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Fig. 1. Performance comparison in Havana test scene. The first two images show the lighting results obtained from recovered light probe data, which is
compressed using different methods. To facilitate a clearer comparison, textures are removed to highlight the shading results. We use bits per probe (bpp)
and compression ratio to measure different methods. The third image shows the render result with the original probe data. The last image presents the
complete rendered image from this viewpoint. Compared to block-wise PCA (BPCA) [Nishino et al. 2005], our method, Gaussian Probe Compression (GPC),
demonstrates significant advantages in both compression ratio and image quality. Notably, our approach effectively restores the color bleeding effects present

in the scene.

Precomputed global illumination (GI) techniques, such as light probes, partic-
ularly focus on capturing indirect illumination and have gained widespread
adoption. However, as the scale of the scenes continues to expand, the de-
mand for storage space and runtime memory for light probes also increases
substantially. To address this issue, we propose a novel Gaussian fitting
compression technique specifically designed for light field probes, which
enables the use of denser samples to describe illumination in complex scenes.
The core idea of our method is utilizing low-bit adaptive Gaussian functions
to store the latent representation of light probes, enabling parallel and high-
speed decompression on the GPU. Additionally, we implement a custom
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gradient propagation process to replace conventional inference frameworks,
like PyTorch, ensuring an exceptional compression speed.

At the same time, by constructing a cascaded light field texture in real-
time, we avoid the need for baking and storing a large number of redundant
light field probes arranged in the form of 3D textures. This approach allows
us to achieve further compression of the memory while maintaining high
visual quality and rendering speed. Compared to traditional methods based
on Principal Component Analysis (PCA), our approach consistently yields
superb results across various test scenarios, achieving compression ratios of
up to 1:50.
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1 Introduction

In recent years, advances in real-time rendering technology have
significantly narrowed the gap between video games and film pro-
ductions. New technologies such as Lumen, Nanite [Tatarchuk et al.
2022], real-time path tracing [Ouyang et al. 2021; Zhang” et al. 2024],
and Al denoising [Balint et al. 2023; Choi et al. 2024] have produced
stunning visual effects. However, they require robust hardware sup-
port. In devices with limited computational power, achieving ideal
global illumination (GI) effects requires reliance on a series of pre-
computed techniques to bake scene lighting in advance, such as
lightmaps and light probes [McGuire et al. 2017]. As scenes become
increasingly expansive, the corresponding precomputed data also
grows, placing greater demands on device storage and memory.

While there has been considerable research on texture compres-
sion, there are relatively few methods addressing the compression
of light probes, which represent the distribution of light fields in
3D space. The challenge lies in the irregular arrangement of probes,
which are often scattered only on the surface of the scene and do
not necessarily conform to the arrangement of 3D textures, making
it difficult to apply conventional texture compression techniques.

To address this issue, we propose an adaptive compression method
based on Gaussian fitting to compress high-dimensional signals in
the space. This approach utilizes freely distributed Gaussian func-
tions to fit the probe information within the scene. The parameters
of the Gaussian functions can be updated using gradient descent,
allowing for the automatic identification of the most suitable ar-
rangement for the current scene. For a given probe to be compressed,
we compute the weighted sum of all Gaussian functions influencing
that probe as a predicted value for its latent feature, which is then
decoded by a lightweight multi-layer perceptron (MLP) to obtain
the decompressed high-dimensional lighting data for the probe. The
entire optimization process is end-to-end, allowing us to store only
the network model and the sparse, quantized Gaussian parame-
ters, rather than the high-dimensional lighting information for each
probe, thereby significantly reducing storage space.

Furthermore, to accelerate the entire compression process, we im-
plement a custom Gaussian function inference and backpropagation
process using CUDA, achieving the desired compression results in
a short time. This method takes into account the spatial locality of
each Gaussian function and uses only adjacent Gaussian functions
for forward inference on each probe. The strategy also reduces the
gradient computation during the backward process. Compared to
general inference frameworks like PyTorch, our implementation
significantly speeds up the overall compression workflow.

In addition to reducing the storage space required for light probes,
we also focus on minimizing their runtime memory usage. To per-
form per-pixel shading using precomputed light probes, it is typi-
cally necessary to construct a 3D texture filled with light information
for real-time interpolation, such as the volumetric lightmap (VLM)
in Unreal Engine [Epic Games [n. d.]] or the adaptive probe vol-
umes (APV) [Unity Technologies [n. d.]] in Unity Engine. However,
these approaches involve placing dense 3D textures in space, treat-
ing each texel as a light probe. The dense probe distribution not
only increases the precomputation cost but also consumes substan-
tial memory. To address this issue, we propose cascaded lighting
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volume (CLV), a method that is able to interpolate relatively sparse
probe data into 3D textures and only compute detailed volumetric
lightmap surrounding the current viewport. Our experiments show
that CLV achieves a balance between shading quality and memory
usage. To sum up, our main contributions are as follows:

e A novel approach for compressing precomputed light field
probes that exploits spatial relevance through Gaussian func-
tions and yields superb performance in both compression and
restoration.

o An efficient implementation of our optimization-based compres-
sion pipeline, enabling fast convergence in large-scale scenes.

o A novel probe interpolation strategy that achieves a balance
between rendering quality and runtime memory consumption.

2 Related Work
2.1 Probe Based Global Illlumination

Light probe is a crucial method for GI and can be broadly categorized
into two types: precomputed light probes and real-time updated
light probes. Light field probe [McGuire et al. 2017] computes the
shading of glossy and specular materials by storing precomputed
radiance, normals, and distance maps at each probe, effectively
serving as an improvement over irradiance caching [Kfivanek et al.
2007]. Subsequent works [Wang et al. 2019] further optimize the
placement and tracing methods for these probes.

Another category of light field probes employs spherical harmonic
(SH) functions instead of texture maps to represent the light field
information for each probe and is our main compression target.
This method shares similarity with the irradiance volume [Greger
et al. 1998] and is primarily based on the Precomputed Radiance
Transfer (PRT) [Sloan et al. 2023] framework, in which the probe
represents the light field by SH coefficients and is primarily used for
shading diffuse materials. During runtime, each pixel approximates
its surface light field by interpolating information from surrounding
probes. This method incurs minimal storage and computational
overhead, making it widely adopted in mobile devices. Various probe
placement techniques such as tetrahedral tessellation [Cupisz 2012],
surface tiling, and 3D grid can be used to fit the scene geometry.
Our compression scheme can adaptively adjust the distribution
of Gaussian functions according to the probe distribution, thus
imposing no restrictions on the probe placement methods.

Real-time light probes primarily rely on hardware-accelerated
ray tracing to gather light field information, as seen in techniques
like Dynamic Diffuse Global Illumination (DDGI) [Majercik et al.
2019]. This approach supports dynamic lighting, with each probe
storing illumination information in an octahedral mapping manner
during runtime, while depth information is retained to mitigate light
leaking issues. However, this method has substantial hardware re-
quirements, making it challenging to implement broadly. In contrast
to previous methods, the screen space probe in Lumen [Tatarchuk
et al. 2022] attaches probes to the surfaces of objects correspond-
ing to screen space pixels and collects dynamic lighting for these
probes in real-time, thereby reducing the light leaking phenomena
associated with traditional probe schemes.



2.2 Light Field Compression

Our compression target is the light field SH coefficients associ-
ated with each probe, which can be abstracted as high-dimensional
signals in the spatial domain. To achieve this target, a series of
dimensionality reduction methods utilizing Principal Component
Analysis [Bro and Smilde 2014] (PCA) have been proposed. The sim-
plest global PCA method is insufficient for handling complex scenes
with low inter-region correlations. Blockwise PCA (BPCA) [Nishino
et al. 2005] attempts to partition the points to be compressed into
clusters and perform local PCA. Cluster PCA (CPCA) [Sloan et al.
2003] first segments the signals into clusters using a modified K-
Means [Lloyd 1982] algorithm, followed by PCA within each cluster.
While these methods achieve more accurate results locally due to the
partition strategy, they suffer from discontinuities between clusters.
Overlapping clusters in WBPCA [Nishino et al. 2005] can alleviate
this issue, but do not completely resolve it. Moving Basis Decompo-
sition (MBD) [Silvennoinen and Sloan 2021] addresses this problem
by decomposing the signal into sparse high-dimensional vectors
and dense low-dimensional coefficient grids, which can be viewed
as a smoother variant of BPCA. However, the compression rate is
not particularly high, and the grid structure employed is challenging
to adapt for probes with non-fixed placements.

While our work specifically targets compressed radiance repre-
sentation for real-time rendering, prior research on radiance caching
has explored alternative approaches to efficient radiance encoding.
Classical methods such as Photon Mapping [Jensen 1996] directly
store incident radiance by caching photon hits on surfaces, enabling
efficient Monte Carlo integration of the rendering equation. More
recent data-driven techniques further optimize this paradigm: Radi-
ance Regression Functions [Ren et al. 2013] employ neural networks
to compactly encode precomputed illumination, leveraging spa-
tial partitioning (e.g., kd-trees [Bentley 1975]) to balance accuracy
and computational cost. Neural Radiance Fields [Mildenhall et al.
2021] employs MLP to model the radiance and enables novel view
synthesis for both synthetic and real-world scenes, while Neural
Radiance Caching (NRC) [Miiller et al. 2021] combines real-time neu-
ral approximation with physical light transport to handle complex
multi-bounce indirect lighting.

Although these methods primarily address challenges in real-
time/offline rendering or novel-view synthesis, their underlying
representations (e.g., neural embeddings, spatial hierarchies) share
theoretical connections with radiance compression. Crucially, our
approach diverges by introducing a hybrid Gaussian-neural rep-
resentation that explicitly optimizes for compression ratio and de-
coding speed and exploiting inter-probe correlations through local
Gaussian function, which is a direction underexplored in caching-
focused works.

3 Method
3.1 Compression Framework

Our compression objective focuses on the light field probe. Depend-
ing on the GI method employed, the data associated with the probes
can take various forms. In the context of our study, we compute the
projection value L of the indirect lighting onto a specific SH basis
function at each probe using Eq. (1), which serves as the coefficient
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for that basis function. The probe data consists of n SH coefficients
(depending on the order of the SH used) and form a vector L.

Li= / Lindirect (8)Y(s)ds, i=1,2,...,n, (1)

where L;,girect Tepresents the sampled value of incident indirect
radiance at the current position in the direction s, while Y’ denotes
the basis function value of the i-th SH basis function. Detailed
explanation of our rendering method can be found in appendix.

Regardless of the GI method employed, we can abstract the light
probe into a set of discrete data pairs (x;, y;). Here, x; € R3 repre-
sents the position of the probe i, while y; € RP denotes the corre-
sponding probe information, D denotes the dimension of light probe
information (for instance, the number of SH coeflicients, typically
3, 12, or 27). The baking of the probe can be viewed as a function
f:R3 = RP, such that y; = f(x;). Consequently, our research ob-
jective can be reformulated as approximating f(x) with a function
f’ (x) that utilizes fewer parameters compared to the original data.
The goal is to minimize the error |y — f'(x)||,y = {yi},x = {xi},
thereby achieving data compression.

To solve this issue, we propose the use of a set of Gaussian func-
tions to fit the latent feature distribution of the probes. The latent
feature is decoded through a lightweight neural network to obtain
the SH vector for the probe. Our method leverages GPU to achieve
high-speed compression and decompression, allowing for adaptive
adjustment of the Gaussians based on the probe distribution. This
approach not only achieves a high compression rate but also mini-
mizes information loss.

3.2 Gradient Descent Gaussian Fitting

The framework of our compression pipeline is shown in Figure 2.
The core of our method involves using a specified number of 3D
Gaussian functions to fit the latent feature of probe data that is
freely distributed in 3D space. Each Gaussian function carries a
D-dim latent vector for the following decoding.

For optimization convenience, we adopt the same definition as
the 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] technique to
represent the Gaussian functions. A Gaussian function G centered at
1 € R3 is defined as follows, with its covariance matrix decomposed
into two matrices: scale S and rotation R.

G0 = exp(— (x = T3 (x = ) @)

> = RSSTRT 3)

Concretely, for Gaussian function G j» we store its 3D scale vector
sj € R3, quaternion 4D rotation vector g j € R%, 3D position p j € R3
and latent code F; € RP. Assuming we use K Gaussian functions
to compress the probe data, for any given position p € R3, we
can identify all the Gaussians that cover this point and sum their
contributions to obtain the latent vector F(p):
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Fig. 2. Overview of our compression pipeline. Given the light probes scattered throughout the scene, we first employ a clustering algorithm to initialize
Gaussian parameters. For a target probe, we identify all Gaussians that cover it and compute a latent feature for this probe through a weighted sum. This
latent feature, along with the probe’s position, is input into a lightweight MLP to predict the SH vector. We jointly update both the Gaussian and the network
during this process. Once the training converges, we quantize the Gaussian parameters to fixed low bit integers and perform fine-tuning on the model. Finally,
we freeze the Gaussian parameters and continue training the decoder network to adapt to the quantized discrete values.

F(p) = (F*(p).F'(p).....F" "' (p)) ()
) pER(GJ) )
Fi(p) = Z FiGj(p). i=0,1,....,n~1 (5)
7
R(G)) = {p| Ip - #jl < 3max(s],s},s7)} (6)

Here, F(p) represents the estimated value of the i-th channel at
position p using the Gaussian functions. R(G;) denotes the influence
range of Gaussian j. We estimate this range by taking the bounding
sphere formed by the maximum scale, which encompasses the region
with a confidence level of 99%. While this representation is not
optimal and may include redundant cubes, the training and inference
times are acceptable in our experiments. After obtaining the latent
feature F(p) of probe p, we concatenate F(p) with position p and
use a two-layer MLP @ with parameter 0 to decode the combination
vector and get the final estimated SH vector L (p):

L(p) = ®([F(p),p]; 0) )

Suppose the probe number is N, the ground truth at position
Pk is L(px), our objective is to fit the data of all probes using K
Gaussian kernels while minimizing the mean squared error of the
reconstruction. The loss .L(G, 6) can be calculated as follows:

N

L(G,0) = %Z IL(px) = L(pr)II%, 8)
k=1

G ={Go,...,Gm-1},Gj = {.sj,q;, Fj} )

This formulation allows us to quantify the discrepancy between
the actual SH coefficients and those predicted by our compression
model. The optimization target can be stated as follows:
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arg Iél’lél.L(G, 0) (10)

During the initialization, we first perform K-Means [Lloyd 1982]
clustering on the positions of the input probes to obtain K clus-
ter centers, which serve as the initial positions for the Gaussian
functions. The scale of each function is initialized based on the
minimum distance between the cluster centers, while the initial
latent feature for each Gaussian function is set as a random vector.
Gradient descent is applied afterwards to update the parameters of
each Gaussian and MLP network until convergence.

Forward pass. During the forward phase, we utilize K Gaussians
to compute the latent feature for each probe by Eq. (5). To accelerate
this process, we implement custom CUDA kernel that allows for the
parallel computation of the function values at each target location.
Inspired by 3DGS [Kerbl et al. 2023], we partition the scene space
into uniform cubes. For each Gaussian function, as illustrated in
Figure 3, we invoke a thread to compute its maximum radius and
record the cubes occluded by the corresponding sphere of influence.
For each intersection between the sphere and a cube, we record
the cube ID as an identifier for that intersection. By aggregating all
intersection IDs and utilizing GPU sorting, we can determine the
Gaussians associated with each cube. Finally, we perform parallel
computations for all probes. For each probe, we first identify the
cube it resides in and use the Gaussians that associate with this cube
to calculate the predicted latent feature. This approach significantly
enhances the efficiency of the inference process, allowing for rapid
evaluations across the entire set of probes.

Backward pass. After obtaining the predicted values for the probes,
the loss between the current predictions and the ground truth is
used to calculate the gradients of the Gaussians and the decoding
network. Since the forward phase utilized custom CUDA functions
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Fig. 3. Our implementation of the forward pass. Green cubes indicate the
area influenced by Gaussian G;. We use the scale parameter to determine
the radius of G; by Eq. (6). For probe p; in green area, its latent feature
involves G; while p; doesn’t.

for parallel computation, we cannot completely depend on the auto-
matic differentiation mechanism of Pytorch for backpropagation;
thus, we derive the gradients manually.

The backward process corresponds to the forward process. We
begin with the latent features outputted for each probe during the
forward pass and identify all Gaussians that influence each probe.
Then the gradients of the features are propagated back to each cor-
responding attribute of the Gaussians, which include the center
position p, scale s, rotation ¢, and the latent code F. The gradient
for a specific attribute of a Gaussian is computed as the sum of
the gradients from all probes that are influenced by this Gaussian.
Similar to the forward phase, we implement the parallelized back-
propagation using custom CUDA kernel. This approach allows us
to efficiently compute the gradients for all Gaussian parameters.

Starting from probe py, we can derive the gradient contribution
of this single probe to the attributes of function G;. Assuming that
#ik) is known, which can be obtained directly from the inference
framework, the gradient g—é is given by:

€R(G; .
ar "N oL oPm )
i i i
aFj o IF (pg) 8Fj
kaR(Gj)
oL
= > ——Gj(p) (12)
7 J
o OF(pr)
Moreover, one can compute the gradients 37‘6, %’ %, using

a similar approach. The concrete derivation of these gradients is
included in the appendix.

3.3 Adaptive Low-bit Quantization

Upon convergence of the above optimization, we further compress
the model by mapping the scale s, rotation g, and latent feature F
of the Gaussian model to b-bit integers based on their respective
ranges. Taking the scale as an example, for the i-th dimension of
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the scale of Gaussian G;, denoted as s; we extract the parame-
ter range (s}, sfm.n

quantization:

) for this channel and perform the following

st —st .
sh= | L 2b - 1) (13)
1 1
smax smln
. skl .
ol _ i Tmax min i
§;=5; —217— N + Spain (14)

After quantization, each Gaussian only needs to store b-bit integer
§; During inference, these integers are used to compute the restored

parameters §; Naturally, this quantization process lead to a loss in
compression accuracy. To mitigate this loss, as illustrated in Figure 2,
we retain the original Gaussian parameters and fine-tune the entire
compression model using the quantized parameters for 10% more
steps. Straight-through estimator [Yin et al. 2019] is used to ensure
that gradients can flow back to the underlying continuous Gaussian
parameters. When these parameters exceed the quantization range,
we apply truncation to prevent any parameters from drifting outside
the quantized range.

Following this stage, we completely freeze the quantized Gauss-
ian parameters, discard the original floating-point parameters, and
continue training the decoding network for 10% more steps to adapt
it to the discrete Gaussian parameters. Finally, we save the quan-
tized low-bit Gaussian parameters along with the network model,
resulting in a compressed representation of the original probe data.

3.4 Cascaded Lighting Volume

o o thread j
03 |13 |23 |63

(3,2) (0,2) (1,2) (2,2) (3,2)

3,1 JO.1) A)A(z, » ey I’u... thread i
AN v

(3,0) (0,0) (1,0) (2,0) (3,0) ]

. P2

(3,3) (0,3) @) 28

shared scroll index parallel octree search

Fig. 4. CLV Framework. In each frame, we compare the current viewpoint’s
position and direction with last frame to determine if any changes have oc-
curred. Parallel probe search for the corresponding new blocks is performed
afterwards. We compute the weighted sum of the probe SH vectors for the
center of the block. The new blocks (blue) and the blocks that are about to
be discarded (orange) share the same scroll coordinates, thereby minimizing
texture updates.

While our method primarily achieves storage space reduction.
Additional methods need to be explored to utilize the light field
probe for runtime shading. Current industry solutions like VLM in
Unreal and APV in Unity are to arrange the probes in 3D textures
and after baking, each pixel is able to sample this texture and get the
lighting SH vector by trilinear interpolation. Probes are placed with
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uniform density in both open areas and complex regions, leading to
data redundancy and increased memory usage.

To address this issue, we propose Cascaded Lighting Vol-
ume (CLV), which allows for the placement of sparse probes based
on the scene geometry while supporting per-pixel interpolation
at the same time. We maintain an octree structure to store probe
data during runtime, along with a multi-level voxel grid (cascaded
volumes) centered around the current viewpoint, where each vol-
ume corresponds to a different size 3D texture representing indirect
lighting information, similar to the Light Propagation Volumes [Ka-
planyan and Dachsbacher 2010]. This method identifies the blocks
in the grid that need to be updated for the current frame. For each
of these blocks, we search for the probes located within them and
compute the lighting at the center of the block. The lighting SH vec-
tor is then updated in the 3D texture on the GPU, enabling per-pixel
interpolation for shading the objects.

Specifically, each pixel selects the corresponding volume for in-
direct lighting interpolation based on its distance to the viewpoint.
The closer a pixel is to the viewpoint, the smaller the texture used,
resulting in more detailed lighting effects. As the viewpoint moves
within the scene, we need to dynamically update the data for these
volumes based on the current viewpoint position. For each frame,
we first compare the viewpoint position of the current frame with
that of the previous frame to determine whether an update to the vol-
ume is necessary. If an update is required, we retrieve all blocks that
need updating and, for each block, quickly obtain all probes located
within that block from the probe octree, along with their corre-
sponding indirect lighting SH vectors. Using the same methodology
as training, we first identify the Gaussian functions influencing each
probe, then compute per-probe feature values, and finally feed these
into the network for inference to reconstruct the decompressed SH
coefficients. We then calculate the contribution of each probe to its
corresponding block, thereby obtaining the lighting information for
all blocks that need updating.

To avoid an excessive number of blocks needing updates in a
single frame, we adopt a frame-splitting mechanism that limits the
number of blocks that can be updated per frame. For each frame,
only the first 64 blocks requiring updates are processed, while the
remaining blocks are queued for the next frame. This approach
distributes the computational load evenly across frames to reduce
per-frame overhead. Additionally, we partition the target blocks
using a multithreading approach, allowing for parallel processing
of all blocks that require updates.

Once we have the blocks required for the current frame, we need
to update the corresponding volumes with these blocks. We use a
scroll manner to index each block within the volume, as illustrated
in Figure 4 (for simplicity, we only use one level of volume). This
allows us to avoid the redundant block updating.

At the same time, the discarded blocks may also be reused. After
obtaining the indirect lighting information for each block, we store
the computed results in an LRU cache. As the viewer’s path in the
scene typically exhibits locality, caching blocks in key areas can
effectively reduce computational pressure. Finally, we organize the
volume indexed by the scroll coordinates into a fully usable ordinary
index for pixels through a single parallel computation in the GPU.
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4 Implementation

We utilize the PyTorch framework for the majority of the optimiza-
tion computations and write custom CUDA kernels, inspired by
the gsplat [Ye et al. 2024] and Gaussianlmage [Zhang et al. 2024]
project, to facilitate rapid inference of coefficients for a given probe
and the corresponding gradient backpropagation. To evaluate our
approach, we extract precomputed probe data from the open-source
Unreal Engine [Epic Games [n. d.]], compress it externally and as-
sess the compression ratio of our algorithm. After compression, we
re-import the data back into the engine and integrate CLV algo-
rithm to achieve runtime decompression. We directly utilize Unreal
Engine’s implementation of the octree and LRU Cache. The LRU
Cache identifies each block by its XYZ index and LOD level, while
the octree stores the positions of all probes to facilitate rapid identifi-
cation of probes within a block during decompression. For real-time
decompression, we implement parallel computation of Gaussian
functions and network inference via compute shaders. This pipeline
resembles our training process. Notably, we pack weight matrix as
4x4 matrix to optimize register utilization. All our experiments are
conducted on a platform equipped with Intel i7-13700 CPU, 64GB
of system memory, and NVIDIA RTX 4060 GPU.

5 Experiments

Our compression scheme allows for the adjustment of various in-
cluding the number of Gaussians, the quantization bits, the latent
feature dim, and the size of the decoding network. In all of our
experiments, the decoding network consists of two hidden layers,
each with a width of 64. The activation function is set to Sigmoid.
In our approach, the compression quality is primarily adjusted by
varying the proportion of Gaussian functions in the probe count.
For most experiments, this ratio is set to 0.05, with the latent feature
dimension fixed at 9 and the quantization bit depth configured as 10.
Our experiments indicate that this is generally sufficient to recon-
struct the ideal light field. Across all test scenes, we use a learning
rate of 0.01. For the Gaussian model, we employ the Adan [Xie et al.
2024] optimizer, while the decoder uses the Adam [Kingma and Ba
2017] optimizer. We train for 10,000 iterations followed by 2,000
iterations of quantization training.

With respect to CLV, we use 4 volumes with block size 2m, 4m,
8m and 32m. Each volume has 16 blocks. In all of our experiments,
CLV is used to exploit the light field probe data and render the test
image, no matter the probe is compressed or not.

We constructed several large-scale test environments for com-
pression experiments. This dataset includes common landscapes
such as cities, villages, islands, and factories, covering different
times of day from daylight to nighttime. In each scene, a fixed-size
area was selected, and uniformly distributed light field probes were
generated on the object surfaces in this area. All test scenes contain
approximately 15,000 probes each.

5.1 Compared Methods

We conducted qualitative and quantitative comparisons with
a series of traditional PCA-based methods, including global
PCA (GPCA), blockwise PCA (BPCA) [Nishino et al. 2005], win-
dowed blockwise PCA (WBPCA) [Nishino et al. 2005] and clustered



PCA (CPCA) [Sloan et al. 2003]. Global PCA directly extracts the
principal components from the high-dimensional data of all probes.
BPCA, on the other hand, employs fixed-size blocks to extract the
PCA basis. WBPCA builds upon BPCA by expanding the range used
for principal component calculation to include surrounding blocks,
thereby mitigating the discontinuities that can arise at block bound-
aries. CPCA first clusters the probes based on their positions, then
performs independent calculations within each cluster. Our method
demonstrates significant improvements in both the compression
ratio and decompression quality compared to previous approaches.

5.2 Quantitative Results

In our experiments, we randomly select multiple viewpoints and use
probe data compressed by various methods, integrating them with
our CLV algorithm for rendering. The rendered images are com-
pared with those rendered using the original probe data to calculate
PSNR and SSIM. Table 1 illustrates the significant advantages of our
method at different compression rates compared to other techniques.
We attribute these improvements to the application of Gaussian func-
tions to adaptively represent the latent field of the probe data and
the use of neural networks as universal approximators [Hornik et al.
1989]. We qualitatively demonstrate the compression accuracy of
our method in Figure 5. Compared to CPCA [Nishino et al. 2005], our
method exhibits no significant visible errors across various scenes.

Table 1. Average MSE, ABS, PSNR, SSIM values across the test scenes. The
comparison is divided into two groups by their compression ratio. "bpp"
indicates bits per probe. We employ 5% Gaussian functions under low com-
pression rates and 20% under high compression rates, while keeping all
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of several seconds. This results in our method being approximately
one order of magnitude slower than PCA-based approaches.

Table 2. The average compression time across all test scenarios, increasing
with the ratio of Gaussian functions.

ratio | GPC0.02 | GPC0.05 | GPC0.10 | GPC0.15 | GPC0.20

time | 48685 | 6460s | 8741s | 10827s | 125.56s

5.3.2  Decompression. The primary computational overhead of de-
compression lies in feature calculation for each probe and subse-
quent MLP inference. To measure the maximum per-frame overhead,
we deliberately disabled the LRU cache, ensuring all probe data re-
quired for block updates per frame were decompressed in real-time
using our method. The decompression speed primarily depends on
the number of Gaussian functions in the scene. As shown in Table 3,
the inference time per frame remains constrained within a low range.
Moreover, since the network’s computational load only relates to
the number of probes decompressed per frame, it maintains stable
performance across all compression ratios. We store both Gaussian
parameters and network weights in half-precision floating-point
format, and calculate their total memory consumption at various
compression ratios.

Table 3. Decompression performance in the OldTown scene. The decom-
pression performance of our model is similar across all test scenes for a
given Gaussian functions ratio.

other parameters unchanged. Process | GPC0.02 | GPC0.05 | GPC0.10 | GPC0.15 | GPC0.20
Gaussion Infer. 0.26 ms 0.44 ms 0.82 ms 1.16 ms 1.33 ms

Low (2~3%) High (6~7%) MLP Infer. 0.04 ms 0.04 ms 0.04 ms 0.04 ms 0.04 ms

| GRCA BPCA WBPCA CPCA Ours | PCA BPCA WBPCA CPCA  Ours Sum 0.30 ms 0.48 ms 0.86 ms 1.20 ms 1.37 ms
MSE (]) | 0.1228 0.0920  0.1031  0.0621 0.0133 | 0.0551 0.0394  0.0429  0.0291 0.0045 Memory ‘ 27.95KB ‘ 50.1KB ‘ 87.03KB ‘ 123.95KB ‘ 160.87KB

ABS(]) | 0.1552  0.1367  0.1467  0.1097 0.0649 | 0.1072 0.0928  0.0978  0.0748 0.0388
PSNR (1) | 35.17  37.00 35.92 39.11 4291 | 39.22  40.85 39.92 42,02 44.82
SSIM (1) | 0.9845 0.9872  0.9853  0.9901 0.9923 | 0.9894 0.9910  0.9902  0.9923 0.9929

bpp | 20.11 2236 23.26 29.75 21.01 5821 5534 61.50 62.63 52.97

Ratio(%) | 2.33 2.59 2.69 3.44 2.43 6.73 6.40 7.11 7.25 6.13

5.3 Performance

In this section, we discuss the compression performance and real-
time decompression performance of GPC.

5.3.1 Compression. The compression time includes both the ini-
tial training phase and subsequent quantization fine-tuning. We
implemented Gaussian function inference and backpropagation us-
ing custom CUDA kernels. As shown in the Table 2, the training
time increases with the ratio of Gaussian functions relative to the
probe count (i.e., the number of Gaussian functions). Additionally,
the expanding coverage area of Gaussian functions during training
leads to progressively slower inference speeds. Optimizing redun-
dancies in the forward pass (Figure 3), such as adopting more precise
methods for calculating Gaussian coverage areas, could potentially
enhance compression speed. For comparision, traditional PCA meth-
ods (GPCA, BPCA) complete compression within one second, CPCA
requires additional clustering steps, resulting in compression time

6 Discussion

In this section, we first discuss the limitations of the proposed com-
pression method and analyze possible future directions.

6.1 Limitations

6.1.1  Dynamic scenes. Our method inherits the inherent limita-
tions of precomputed light probe approaches. While light probes
primarily provide global illumination effects for dynamic objects
within scenes, as precomputed data they cannot provide real-time
respond to illumination changes caused by dynamic objects, thus
not supporting dynamic scene representation.

6.1.2  Training Speed. Our method requires compression times on
the order of minutes and is significantly slower than PCA-based
approaches that complete within seconds. With the majority of the
training time being spent on inference in PyTorch, integrating all
processes into CUDA, similar to NTC [Vaidyanathan et al. 2023],
could lead to more efficient training. In scenes lacking luminance
and chromatic variations, PCA is still a more preferable alternative
both for compression and decompression.
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6.2 Future Work

6.2.1 Time of Day. It is often necessary to restore the lighting
variations of a scene throughout the day, referred to as time of day
(TOD). An interesting direction for future research is whether we
can leverage neural networks to extract temporal redundancy from
TOD probe data, thereby achieving a broader range of compression.

6.2.2 Image Domain Optimization. While the accuracy of decom-
pressing probes can determine the final image quality, we also aim to
explore new optimization pathways, such as directly optimizing the
rendering results obtained from compressed probes. This approach
could minimize the impact of the compression process on the visual
output more directly and we leave this as a topic for future work.

6.2.3  Further Applications. Beyond its immediate application to
radiance compression, our proposed mixture of neural Gaussians
representation exhibits broader potential for general spatial signal
encoding tasks similar to hash grids from InstantNGP [Miiller et al.
2022] and triplanes from EG3D [Chan et al. 2022], which became
foundational building blocks for neural rendering and 3D content
generation. Our hybrid Gaussian-MLP framework could extend to
real-time neural rendering where compactness and decoding speed
are critical (e.g., replacing hash grids) or point cloud compression,
where existing methods struggle with non-uniform geometry and
high-dimensional attributes.

7 Conclusion

We propose a novel method specifically designed for compressing
light probe data. We employ neural networks to extract the latent
features of the probes and adaptively encode the spatial correlations
of the probes using Gaussian functions, significantly surpassing the
conventional PCA-based approaches. By leveraging custom CUDA
kernels for Gaussian function inference and updates, we achieve
rapid probe data compression and fast real-time decompression. This
substantially reduces both disk and memory usage for light probe
data. To address the storage and memory demands of conventional
3D light field textures, we propose cascaded lighting volumes which
eliminates the need for dense probe placement and further reduce
light probe memory consumption.

We hope our work will assist more performance-constrained
devices in rendering high-quality global illumination, and inspire
further exploration of neural representations for illumination.
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Lit Scene BPCA WBPCA CPCA Ours CLV Reference

Western Town

bpp(l), PSNR(T), SSIM(T) 31.74,32.06 dB, 0.9850 51.48,36.59 dB, 0.9908

>

26.76,41.75 dB, 0.9919 15.82,45.91 dB, 0.9935

bpp(l), PSNR(T), SSIM(T) | 20.54,41.84 dB, 0.9918 17.84,38.87 dB, 0.9886

26.40,40.68 dB, 0.9918 17.65,48.15 dB, 0.9947 Old Factory

Fig. 5. Qualitative comparison results from test scenes. We compare our method with BPCA [Nishino et al. 2005], WBPCA [Nishino et al. 2005], and
CPCA [Sloan et al. 2003] under low compression ratio. Lit Scene denotes the fully rendered reference scene, while other results are rendered without surface
textures to better visualize incident lighting.
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