution over $X \times Y$. As for other supervised learning problems, the learner receives a labeled sample $S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$ drawn i.i.d. according to \mathcal{D}.

The measure of error is based on the magnitude of the difference between the predicted real-valued label and the true label. The function used to measure the error is denoted as $\mathcal{L}: [Y \times Y] \rightarrow \mathbb{R}_+$. Let $L:(h, x, y) \rightarrow L(h(x), y)$ be the associated loss function. Some common examples of loss functions used in regression are the squared loss ℓ_2, defined by $L(y', y) = (y' - y)^2$ for all $y, y' \in Y$; or more generally the ℓ_p loss defined by $L(y', y) = |y' - y|^p$, for $p \geq 1$. The squared loss is known to be quite sensitive to outliers. An alternative more robust surrogate loss is the Huber loss ℓ_2 (Huber, 1964), which is defined for a parameter $\delta > 0$ as the following combination of the ℓ_2 and ℓ_1 loss functions: $L(y', y) = \frac{1}{2}(y' - y)^2$ if $|y' - y| \leq \delta$, $(\delta |y' - y| - \frac{1}{2} \delta^2)$ otherwise. The ϵ-insensitive loss ℓ_ϵ and the squared ϵ-insensitive loss $\ell_{sq-\epsilon}$ (Vapnik, 2000) are defined by $L(y', y) = \max\{|y' - y| - \epsilon, 0\}$ and $L(y', y) = \max\{|y' - y|^2 - \epsilon^2, 0\}$, for some $\epsilon > 0$.

Bayes-Consistency. Given a loss function L, we denote by $\mathcal{E}_L(h)$ the generalization error of a hypothesis $h \in \mathcal{H}$, and by $\mathcal{E}_L^* (\mathcal{H})$ the best-in-class error for a hypothesis set \mathcal{H}:

$$\mathcal{E}_L(h) = \mathbb{E}_{(x, y) \sim \mathcal{D}}[L(h(x), y)] \quad \mathcal{E}_L^* (\mathcal{H}) = \inf_{h \in \mathcal{H}} \mathcal{E}_L(h).$$

A desirable property of surrogate losses in regression is Bayes-consistency (Zhang, 2004a; Bartlett et al., 2006; Steinwart, 2007), that is, minimizing the surrogate losses L over the family of all measurable functions \mathcal{H}_{all} leads to the minimization of the squared loss ℓ_2 over \mathcal{H}_{all}. We say that L is Bayes-consistent with respect to ℓ_2, if, for all distribu-
We also write C.

A key term appearing in our bounds is the minimizability gap. The expected best-in-class conditional error. An alternative expression for the minimizability gap is: $E_L(h) - E_L^*(\mathcal{H}) = \inf_{h \in \mathcal{H}} \mathbb{E}_y[L(h(x), y)] - \mathbb{E}_y[E_L^*(\mathcal{H})]$. Due to the super-additivity of the infimum, the minimizability gap is always negative. As shown by Steinwart (2007, Theorem 2.5, Theorem 3.2), for the family of all measurable functions, the equality $E_L^*(\mathcal{H}) = \mathbb{E}_y[E_L^*(\mathcal{H} \cup \mathcal{H})]$ holds. Thus, the minimizability gap can be bounded above by the approximation error $E_L(h) - E_L^*(\mathcal{H})$. This approximation error becomes zero when $\mathcal{H} = \mathcal{H}_{all}$ or, more broadly, when $E_L^*(\mathcal{H}) = E_L^*(\mathcal{H}_{all})$.

3. General \mathcal{H}-Consistency Theorems

To derive \mathcal{H}-consistency bounds for regression, we first give two key theorems establishing that if a convex or concave function provides an inequality between the conditional regrets of regression loss functions L_1 and L_2, then this inequality translates into an \mathcal{H}-consistency bound involving the minimizability gaps of L_1 and L_2.

Theorem 3.1 (General \mathcal{H}-consistency bound – convex function). Let \mathcal{D} denote a distribution over $\mathcal{X} \times \mathcal{Y}$. Assume that there exists a convex function $\Psi: \mathbb{R}_+ \to \mathbb{R}$ with $\Psi(0) \geq 0$, a positive function $\alpha: \mathcal{X} \to \mathbb{R}_+$ with $\sup_{x \in \mathcal{X}} \alpha(h, x) < +\infty$ for all $h \in \mathcal{H}$, and $\epsilon \geq 0$ such that the following holds for all $h \in \mathcal{H}$, $x \in \mathcal{X}$: $\Psi(\Delta E_{L_2, \mathcal{H}}(h, x)) \leq \alpha(h, x) \Delta E_{L_2, \mathcal{H}}(h, x)$. Then, for any hypothesis $h \in \mathcal{H}$, the following inequality holds:

$$\Psi(\mathcal{E}_{L_2}(h) - \mathcal{E}_{L_2}^*(\mathcal{H}) + \mathcal{M}_{L_2}^*(\mathcal{H})) \leq \left[\sup_{x \in \mathcal{X}} \alpha(h, x) \right] (\mathcal{E}_{L_1}(h) - \mathcal{E}_{L_1}^*(\mathcal{H}) + \mathcal{M}_{L_1}^*(\mathcal{H})) + \epsilon.$$
for non-constant functions α. This generalization is crucial for analyzing consistency bounds in regression, where α may not be constant for certain surrogate losses (e.g., Huber loss, squared ϵ-insensitive loss). Our generalized theorems also enable finer consistency bounds, as demonstrated later in the case of the ℓ1 loss. The proofs of Theorems 3.1 and 3.2 are included in Appendix A.

To leverage these general theorems, we will characterize the best-in-class conditional error and the conditional regret of the squared loss. We first introduce some definitions we will need. We say that the conditional distribution is bounded by B > 0 if, for all x ∈ X, P{|Y| ≤ B | X = x} = 1. We say that a hypothesis set Η is bounded by B > 0 if, |h(x)| ≤ B for all h ∈ Η and x ∈ X, and all values in [−B, +B] are attainable by h(x), h ∈ Η. The conditional mean of the distribution at x is denoted as: µ(x) = E[y | x].

Theorem 3.3. Assume that the conditional distribution and the hypothesis set Η are bounded by B > 0. Then, the best-in-class conditional error and the conditional regret of the squared loss can be characterized as: for all h ∈ Η, x ∈ X,

\[E_{\mathcal{E}}^{\star}(\mathcal{H}, x) = E_{\mathcal{E}}(\mu(x), x) = E[y^2 | x] - (\mu(x))^2 \]

\[\Delta E_{\mathcal{E}}(h, x) = (h(x) - \mu(x))^2. \]

Refer to Appendix A for the proof. As in (Steinwart, 2007), for our analysis, we will focus specifically on symmetric distributions, where the conditional mean and the conditional median coincide. This is because, otherwise, as shown by Steinwart (2007, Proposition 4.1.4) the squared loss is essentially the only distance-based and locally Lipschitz continuous loss function that is Bayes-consistent with respect to itself for all bounded conditional distributions.

A distribution \(\mathcal{D} \) over \(X \times Y \) is said to be symmetric if and only if for all \(x \in X \), there exist \(y_0 \in \mathbb{R} \) such that \(\mathcal{D} = \mathcal{D}(y_0 - A) = \mathcal{D}(y_0 + A) \) for all measurable \(A \subseteq [0, +\infty) \). The next result characterizes the best-in-class predictor for any symmetric regression loss functions for such distributions.

Theorem 3.4. Let \(\psi : \mathbb{R} \rightarrow \mathbb{R} \) be a symmetric function such that \(\psi(x) = \psi(-x) \) for all \(x \in \mathbb{R} \). Furthermore, \(\psi(x) \geq 0 \) for all \(x \) in its domain and it holds that \(\psi(0) = 0 \). Assume that the conditional distribution and the hypothesis set Η are bounded by B > 0. Assume that the distribution is symmetric and the regression loss function is given by \(L(y', y) = \psi(y'-y) \). Then, we have \(E_{\mathcal{E}}^{\star}(\mathcal{H}, x) = E_{\mathcal{E}}(\mu(x), x) \).

The proof is included in Appendix A. It is straightforward to see that all the previously mentioned regression loss functions satisfy the assumptions in Theorem 3.4. Therefore, for these loss functions, the best-in-class conditional error is directly characterized by Theorem 3.4. Furthermore, if we have \(x \rightarrow \mu(x) \in \mathcal{H} \), then under the same assumption, we have \(E_{\mathcal{E}}(\mathcal{H}) = E_{\mathcal{E}}[E_{\mathcal{H}}(\mathcal{H}, x)] = E_{\mathcal{E}}[E_{\mathcal{H}}(\mu(x), x)] \) and then the minimizability gap vanishes: \(M_{\mathcal{E}}(\mathcal{H}) = 0 \).

Definition 3.5. A hypothesis set \(\mathcal{H} \) is said to be realizable if the function that maps \(x \) to the conditional mean \(\mu(x) \) is included in \(\mathcal{H} : x \rightarrow \mu(x) \in \mathcal{H} \).

Corollary 3.6. Under the same assumption as in Theorem 3.4, for realizable hypothesis sets, we have \(M_{\mathcal{E}}(\mathcal{H}) = 0 \).

4. \(\mathcal{H} \)-Consistency Bounds for Regression

In this section, we will analyze the \(\mathcal{H} \)-consistency of several regression loss functions with respect to the squared loss.

4.1. Huber Loss

The Huber loss \(\ell_\delta(h, x, y) = \frac{1}{2}(h(x) - y)^2 \mathbb{1}_{|h(x) - y| \leq \delta} + \frac{1}{2}\delta^2 \mathbb{1}_{|h(x) - y| > \delta} \) is a frequently used loss function in regression for dealing with outliers. It imposes quadratic penalties on small errors and linear penalties on larger ones. The next result provides \(\mathcal{H} \)-consistency bounds for the Huber loss with respect to the squared loss.

Theorem 4.1. Assume that the distribution is symmetric, the conditional distribution and the hypothesis set \(\mathcal{H} \) are bounded by B > 0. Assume that \(p_{\min}(\delta) = \inf_{x \in X} P(0 \leq \mu(x) - y \leq \delta | x) \) is positive. Then, for all \(h \in \mathcal{H} \), the following \(\mathcal{H} \)-consistency bound holds:

\[E_{\mathcal{E}}(h) - E_{\mathcal{E}}^{\star}(\mathcal{H}) + M_{\mathcal{E}}(\mathcal{H}) \leq \frac{\max\{\frac{2B}{\delta^2}, 2\}}{p_{\min}(\delta)} \left(E_{\mathcal{E}}(h) - E_{\mathcal{E}}^{\star}(\mathcal{H}) + M_{\mathcal{E}}(\mathcal{H}) \right). \]

The proof is presented in Appendix B.1. It leverages the general Theorem 3.1 with \(\alpha(h, x) = P(0 \leq \mu(x) - y \leq \delta | x) \). Note that the previous established general tools for \(\mathcal{H} \)-consistency bounds (Awasthi et al., 2022a;2022b) require \(\alpha \) to be constant, which is not applicable in this context. This underscores the necessity of generalizing previous tools to accommodate any positive function \(\alpha \).

As shown by Corollary 3.6, when \(\mathcal{H} \) is realizable, the minimizability gap vanishes. Thus, by Theorem 4.1, we obtain the following corollary.

Corollary 4.2. Assume that the distribution is symmetric, the conditional distribution is bounded by B > 0, and the hypothesis set \(\mathcal{H} \) is realizable and bounded by B > 0. Assume that \(p_{\min}(\delta) = \inf_{x \in X} P(0 \leq \mu(x) - y \leq \delta | x) \) is positive. Then, for all \(h \in \mathcal{H} \), the following \(\mathcal{H} \)-consistency bound holds:

\[E_{\mathcal{E}}(h) - E_{\mathcal{E}}^{\star}(\mathcal{H}) \leq \frac{\max\{\frac{2B}{\delta^2}, 2\}}{p_{\min}(\delta)} \left(E_{\mathcal{E}}(h) - E_{\mathcal{E}}^{\star}(\mathcal{H}) + M_{\mathcal{E}}(\mathcal{H}) \right). \]

Corollary 4.2 implies the Bayes-consistency of the Huber loss when \(p_{\min}(\delta) > 0 \), by taking the limit on both sides of the bound. Note that, as the value of \(\delta \) increases, \(\frac{2B}{\delta^2} \...
decreases and \(p_{\min}(\delta) \) increases, which improves the linear dependency on the Huber loss estimation error in this bound. However, this comes at the price of an Huber loss more similar to the squared loss and thus a higher sensitivity to outliers. Thus, selecting an appropriate value for \(\delta \) involves considering these trade-offs.

The bound is uninformative when the probability mass \(p_{\min}(\delta) \) is zero. However, the following theorem shows that the condition \(p_{\min}(\delta) > 0 \) is necessary and that otherwise, in general, the Huber loss is not \(\mathcal{H} \)-consistent with respect to the squared loss.

Theorem 4.3. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0 \), and the hypothesis set \(\mathcal{H} \) is realizable and bounded by \(B > 0 \). Then, the Huber loss \(\ell_\delta \) is not \(\mathcal{H} \)-consistent with respect to the squared loss.

Refer to Appendix B.1 for the proof, which consists of considering a distribution that concentrates on an input \(x \) with \(P(Y = y \mid x) = \frac{1}{2} = P(Y = 2\mu(x) - y \mid x) \), where \(-B \leq y < \mu(x) \leq B \) and \(\mu(x) - y > \delta \). Then, we show that both \(h^\circ: x \mapsto y + \delta \) and \(h^*: x \mapsto \mu(x) \) are best-in-class predictors of the Huber loss, while the best-in-class-predictor of the squared loss is uniquely \(h^*: x \mapsto \mu(x) \).

4.2. \(\ell_p \) Loss

Here, we analyze \(\ell_p \) loss functions for any \(p \geq 1 \): \(\ell_p; (h, x, y) \mapsto |h(x) - y|^p \). We show that this family of loss functions benefits from \(\mathcal{H} \)-consistency bounds with respect to the squared loss assuming, when adopting the same symmetry and boundedness assumptions as in the previous section.

Theorem 4.4. Assume that the distribution is symmetric, and that the conditional distribution and the hypothesis set \(\mathcal{H} \) are bounded by \(B > 0 \). Then, for all \(h \in \mathcal{H} \) and \(p \geq 1 \), the following \(\mathcal{H} \)-consistency bound holds:

\[
\mathcal{E}_{\ell_p}(h) - \mathcal{E}_{\ell_p}^*(\mathcal{H}) + M_{\ell_p}(\mathcal{H}) \\
\leq \Gamma(\mathcal{E}_{\ell_p}(h) - \mathcal{E}_{\ell_p}^*(\mathcal{H}) + M_{\ell_p}(\mathcal{H})),
\]

where \(\Gamma(t) = \sup_{x \in X, y \in \mathcal{Y}} \{ |h(x) - y| + |\mu(x) - y| \} t \) for \(p = 1 \), \(\Gamma(t) = \frac{2}{(8B)^{1-p} p (p-1)} t \) for \(p \in (1, 2) \), and \(\Gamma(t) = t^\frac{2}{p-1} \) for \(p \geq 2 \).

The proof is included in Appendix B.2. Note that for \(p = 1 \), \(\Gamma(t) \) can be further upper bounded as follows:

\[
\Gamma(t) \leq \sup_{x \in X} \sup_{y \in \mathcal{Y}} \{ |h(x) - y| + |\mu(x) - y| \} \leq 4B t
\]

since the conditional distribution and the hypothesis set \(\mathcal{H} \) are bounded by \(B > 0 \). This upper bound can also be obtained by using general theorems in Section 3 with \(\alpha = 1 \).

However, our generalized theorems, which apply to any positive function \(\alpha \), yield a finer bound for the \(\ell_1 \) loss. This further shows that our generalized theorems are not only useful but can also yield finer bounds.

The key term appearing in the bounds is the minimizability gap \(\mathcal{M}_{\ell_p}(\mathcal{H}) = \mathcal{E}_{\ell_p}^*(\mathcal{H}) - \mathcal{E}_{\ell_p}(h^\circ(\mathcal{H}, x)) \), which is helpful for comparing the bounds between \(\ell_p \) losses for different \(p \geq 1 \). For example, for the \(\ell_1 \) and \(\ell_2 \) loss, by Theorem 3.4, we have \(\mathcal{M}_{\ell_p}(\mathcal{H}) = \mathcal{E}_{\ell_p}^*(\mathcal{H}) - \mathcal{E}_{\ell_p}(\mathcal{E}_{\ell_p}(h)) \) and \(\mathcal{M}_{\ell_2}(\mathcal{H}) = \mathcal{E}_{\ell_2}^*(\mathcal{H}) - \mathcal{E}_{\ell_2}(\mathcal{E}_{\ell_2}(h)) \), Thus, in the deterministic case, both \(\mathcal{E}_{\ell_p}(\mathcal{E}_{\ell_p}(h)) = (\mathcal{M}_{\ell_1})^2 \)

vanish, and \(\mathcal{M}_{\ell_2}(\mathcal{H}) = \mathcal{E}_{\ell_2}(\mathcal{E}_{\ell_2}(h)) \geq (\mathcal{E}_{\ell_2}(\mathcal{H}))^2 = (\mathcal{M}_{\ell_2})^2 \).

In particular, when \(\mathcal{H} \) is realizable, we have \(\mathcal{M}_{\ell_p}(\mathcal{H}) = \mathcal{M}_{\ell_2}(\mathcal{H}) = 0 \). This yields the following result.

Corollary 4.5. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0 \), and the hypothesis set \(\mathcal{H} \) is realizable and bounded by \(B > 0 \). Then, for all \(h \in \mathcal{H} \) and \(p \geq 1 \), the following \(\mathcal{H} \)-consistency bound holds:

\[
\mathcal{E}_{\ell_p}(h) - \mathcal{E}_{\ell_p}^*(\mathcal{H}) \leq \Gamma(\mathcal{E}_{\ell_p}(h) - \mathcal{E}_{\ell_p}^*(\mathcal{H})),
\]

where \(\Gamma(t) = \sup_{x \in \mathcal{X}, y \in \mathcal{Y}} \{ |h(x) - y| + |\mu(x) - y| \} t \) for \(p = 1 \), \(\Gamma(t) = \frac{2}{(8B)^{1-p} p (p-1)} t \) for \(p \in (1, 2) \), and \(\Gamma(t) = t^\frac{2}{p-1} \) for \(p \geq 2 \).

Corollary 4.5 shows that when the estimation error of \(\ell_p \) is reduced to \(\epsilon \), the estimation error of the squared loss \(\mathcal{E}_{\ell_2}(\mathcal{H}) \) is upper bounded by \(\epsilon^2 \) for \(p = 2 \) and by \(\epsilon \) for \(1 \leq p \leq 2 \), which is more favorable, modulo a multiplicative constant.

4.3. Squared \(\epsilon \)-Insensitive Loss

The \(\epsilon \)-insensitive loss and the squared \(\epsilon \)-insensitive loss functions are used in the support vector regression (SVR) algorithms (Vapnik, 2000). The use of these loss functions results in sparser solutions, characterized by fewer support vectors for the SVR algorithms. Moreover, the selection of the parameter \(\epsilon \) determines a trade-off between accuracy and sparsity: larger \(\epsilon \) values yield increasingly sparser solutions. We first provide a positive result for the squared \(\epsilon \)-insensitive loss \(\ell_{sq\epsilon}; (h, x, y) \mapsto \max \{ |h(x) - y|, |h(x) - y| - \epsilon, 0 \} \), by showing that it admits an \(\mathcal{H} \)-consistency bound with respect to \(\ell_2 \).

Theorem 4.6. Assume that the distribution is symmetric, and that the conditional distribution and the hypothesis set \(\mathcal{H} \) are bounded by \(B > 0 \). Assume that \(p_{\min}(\epsilon) = \inf_{x \in \mathcal{X}} P(|\mu(x) - y|, y \geq \epsilon \mid x) \) is positive. Then, for all \(h \in \mathcal{H} \), the following \(\mathcal{H} \)-consistency bound holds:

\[
\mathcal{E}_{\ell_{sq\epsilon}}(h) - \mathcal{E}_{\ell_{sq\epsilon}}^*(\mathcal{H}) + M_{\ell_{sq\epsilon}}(\mathcal{H}) \\
\leq \frac{\mathcal{E}_{\ell_{sq\epsilon}}(h) - \mathcal{E}_{\ell_{sq\epsilon}}^*(\mathcal{H}) + M_{\ell_{sq\epsilon}}(\mathcal{H})}{2p_{\min}(\epsilon)}.
\]
Theorem 4.8. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0 \), and the hypothesis set \(\mathcal{H} \) is realizable and bounded by \(B > 0 \). Assume that \(p_{\min}(\epsilon) = \inf_{\varepsilon \in X} \mathbb{P}(\mu(x) - y \geq \varepsilon \mid x) \) is positive. Then, for all \(h \in \mathcal{H} \), the following \(\mathcal{H} \)-consistency bound holds:

\[
\mathcal{E}_{L^2}(h) - \mathcal{E}_{L^2}^*(\mathcal{H}) \leq \frac{\mathcal{E}_{L_{m,\varepsilon}}(h) - \mathcal{E}_{L_{m,\varepsilon}}^*(\mathcal{H})}{2p_{\min}(\epsilon)}.
\]

By taking the limit on both sides of the bound of Corollary 4.7, we can infer the \(\mathcal{H} \)-consistency of the squared \(\epsilon \)-insensitive loss under the assumption \(p_{\min}(\epsilon) > 0 \). Note that increasing \(\epsilon \) diminishes \(p_{\min}(\epsilon) \), making the bound less favorable. Conversely, smaller \(\epsilon \) values enhance the linear dependency bound but may hinder solution sparsity. Therefore, selecting the optimal \(\epsilon \) involves balancing the trade-off between linear dependency and sparsity. When \(p_{\min}(\epsilon) \) approaches zero, the bound derived from Corollary 4.7 becomes less informative. However, as demonstrated in the subsequent theorem, the squared \(\epsilon \)-insensitive loss fails to exhibit \(\mathcal{H} \)-consistency with the squared loss if the condition \(p_{\min}(\epsilon) > 0 \) is not satisfied.

Theorem 4.8. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0 \), and the hypothesis set \(\mathcal{H} \) is realizable and bounded by \(B > 0 \). Then, the squared \(\epsilon \)-insensitive loss \(L_{\text{sq-}\epsilon} \) is not \(\mathcal{H} \)-consistent.

The proof is given in Appendix B.3. It consists of considering a distribution that concentrates on an input \(x \) with \(\mathbb{P}(Y = y \mid x) = \frac{1}{2} = \mathbb{P}(Y = 2\mu(x) - y \mid x) \), where \(-B \leq y < \mu(x) \leq B \) and \(\mu(x) - y < \epsilon \). Then, we show that both \(\tilde{h}: x \mapsto y + \epsilon \) and \(\tilde{h}^* : x \mapsto \mu(x) \) are best-in-class predictors of the squared \(\epsilon \)-insensitive loss, while the best-in-class-predictor of the squared \(\epsilon \)-insensitive loss is uniquely \(h^*: x \mapsto \mu(x) \).

4.4. \(\epsilon \)-Insensitive Loss

Here, we present negative results for the \(\epsilon \)-insensitive loss \(L_{\epsilon}(\tilde{h}, x, y) = \max(\{h(x) - y - \epsilon, 0\} \) used in the SVR algorithm, by showing that even under the assumption \(\inf_{\varepsilon \in X} \mathbb{P}(\mu(x) - y \geq \varepsilon) > 0 \) or \(\inf_{\varepsilon \in X} \mathbb{P}(0 \leq \mu(x) - y \leq \varepsilon) > 0 \), it is not \(\mathcal{H} \)-consistent with respect to the squared loss. The proofs of Theorems 4.9 and 4.10 are included in Appendix B.4. In the proof, we consider distributions that concentrate on an input \(x \), leading to both \(\tilde{h}: x \mapsto y + \epsilon \) and \(h^*: x \mapsto \mu(x) \) being the best-in-class predictors for the \(\epsilon \)-insensitive loss.

Theorem 4.9. Assume that the distribution is symmetric and satisfies \(\inf_{\varepsilon \in X} \mathbb{P}(\mu(x) - y \geq \varepsilon \mid x) > 0 \). Assume that the conditional distribution is bounded by \(B > 0 \), and the hypothesis set \(\mathcal{H} \) is realizable and bounded by \(B > 0 \). Then, the \(\epsilon \)-insensitive loss \(\ell_\epsilon \) is not \(\mathcal{H} \)-consistent with respect to the squared loss.

Theorem 4.10. Assume that the distribution is symmetric and satisfies \(p_{\min}(\epsilon) = \inf_{\varepsilon \in X} \mathbb{P}(0 \leq \mu(x) - y \leq \varepsilon \mid x) > 0 \). Assume further that the conditional distribution is bounded by \(B > 0 \), and the hypothesis set \(\mathcal{H} \) is realizable and bounded by \(B > 0 \). Then, the \(\epsilon \)-insensitive loss \(\ell_\epsilon \) is not \(\mathcal{H} \)-consistent with respect to the squared loss.

Tightness. Our \(\mathcal{H} \)-consistency bounds are uniform bounds that hold for all distributions meeting the conditions of the theorems and for every hypothesis within the hypothesis set. The boundedness of the hypothesis set ensures that all values in \([-B, +B]\) are attainable by \(h(x) \), \(h \in \mathcal{H} \). This means our bounds can be achieved with a specific hypothesis and a distribution that concentrates on a single point that fulfills the conditions. Therefore, our bounds are, in fact, tight. In Lemma B.4 of Appendix B.5, we show an example illustrating the tightness of our bounds for the Huber loss and \(\ell_1 \) loss.

In Table 1, we provide a summary of the surrogate losses discussed above.

4.5. Generalization Bounds

We can use our \(\mathcal{H} \)-consistency bounds to derive bounds on the squared loss estimation error of a surrogate loss minimizer. For a labeled sample \(S = \{(x_1, y_1), \ldots, (x_m, y_m)\} \) drawn i.i.d. according to \(\mathcal{D} \), let \(\tilde{h}_S \in \mathcal{H} \) be the empirical minimizer of a regression loss function \(L \) over \(S \) and \(\mathcal{R}^L_m(\mathcal{H}) \) the Rademacher complexity of the hypothesis set \(\{(x, y) \mapsto L(h(x), y) : h \in \mathcal{H}\} \). We denote by \(B_L \) an upper bound of the regression loss function \(L \). Then, the following generalization bound holds.

Theorem 4.11. Assume that the distribution is symmetric, the conditional distribution and the hypothesis set \(\mathcal{H} \) are bounded by \(B > 0 \). Then, for any \(\delta > 0 \), with probability at least \(1 - \delta \) over the draw of an i.i.d. sample \(S \) of size \(m \), the following squared loss estimation bound holds for \(\tilde{h}_S \):

\[
\mathcal{E}_{L_{\text{sq-}\epsilon}}(\tilde{h}_S) - \mathcal{E}_{L_{\text{sq-}\epsilon}}^*(\mathcal{H}) \leq \Gamma \left(M_L(\mathcal{H}) + 4\mathcal{R}^L_m(\mathcal{H}) + 2BL \sqrt{\frac{\log\frac{2}{\delta}}{2m}} \right) - \mathcal{M}_{L_{\text{sq-}\epsilon}}(\mathcal{H}).
\]

where \(\Gamma(t) = \sup_{\varepsilon \in X} \sup_{y} \left\{ \tilde{h}_S(x) - y + |\mu(x) - y| \right\} t \) for \(L = \ell_1 \), \(\Gamma(t) = \frac{t}{(2B)^{p-1}} \) for \(L = \ell_p, p \in (1, 2] \), \(\Gamma(t) = \frac{t}{(2B)^{p-1}} \) for \(L = \ell_p, p \in (1, 2] \).
Table 1. Summary of surrogate losses in standard regression.

<table>
<thead>
<tr>
<th>Surrogates</th>
<th>$\Gamma(t)$</th>
<th>$\alpha(h, x)$</th>
<th>$\sup_{x \in \mathcal{X}} \alpha(h, x)$</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huber loss</td>
<td>$\max{\frac{2\epsilon}{p}, 2} t$</td>
<td>$\frac{1}{p\min(\alpha)}$</td>
<td>$\frac{1}{p\min(\alpha)}$</td>
<td>Theorem 4.1 and Corollary 4.2</td>
</tr>
<tr>
<td>$\ell_p, p \geq 2$</td>
<td>$t^\frac{p}{2}$</td>
<td>1</td>
<td>1</td>
<td>Theorem 4.4 and Corollary 4.5</td>
</tr>
<tr>
<td>$\ell_p, 1 < p \leq 2$</td>
<td>$\frac{(2B)^\frac{2}{p} - \epsilon}{2mp(\epsilon)} t$</td>
<td>1</td>
<td>1</td>
<td>Theorem 4.4 and Corollary 4.5</td>
</tr>
<tr>
<td>$\ell_p, p = 1$</td>
<td>t</td>
<td>$\sup_{p \gamma}(|h(x) - y| +</td>
<td>\mu(x) - y</td>
<td>)$</td>
</tr>
<tr>
<td>Squared ϵ-insensitive</td>
<td>t</td>
<td>$\frac{1}{2p^2(|x| - \gamma)}$</td>
<td>$\frac{1}{4p\min(\gamma)}$</td>
<td>Theorem 4.6 and Corollary 4.7</td>
</tr>
</tbody>
</table>

$t^\frac{p}{2}$ for $L = \ell_p, p \geq 2$, $\Gamma(t) = \max\{\frac{2\epsilon}{p}, 2\} t$ for $L = \ell_\delta$, and $\Gamma(t) = \frac{1}{2p\min(\alpha)} t$ for $L = \ell_{\text{sq} \cdot \epsilon}$.

The proof is included in Appendix C. Theorem 4.11 provides the first finite-sample guarantees for the squared loss estimation error of the empirical minimizer of the Huber loss, squared ϵ-insensitive loss, ℓ_1 loss, and more generally ℓ_p loss. The proof leverage the \mathcal{H}-consistency of the bounds of Theorems 4.1, 4.4, 4.6, along with standard Rademacher complexity bounds (Mohri et al., 2018). Under the boundedness assumption, we have $|h(x) - y| \leq |h(x)| + |y| \leq 2B$. Thus, an upper bound B_L for the regression loss function can be derived. For example, for the ℓ_p loss, we have $|h(x) - y|^p \leq (2B)^p$ and thus $B_L = (2B)^p$.

5. Application to Adversarial Regression

In this section, we show how the \mathcal{H}-consistency guarantees we presented in the previous section can be applied to the design of new algorithms for adversarial regression. Deep neural networks are known to be vulnerable to small adversarial perturbations around input data (Krizhevsky et al., 2012; Szegedy et al., 2013; Sutskever et al., 2014).

Despite extensive previous work aimed at improving the robustness of neural networks, this often comes with a reduction in standard (non-adversarial) accuracy, leading to a trade-off between adversarial and standard generalization errors in both the classification (Madry et al., 2017; Tsipras et al., 2018; Zhang et al., 2019; Raghunathan et al., 2019; Awasthi et al., 2021a;b; Min et al., 2021; Javanmard & Soltanolkotabi, 2022; Ma et al., 2022; Taheri et al., 2022; Dobriban et al., 2023; Awasthi et al., 2023b;a) and regression scenarios (Javanmard et al., 2020; Dan et al., 2020; Xing et al., 2021; Hassani & Javanmard, 2022; Liu et al., 2023; Ribeiro & Schöhn, 2023; Ribeiro et al., 2023).

In the context of adversarial classification, Zhang et al. (2019) proposed algorithms seeking a trade-off between these two types of errors, by using the theory of Bayes-consistent binary classification surrogate losses functions. More recently, Mao et al. (2023f) introduced enhanced algorithms by minimizing smooth adversarial comp-sum losses, leveraging the \mathcal{H}-consistency guarantee of comp-sum losses in multi-class classification.

Building on the insights from these previous studies, we aim to leverage our novel \mathcal{H}-consistency theory tailored for standard regression to introduce a family of new loss functions for adversarial regression, termed as smooth adversarial regression losses. Minimizing these loss functions readily leads to new algorithms for adversarial regression.

5.1. Adversarial Squared Loss

In adversarial regression, the target adversarial generalization error is measured by the worst squared loss under the bounded γ perturbation of x. This is defined for any $(h, x, y) \in \mathcal{H} \times \mathcal{X} \times \mathcal{Y}$ as follows:

$$
\tilde{\ell}_2(h, x, y) = \sup_{x' \in [x'-x] | \gamma} (h(x') - y)^2
$$

where $\| \cdot \|$ denotes a norm on \mathcal{X}, typically an ℓ_p norm for $p \geq 1$. We refer to $\tilde{\ell}_2$ as the adversarial squared loss. By adding and subtracting the standard squared loss ℓ_2, for any $(h, x, y) \in \mathcal{H} \times \mathcal{X} \times \mathcal{Y}$, we can write $\tilde{\ell}_2$ as follows:

$$
\tilde{\ell}_2(h, x, y) = (h(x) - y)^2 + \sup_{x' \in [x'-x] | \gamma} (h(x') - y)^2 - (h(x) - y)^2
$$

Then, assuming that the conditional distribution and the hypothesis set \mathcal{H} are bounded by $B > 0$, we can write

$$
\sup_{x' \in [x'-x] | \gamma} (h(x') - y)^2 - (h(x) - y)^2
$$

$$
= \sup_{x' \in [x'-x] | \gamma} (h(x') - h(x))(h(x') + h(x) + y)
\leq \sup_{x' \in [x'-x] | \gamma} 3B|h(x') - h(x)|, \quad (|h(x)| \leq B, |y| \leq B)
$$

Thus, the $\tilde{\ell}_2$ loss can be upper bounded as follows for all (x, y):

$$
\tilde{\ell}_2(h, x, y) \leq (h(x) - y)^2 + \nu \sup_{x' \in [x'-x] | \gamma} |h(x') - h(x)|, \quad (1)
$$

where $\nu \geq 3B$ is a positive constant.

5.2. Smooth Adversarial Regression Losses

Let L be a standard regression loss function that admits an \mathcal{H}-consistency bound with respect to the squared loss:

$$
\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^*(\mathcal{H}) \leq \Gamma(E_L(h) - E_L^*(\mathcal{H})).
$$

To trade-off the adversarial and standard generalization errors in regression, by using (1), we can upper bound the difference between the adversarial generalization and the best-in-class standard generalization error as follows:

\[
\mathcal{E}_{L_z} (h) - \mathcal{E}_{L_z}^* (\mathcal{H}) \\
\leq \mathcal{E}_{L_z} (h) - \mathcal{E}_{L_z}^* (\mathcal{H}) + \nu \sup_{x'} |h(x') - h(x)| \\
\leq \Gamma(\mathcal{E}_{L_z} (h) - \mathcal{E}_{L_z}^* (\mathcal{H})) + \nu \sup_{x':|x'-x|\leq \gamma} |h(x') - h(x)|.
\]

Thus, by Corollaries 4.2, 4.5 and 4.7, we obtain the following guarantees with respect to the adversarial squared loss. The proofs are presented in Appendix D.

Theorem 5.1. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0\), and the hypothesis set \(\mathcal{H}\) is realizable and bounded by \(B > 0\). Assume that \(p_{\min}\) is positive. Then, for any \(\nu \geq 3B\) and all \(h \in \mathcal{H}\), the following bound holds:

\[
\mathcal{E}_{L_z} (h) - \mathcal{E}_{L_z}^* (\mathcal{H}) \\
\leq \Gamma(\mathcal{E}_{L_z} (h) - \mathcal{E}_{L_z}^* (\mathcal{H})) + \nu \sup_{x':|x'-x|\leq \gamma} |h(x') - h(x)|,
\]

where \(\Gamma(t) = t^2/2\) if \(p \geq 2\), \(\Gamma(t) = 2/(B\gamma^{p-2}(p-1)) \) for \(p \in (1, 2)\) and \(4B\), if \(p = 1\).

Theorem 5.2. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0\), and the hypothesis set \(\mathcal{H}\) is realizable and bounded by \(B > 0\). Then, for any \(\nu \geq 3B\) and all \(h \in \mathcal{H}\), the following bound holds:

\[
\mathcal{E}_{L_z} (h) - \mathcal{E}_{L_z}^* (\mathcal{H}) \\
\leq \Gamma(\mathcal{E}_{L_z} (h) - \mathcal{E}_{L_z}^* (\mathcal{H})) + \nu \sup_{x':|x'-x|\leq \gamma} |h(x') - h(x)|,
\]

where \(\Gamma(t) = t^2\) if \(p \geq 2\), \(\Gamma(t) = 2/(B\gamma^{2}(p-2)) \) for \(p \in (1, 2)\) and \(4B\), if \(p = 1\).

Theorem 5.3. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0\), and the hypothesis set \(\mathcal{H}\) is realizable and bounded by \(B > 0\). Assume that \(p_{\min}\) is positive. Then, for any \(\nu \geq 3B\) and all \(h \in \mathcal{H}\), the following bound holds:

\[
\mathcal{E}_{L_z} (h) - \mathcal{E}_{L_z}^* (\mathcal{H}) \\
\leq \Gamma(\mathcal{E}_{L_z} (h) - \mathcal{E}_{L_z}^* (\mathcal{H})) + \nu \sup_{x':|x'-x|\leq \gamma} |h(x') - h(x)|.
\]

Theorems 5.1, 5.2 and 5.3 suggest minimizing

\[
L(h, x, y) + \tau \sup_{x':|x'-x|\leq \gamma} |h(x') - h(x)|
\]

where \(L\) can be chosen as \(L_{\delta}\), \(L_{p}\) and \(L_{\text{sq-}\epsilon}\) and \(\tau > 0\) is a parameter. For simplicity, we use the parameter \(\tau\) to approximate the effect of the functional form \(\Gamma\) in these bounds, as with the approach adopted in (Zhang et al., 2019). This approach could help trade-off the standard part and the adversarial (regularization) part. Given that \(L\) is a convex function of \(h\), the minimization of (2) can be achieved equivalently and more efficiently by applying the standard Lagrange method. This allows for the replacement of the \(\ell_1\) norm with its square, since the regularization term can be moved to a constraint, where it can then be squared.

We refer to (2) as smooth adversarial regression loss functions. They can be obtained by augmenting the standard regression loss function such as the Huber loss, the \(\ell_p\) loss and the \(\epsilon\)-insensitive loss with a natural smoothness term. Minimizing the regularized empirical smooth adversarial regression loss functions leads to a new family of algorithms for adversarial regression, smooth adversarial regression algorithms.

In the next section, we report experimental results illustrating the effectiveness of these new algorithms, in particular in terms of the trade-off between the adversarial accuracy and standard accuracy, as guaranteed by Theorems 5.1, 5.2 and 5.3. We will show that these algorithms outperform the direct minimization of the adversarial squared loss.

6. Experiments

In this section, we demonstrate empirically the effectiveness of the smooth adversarial regression algorithms introduced in the previous section.

Experimental settings. We studied two real-world datasets: the Diabetes dataset (Efron et al., 2004) and the Diverse MAGIC wheat dataset (Scott et al., 2021), and adopted the same exact settings for feature engineering as (Ribeiro et al., 2023, Example 3 and Example 5 in Appendix D). For the sake of a fair comparison, we used a linear hypothesis set. We considered an \(\ell_\infty\) perturbation with perturbation size \(\gamma \in \{0.001, 0.005, 0.01\}\) for adversarial training. For our smooth adversarial regression losses (2), we chose \(L = \ell_2\), the squared loss, and \(L = \ell_\delta\) with \(\delta = 0.2\), the Huber loss, setting \(\tau = 1\) as the default. Other choices for the regression loss functions and the value of \(\tau\) may yield better performance, which can typically be selected by cross-validation in practice. Both our smooth adversarial regression losses and the adversarial squared loss were optimized using the CVXPY library (Diamond & Boyd, 2016).

Evaluation. We report the standard error, measured by the squared loss (or MSE) on the test data, and the robust error, measured by the adversarial squared loss with \(\ell_\infty\) perturbation and the corresponding perturbation size used for training. We averaged both errors over five runs and report the standard deviation for both our smooth adversarial regression losses and the adversarial squared loss.

Results. Tables 2 and 3 present the experimental results of
Table 3. Comparison of the performance of the ADV-SQ algorithm and our smooth adversarial regression algorithms for $L = \ell_2$ and $L = \ell_\delta$ for ℓ_α adversarial training with perturbation size $\gamma \in \{0.001, 0.005, 0.01\}$ on the Diverse MAGIC wheat dataset.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>SIZE</th>
<th>CLEAN</th>
<th>ROBUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV-SQ</td>
<td>1.28 ± 0.10</td>
<td>1.32 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>OURS ($L = \ell_2$)</td>
<td>0.001</td>
<td>1.28 ± 0.09</td>
<td>1.32 ± 0.09</td>
</tr>
<tr>
<td>OURS ($L = \ell_\delta$)</td>
<td>1.30 ± 0.08</td>
<td>1.34 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>ADV-SQ</td>
<td>1.30 ± 0.09</td>
<td>1.53 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>OURS ($L = \ell_2$)</td>
<td>0.005</td>
<td>1.26 ± 0.09</td>
<td>1.46 ± 0.10</td>
</tr>
<tr>
<td>OURS ($L = \ell_\delta$)</td>
<td>1.03 ± 0.09</td>
<td>1.12 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>ADV-SQ</td>
<td>1.30 ± 0.08</td>
<td>1.78 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>OURS ($L = \ell_2$)</td>
<td>0.01</td>
<td>1.22 ± 0.11</td>
<td>1.62 ± 0.14</td>
</tr>
<tr>
<td>OURS ($L = \ell_\delta$)</td>
<td>0.97 ± 0.02</td>
<td>1.01 ± 0.02</td>
<td></td>
</tr>
</tbody>
</table>

Smooth adversarial regression losses. The analysis of Section 5.1 can be used to derive surrogate losses for adversarial regression scenarios beyond the adversarial squared loss, such as the adversarial ℓ_1 loss. In this context, the formulation of the smooth adversarial regression loss replaces the absolute value with the local Lipschitz constant of the target loss. To establish guarantees for these new surrogate losses, the H-consistency bounds shown in Section 4 can be extended to other target losses in regression, such as the ℓ_1 loss, an analysis we have already undertaken. For instance, we can establish H-consistency bounds for ℓ_2 losses with respect to ℓ_1. Additionally, it would also be interesting to explore the connection between the surrogate losses and Moreau envelope theory (see, for example, Zhou et al., 2022). We note that the regularization term $\sup_{x' \in [x-x] \leq \gamma} | h(x') - h(x) |$ in the smooth adversarial regression loss closely relates to the local Lipschitz constant and the gradient norm, which are established methods in adversarially robust training (Hein & Andriushchenko, 2017; Finlay & Oberman, 2019; Yang et al., 2020; Gouk et al., 2021).

Technical significance and novelty. In Section 3 we presented a more general framework crucial for establishing H-consistency bounds by allowing for non-constant functions α. Our proof techniques for establishing H-consistency bounds are entirely novel and differ significantly from those of the previous work on H-consistency bounds in the classification setting, due to the continuity of the target loss function and the infinite nature of the label space. This requires, in particular, proving a series of inequalities (e.g., Lemma B.1, Lemma B.2, Lemma B.3) adapted to each surrogate loss case to lower bound the conditional regret of the surrogate by the conditional regret of the squared loss.

8. Conclusion

We presented the first study of H-consistency bounds for regression, by generalizing existing tools to prove such guarantees. Leveraging our generalized tools, we proved a series of novel H-consistency bounds for surrogate losses of the squared loss. These theoretical insights have immediate practical implications, illustrated by the formulation of principled surrogate losses for adversarial regression and the subsequent design of effective new algorithms. Our H-consistency guarantees can guide the design of new algorithms for adversarial regression and inform future analyses of surrogate losses for other target losses in regression.

Impact Statement

This work aims to advance the field of Machine Learning. There are many potential societal consequences of our work, none of which we feel must be specifically highlighted here.
References

Consistency Guarantees for Regression

H-Consistency Guarantees for Regression

Contents of Appendix

A Proofs of general H-consistency theorems 14
 A.1 Proof of Theorem 3.1 ... 14
 A.2 Proof of Theorem 3.2 ... 14
 A.3 Proof of Theorem 3.3 ... 15
 A.4 Proof of Theorem 3.4 ... 15

B Proofs of H-consistency bounds for common surrogate losses 16
 B.1 H-consistency of ℓ_δ with respect to ℓ_2 16
 B.2 H-consistency of ℓ_p with respect to ℓ_2 20
 B.3 H-consistency of $\ell_{sq-\epsilon}$ with respect to ℓ_2 21
 B.4 H-consistency of ℓ_{ϵ} with respect to ℓ_2 23
 B.5 Tightness ... 24

C Proofs of generalization bound 24

D Proofs of adversarial regression 25
 D.1 Proof of Theorem 5.1 ... 25
 D.2 Proof of Theorem 5.2 ... 25
 D.3 Proof of Theorem 5.3 ... 26
A. Proofs of general \mathcal{H}-consistency theorems

A.1. Proof of Theorem 3.1

Theorem 3.1 (General \mathcal{H}-consistency bound – convex function). Let \mathcal{D} denote a distribution over $\mathcal{X} \times \mathcal{Y}$. Assume that there exists a convex function $\Gamma: \mathbb{R}^+ \to \mathbb{R}$ with $\Gamma(0) \geq 0$, a positive function $\alpha: \mathcal{H} \times \mathcal{X} \to \mathbb{R}^+$ with $\sup_{x \in \mathcal{X}} \alpha(h, x) < +\infty$ for all $h \in \mathcal{H}$, and $\epsilon \geq 0$ such that the following holds for all $h \in \mathcal{H}$, $x \in \mathcal{X}$: $\Psi\left(\left[\Delta \mathcal{E}_{L_2, \mathcal{H}}(h, x)\right]_{\epsilon}\right) \leq \alpha(h, x) \Delta \mathcal{E}_{L_1, \mathcal{H}}(h, x)$. Then, for any hypothesis $h \in \mathcal{H}$, the following inequality holds:

$$\Psi\left(\mathcal{E}_{L_2}(h) - \mathcal{E}_{L_2, \mathcal{H}}(\mathcal{H}) + \mathcal{M}_{L_2}(\mathcal{H})\right) \leq \left[\sup_{x \in \mathcal{X}} \alpha(h, x)\right] \left(\mathcal{E}_{L_1}(h) - \mathcal{E}_{L_1, \mathcal{H}}(\mathcal{H}) + \mathcal{M}_{L_1}(\mathcal{H})\right) + \max\left\{\Psi(0), \Psi(\epsilon)\right\}.$$

Proof. For any $h \in \mathcal{H}$, we can write

$$\begin{align*}
\Psi\left(\mathcal{E}_{L_2}(h) - \mathcal{E}_{L_2, \mathcal{H}}(\mathcal{H}) + \mathcal{M}_{L_2}(\mathcal{H})\right) & = \Psi\left(\mathbb{E}\left[\Delta \mathcal{E}_{L_2, \mathcal{H}}(h, x)\right]\right) \\
& \leq \mathbb{E}\left[\Psi\left(\Delta \mathcal{E}_{L_2, \mathcal{H}}(h, x)\right)\right] \\
& \leq \mathbb{E}\left[\Psi\left(\Delta \mathcal{E}_{L_2, \mathcal{H}}(h, x) + \mathcal{E}_{L_2, \mathcal{H}}(h, x)\Delta \mathcal{E}_{L_2, \mathcal{H}}(h, x)\right)\right] \\
& \leq \mathbb{E}\left[\sup_{t \in [0, \epsilon]} \psi(t)\right] \mathbb{E}\left[\Delta \mathcal{E}_{L_1, \mathcal{H}}(h, x)\right] + \sup_{t \in [0, \epsilon]} \psi(t) \\
& = \left[\sup_{x \in \mathcal{X}} \alpha(h, x)\right] \left(\mathcal{E}_{L_1}(h) - \mathcal{E}_{L_1, \mathcal{H}}(\mathcal{H}) + \mathcal{M}_{L_1}(\mathcal{H})\right) + \max\left\{\Psi(0), \Psi(\epsilon)\right\},
\end{align*}$$

which completes the proof. \qed

A.2. Proof of Theorem 3.2

Theorem 3.2 (General \mathcal{H}-consistency bound – concave function). Let \mathcal{D} denote a distribution over $\mathcal{X} \times \mathcal{Y}$. Assume that there exists a concave function $\Gamma: \mathbb{R}^+ \to \mathbb{R}$ with $\sup_{x \in \mathcal{X}} \alpha(h, x) < +\infty$ for all $h \in \mathcal{H}$, and $\epsilon \geq 0$ such that the following holds for all $h \in \mathcal{H}$, $x \in \mathcal{X}$: $\left[\Delta \mathcal{E}_{L_2, \mathcal{H}}(h, x)\right]_{\epsilon} \leq \Gamma(\alpha(h, x) \Delta \mathcal{E}_{L_1, \mathcal{H}}(h, x))$. Then, for any hypothesis $h \in \mathcal{H}$, the following inequality holds:

$$\begin{align*}
\mathcal{E}_{L_2}(h) - \mathcal{E}_{L_2, \mathcal{H}}(\mathcal{H}) + \mathcal{M}_{L_2}(\mathcal{H}) & \leq \Gamma\left(\left[\sup_{x \in \mathcal{X}} \alpha(h, x)\right] \left(\mathcal{E}_{L_1}(h) - \mathcal{E}_{L_1, \mathcal{H}}(\mathcal{H}) + \mathcal{M}_{L_1}(\mathcal{H})\right)\right) + \epsilon.
\end{align*}$$

In the special case where $\Gamma(x) = x^{\frac{1}{q}}$ for some $q \geq 1$ with conjugate $p \geq 1$, that is $\frac{1}{p} + \frac{1}{q} = 1$, for any $h \in \mathcal{H}$, the following inequality holds, assuming $\mathbb{E}\left[\alpha^{\frac{p}{q}}(h, x)\right] p < +\infty$ for all $h \in \mathcal{H}$:

$$\begin{align*}
\mathcal{E}_{L_2}(h) - \mathcal{E}_{L_2, \mathcal{H}}(\mathcal{H}) + \mathcal{M}_{L_2}(\mathcal{H}) & \leq \mathbb{E}\left[\alpha^{\frac{p}{q}}(h, x)\right] p \mathbb{E}\left[\mathcal{E}_{L_1}(h) - \mathcal{E}_{L_1, \mathcal{H}}(\mathcal{H}) + \mathcal{M}_{L_1}(\mathcal{H})\right] + \epsilon.
\end{align*}$$

\[14\]
Proof. For any $h \in \mathcal{H}$, we can write

\[
\mathcal{E}_{L^2}(h) - \mathcal{E}_{L^2}^*(h) + \mathcal{M}_{L^2}(h) \\
= \mathbb{E}_X[\mathcal{E}_{L^2}(h) - \mathcal{E}_{L^2}^*(h)] \\
= \mathbb{E}_X[\Delta \mathcal{E}_{L^2}(h)] \\
= \mathbb{E}_X[\Delta \mathcal{E}_{L^2}(h)1_{\Delta \mathcal{E}_{L^2}(h) \geq \epsilon} + \Delta \mathcal{E}_{L^2}(h)1_{\Delta \mathcal{E}_{L^2}(h) < \epsilon}] \\
\leq \mathbb{E}_X[\Gamma(\alpha(h, x) \Delta \mathcal{E}_{L^1}(h)) + \epsilon] \quad \text{(assumption)} \\
\leq \Gamma\left(\mathbb{E}_X[\alpha(h, x) \Delta \mathcal{E}_{L^1}(h)]\right) + \epsilon \quad \text{(Jensen’s ineq.)} \\
\leq \Gamma\left(\sup_{x \in \mathcal{X}} \alpha(h, x) \mathbb{E}[\Delta \mathcal{E}_{L^1}(h)]\right) + \epsilon \quad \text{(Hölder’s ineq.)} \\
= \Gamma\left(\sup_{x \in \mathcal{X}} \alpha(h, x)\right)\left(\mathcal{E}_{L^1}(h) - \mathcal{E}_{L^1}^*(h) + \mathcal{M}_{L^1}(h)\right) + \epsilon.
\]

When $\Gamma(x) = x^\frac{1}{2}$ for some $q \geq 1$ with conjugate number p, starting from the fourth inequality above, we can write

\[
\mathcal{E}_{L^2}(h) - \mathcal{E}_{L^2}^*(h) + \mathcal{M}_{L^2}(h) \leq \mathbb{E}_X\left[\alpha^{\frac{p}{q}}(h, x) \Delta \mathcal{E}_{L^2}^{\frac{1}{q}}(h, x)\right] + \epsilon \\
\leq \mathbb{E}_X\left[\alpha^{\frac{p}{q}}(h, x)\right]^{\frac{1}{2}} \mathbb{E}_X[\Delta \mathcal{E}_{L^1}(h)] + \epsilon \quad \text{(Hölder’s ineq)} \\
= \mathbb{E}_X\left[\alpha^{\frac{p}{q}}(h, x)\right]^{\frac{1}{2}} \left(\mathcal{E}_{L^1}(h) - \mathcal{E}_{L^1}^*(h) + \mathcal{M}_{L^1}(h)\right)^{\frac{1}{2}} + \epsilon.
\]

This completes the proof. \hfill \Box

A.3. Proof of Theorem 3.3

Theorem 3.3. Assume that the conditional distribution and the hypothesis set \mathcal{H} are bounded by $B > 0$. Then, the best-in-class conditional error and the conditional regret of the squared loss can be characterized as: for all $h \in \mathcal{H}, x \in \mathcal{X}$,

\[
\mathcal{E}_{L^2}^*(\mathcal{H}, x) = \mathcal{E}_{L^2}(\mu(x), x) = \mathbb{E}[y^2 | x] - (\mu(x))^2 \\
\Delta \mathcal{E}_{L^2}^*(h, x) = (h(x) - \mu(x))^2.
\]

Proof. By definition,

\[
\mathcal{E}_{L^2}^*(\mathcal{H}, x) = \inf_{h \in \mathcal{H}} \mathbb{E}[(h(x) - y)^2 | x] \\
= \inf_{h \in \mathcal{H}} \left[(h(x) - \mathbb{E}[y | x])^2 + \mathbb{E}[y^2 | x] - (\mathbb{E}[y | x])^2 \right] \\
= \mathbb{E}[y^2 | x] - (\mathbb{E}[y | x])^2 \\
\Delta \mathcal{E}_{L^2}^*(h, x) = \mathbb{E}[(h(x) - y)^2 | x] - \inf_{h \in \mathcal{H}} \mathbb{E}[(h(x) - y)^2 | x] \\
= (h(x) - \mathbb{E}[y | x])^2 + \mathbb{E}[y^2 | x] - (\mathbb{E}[y | x])^2 - (h(x) - \mathbb{E}[y | x])^2 \\
= (h(x) - \mathbb{E}[y | x])^2.
\]

This completes the proof. \hfill \Box

A.4. Proof of Theorem 3.4

Theorem 3.4. Let $\psi: \mathbb{R} \to \mathbb{R}$ be a symmetric function such that $\psi(x) = \psi(-x)$ for all $x \in \mathbb{R}$. Furthermore, $\psi(x) \geq 0$ for all x in its domain and it holds that $\psi(0) = 0$. Assume that the conditional distribution and the hypothesis set \mathcal{H} is bounded by $B > 0$. Assume that the distribution is symmetric and the regression loss function is given by $L(y', y) = \psi(y' - y)$. Then, we have $\mathcal{E}_{L}^*(\mathcal{H}, x) = \mathcal{E}_{L}(\mu(x), x)$.

15
Proof. By the symmetry of the distribution, we can write

\[
\mathbb{E}_y[\psi(h(x) - y) \mid x] = \frac{\mathbb{E}_y[\psi(h(x) - y) \mid x] + \mathbb{E}_y[\psi(h(x) - 2\mu(x) + y) \mid x]}{2}
\]

\[
= \frac{\mathbb{E}_y[\psi(h(x) - y) \mid x] + \mathbb{E}_y[\psi(-h(x) + 2\mu(x) - y) \mid x]}{2}
\]

(\psi is symmetric)

\[
\geq \frac{\mathbb{E}_y[\psi(h(x) - y) \mid x] + \mathbb{E}_y[\psi(-h(x) + 2\mu(x) - y) \mid x]}{2}
\]

\[
\geq \mathbb{E}[\psi(\mu(x) - y)]
\]

(Jensen’s inequality)

where the equality is achieved when \(h(x) = \mu(x) \in \mathcal{H} \). This completes the proof. \(\square \)

B. Proofs of \(\mathcal{H} \)-consistency bounds for common surrogate losses

B.1. \(\mathcal{H} \)-consistency of \(\ell_2 \) with respect to \(\ell_2 \)

Define the function \(g \) as \(g: t \mapsto \frac{1}{2}t^21_{|t| \leq \delta} + (\delta|t| - \frac{1}{2}\delta^2)1_{|t| > \delta} \). Consider the function \(F \) defined over \([-B,B]^2\) by \(F(x,y) = \frac{g(x+y)+g(x-y)}{2} - g(y) \). We prove a useful lemma as follows.

Lemma B.1. For any \(x,y \in [-B,B] \) and \(|y| \leq \delta\), the following inequality holds:

\[
F(x,y) \geq \min\left\{ \frac{\delta}{2B}, \frac{1}{4} \right\} x^2.
\]

Proof. Given the definition of \(g \) and the symmetry of \(F \) with respect to \(y = 0 \), we can assume, without loss of generality, that \(y \geq 0 \). Next, we will analyze case by case.

Case I: \(|x+y| \leq \delta, |x-y| \leq \delta, 0 \leq y \leq \delta\). In this case, we have

\[
F(x,y) = \frac{1}{2}(x+y)^2 + \frac{1}{2}(x-y)^2 - \frac{1}{2}y^2 = \frac{1}{2}x^2 \geq \min\left\{ \frac{\delta}{2B}, \frac{1}{4} \right\} x^2.
\]

Case II: \(|x+y| \leq \delta, |x-y| > \delta, 0 \leq y \leq \delta\). In this case, we must have \(-y-\delta \leq x < y-\delta \) and \(\delta \geq y \geq \max\{-x-\delta, x+\delta\} \geq x+\delta \). Thus,

\[
F(x,y) = \frac{1}{2}(x+y)^2 + \delta|x-y| - \frac{1}{2}\delta^2 - \frac{1}{2}y^2
\]

\[
= \frac{1}{2}(x+y)^2 + \delta(y-x) - \frac{1}{2}\delta^2 - \frac{1}{2}y^2
\]

\[
= -\frac{1}{2}y^2 + (x+\delta)y + \frac{1}{2}x^2 - \delta x - \frac{1}{2}\delta^2
\]

\[
\geq -\frac{1}{2}\delta^2 + (x+\delta)\delta + \frac{1}{2}x^2 - \delta x - \frac{1}{2}\delta^2
\]

\[
= \frac{x^2}{4}
\]

\[
\geq \min\left\{ \frac{\delta}{2B}, \frac{1}{4} \right\} x^2.
\]

Case III: \(|x+y| > \delta, |x-y| \leq \delta, 0 \leq y \leq \delta\). In this case, we must have \(-y+\delta \leq x \leq y+\delta \) and \(\delta \geq y \geq \max\{-x+\delta, x-\delta\} \geq x+\delta \). Thus,
Thus,\n\[F(x, y) = \frac{\delta|x + y| - \frac{1}{2}\delta^2 + \frac{1}{2}(x - y)^2}{2} - \frac{1}{2}y^2 \]
\[= \frac{\delta(x + y) - \frac{1}{2}\delta^2 + \frac{1}{2}(x - y)^2}{2} - \frac{1}{2}y^2 \quad (x + y > 0) \]
\[= \frac{-\frac{1}{2}y^2 + (-x + \delta)y + \frac{1}{2}x^2 + \delta x - \frac{1}{2}\delta^2}{2} \]
\[\geq \frac{-\frac{1}{2}\delta^2 + (-x + \delta)\delta + \frac{1}{2}x^2 + \delta x - \frac{1}{2}\delta^2}{2} \] (the minimum of the quadratic function is attained when \(y = \delta \))
\[= \frac{x^2}{4} \]
\[\geq \min\left\{ \frac{\delta}{2B}, \frac{1}{4} \right\} x^2. \]

Case IV: \(x + y > \delta, |x - y| > \delta, 0 \leq y \leq \delta \). In this case, we must have \(x > y + \delta \geq \delta \) and \(0 \leq y < \min\{x - \delta, \delta\} \). Thus, we have
\[F(x, y) = \frac{\delta|x + y| - \frac{1}{2}\delta^2 + \frac{1}{2}|x - y|^2}{2} - \frac{1}{2}y^2 \]
\[= \frac{\delta(x + y) - \frac{1}{2}\delta^2 + \frac{1}{2}(x - y)^2}{2} - \frac{1}{2}y^2 \quad (x + y > 0 \text{ and } x - y > 0) \]
\[= \frac{-\frac{1}{2}y^2 + 2\delta x - \delta^2}{2} \]
\[\geq \frac{(x - \delta)^2 + 2\delta x - \delta^2}{2} \] (the minimum of the quadratic function is attained when \(y = x - \delta \))
\[= \frac{-x^2 + 4\delta x - 2\delta^2}{2} \]
\[\geq \frac{x^2}{4} \]
\[\geq \min\left\{ \frac{\delta}{2B}, \frac{1}{4} \right\} x^2. \]

Then, if \(\delta < x \leq 2\delta \) and \(\min\{x - \delta, \delta\} = x - \delta \),
\[F(x, y) = \frac{-y^2 + 2\delta x - \delta^2}{2} \]
\[\geq \frac{(x - \delta)^2 + 2\delta x - \delta^2}{2} \] (the minimum of the quadratic function is attained when \(y = x - \delta \))
\[= \frac{-x^2 + 4\delta x - 2\delta^2}{2} \]
\[\geq \frac{x^2}{4} \]
\[\geq \min\left\{ \frac{\delta}{2B}, \frac{1}{4} \right\} x^2. \]

If \(2\delta < x \leq B \) and \(\min\{x - \delta, \delta\} = \delta \),
\[F(x, y) = \frac{-y^2 + 2\delta x - \delta^2}{2} \]
\[\geq \frac{-\delta^2 + 2\delta x - \delta^2}{2} \] (the minimum of the quadratic function is attained when \(y = \delta \))
\[= \delta x - \delta^2 \]
\[\geq \frac{\delta}{2B} x^2 \]
\[\geq \min\left\{ \frac{\delta}{2B}, \frac{1}{4} \right\} x^2. \]

Case V: \(x + y < -\delta, |x - y| > \delta, 0 \leq y \leq \delta \). In this case, we must have \(x < -y - \delta \leq -\delta \), and \(0 \leq y < \min\{-x - \delta, \delta\} \). Thus,
we have

\[
F(x, y) = \frac{\delta |x + y| - \frac{1}{2} \delta^2 + \delta |x - y| - \frac{1}{2} \delta^2 - \frac{1}{2} y^2}{2} - \frac{\delta}{2} (x + y < 0 \text{ and } x - y < 0)
\]

Then, if \(-2\delta \leq x < -\delta\) and \(\min\{-x - \delta, \delta\} = -x - \delta\),

\[
F(x, y) = \frac{-y^2 - 2\delta x - \delta^2}{2} \geq \frac{(-x - \delta)^2 - 2\delta x - \delta^2}{2} \quad \text{(the minimum of the quadratic function is attained when } y = -x - \delta)\\
= \frac{-x^2 - 4\delta x - 2\delta^2}{2} \\
\geq \frac{x^2}{4} \\
\geq \min\left\{ \frac{\delta}{2B}, \frac{1}{4} \right\} x^2.
\]

If \(-B \leq x < -2\delta\) and \(\min\{-x - \delta, \delta\} = \delta\),

\[
F(x, y) = \frac{-y^2 - 2\delta x - \delta^2}{2} \geq \frac{-\delta^2 - 2\delta x - \delta^2}{2} \quad \text{(the minimum of the quadratic function is attained when } y = \delta)\\
= \frac{-\delta x - \delta^2}{2} \\
\geq \frac{\delta}{2B} x^2 \\
\geq \min\left\{ \frac{\delta}{2B}, \frac{1}{4} \right\} x^2.
\]

In summary, we complete the proof.

\(\square\)

Theorem 4.1. Assume that the distribution is symmetric, the conditional distribution and the hypothesis set \(\mathcal{H}\) are bounded by \(B > 0\). Assume that \(p_{\min}(\delta) = \inf_{x \in \mathbb{R}} \mathbb{P}(0 \leq \mu(x) - y \leq \delta \mid x)\) is positive. Then, for all \(h \in \mathcal{H}\), the following \(\mathcal{H}\)-consistency bound holds:

\[
\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^*(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) \leq \max\left\{ \frac{2B}{\delta}, \frac{2}{p_{\min}(\delta)} \right\} \left(\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^*(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) \right).
\]
Thus, plugging y symmetric with respect to μ.

Proof. By Theorem 3.4, we can write $\forall h \in \mathcal{H}, x \in \mathcal{X}$,

$$\Delta \mathcal{E}_{\ell_2}(h, x) = \mathbb{E}_y \left[\frac{1}{2} (h(x) - y)^2 1_{|h(x) - y| \leq \delta} + \left(\delta |h(x) - y| - \frac{1}{2} \delta^2 \right) 1_{|h(x) - y| > \delta} \right]$$

$$- \mathbb{P}_y \left[\frac{1}{2} (\mu(x) - y)^2 1_{|\mu(x) - y| \leq \delta} + \left(\delta |\mu(x) - y| - \frac{1}{2} \delta^2 \right) 1_{|\mu(x) - y| > \delta} \right]$$

$$= \mathbb{E}_y \left[g(h(x) - \mu(x) + \mu(x) - y) + g(h(x) - \mu(x) - (\mu(x) - y)) - g(\mu(x) - y) \right]$$

$$= \mathbb{E}_y \left[F(h(x) - \mu(x), \mu(x) - y) \right]$$

$$\geq 2 \mathbb{P}(0 \leq \mu(x) - y \leq \delta \mid x) \mathbb{E}_y \left[F(h(x) - \mu(x), \mu(x) - y) \mid 0 \leq \mu(x) - y \leq \delta \right]$$

$$\geq \mathbb{P}(0 \leq \mu(x) - y \leq \delta \mid x) \min \left(\delta \frac{1}{2B} \right) (h(x) - \mu(x))^2 \quad (|h(x) - \mu(x)| \leq 2B, |\mu(x) - y| \leq 2B)$$

$$= \mathbb{P}(0 \leq \mu(x) - y \leq \delta \mid x) \min \left(\delta \frac{1}{2B} \right) \Delta \mathcal{E}_{\ell_2}(h, x).$$

By Theorems 3.1 or 3.2 with $\alpha(h, x) = \frac{1}{\mathbb{P}(0 \leq \mu(x) - y \leq \delta \mid x)}$, we have

$$\mathcal{E}_{\ell_2}(r) - \mathcal{E}_{\ell_2}^+_*(\mathcal{R}) + \mathcal{M}_{\ell_2}(\mathcal{R}) \leq \max \left(\frac{2B}{\delta}, \frac{2}{p_{\min}(\delta)} \right) (\mathcal{E}_{\ell_2}(r) - \mathcal{E}_{\ell_2}^*(\mathcal{R}) + \mathcal{M}_{\ell_2}(\mathcal{R})).$$

Theorem 4.3. Assume that the distribution is symmetric, the conditional distribution is bounded by $B > 0$, and the hypothesis set \mathcal{H} is realizable and bounded by $B > 0$. Then, the Huber loss ℓ_2 is not \mathcal{H}-consistent with respect to the squared loss.

Proof. Consider a distribution that concentrates on an input x. Choose $y, \mu(x), \delta \in \mathbb{R}$ such that $-B \leq y < \mu(x) \leq B$ and $\mu(x) - y > \delta$. Consider the conditional distribution as $P(Y = y \mid x) = \frac{1}{2} = P(Y = 2\mu(x) - y \mid x)$. Thus, the distribution is symmetric with respect to $y = \mu(x)$. For such a distribution, the best-in-class predictor for the squared loss is $h^*(x) = \mu(x)$.

However, for the Huber loss, we have

$$\mathcal{E}_{\ell_2}(h, x) = \mathbb{E}_y \left[\frac{1}{2} (h(x) - y)^2 1_{|h(x) - y| \leq \delta} + \left(\delta |h(x) - y| - \frac{1}{2} \delta^2 \right) 1_{|h(x) - y| > \delta} \right]$$

$$- \frac{1}{2} (h(x) - y)^2 1_{|h(x) - y| \leq \delta} + \left(\delta |h(x) - y| - \frac{1}{2} \delta^2 \right) 1_{|h(x) - y| > \delta}$$

$$+ \frac{1}{2} \left(h(x) - 2\mu(x) + y \right)^2 1_{|h(x) - 2\mu(x) + y| \leq \delta} + \left(\delta |h(x) - 2\mu(x) + y| - \frac{1}{2} \delta^2 \right) 1_{|h(x) - 2\mu(x) + y| > \delta}. $$

Thus, plugging $\overline{h}: x \mapsto y + \delta$ and $h^*: x \mapsto \mu(x)$, we obtain that

$$\mathcal{E}_{\ell_2}(\overline{h}, x) = \frac{1}{2} \left(\frac{1}{2} \delta^2 \right) + \frac{1}{2} \left(\delta |y + \delta - 2\mu(x)| - \frac{1}{2} \delta^2 \right)$$

$$= \delta (\mu(x) - \frac{1}{2} \delta - y)$$

$$\mathcal{E}_{\ell_2}(h^*, x) = \frac{1}{2} \left(\delta |\mu(x) - y| - \frac{1}{2} \delta^2 + \delta |\mu(x) + y| - \frac{1}{2} \delta^2 \right)$$

$$= \delta (\mu(x) - \frac{1}{2} \delta - y).$$

Therefore, $\mathcal{E}_{\ell_2}(\overline{h}, x) = \mathcal{E}_{\ell_2}(h^*, x)$, and both \overline{h} and h^* are the best-in-class predictors for the Huber loss. This implies that the Huber loss is not \mathcal{H}-consistent with respect to the squared loss.

\[\square \]
B.2. \mathcal{H}-consistency of ℓ_p with respect to ℓ_2

Theorem 4.4. Assume that the distribution is symmetric, and that the conditional distribution and the hypothesis set \mathcal{H} are bounded by $B > 0$. Then, for all $h \in \mathcal{H}$ and $p \geq 1$, the following \mathcal{H}-consistency bound holds:

$$\mathcal{E}_{\ell_p}(h) - \mathcal{E}_{\ell_p}^*(\mathcal{H}) + \mathcal{M}_{\ell_p}(\mathcal{H}) \leq \Gamma \left(\mathcal{E}_{\ell_p}(h) - \mathcal{E}_{\ell_p}^*(\mathcal{H}) + \mathcal{M}_{\ell_p}(\mathcal{H}) \right),$$

where $\Gamma(t) = \sup_{x,y \in \mathcal{X}} \{ |h(x) - y| + |\mu(x) - y| \}$ for $p = 1$, $\Gamma(t) = \frac{2}{(8B)^{p-2}p(p-1)} t$ for $p \in (1,2]$, and $\Gamma(t) = t^{\frac{2}{p}}$ for $p \geq 2$.

Proof. We will analyze case by case.

Case I: $p \geq 2$. By Theorem 3.4, we can write

$$\forall h \in \mathcal{H}, x \in \mathcal{X}, \quad \Delta \mathcal{E}_{\ell_p}(h,x)$$

$$= \mathbb{E}_y \left[|h(x) - y|^p - |\mu(x) - y|^p \bigg| x \right]$$

$$= \mathbb{E}_y \left[\frac{|h(x) - y|^p + |h(x) - 2\mu(x) + y|^p}{2} - |\mu(x) - y|^p \bigg| x \right]$$

(distribution is symmetric with respect to $\mu(x)$)

$$\geq \frac{|h(x) - \mu(x)|^p}{2}$$

(by Clarkson’s inequality (Clarkson, 1936))

$$= \left((h(x) - \mu(x))^2 \right)^{\frac{2}{p}}$$

$$= \left(\Delta \mathcal{E}_{\ell_p}(h,x) \right)^{\frac{2}{p}}.$$

By Theorem 3.1, we have

$$\mathcal{E}_{\ell_p}(r) - \mathcal{E}_{\ell_p}^*(\mathcal{R}) + \mathcal{M}_{\ell_p}(\mathcal{R}) \leq \left(\mathcal{E}_{\ell_p}(r) - \mathcal{E}_{\ell_p}^*(\mathcal{R}) + \mathcal{M}_{\ell_p}(\mathcal{R}) \right)^{\frac{2}{p}}.$$

Case II: $1 < p \leq 2$. In this case, the Clarkson’s inequality cannot be used directly. We first prove a useful lemma as follows.

Lemma B.2. For any $x, y \in [-B, B]$ and $1 < p \leq 2$, the following inequality holds:

$$\frac{|x + y|^p + |x - y|^p}{2} - |y|^p \geq \frac{(2B)^{p-2}p(p-1)}{2} x^2.$$

Proof. For any $y \in [-B, B]$, consider the function $f_y: x \mapsto \frac{|x+y|^p + |x-y|^p}{2} - |y|^p - \frac{(2B)^{p-2}p(p-1)}{2} x^2$. We compute the first derivative and second derivative of f_y as follows:

$$f'_y(x) = \frac{p|x+y|^p}{x+y} + \frac{p|x-y|^p}{x-y} - (2B)^{p-2}p(p-1)x$$

$$f''_y(x) = \frac{p(p-1)}{2|x+y|^p} + \frac{p(p-1)}{2|x-y|^p} - (2B)^{p-2}p(p-1).$$

Thus, using the fact that $1 < p \leq 2$ and $|x + y| \leq 2B, |x - y| \leq 2B$, we have

$$\forall x \in [-B, B], \quad f''_y(x) \geq \frac{p(p-1)}{(2B)^{p-2}p} + \frac{p(p-1)}{(2B)^{p-2}p} - (2B)^{p-2}p(p-1) = 0.$$

Therefore, $f_y(x)$ is convex. Since $f'_y(0) = 0, x = 0$ achieves the minimum:

$$\forall x, y \in [-B, B], \quad f_y(x) \geq f_y(0) = 0.$$

This completes the proof. \qed
By Theorem 3.4, we can write
\[
\forall h \in \mathcal{H}, x \in \mathcal{X}, \quad \Delta \mathcal{E}_{\ell_2}(h, x) = \mathbb{E}_y \left[(h(x) - y)^2 - (\mu(x) - y)^2 \right]
\]
\[
= \mathbb{E}_y \left[(h(x) - y) + |\mu(x) - y| \right]\left[(h(x) - y) - |\mu(x) - y| \right] \quad |x|
\]
\[
\leq \sup_{y \in \mathcal{Y}} \left[(h(x) - y) + |\mu(x) - y| \right] \mathbb{E}_y \left[h(x) - y - |\mu(x) - y| \right] \quad |x|
\]
\[
= \sup_{y \in \mathcal{Y}} \left[(h(x) - y) + |\mu(x) - y| \right] \Delta \mathcal{E}_{\ell_2}(h, x).
\]
By Theorem 3.1, we have
\[
\mathcal{E}_{\ell_2}(r) - \mathcal{E}_{\ell_2}(\mathcal{R}) + \mathcal{M}_{\ell_2}(\mathcal{R}) \leq \frac{2}{(8B)^{p-2}p(p-1)} \left(\mathcal{E}_{\ell_p}(r) - \mathcal{E}_{\ell_p}(\mathcal{R}) + \mathcal{M}_{\ell_p}(\mathcal{R}) \right).
\]

Case III: \(p = 1 \). By Theorem 3.4, we can write
\[
\forall h \in \mathcal{H}, x \in \mathcal{X}, \quad \Delta \mathcal{E}_{\ell_2}(h, x) = \mathbb{E}_y \left[(h(x) - y) - (\mu(x) - y) \right] \quad |x|
\]
\[
= \mathbb{E}_y \left[|h(x) - y| + |\mu(x) - y| \right] \left[(h(x) - y) - (\mu(x) - y) \right] \quad |x|
\]
\[
\leq \sup_{y \in \mathcal{Y}} \left[|h(x) - y| + |\mu(x) - y| \right] \mathbb{E}_y \left[|h(x) - y| - (\mu(x) - y) \right] \quad |x|
\]
\[
= \sup_{y \in \mathcal{Y}} \left[|h(x) - y| + |\mu(x) - y| \right] \Delta \mathcal{E}_{\ell_2}(h, x).
\]
By Theorems 3.1 or 3.2 with \(\alpha(h, x) = \sup_{y \in \mathcal{Y}} \{|h(x) - y| + |\mu(x) - y|\} \), we have
\[
\mathcal{E}_{\ell_2}(r) - \mathcal{E}_{\ell_2}(\mathcal{R}) + \mathcal{M}_{\ell_2}(\mathcal{R}) \leq \sup_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \left[|h(x) - y| + |\mu(x) - y| \right] \left(\mathcal{E}_{\ell_1}(r) - \mathcal{E}_{\ell_1}(\mathcal{R}) + \mathcal{M}_{\ell_1}(\mathcal{R}) \right).
\]

B.3. \(\ell^r \)-consistency of \(\ell_{sq-e} \) with respect to \(\ell_2 \)

Define the function \(g \) as \(g(t) = \max\{t^2 - \epsilon^2, 0\} \). Consider the function \(F \) defined over \(\mathbb{R}^2 \) by \(F(x, y) = \frac{g(x+y)+g(x-y)-g(y)}{2} \). We first prove a useful lemma as follows.

Lemma B.3. For any \(x \in \mathbb{R} \) and \(|y| \geq \epsilon \), the following inequality holds:
\[
F(x, y) \geq x^2.
\]
Proof. Given the definition of \(g \) and the symmetry of \(F \) with respect to \(y = 0 \), we can assume, without loss of generality, that \(y \geq 0 \). Next, we will analyze case by case.

Case I: \(|x+y| > \epsilon, |x-y| > \epsilon, y \geq \epsilon \). In this case, we have
\[
F(x, y) = \frac{(x+y)^2 - \epsilon^2 + (x-y)^2 - \epsilon^2}{2} - y^2 + \epsilon^2 = x^2.
\]
Case II: \(|x+y| > \epsilon, |x-y| \leq \epsilon, y \geq \epsilon \). In this case, we must have \(y - \epsilon \leq x \leq y + \epsilon \) and \(x + \epsilon \geq y \geq \max\{x - \epsilon, \epsilon\} \geq x - \epsilon \).
Thus,
\[
F(x, y) = \frac{(x + y)^2 - \epsilon^2 + 0 - y^2 + \epsilon^2}{2} = \frac{-y^2 + 2xy + x^2 + \epsilon^2}{2} \geq \frac{-(x + \epsilon)^2 + 2x(x + \epsilon) + x^2 + \epsilon^2}{2} = x^2.
\]

Case III: \(|x + y| \leq \epsilon, |x - y| > \epsilon, y \geq \epsilon\). In this case, we must have \(-y - \epsilon \leq x \leq -y + \epsilon\) and \(-x + \epsilon \geq y \geq \max\{-x - \epsilon\} \geq -x - \epsilon\). Thus,
\[
F(x, y) = \frac{0 + (x - y)^2 - \epsilon^2}{2} - y^2 + \epsilon^2 = \frac{-y^2 - 2xy + x^2 + \epsilon^2}{2} \geq \frac{-(x + \epsilon)^2 - 2x(-x + \epsilon) + x^2 + \epsilon^2}{2} \geq x^2.
\]

Case IV: \(|x + y| \leq \epsilon, |x - y| \leq \epsilon, y \geq \epsilon\). In this case, we must have \(x = 0\) and \(y = \epsilon\). Thus,
\[
F(x, y) = \frac{0 + 0}{2} = 0 = x^2.
\]

In summary, we complete the proof.

\[\square\]

Theorem 4.6. Assume that the distribution is symmetric, and that the conditional distribution and the hypothesis set \(\mathcal{H}\) are bounded by \(B > 0\). Assume that \(p_{\min}(\epsilon) = \inf_{\mu} \mathbb{P}(\mu(x) - y \geq \epsilon \mid x)\) is positive. Then, for all \(h \in \mathcal{H}\), the following \(\mathcal{H}\)-consistency bound holds:
\[
\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^*(\mathcal{H}) + \mathcal{M}_{\ell_2}(\mathcal{H}) \leq \frac{\mathcal{E}_{\ell_{\infty,-}}(h) - \mathcal{E}_{\ell_{\infty,-}}^*(\mathcal{H}) + \mathcal{M}_{\ell_{\infty,-}}(\mathcal{H})}{2p_{\min}(\epsilon)}.
\]

Proof. By Theorem 3.4, we can write \(\forall h \in \mathcal{H}, x \in X,\)
\[
\Delta \mathcal{E}_{\ell_{\infty,-}}(h, x) = \mathbb{E}_{\mu} \left[\max \left\{ (h(x) - y)^2, \epsilon^2 \right\} \mid x \right] - \mathbb{E}_{\mu} \left[\max \left\{ (\mu(x) - y)^2, \epsilon^2 \right\} \mid x \right] = \mathbb{E}_{\mu} \left[\frac{g(h(x) - \mu(x)) + g(h(x) - y) + g(h(x) - \mu(x) - (\mu(x) - y)) - g(\mu(x) - y) \mid x}{2} \right]
\]
\([\text{distribution is symmetric with respect to } \mu(x)]\)
\[
= \mathbb{E}_{\mu} \left[\frac{F(h(x) - \mu(x), \mu(x) - y) \mid x}{2} \right] \geq 2 \mathbb{P}(\mu(x) - y \geq \epsilon \mid x) \mathbb{E}_{\mu} \left[F(h(x) - \mu(x), \mu(x) - y) \mid \mu(x) - y \geq \epsilon \right] \geq 2 \mathbb{P}(\mu(x) - y \geq \epsilon \mid x) (h(x) - \mu(x))^2 \geq 2 \mathbb{P}(\mu(x) - y \geq \epsilon \mid x) \Delta \mathcal{E}_{\ell_2}(h, x).
\]

By Theorems 3.1 or 3.2 with \(\alpha(h, x) = \frac{1}{2 \mathbb{P}(\mu(x) - y \geq \epsilon \mid x)}\), we have
\[
\mathcal{E}_{\ell_2}(r) - \mathcal{E}_{\ell_2}^*(\mathcal{R}) + \mathcal{M}_{\ell_2}(\mathcal{R}) \leq \frac{\mathcal{E}_{\ell_{\infty,-}}(r) - \mathcal{E}_{\ell_{\infty,-}}^*(\mathcal{R}) + \mathcal{M}_{\ell_{\infty,-}}(\mathcal{R})}{2p_{\min}(\epsilon)}.
\]
\[\square\]
Theorem 4.9. Assume that the distribution is symmetric, the conditional distribution is bounded by $B > 0$, and the hypothesis set \mathcal{H} is realizable and bounded by $B > 0$. Then, the squared ϵ-insensitive loss $\ell_{sq-\epsilon}$ is not \mathcal{H}-consistent.

Proof. Consider a distribution that concentrates on an input x. Choose $y, \mu(x), \epsilon \in \mathbb{R}$ such that $-B \leq y < \mu(x) \leq B$ and $\mu(x) - y < \epsilon$. Consider the conditional distribution as $\mathbb{P}(Y = y \mid x) = \frac{1}{2} = \mathbb{P}(Y = 2\mu(x) - y \mid x)$. Thus, the distribution is symmetric with respect to $y = \mu(x)$. For such a distribution, the best-in-class predictor for the squared loss is $h^*(x) = \mu(x)$. However, for the ϵ-insensitive loss, we have

$$
\ell_{sq-\epsilon}(h, x) = \mathbb{E}_y \max\{(h(x) - y)^2 - \epsilon^2, 0\} \mid x
$$

$$
= \frac{1}{2} \max\{(h(x) - y)^2 - \epsilon^2, 0\} + \frac{1}{2} \max\{(h(x) - 2\mu(x) + y)^2 - \epsilon^2, 0\}.
$$

Thus, plugging $\overline{h}: x \mapsto y + \epsilon$ and $h^*: x \mapsto \mu(x)$, we obtain that

$$
\ell_{sq-\epsilon}(\overline{h}, x) = \mathbb{E}_y \max\{(h(x) - y)^2 - \epsilon^2, 0\} \mid x
$$

$$
= \mathbb{E}_y \max\{0\} \mid x
$$

$$
= \frac{1}{2} \mathbb{E}_y (h(x) - y)^2 \mid x
$$

$$
= 0.
$$

Thus, $\ell_{sq-\epsilon}(\overline{h}, x) = \ell_{sq-\epsilon}(h^*, x)$, and both \overline{h} and h^* are the best-in-class predictors for the ϵ-insensitive loss. This implies that the ϵ-insensitive loss is not \mathcal{H}-consistent with respect to the squared loss. \hfill \square

B.4. \mathcal{H}-consistency of ℓ_2 with respect to ℓ_2

Here, we present negative results for the ϵ-insensitive loss ℓ_{ϵ} $(h, x, y) \mapsto \max\{|h(x) - y| - \epsilon, 0\}$ used in the SVM algorithm, by showing that even under the assumption $\inf_{x \in \mathcal{X}} \mathbb{P}(\mu(x) - y \geq \epsilon) > 0$ or $\inf_{x \in \mathcal{X}} \mathbb{P}(0 \leq \mu(x) - y \leq \epsilon) > 0$, it is not \mathcal{H}-consistent with respect to the squared loss. In the proof, we consider distributions that concentrate on an input x, leading to both $\overline{h}: x \mapsto y + \epsilon$ and $h^*: x \mapsto \mu(x)$ being the best-in-class predictors for the ϵ-insensitive loss.

Theorem 4.9. Assume that the distribution is symmetric and satisfies $\inf_{x \in \mathcal{X}} \mathbb{P}(\mu(x) - y \geq \epsilon) > 0$. Assume that the conditional distribution is bounded by $B > 0$, and the hypothesis set \mathcal{H} is realizable and bounded by $B > 0$. Then, the ϵ-insensitive loss ℓ_{ϵ} is not \mathcal{H}-consistent with respect to the squared loss.

Proof. Consider a distribution that concentrates on an input x. Choose $y, \mu(x), \epsilon \in \mathbb{R}$ such that $-B \leq y < \mu(x) \leq B$ and $\mu(x) - y > \epsilon$. Consider the conditional distribution as $\mathbb{P}(Y = y \mid x) = \frac{1}{2} = \mathbb{P}(Y = 2\mu(x) - y \mid x)$. Thus, the distribution is symmetric with respect to $y = \mu(x)$. For such a distribution, the best-in-class predictor for the squared loss is $h^*(x) = \mu(x)$. However, for the ϵ-insensitive loss, we have

$$
\ell_{\epsilon,	ext{insensitive}}(h, x) = \mathbb{E}_y \max\{|h(x) - y| - \epsilon, 0\} \mid x
$$

$$
= \frac{1}{2} \mathbb{E}_y (|h(x) - y| - \epsilon) \mid x
$$

$$
= \frac{1}{2} \mathbb{E}_y (h(x) - y - \epsilon) \mid x
$$

Thus, plugging $\overline{h}: x \mapsto y + \epsilon$ and $h^*: x \mapsto \mu(x)$, we obtain that

$$
\ell_{\epsilon,	ext{insensitive}}(\overline{h}, x) = \frac{1}{2} \mu(x) - y - \epsilon
$$

$$
= \mu(x) - y - \epsilon.
$$

$$
\ell_{\epsilon,	ext{insensitive}}(h^*, x) = \frac{1}{2} \mu(x) - y - \epsilon
$$

$$
= \mu(x) - y - \epsilon.
$$

Thus, $\ell_{\epsilon,	ext{insensitive}}(\overline{h}, x) = \ell_{\epsilon,	ext{insensitive}}(h^*, x)$, and both \overline{h} and h^* are the best-in-class predictors for the ϵ-insensitive loss. This implies that the ϵ-insensitive loss is not \mathcal{H}-consistent with respect to the squared loss. \hfill \square

23
Therefore, $\mathcal{E}_{\ell_{sq}}(\overline{h}, x) = \mathcal{E}_{\ell_{sq}}(h^*, x)$, and both \overline{h} and h^* are the best-in-class predictors for the ϵ-insensitive loss. This implies that the ϵ-insensitive loss is not \mathcal{H}-consistent with respect to the squared loss.

\[\blacksquare\]

Theorem 4.10. Assume that the distribution is symmetric and satisfies $\mathbb{P}_{\min}(\epsilon) = \inf_{x \in \mathcal{X}} \mathbb{P}(0 \leq \mu(x) - y \leq \epsilon \mid x) > 0$. Assume further that the conditional distribution is bounded by $B > 0$, and the hypothesis set \mathcal{H} is realizable and bounded by $B > 0$. Then, the ϵ-insensitive loss ℓ_ϵ is not \mathcal{H}-consistent with respect to the squared loss.

Proof. Consider a distribution that concentrates on an input x. Choose $y, \mu(x), \epsilon \in \mathbb{R}$ such that $-B \leq y \leq \mu(x) \leq B$ and $\mu(x) - y < \epsilon$. Consider the conditional distribution as $\mathbb{P}(Y = y \mid x) = \frac{1}{2} = \mathbb{P}(Y = 2\mu(x) - y \mid x)$. Thus, the distribution is symmetric with respect to $y = \mu(x)$. For such a distribution, the best-in-class predictor for the squared loss is $h^*(x) = \mu(x)$. However, for the ϵ-insensitive loss, we have

\[
\mathcal{E}_{\ell_{sq}}(h, x) = \mathbb{E}_y \left[\max \{|h(x) - y| - \epsilon, 0\} \mid x \right] = \frac{1}{2} \max\{|h(x) - y| - \epsilon, 0\} + \frac{1}{2} \max\{|h(x) - 2\mu(x) + y| - \epsilon, 0\}.
\]

Thus, plugging $\overline{h}: x \mapsto y + \epsilon$ and $h^*: x \mapsto \mu(x)$, we obtain that

\[
\mathcal{E}_{\ell_{sq}}(\overline{h}, x) = \mathcal{E}_{\ell_{sq}}(h^*, x) = 0.
\]

Therefore, $\mathcal{E}_{\ell_{sq}}(\overline{h}, x) = \mathcal{E}_{\ell_{sq}}(h^*, x)$, and both \overline{h} and h^* are the best-in-class predictors for the ϵ-insensitive loss. This implies that the ϵ-insensitive loss is not \mathcal{H}-consistent with respect to the squared loss.

\[\blacksquare\]

B.5. Tightness

Lemma B.4. Suppose that the distribution and the hypothesis set \mathcal{H} satisfy the condition of Theorem 4.1. Then, for any $t \in [0, \delta^2]$, there exist a distribution and a hypothesis $h \in \mathcal{H}$ such that $\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^t(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) = \max_{\alpha \in [0,\delta^2]} \left(\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^t(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) \right) = t$; For any $t \in [0, 4B^2]$, there exist a distribution and a hypothesis $h \in \mathcal{H}$ such that $\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^t(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) = \sup_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \left| h(x) - y \right| + \left| \mu(x) - y \right| \left(\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^t(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) \right) = t$.

Proof. Consider a distribution \mathcal{D} that concentrates on an input x. For the Huber loss, choose the distribution \mathcal{D} and $y, \mu(x), \delta \in \mathbb{R}$ such that $\mu(x) = y$ and $\delta = B$. Let h be a hypothesis such that $|h(x) - y|^2 = t \leq \delta^2$. In this case, $\Delta\mathcal{E}_{\ell_2}(h, x) = \mathbb{E}_y \left[(h(x) - y)^2 - (\mu(x) - y)^2 \mid x \right] = (h(x) - y)^2$ and $\Delta\mathcal{E}_{\ell_2}(h, x) = 2\mathbb{E}_y \left[\frac{1}{2} (h(x) - y)^2 1_{h(x) - y \leq \delta} \right] = \frac{1}{2} (h(x) - y)^2$. Thus, $\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^t(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) = \Delta\mathcal{E}_{\ell_2}(h, x) = t^2$ and $\max_{\alpha \in [0,\delta^2]} \left(\mathcal{E}_{\ell_2}(h) - \mathcal{E}_{\ell_2}^t(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) \right) = 2\Delta\mathcal{E}_{\ell_2}(h, x) = t^2$.

For the ℓ_1 loss, choose the distribution \mathcal{D} and $y, \mu(x), \delta \in \mathbb{R}$ such that $\mu(x) = y$. Let h be a hypothesis such that $|h(x) - y|^2 = t \leq 4B^2$. In this case, $\Delta\mathcal{E}_{\ell_1}(h, x) = \mathbb{E}_y \left[(h(x) - y)^2 - (\mu(x) - y)^2 \mid x \right] = (h(x) - y)^2$ and $\Delta\mathcal{E}_{\ell_1}(h, x) = 2\mathbb{E}_y \left[\frac{1}{2} (h(x) - y)^2 1_{h(x) - y \leq \delta} \right] = \frac{1}{2} (h(x) - y)^2$. Thus, $\mathcal{E}_{\ell_1}(h) - \mathcal{E}_{\ell_1}^t(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) = \Delta\mathcal{E}_{\ell_1}(h, x) = t^2$ and $\sup_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \left| h(x) - y \right| + \left| \mu(x) - y \right| \left(\mathcal{E}_{\ell_1}(h) - \mathcal{E}_{\ell_1}^t(\mathcal{H}) + M_{\ell_2}(\mathcal{H}) \right) = |h(x) - y| \Delta\mathcal{E}_{\ell_1}(h, x) = t^2$.

\[\blacksquare\]

C. Proofs of generalization bound

Theorem 4.11. Assume that the distribution is symmetric, the conditional distribution and the hypothesis set \mathcal{H} are bounded by $B > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$ over the draw of an i.i.d. sample S of size m, the following
assumption that the distribution is symmetric, the conditional distribution is bounded by

This completes the proof.

Proof. By using the standard Rademacher complexity bounds (Mohri et al., 2018), for any \(\delta > 0 \), with probability at least 1 - \(\delta \), the following holds for all \(h \in \mathcal{H} \):

\[
\left| \mathcal{E}_L(h) - \mathcal{E}_{L,S}(h) \right| \leq 2\mathcal{R}_m^L(\mathcal{H}) + B_L \sqrt{\frac{\log(2/\delta)}{2m}}.
\]

Fix \(\epsilon > 0 \). By the definition of the infimum, there exists \(h^* \in \mathcal{H} \) such that \(\mathcal{E}_L(h^*) \leq \mathcal{E}_L(\mathcal{H}) + \epsilon \). By definition of \(\mathcal{H}_S \), we have

\[
\mathcal{E}_L(\mathcal{H}_S) - \mathcal{E}_L^*(\mathcal{H}) = \mathcal{E}_L(\mathcal{H}_S) - \mathcal{E}_{L,S}(\mathcal{H}_S) + \mathcal{E}_{L,S}(\mathcal{H}_S) - \mathcal{E}_L^*(\mathcal{H}) \leq \mathcal{E}_L(\mathcal{H}_S) - \mathcal{E}_{L,S}(\mathcal{H}_S) + \mathcal{E}_{L,S}(h^*) - \mathcal{E}_L^*(\mathcal{H}) \leq \mathcal{E}_L(\mathcal{H}_S) - \mathcal{E}_{L,S}(\mathcal{H}_S) + \mathcal{E}_{L,S}(h^*) - \mathcal{E}_L^*(h^*) + \epsilon \leq 2\left(2\mathcal{R}_m^L(\mathcal{H}) + B_L \sqrt{\frac{\log(2/\delta)}{2m}}\right) + \epsilon.
\]

Since the inequality holds for all \(\epsilon > 0 \), it implies:

\[
\mathcal{E}_L(\mathcal{H}_S) - \mathcal{E}_L^*(\mathcal{H}) \leq 4\mathcal{R}_m^L(\mathcal{H}) + 2B_L \sqrt{\frac{\log(2/\delta)}{2m}}.
\]

Plugging in this inequality in the bound of Theorems 4.1, 4.4, 4.6 completes the proof.

D. Proofs of adversarial regression

D.1. Proof of Theorem 5.1

Theorem 5.1. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0 \), and the hypothesis set \(\mathcal{H} \) is realizable and bounded by \(B > 0 \). Assume that \(p_{\min}(\delta) = \inf_{x \in \mathbb{X}} \mathbb{P}(0 \leq \mu(x) - y \leq \delta \mid x) \) is positive. Then, for any \(\nu \geq 3B \) and all \(h \in \mathcal{H} \), the following bound holds:

\[
\mathcal{E}_{\mathcal{E}_L}(h) - \mathcal{E}_L^*(\mathcal{H}) \leq \max\left\{ \frac{2B}{\delta}, 2 \right\} \left(\mathcal{E}_{\mathcal{E}_L}(h) - \mathcal{E}_{L,S}(\mathcal{H}) \right) + \nu \sup_{x' \mid |x' - x| \leq \gamma} |h(x') - h(x)|
\]

Proof. By (1), we have

\[
\mathcal{E}_{\mathcal{E}_L}(h) - \mathcal{E}_L^*(\mathcal{H}) \leq \mathcal{E}_{\mathcal{E}_L}(h) - \mathcal{E}_{L,S}(\mathcal{H}) + \nu \sup_{x' \mid |x' - x| \leq \gamma} |h(x') - h(x)| \leq \max\left\{ \frac{2B}{\delta}, 2 \right\} \left(\mathcal{E}_{\mathcal{E}_L}(h) - \mathcal{E}_{L,S}(\mathcal{H}) \right) + \nu \sup_{x' \mid |x' - x| \leq \gamma} |h(x') - h(x)|. \quad \text{(Corollary 4.2)}
\]

This completes the proof.

D.2. Proof of Theorem 5.2

Theorem 5.2. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0 \), and the hypothesis set \(\mathcal{H} \) is realizable and bounded by \(B > 0 \). Then, for any \(\nu \geq 3B \) and all \(h \in \mathcal{H} \), the following bound holds:

\[
\mathcal{E}_{\mathcal{E}_L}(h) - \mathcal{E}_L^*(\mathcal{H}) \leq \Gamma \left(\mathcal{E}_{\mathcal{E}_L}(h) - \mathcal{E}_{L,S}(\mathcal{H}) \right) + \nu \sup_{x' \mid |x' - x| \leq \gamma} |h(x') - h(x)|,
\]

where \(\Gamma(t) = \frac{2^{3/4}B}{(8B)^{p-2}(p-1)^{1/4}} t \) for \(p \in (1, 2) \) and \(4B \); if \(p = 1 \).
Proof. By (1), we have

\[E_{\ell_2}(h) - E_{\ell_2}^*(H) \leq E_{\ell_2}(h) - E_{\ell_2}^*(\mathcal{H}) + \nu \sup_{x':|x'-x| \leq \gamma} |h(x') - h(x)| \]

\[\leq \Gamma(E_{\ell_2}(h) - E_{\ell_2}^*(\mathcal{H})) + \nu \sup_{x':|x'-x| \leq \gamma} |h(x') - h(x)|. \]

(Corollary 4.5)

where \(\Gamma(t) = \begin{cases} \frac{t^2}{(8B)^{p/2}(p-1)} t > 2 \\ \frac{1}{4B} \end{cases} \) for \(p \geq 1 \). This completes the proof. \(\square \)

D.3. Proof of Theorem 5.3

Theorem 5.3. Assume that the distribution is symmetric, the conditional distribution is bounded by \(B > 0 \), and the hypothesis set \(\mathcal{H} \) is realizable and bounded by \(B > 0 \). Assume that \(p_{\min}(\epsilon) = \inf_{x \in \mathcal{X}} \mathbb{P}(\mu(x) - y \geq \epsilon | x) \) is positive. Then, for any \(\nu \geq 3B \) and all \(h \in \mathcal{H} \), the following bound holds:

\[E_{\ell_2}(h) - E_{\ell_2}^*(\mathcal{H}) \leq \frac{E_{\ell_2}(h) - E_{\ell_2}^*(\mathcal{H})}{2p_{\min}(\epsilon)} + \nu \sup_{x':|x'-x| \leq \gamma} |h(x') - h(x)|. \]

Proof. By (1), we have

\[E_{\ell_2}(h) - E_{\ell_2}^*(\mathcal{H}) \leq E_{\ell_2}(h) - E_{\ell_2}^*(\mathcal{H}) + \nu \sup_{x':|x'-x| \leq \gamma} |h(x') - h(x)| \]

\[\leq \frac{E_{\ell_2}(h) - E_{\ell_2}^*(\mathcal{H})}{2p_{\min}(\epsilon)} + \nu \sup_{x':|x'-x| \leq \gamma} |h(x') - h(x)|. \]

(Corollary 4.7)

This completes the proof. \(\square \)