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Figure 1: OmniCustom facilitates multi-modal driven video customization, allowing for the generation
of videos based on text, images, audio, and video inputs. It supports a wide range of applications,
such as virtual human advertisements, virtual try-ons, singing avatars, and video editing, significantly
enhancing the controllability of subject-centric video generation.

ABSTRACT

Customized video generation aims to produce videos featuring specific subjects
under flexible user-defined conditions, yet existing methods often struggle with
identity consistency and limited input modalities. In this paper, we propose Omni-
Custom, a multi-modal customized video generation model that emphasizes subject
consistency while supporting image, audio, video, and text conditions. Built upon
HunyuanVideo, OmniCustom introduces an identity-enhanced text-image condi-
tioning module based on LLaVA for improved multi-modal understanding, and an
image ID enhancement module that leverages temporal concatenation to reinforce
identity features. To enable flexible audio- and video-driven customization, we
further propose modality-specific injection modules. Our identity-disentangled
AudioNet injects temporally aligned audio features into video latents via spatial
cross-attention, enabling precise audio control. For video-driven generation, we
design an identity-disentangled video injection module that projects conditional
video into the latent space and efficiently aligns video features with latents for
seamless integration. Extensive experiments on single- and multi-subject scenar-
ios show that OmniCustom significantly outperforms state-of-the-art methods in
ID consistency, realism, and text-video alignment. We further demonstrate its
robustness on downstream tasks such as audio- and video-driven customized video
generation, highlighting the effectiveness of our multi-modal conditioning and
identity-preserving strategies for customized video generation.

1 INTRODUCTION

The field of video generation has undergone rapid advancement in recent years, driven by the
proliferation of both open-source Xu et al. (2025); Hu et al. (2024); Zhou et al. (2024b); Xue et al.
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(2025); Huang et al. (2024b) and commercial video-generation models Vidu (2025); Keling (2025);
Pika (2025); Hailuo (2025). These advancements have significant real-world implications, ranging
from content creation in the entertainment industry to applications in education, advertising, and
more. However, a critical limitation persists: the lack of precise controllability in current models.
Generating videos that adhere to users’ specific requirements is still challenging, which restricts their
potential applications in real-world scenarios where fine-grained customization is essential.

Customized video generation focuses on creating videos with specific subjects. Existing methods
like ConsisID (Yuan et al., 2024) and MovieGen (Polyak et al., 2025) generate videos for a single
human ID but cannot handle arbitrary objects. Other approaches, such as ConceptMaster (Huang
et al., 2025), Video Alchemist (Chen et al., 2025a), Phantom (Liu et al., 2025), and SkyReels-A2 (Fei
et al., 2025), extend to multi-subject generation but struggle with maintaining subject consistency
and video quality, and are limited by single-modality (image-driven) inputs. Recently, VACE (Jiang
et al., 2025), based on the Wan model (Wang et al., 2025), introduced a multi-modal-conditioned
framework, but its extensive training tasks affect ID consistency.

To address these limitations, we propose OmniCustom, a multi-modal video customization model
built upon HunyuanVideo Kong et al. (2024), which generates customized videos with high subject
consistency while supporting diverse multi-modal inputs, including image identities, audio conditions,
video backgrounds, and text prompts. We first introduce a novel identity-enhanced text-image
condition module that combines the multi-modal understanding capabilities of LLaVA with the
temporal modeling strengths of a pretrained video generation model. By establishing strong correla-
tions between text and image identities and reinforcing identity information during generation, this
module significantly improves subject consistency. Building on this foundation, OmniCustom further
supports both audio-driven and video-driven customized video generation. To enable audio and
video injection without affecting image-based conditioning, we design an identity-disentangled
AudioNet, which first aligns audio features with video latents along the temporal axis, and then
injects audio conditions frame by frame using spatial cross-attention, effectively incorporating audio
information. Additionally, we propose an identity-disentangled video injection module, which
projects the input video into the same space as the noisy video latents. Our module then employs
an efficient feature-alignment addition operation to enable video conditioning without introducing
extra computational overhead. Since the audio and video injection modules are isolated from the
image injection module, they avoid mutual interference, allowing OmniCustom to flexibly generate
high-quality, subject-consistent videos under diverse multi-modal conditions.

OmniCustom has been rigorously evaluated on single-subject and multi-subject consistency genera-
tion. We compare it with existing open-source and closed-source methods, conducting comprehensive
comparisons across key metrics such as ID consistency, generation quality, and video-text alignment.
The experimental results show that OmniCustom outperforms all existing methods in customized
video generation. In addition, we validate its robustness through extensive experiments on audio and
video-driven video customization, highlighting the superior performance of our method. Thanks to its
strong identity preservation and multi-modal control capabilities, OmniCustom shows great potential
for real-world applications such as virtual human advertising, virtual try-on, and fine-grained video
editing. These results demonstrate the effectiveness of our OmniCustom, providing a solid foundation
for future research in controllable subject-consistent video generation. The main contributions can be
summarized as four-fold:

• We propose OmniCustom, a novel multi-modal customized video generation model that
robustly maintains subject consistency. OmniCustom supports diverse conditioning inputs,
including image identities, audio, video backgrounds, and text prompts, enabling flexible
and subject-consistent video generation across various modalities.

• We design an identity-enhanced text-image condition module that integrates the multi-
modal understanding capabilities of LLaVA with the temporal modeling strengths of the
pretrained video generation model. By establishing strong correlations between text and
image identities and reinforcing identity information during generation, this module signifi-
cantly improves subject consistency.

• We propose identity-disentangled audio and video condition injection module to enable
both audio-driven and video-driven customized video generation. Specifically, an AudioNet
employs spatial cross-attention for efficient audio injection, while a video alignment-based
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injection mechanism is utilized for effective video conditioning. Together, these approaches
achieve flexible and effective multi-modal video customization.

• Extensive experiments show that OmniCustom achieves state-of-the-art customized video
generation ability, and remains robust and versatile in audio- and video-driven customization
for real-world applications such as virtual human advertising and video editing.

2 RELATED WORK

2.1 VIDEO GENERATION MODEL

Recent advancements in video generation have been significantly driven by diffusion models, which
have successfully evolved from static image synthesis (Rombach et al., 2022; Li et al., 2024c; Labs,
2024; Hu et al.) to dynamic spatio-temporal modeling (Hong et al., 2022; Zhang et al., 2023b). The
field has witnessed substantial progress with large-scale frameworks (Liu et al., 2024; Yang et al.,
2024; Kong et al., 2024; Wang et al., 2025; Zhou et al., 2024a), which demonstrate unprecedented
high-quality content creation and a diverse array of generated results through extensive training
on video-text pairs. However, existing methods primarily concentrate on either text-guided video
generation (Lin et al., 2025) or video generation based on a single reference image (Gao et al., 2023;
Xu et al., 2025). These approaches often struggle to provide fine-grained control over the generated
content and precise concept-driven editing. This limitation continues to exist despite advancements
in multi-condition control. While pioneering work such as VACE (Jiang et al., 2025) enables multi-
condition capabilities through multi-modal modeling, it fails to maintain identity consistency due to
the excessive number of training tasks. In this study, we meticulously design a multi-condition-driven
model that incorporates various modalities, including images, videos, audios, and texts, while also
emphasizing subject-consistency generation.

2.2 VIDEO CUSTOMIZATION

Video customization aims at generating videos containing the given subjects. Early methods (Chefer
et al., 2024; Wu et al., 2025; Wang et al., 2024b; Chen et al., 2024) follow image customization
methods like DreamBooth (Ruiz et al., 2023), where they embed the subject image into the textual
space, and fine-tune the pretrained text-to-video model to generate the corresponding subjects.
However, these methods need to train one model for one subject image, which pose a challenge
in real-time and large-scale applications. Therefore, recent works aim at training an end-to-end
customization model. IDanimator, ConsisID, and Moviegen first propose to generate ID-consistent
videos for humans. VideoBooth (Jiang et al., 2024c) further extends to generate subjects for arbitrary
subjects. To enable multi-subject customization, some works, including ConceptMaster (Huang
et al., 2025), Video Alchemist (Chen et al., 2025a), Phantom (Liu et al., 2025), SkyReels-A2 (Fei
et al., 2025), VACE (Jiang et al., 2025), and PolyVivid Hu et al. (2025) take several subject images
as input, and then generate videos including the given multiple subjects. However, the complex
interactions among multiple subjects pose significant challenges to maintaining subject consistency.
Additionally, these methods focus solely on generating videos from single-modal inputs, specifically
subject images. In contrast, our approach enables customized video generation with multi-modal
conditional inputs (text, image, audio, and video) while maintaining a high degree of consistency,
resulting in superior performance and broader applicability.

3 VIDEO CUSTOMIZATION

OmniCustom is a multi-modal customized generation model centered on subject consistency. It
enables the generation of subject-consistent videos conditioned on text, images, audio, and video
inputs, as shown in Fig. 2. Specifically, OmniCustom introduces an identity-enhanced text-image
condition module which employ LLaVA to facilitate interaction between images and text, allowing
identity information from images to be effectively integrated into textual descriptions. Additionally,
an identity enhancement module is proposed, which concatenates image information along the
temporal axis and leverages the video model’s efficient temporal modeling ability to enhance subject
identity throughout the video. To support conditional injection of audio and video, OmniCustom
designs distinct injection mechanisms for each modality, which are effectively disentangled with the
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Figure 2: The main framework of OmniCustom, where we can generate identity-consistent videos
conditioned on text, image, audio, and video.

image-level identity condition module. OmniCustom ultimately achieves decoupled control over
image, audio, and video conditions, demonstrating great potential in subject-centric multi-modal
video customization.

3.1 MULTI-MODAL DATA CONSTRUCTION

To enable multi-modal customized video generation, we first construct a multi-modal video cus-
tomization dataset. We collect video data from both open-source datasets (Wang et al., 2024a) and our
private dataset. We then filter out videos containing subtitles, watermarks, and logos. Subsequently,
we use the koala-36M model (Wang et al., 2024a) to eliminate low-quality videos. To build the
customization dataset, we employ QwenVL (Bai et al., 2025b) to identify subjects in the videos based
on captions. We then use GroundingDINO (Caron et al., 2021) and SegmentAnything 2 (Ravi et al.,
2024) to segment the corresponding subject images. For audio data, we first utilize LatentSync (Li
et al., 2024a) to find videos with high audio-video synchronization and then employ Whisper (Radford
et al., 2023) to extract audio features. More details are provided in the supplementary material.

3.2 IMAGE-DRIVEN VIDEO CUSTOMIZATION

At the core of OmniCustom is the task of generating videos conditioned on an input image I
representing a specific identity and a textual description T . A key challenge is enabling the model
to effectively comprehend the identity information embedded in the image and integrate it with the
textual context for interactive understanding. To address this, OmniCustom introduces an identity-
enhanced text-image conditioning module, which consists of a LLaVA-based text-image interaction
component and an identity enhancement module. This module facilitates joint modeling of visual
and textual inputs while enhancing the consistency of subject identities.

LLaVA-based text-image interaction. In the context of video customization, effectively integrating
image and text information has been a key challenge for previous customization methods (Fei et al.,
2025; Jiang et al., 2025; Liu et al., 2025), which typically treat image and text as two independent
modalities. By leveraging the text comprehension capabilities of LLaVA (Liu et al., 2023a), as
adopted in HunyuanVideo (Kong et al., 2024), we extend the original text input of HunyuanVideo to
incorporate both text and images. This enables effective image-text interaction and understanding,
capitalizing on LLaVA’s strong multimodal comprehension abilities.
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Specifically, given a text input T and an image input I with a corresponding description word TI

in the text, we design a template to facilitate interaction between the text and image. We explore
two types of templates: (1) the image-embedded template, where the description word TI in the text
is replaced with the image token <image> (e.g., for the text prompt “A man sitting on the grass,”
if the identity image corresponds to “man,” the resulting template is “A <image> sitting on the
grass”); and (2) the image-appended template, where the image token is placed after the text prompt
by adding an identity prompt, “The TI looks like <image>” (for the above example, the resulting
template is “A man sitting on the grass. The man looks like <image>”). After processing, the image
token <image> is replaced by 24× 24 image hidden features extracted by LLaVA’s image encoder.
Since the image tokens are significantly longer than the text tokens, to prevent the image features
from overwhelming text comprehension, we insert a special token <SEP> between the text prompt
and the image prompt. This helps the LLaVA model retain the information from the text prompt
while establishing a connection between the textual description and the image identity.

Identity Enhancement. The LLaVA model, as a multi-modal understanding framework, is designed
to capture the correlation between text and image, primarily extracting high-level semantic infor-
mation such as category, color, and shape, while often overlooking finer details. However, in video
customization, identity is significantly determined by these image details, making the LLaVA branch
alone insufficient for identity preservation. To address this, we propose an identity enhancement
module. By concatenating video latents with the target image over the time axis and leveraging
the video model’s efficient information transmission capability in the temporal dimension, we can
effectively enhance video identity consistency.

Specifically, we first resize the image to match the video frame size. We then employ the pretrained
causal 3D-VAE from HunyuanVideo to map the image I from image space to latent space. With
the image latent zI ∈ Rwh×c, where wh represents the width and height of the latent and c is the
feature dimension, we concatenate the noisy video latent zt ∈ Rfwh×c (where f is the number of
video frames) and the image latent zI along the first sequence dimension to obtain a new latent
z = {zI , zt} ∈ R(f+1)wh×c. Given the pretrained Hunyuanvideo’s strong prior in modeling temporal
information, identity can be efficiently propagated along the time axis. Consequently, we assign the
concatenated image latent with a 3D-RoPE (Su et al., 2024) along the time series. In the original
Hunyuan video, the video latent is assigned a 3D-RoPE along the time, width, and height axes; for a
pixel located at (f, i, j) (where f is the frame index, i is the width, and j is the height), it receives
a RoPE with RoPE(f, i, j). For the image latent, to enable effective identity broadcasting along
the time series, we position the image latent at the −1-th frame, preceding the first frame with time
index 0. Furthermore, inspired by Omnicontrol (Tan et al., 2024) in controllable image generation, to
prevent the model from simply copying and pasting the target image into the generated frames, we
introduce a spatial shift for the image latents, where:

RoPEzI (f, i, j) = RoPE(−1, i+ w, j + h). (1)

Multi-subject Customization. For multi-subject customization, we utilize the trained single-subject
customization model as a foundation and subsequently fine-tune it to accommodate the multi-
subject customization task. Specifically, we have several condition images {I1, I2, . . . , Im}, each
with corresponding text descriptions {TI,1, TI,2, . . . , TI,m}. For each image, we template them
as ”the TI,k looks like <image>” and model the text-image correlation using the LLaVA model.
Additionally, to enhance image identity, we encode all images into latent space to obtain image
latents {zI,1, zI,2, . . . , zI,m} using 3D-VAE, and then concatenate them with the video latent. To
differentiate between various identity images, we assign the k-th image a time index of −k, which is
associated with a 3D-RoPE:

RoPEzI,k(f, i, j) = RoPE(−k, i+ w, j + h). (2)

3.3 AUDIO-DRIVEN VIDEO CUSTOMIZATION

Audio-driven video customization. Audio is an indispensable component in video generation, with
extensive research dedicated to using audio as a condition to drive video creation. Among these,
audio-driven human animation represents an important research topic. Existing models (Jiang et al.,
2024a; Ji et al., 2024) for audio-driven human animation typically use a human image and audio
as input to animate the character in the image to speak the corresponding speech. However, this
image-to-video paradigm results in generated videos where the character’s posture, attire, and setting
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remain consistent with the input image, limiting the ability to generate videos of the target character
in different postures, attire, and settings. This limitation restricts their application. Leveraging
OmniCustom’s effective capture and maintenance of character identity information, we further
integrate audio input to enable the generation of videos where the character speaks the corresponding
audio in a text-described scene, allowing for more flexible and controllable speech-driven virtual
human generation, which we call audio-driven video customization.

Identity-disentangled AudioNet. To effectively decouple audio signals from identity-related infor-
mation, we propose the identity-disentangled AudioNet. As outlined in Section 3.2, identity cues
are primarily introduced through the text modality via LLaVA and further reinforced by token con-
catenation along the latent temporal dimension. To mitigate potential interference between the audio
and identity modalities, AudioNet adopts an alternative conditioning strategy explicitly designed to
prevent entanglement with identity information. Given an audio-video sequence consisting of f ′

frames, we extract audio features for each frame, yielding a feature tensor of shape f ′ × 4× c, where
4 denotes the number of tokens per audio frame. The corresponding video latent representations
are temporally compressed by a pretrained 3D VAE into f frames, with f =

⌊
f ′

4

⌋
+ 1—where the

additional 1 accounts for the initial, uncompressed frame, and 4 is the temporal compression ratio.
Furthermore, to incorporate identity information, an identity image is concatenated at the beginning,
resulting in a video latent of f + 1 frames. To ensure temporal alignment between the audio features
and the compressed video latent, we first pad the audio feature sequence prior to the initial frame,
producing a total of (f +1)×4 audio frames. We then aggregate every four consecutive audio frames
into one, resulting in a temporally aligned audio feature tensor fA that matches the structure of the
video latent representation.

fA = Rearrange(fA,0) : [b, (f + 1)× 4, 4, c] → [b, (f + 1), 16, c]. (3)

With the temporally aligned audio features fA, we introduce audio information into the video latent
representation zt using a cross-attention mechanism. To prevent interference across different time
steps, we adopt a spatial cross-attention strategy that performs audio injection separately for each
time step. Specifically, each audio frame interacts only with the spatial tokens of its temporally
aligned video frame, and cross-attention is applied independently at each temporal index. To this
end, we decouple the temporal dimension from the spatial dimensions of the video latent and apply
attention solely along the spatial axes:

z′t,A = Rearrange(zt) :[b, (f + 1)wh, c] → [b, f + 1, wh, c],

z′′t,A = z′t,A+λA × CrossAttn(fA, z
′
t),

zt,A = Rearrange(z′′t,A) :[b, f + 1, wh, c] → [b, (f + 1)wh, c],

(4)

where λA is a weight to control the influence of the audio feature.

3.4 VIDEO-DRIVEN VIDEO CUSTOMIZATION

In practical video creation, editing is a fundamental task that often involves modifying subject appear-
ance and motion, which naturally aligns with OmniCustom’s subject-level generation capabilities
such as replacement and insertion. However, videos contain rich spatiotemporal information, making
both content extraction and integration challenging. Existing methods like VACE (Jiang et al., 2025)
rely on adapter-based conditioning, resulting in doubled computational cost. Other approaches (Bai
et al., 2025a) concatenate conditioning and generated video latents along the temporal axis, causing
quadratic growth in attention computation. To address these limitations, OmniCustom adopts an
efficient video condition injection strategy that decouples video information from image and audio
modalities. Specifically, it compresses the conditioning video using a pretrained causal 3D-VAE,
aligns the resulting features with noisy video latents via feature alignment, and directly adds the
aligned features to the latent representation. This approach enables effective conditioning with
minimal computational overhead.

Video-Latent Feature Alignment. The conditioning video serves as a clean, noise-free input,
whereas the video latents are obtained from a noisy encoding process. To improve video condition
injection, we first perform feature alignment between the conditioning video and the video latents.
Specifically, the conditioning video is encoded using the pretrained causal 3D-VAE encoder, followed
by compression and serialization via the pretrained video tokenizer in HunyuanVideo. Then, a fully
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Figure 3: Comparison of single-subject and multi-subject video customization.

connected network maps the conditioning video features into the latent space, achieving feature
alignment with the video latents.

Identity-Disentangled Video Conditioning. Building upon the prior feature alignment, we introduce
an identity-disentangled conditioning mechanism that injects video information independently from
image and audio modalities. Specifically, the aligned conditioning video features are directly added
to the video latents on a frame-by-frame basis along the temporal dimension, preserving the original
feature dimensions. This approach maintains the same latent shape as the original video latents
and incurs no additional computational overhead during inference. Experiments show that this
addition-based method effectively fuses video features, enabling efficient and high-fidelity video
condition incorporation.

4 EXPERIMENT

4.1 COMPARISON ON SINGLE-SUBJECT VIDEO CUSTOMIZATION

Baselines. We compare OmniCustom with the state-of-the-art video customization methods, includ-
ing commercial products (Vidu 2.0 (Vidu, 2025), Keling 1.6 (Keling, 2025), Pika (Pika, 2025), and
Hailuo (Hailuo, 2025)) and open-sourced methods (Skyreels-A2 (Fei et al., 2025) and VACE (Jiang
et al., 2025)). More implementation details are presented in #Suppl.

Single-subject customization comparisons. We present a comparison of state-of-the-art methods in
Fig. 3 (left) for single-subject video customization. It is evident that VACE, SkyReels-A2, and Pika
exhibit poor identity preservation, with SkyReels-A2 failing to generate the specified dog in the video.
Additionally, VACE sometimes struggles to distinguish subjects, merging the generated cat and dog
into a single indistinct entity. Vidu shows commendable generation quality and identity consistency
among the methods compared, yet there remains room for improvement in identity consistency. In
contrast, OmniCustom excels in generating videos with high identity consistency while maintaining
superior generation quality and diversity, highlighting its advantage over other methods.

Multi-subject customization comparisons. We also compare the multi-subject customization ability
with the existing methods. The comparative results are presented in Fig. 3 (right). Pika can generate
the specified subjects but exhibits instability in video frames, with instances of a man disappearing in
one scenario and a woman failing to open a door as prompted. Vidu and VACE partially capture human
identity but lose significant details of non-human objects, indicating a limitation in representing
non-human subjects. SkyReels-A2 experiences severe frame instability, with noticeable changes in
chips and numerous artifacts in the right scenario. In contrast, our OmniCustom effectively captures
both human and non-human subject identities, generates videos that adhere to the given prompts, and
maintains high visual quality and stability.

Quantitative comparison. We conduct a quantitative comparison between the state-of-the-art
methods in Tab. 1. Our OmniCustom achieves the best ID consistency and subject consistency. It also
achieves comparable results in prompt following and generation quality. Hailuo (Hailuo, 2025) has
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Table 1: The quantitative comparison results on single-subject video customization. Bold and
underline represent optimal and sub-optimal results, respectively.

Models Face-Sim ↑ DINO-Sim ↑ CLIP-B-T ↑ CLIP-L-T ↑ FVD ↓ Temp-Consis ↑
VACE 1.3B (Jiang et al., 2025) 0.204 0.569 0.308 0.260 1490 0.967
Skyreels-A2 (Fei et al., 2025) 0.402 0.579 0.295 0.256 1904 0.942

Pika (Pika, 2025) 0.363 0.485 0.305 0.255 1247 0.928
Vidu 2.0 (Vidu, 2025) 0.424 0.537 0.300 0.250 1698 0.961

Keling1.6 (Keling, 2025) 0.505 0.580 0.285 0.239 1348 0.914
Hailuo (Hailuo, 2025) 0.526 0.433 0.314 0.266 1485 0.937
OmniCustom (Ours) 0.624 0.607 0.309 0.261 1305 0.961

A woman is sitting at a desk and talking.

A man delivers a powerful speech in the grand palace of China's Ming Dynasty.

A brightly colored goldfish is shuttling among the golden tentacles ofx a sea anemone.

Audio-driven Customization

Video-driven Customization

Source
Video

Generated
Video

Figure 4: Results on audio and video-driven video customization (Refer to #Suppl for more results).

the best clip score because it can follow text instructions well with only ID consistency, sacrificing the
consistency of full-body photos (the worst DINO-Sim). In terms of FVD and temporal consistency,
our model achieves competitive scores, indicating its good generation quality.

4.2 EXPERIMENTS ON MULTI-MODAL VIDEO CUSTOMIZATION

Audio-driven video customization. Previous audio-driven human animation methods input a human
image and an audio, where the human posture, attire, and environment remain consistent with the
given image and cannot generate videos in other gestures and environments, which may restrict their
application. In comparison, our OmniCustom enables audio-driven human customization, where
the character speaks the corresponding audio in a text-described scene and posture, allowing for
more flexible and controllable audio-driven human animation. The generated results are illustrated
in Fig. 4. OmniCustom produces videos that closely align with the given prompts while preserving
character identities. It demonstrates effective audio alignment and prompt following, which can
significantly enhance its application in live streaming and advertising. Additionally, it can generate
videos featuring diverse scenes and postures, such as the example in the Ming Dynasty (row 2),
where characters are automatically dressed in period-appropriate attire without explicit prompts. This
demonstrates OmniCustom’s robust world modeling and generalization capabilities. In summary, our
audio-driven OmniCustom can generate videos across various scenes and postures specified by text
prompts with high diversity, while keeping the identity well.

Video-driven video customization. Leveraging its strong subject consistency, OmniCustom also
supports video-driven video customization, which can be regarded as subject-centric video editing,
enabling a broad range of application scenarios. The results are presented in Fig. 4, where a source
video, object masks indicating regions to be replaced, and a target subject image are provided as inputs.
It can be seen that our OmniCustom can replace the target subjects well, with high subject consistency
with the given subject image, and good interaction with the video background, demonstrating its
superior performance in video editing tasks. More comparisons are shown in the #Suppl.

Quantitative comparisons on multi-modal video customization. As our model is the first one to
incorporate audio and video in video customization task, there are currently no existing methods
or benchmarks for direct quantitative comparison in these scenarios. Nevertheless, to provide a
more systematic evaluation, we have computed standalone quantitative metrics for our approach in
both audio-driven and video-driven customization tasks in Tab. 2. We observe that the audio-driven
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Table 2: Comparison of our model’s performance across multi-modal video customization tasks.
Models Face-Sim ↑ DINO-Sim ↑ CLIP-B-T ↑ CLIP-L-T ↑ FVD ↓ Temp-Consis ↑

OmniCustom (Image only) 0.624 0.607 0.309 0.261 1305 0.961
OmniCustom (Audio-driven) 0.629 0.615 0.294 0.241 1457 0.951
OmniCustom (Video-driven) - 0.596 0.268 0.241 968 0.854

Ours

Reference
A man is selling barbecue by the 
roadside, grilling and shouting out 
loud at the same time.

In the studio, a man holds a brush in 
his right hand, painting colors onto 
the canvas, while his left hand grips 
the palette ready to mix colors.

Prompt Prompt

Channel 
Concat

Without 
LLaVA

Without
ID Enhance

Figure 5: Ablation study on the proposed modules in OmniCustom.

customization achieves even better identity preservation metrics (e.g., Face-Sim and DINO-Sim)
compared to the image-only setting, indicating the effectiveness of our approach in decoupling audio
and identity information. For the video-driven setting, the CLIP scores for video-driven customization
are slightly lower, as most of the video content is directly provided by the conditioning video, which
may not always align perfectly with the target prompt. Moreover, since the conditioning video is real,
the video-driven setting achieves a better FVD score, reflecting higher overall video quality.

4.3 ABLATION STUDY

We conduct ablation studies on subject customization, where we compare with three ablated models:
(1) the model without LLaVA; (2) the model without identity enhancement; (3) the model with
identity enhancement by channel-level concatenation. The results, presented in Fig. 5, reveal that the
model without LLaVA exhibits poor identity preservation, indicating that LLaVA not only conveys
prompt information but also extracts key identity features. The model without LLaVA fails to capture
any significant details from the target image. Additionally, the model with LLaVA but lacking identity
enhancement captures global identity information but misses detailed identity features, demonstrating
the effectiveness of the identity enhancement module in refining identity details. Finally, the model
using channel concatenation instead of temporal concatenation shows poor generation quality. Al-
though it captures identity well, it suffers from a severe blurring effect in the initial frames, similar
to results from Vidu (Vidu, 2025). This suggests that temporal concatenation aids in effectively
capturing target information through strong temporal modeling priors and minimizes the impact on
generation quality. In summary, our model successfully captures both global and local identity details
while ensuring high generation quality, underscoring the effectiveness of our design.

5 CONCLUSION

In this paper, we propose OmniCustom, a multi-modal customized video generation model that
addresses the key challenges of subject consistency and flexible controllability in video generation.
By integrating an identity-enhanced text-image condition module and novel identity-disentangled
audio and video injection modules, OmniCustom enables high-quality, subject-consistent video
generation under diverse user-defined conditions, including image, audio, video, and text inputs.
Extensive experiments on both single- and multi-subject scenarios demonstrate that OmniCustom
outperforms existing methods in ID consistency, generation quality, and text-video alignment. Our
model also shows strong robustness in audio- and video-driven customization tasks, confirming
its versatility and practical value. These results highlight the effectiveness of our multi-modal
conditioning and identity-preserving strategies for controllable, subject-consistent video generation.
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ETHICS STATEMENT

In accordance with the ICLR Code of Ethics, we have carefully considered the societal impact of
our work on OmniCustom. Our primary goal is to advance the field of controllable video generation
for beneficial applications, such as enhancing creative expression, improving educational tools, and
creating personalized content. We believe this technology holds significant potential for positive
contributions across various industries.

We acknowledge our professional responsibility to address the potential for misuse. To uphold
the principles of fairness, non-discrimination, and respect for individual rights, our research was
conducted using publicly available datasets or datasets with appropriate licenses, ensuring that we did
not use private or sensitive personal data without consent. We recognize that large-scale datasets may
contain inherent societal biases, which our model could inadvertently learn. We are committed to
transparency about this limitation and encourage future research focused on identifying and mitigating
such biases to ensure equitable performance across different demographic groups.

To promote the responsible application of our work, we plan to release our code and models under
a responsible AI license that explicitly prohibits use for malicious purposes, such as creating non-
consensual content, spreading misinformation, or engaging in harassment. By making our methods
public, we also aim to contribute positively to the research ecosystem, enabling the community to
develop more effective detection and content provenance techniques. We believe that fostering an
open and collaborative research environment is essential for developing shared norms and technical
safeguards that guide the deployment of generative technologies for the benefit of society.

REPRODUCIBILITY STATEMENT

To ensure the transparency and reproducibility of our research, we provide a detailed account of our
methodology, experimental setup, and resources. We are committed to making our work accessible to
the research community to facilitate verification and future advancements.

• Code and Models: We will release the source code for OmniCustom, including training
and inference scripts, upon the publication of this paper. The code will be made available
in a public GitHub repository under an open-source license. We also plan to release the
pretrained model weights for our proposed modules, including the identity-enhanced text-
image condition module, the AudioNet, and the video injection module, to allow for direct
replication of our results.

• Datasets: For the training and evaluation data, we were careful to only include videos
that—to the best of our knowledge—were intended for free use and redistribution by their
respective authors. That said, we are committed to protecting the privacy of individuals who
do not wish their videos to be included in our datasets and will honor removal requests.

• Implementation Details: All critical implementation details and hyperparameters are
provided in the main paper and the appendix. This includes the architecture of our proposed
modules, optimizer settings, learning rates, batch sizes, training iterations, and so on.
The appendix will contain a comprehensive illustration of all hyperparameters required to
reproduce our key experiments.
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A APPENDIX

A.1 OVERVIEW

In this supplementary material, we present additional implementation details, extended experimental
results, and further analyses, organized as follows:

• Implementation details (Sec. A.2);

• Multi-modal data construction (Sec. A.3);

• More single-subject comparison results (Sec. A.4);

• Quantitative multi-subject comparison results (Sec. A.5);

• More results on audio-driven video customization (Sec. A.6).

• More results on video-driven video customization (Sec. A.7);

• Robustness to Diverse Real-World Scenarios (Sec. A.8);

• More Applications (Sec. A.9);

• Limitations and societal impacts (Sec. A.10).

We have also included a project page in the supplementary materials; please refer to it for additional
video results. Note that, due to the 100MB size limit for supplementary files, the videos in the project
page have been downsampled to a lower resolution. Our default resolution is 720p. Moreover, the
code is also provided in the supplementary material.

A.2 IMPLEMENTATION DETAILS

Training Loss. In the training process, we adopt the Flow Matching (Lipman et al., 2022) framework
to train the video generation models. For training, we first acquire the video latent representation
z1 and the corresponding identity image I . Then, we sample t ∈ [0, 1] from a logit-normal distribu-
tion (Esser et al., 2024) and initialize the noise z0 ∼ N(0, I) according to the Gaussian distribution.
After that, we construct the training sample zt through linear interpolation. The model aims to predict
the velocity ut =

dzt
dt conditioned on the target image I , which is used to guide the sample zt towards

z1. The model parameters are optimized by minimizing the mean-squared error between the predicted
velocity vt and the real velocity ut, and the loss function is defined as:

Lgeneration = Et,x0,x1
∥vt − ut∥2 . (5)

Training details. OmniCustom is a multi-modal customized video generation model focused on
subject consistency. To this end, we first train OmniCustom on the image-driven customization task
with a 720P-resolution, which consists of two stages: we begin with 10,000 iterations of single-
subject customization training, followed by 5,000 iterations of multi-subject customization training.
Specifically, due to the large latent space of 720P videos, we initially train the model on 540P
videos for the first 2,000 single-subject iterations to facilitate faster convergence. The model is
trained with the AdamW optimizer with a learning rate 1e− 5. Furthermore, to enhance the model’s
representational capacity and enable it to capture a broader range of complex patterns, we fully fine-
tune the weights of the pretrained HunyuanVideo model (Kong et al., 2024). This approach allows
us to unlock the model’s full potential and achieve superior video customization results. Once the
image-driven customization task is well-trained, we proceed to train the model on both audio-driven
and video-driven video customization tasks for an additional 5,000 iterations, which equips the model
with multi-modal conditioning capabilities while preserving its original image-driven performance.
All training is conducted on 256 GPUs with at least 80GB memory each, using a batch size of 64.
Each training sample is distributed across 4 GPUs with tensor and sequence parallelism to accelerate
the training process.

Inference details. During inference, we set the number of diffusion denoising steps to 50 and use a
classifier-free guidance scale of 7.5. For quantitative evaluation, we generate 100 videos for each
compared method. The text prompts used include both short descriptions (10–20 words) and long
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prompts (over 30 words), allowing for a more comprehensive assessment of each model’s ability on
prompt following.

Training and inference speed. For model training, our model was trained on H20 GPUs, with each
iteration taking approximately 3 minutes. The full training process consisted of 20,000 iterations,
amounting to roughly 40 GPU days in total. Regarding inference speed, using 4 H20 GPUs, generating
a video with 50 denoising steps takes approximately 5 minutes. We will include these details in the
revised manuscript to provide a clearer picture of the system’s computational requirements. Thank
you again for your helpful suggestion.

Evaluation metrics.To evaluate the performance of video customization, we employ the following
metrics to evaluate the identity preservation, text-video alignment, and video generation quality:

• ID consistency. We employ Arcface (Deng et al., 2019) to detect and extract the embedding
of the reference face and each frames of generation video, and then compute the average
cosine similarity between them.

• Subject similarity. First, we detect each frame and get the segment result of the subject
using YOLOv11 (Khanam & Hussain, 2024), and then compute the similarity of the DINO-
v2 (Oquab et al., 2023) feature between the reference and results.

• Text-video alignment. We employ CLIP-B and CLIP-L (Radford et al., 2021) to evaluate
the alignment between the given text prompt and the corresponding generated videos.

• Fréchet Video Distance. FVD first extract the video features through I3D (Carreira &
Zisserman, 2017) for the generated videos and target real videos, and then compute the
Fréchet Distance between them to evaluate the generation quality and diversity.

• Temporal consistency. Following VBench (Huang et al., 2024a), we utilize the CLIP-
B (Radford et al., 2021) model to calculate the similarity between each frame and its
adjacent frames, as well as the first frame, to assess the temporal consistency of the video.

A.3 MULTI-MODAL DATA CONSTRUCTION

Our data undergoes a rigorous processing pipeline to ensure high-quality inputs that enhance model
performance. Experimental results demonstrate that high-quality data plays a crucial role in tasks
such as subject consistency, video editing, and audio-driven video generation. While different tasks
may follow their own specific data processing steps, the initial processing stages are common across
tasks, with the key differences lying in the subsequent steps. In light of this, this section delves
into the detailed methodologies of video data preparation, focusing on the shared preprocessing
techniques as well as the task-specific post-processing approaches designed for distinct tasks.

Our data is sourced from diverse channels, and to ensure strict compliance with the principles outlined
in the General Data Protection Regulation (GDPR) (Regulation, 2018) framework, we employ data
synthesis and privacy-preserving computation techniques to regulate the data collection process. The
raw data spans a wide range of domains, primarily encompassing eight major categories: humans,
animals, plants, landscapes, vehicles, objects, architecture, and anime. In addition to our self-collected
data, we have rigorously curated and processed open-source datasets (e.g., OpenHumanvid (Li
et al., 2024b)), which significantly expand the diversity of our data distribution and enhance model
performance. Experimental results confirm that the incorporation of high-standard data is crucial for
achieving substantial improvements in model performance.

Data Filtering and Preprocessing. Given the broad distribution of our dataset, which also includes
open-source data, there are significant variations in duration, resolution, and quality among the
videos. To address these issues, we implemented a series of preprocessing techniques. Firstly, to
prevent transitions within training data, we utilized PySceneDetect (Castellano, 2020) to segment the
original videos into single-shot clips. For handling text regions in videos, we employed textbpn-plus-
plus (Zhang et al., 2023a) to filter out clips with excessive text and cropped videos containing subtitles,
watermarks, and logos. Due to the uneven distribution of video sizes and durations, we performed
cropping and alignment, standardizing the short side to either 512 or 720 pixels and limiting video
length to 5 seconds (129 frames). Finally, considering that PySceneDetect cannot detect gradual
transitions and textbpn-plus-plus (Zhang et al., 2023a) has limited capability in detecting minor
text, and to ensure aesthetic quality, motion magnitude, and scene brightness, we used the koala-
36M (Wang et al., 2024a) model for further refinement. However, due to differences between
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Figure 6: Data Construction Pipeline.

the training data of koala-36M (Wang et al., 2024a) and our dataset, and its lack of fine-grained
assessment on aesthetic quality and motion magnitude, we established our own evaluation criteria,
determining a koala threshold of 0.06 specific to our dataset for meticulous filtering. Experimental
results confirm the importance of our data selection and processing methods in enhancing model
performance.

Subject Extraction. Single Subject Extraction: To extract the main subject from videos, we first
use the Qwen7B (Bai et al., 2023) model to label all subjects in each frame and extract their IDs.
Subsequently, we employ a clustering algorithm (e.g., Union-Find) to compute the frequency of each
ID’s appearance across frames and select the ID with the highest occurrence as the target subject.
Multiple IDs can be chosen if necessary; however, if all IDs appear fewer than a predefined threshold
(e.g., 50 frames), the video is discarded. Next, we use YOLO11X (Khanam & Hussain, 2024) for
human body segmentation to obtain bounding boxes and InsightFace (Ren et al., 2023) to detect
face positions and generate face bounding boxes. If the proportion of the face bounding box within
the human body bounding box is less than 0.5, the detection result from YOLO11X is considered
erroneous, and the corresponding bounding box is discarded.

Non-Human Subject Extraction: For non-human subjects, we utilize QwenVL (Bai et al., 2025b) to
extract subject keywords from the video and employ GroundingSAM2 (Ravi et al., 2024; Liu et al.,
2023b; Ren et al., 2024a;b; Jiang et al., 2024b) to generate masks and bounding boxes based on these
keywords. If the size of a bounding box is less than 0.3 times the dimensions of the source video,
it is discarded. To ensure balanced category distribution in the training data, we use QwenVL to
classify the main subject into one of eight predefined categories: animals, plants, landscapes, vehicles,
objects, architecture, and anime. We then apply balanced sampling across these categories to achieve
an equitable distribution.

Multi-Subject Extraction: For multi-subject scenarios, we use QwenVL to filter videos from single-
person datasets that involve interactions between humans and objects. Since we need to align the
subject keywords in video captions with those in images, directly using QwenVL to re-extract subject
keywords may lead to misalignment with the keywords in the video prompt. Therefore, we employ
Florence2 (Xiao et al., 2024) to extract bounding boxes for all subjects mentioned in the video
captions. Subsequently, GroundingSAM2 is used to perform subject extraction on these bounding
box regions. We then apply clustering to remove frames that do not contain all subjects. To address
issues related to hard-copying, we use the first 5 seconds of the video for model training and the
subsequent 15 seconds for subject segmentation.

Video Resolution Standardization. We first compute a union bounding box based on all the
bounding boxes of the main subjects and ensure that the cropped region contains at least 70% of the
area of the union bounding box. To enable the model to support multi-resolution outputs, we define
several aspect ratios, including 1:1, 3:4, and 9:16.
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Figure 7: Comparison on human-centered video customization.

Video Annotation. We employ a structured video annotation model to label the videos. This
model provides detailed descriptive information, including long descriptions, short descriptions,
background styles, and camera movement descriptions of the videos. During the training process,
these structured annotations are utilized to enhance the video captions, thereby improving the
robustness and performance of the model.

Mask Data Augmentation. During video editing, directly using the extracted subject masks for
training can lead to overfitting when replacing objects of different types or shapes. For instance,
replacing a doll without ears with one that has ears might result in the generated video still showing
the doll without ears, which is not the desired outcome. Therefore, during the training process, we
apply techniques such as mask dilation or converting masks to bounding boxes to soften the mask
boundaries. These methods help achieve more realistic and expected editing results in the final video.
By employing these augmentation strategies, we aim to mitigate overfitting issues and ensure that
the edited videos meet our expectations more closely. This approach enhances the flexibility and
applicability of the model across various object types and shapes.

Audio data processing. First, we utilize LatentSync (Li et al., 2024a) to evaluate the synchronization
between audio and video in the clips. Specifically, we discard videos with a synchronization
confidence score below 3 and adjust the audio-video offset to zero. At the same time, we compute the
hyperIQA quality score and remove any videos scoring below 40 to ensure high-quality data. Finally,
we employ Whisper (Radford et al., 2023) to extract audio features, which will be used as input for
subsequent model training.

A.4 MORE SINGLE-SUBJECT COMPARISON RESULTS

In this section, we present additional comparisons on single-subject customization, which includes
both human and object customization tasks. We compare OmniCustom with several state-of-the-art
methods, including Pika (Pika, 2025), Vidu (Vidu, 2025), Keling (Keling, 2025), VACE 1.3B (Jiang
et al., 2025), and Skyreels A2 (Fei et al., 2025). Additionally, since Hailuo only supports human
customization, we further include Hailuo in the human-centered video customization comparison. The
results of the human-centered comparisons are shown in Fig. 7. As illustrated, VACE, SkyReels-A2,
Vidu, Hailuo, and Pika all exhibit poor identity preservation. Among these, only Keling demonstrates
relatively better identity consistency. However, Keling suffers from a copy-paste artifact: for example,
in the rightmost case, the man appears with a gray background copied directly from the input image,
which does not blend naturally with the background scene. For object-centered customization, the
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Figure 8: Comparison on object-centered video customization.

Metric Face-sim ↑ DINO-sim ↑ CLIP-B ↑ CLIP-L ↑ FVD ↓ Temporal ↑
VACE 0.433 0.598 0.335 0.280 1171 0.966

SkyReels-A2 0.554 0.619 0.332 0.276 1379 0.943
Keling-1.6 0.534 0.554 0.330 0.280 1049 0.934
Vidu-2.0 0.532 0.588 0.336 0.282 1083 0.970

Pika 0.546 0.548 0.310 0.263 980 0.942
OmniCustom 0.630 0.622 0.331 0.274 971 0.962

results are presented in Fig. 8. Keling tends to generate blurry outputs, while Skyreels A2 fails to
accurately capture the target subject, producing incorrect colors for both the dog and the dress. VACE
also struggles with subject consistency, failing to generate the green dress and merging the dog and
cat into a single, unnatural subject. Vidu and Pika achieve relatively better subject consistency, but
still lose some fine details of the target object (e.g., the buttons on the dress). In contrast, our method
achieves the best subject-consistent generation in both human-centered and object centered video
customization, preserving both the global visual appearance and local details, while maintaining high
overall generation quality.

A.5 QUANTITATIVE MULTI-SUBJECT COMPARISON RESULTS

Tab. A.5 summarizes the quantitative performance of different video customization methods on the
multi-subject benchmark. OmniCustom consistently achieves the highest identity preservation scores,
as reflected in both Face-sim (0.630) and DINO-sim (0.622), surpassing all baselines by a notable
margin. While Vidu-2.0 Vidu (2025) demonstrates competitive results in prompt adherence (CLIP-B
and CLIP-L), OmniCustom delivers comparable CLIP scores, indicating strong ability to follow
textual instructions without compromising subject consistency. For generation quality and temporal
stability, OmniCustom attains the lowest FVD score (971), outperforming methods such as Pika Pika
(2025) (980) and Vidu-2.0 (1083), and maintains robust temporal consistency (0.962), second only to
Vidu-2.0 (0.970). Notably, baseline methods such as VACE Jiang et al. (2025) and SkyReels-A2 Fei
et al. (2025) obtain lower identity similarity scores and higher FVD values, suggesting inferior ability
in preserving subject characteristics and global video quality. Overall, OmniCustom demonstrates a
superior balance of identity consistency, video quality, prompt alignment, and temporal coherence,
highlighting its effectiveness for challenging multi-subject video customization tasks.

A.6 MORE RESULTS ON AUDIO-DRIVEN VIDEO CUSTOMIZATION

More qualitative results. Previous audio-driven human animation methods input a human image and
an audio, where the human posture, attire, and environment remain consistent with the given image
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A woman is sitting at a desk and talking.

A woman is sitting in front of a table with a MacBook on it and introducing it.

A man delivers a powerful speech in the grand palace of China's Ming Dynasty.

At night, a woman sits slumped on the floor, tearfully recounting her tragic experiences.

Half body, a single person in the bedroom. A woman is sitting in front of a table with a canned Sprite on it and introducing it.

A man sits at a table, gesturing as he explains the effects of a shampoo on his hair.

Half body, a single person, in the dressing room. A woman is holding a lipstick, trying it on, and introducing it.

In a store, A woman wearing a red strapless dress, talking about the dress.

Reference Image Generated Videos

Figure 9: The results of our OmniCustom in Audio-driven customization, where we can generate
videos in different scenes and postures specified by the text prompt, while keeping the identity well.

and cannot generate videos in other gestures and environments, which may restrict their application.
In comparison, our OmniCustom enables audio-driven human customization, where the character
speaks the corresponding audio in a text-described scene and posture, allowing for more flexible and
controllable audio-driven human animation. We show more audio-driven video customization results
in Fig. 9. OmniCustom produces videos that closely align with the given prompts while preserving
character identities. It demonstrates effective interaction with other subjects (rows 3 & 4) or humans
(rows 5 & 6), which can significantly enhance its application in live streaming and advertising.
Additionally, it can generate videos featuring diverse scenes and postures, such as those set in the
Ming Dynasty (row 7), where characters are automatically dressed in period-appropriate attire without
explicit prompts, and row 8 showcases a woman with vivid and realistic expressions distinct from the
input image. This demonstrates OmniCustom’s robust world modeling and generalization capabilities.
In summary, our audio-driven OmniCustom can generate videos across various scenes and postures
specified by text prompts with high diversity, while keeping the identity well.

Comparison on Lip-sync Performance. To further assess the effectiveness of our audio-driven
customization approach, we conduct a comparative evaluation against existing state-of-the-art audio-
driven portrait animation methods, including EchoMimic (Chen et al., 2025b), EchoMimic-V2 (Meng
et al., 2025), and Hallo-3 (Cui et al., 2025). The comparison is performed using the widely adopted
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Table 3: Lip-sync accuracy (Sync-C ↑) comparison with existing methods.
Models OmniCustom EchoMimic EchoMimic-V2 Hallo-3

Sync-C 4.41 3.41 4.11 4.57

Mask

Source

Ours

VACE

Keling

Reference
Two people wearing light 

yellow dresses are attentively 
mending a gray - white puppy 

in front of them.

A brightly colored goldfish 
is shuttling among the 

golden tentacles ofx a sea 
anemone.

Prompt Prompt

Figure 10: The results of our OmniCustom in Video-driven video customization, where we can edit
anything in the source video with a given mask video, while generating video vividly.

Sync-C metric (Chung & Zisserman, 2016), which measures lip-sync accuracy. It is important to
point out that our audio-driven customization task is inherently more challenging than traditional
audio-driven portrait animation, as it involves generating not only accurate lip synchronization but
also modeling environmental and subject interactions. Therefore, a direct comparison is meaningful
primarily in terms of lip-sync accuracy. As presented in Table 3, our method achieves competitive
Sync-C scores, demonstrating its strong capability in audio-synchronized video generation.

A.7 MORE RESULTS ON VIDEO-DRIVEN VIDEO CUSTOMIZATION

Leveraging its strong subject consistency, OmniCustom also supports video-driven video editing,
enabling a broad range of application scenarios. We compare OmniCustom with VACE (Jiang et al.,
2025) and Keling (Keling, 2025) on the task of video subject replacement, where a source video,
object masks indicating regions to be replaced, and a target subject image are provided as inputs.
The results are presented in Fig. 10. VACE suffers from boundary artifacts due to strict adherence to
the input masks, resulting in unnatural subject shapes and disrupted motion continuity. Keling, in
contrast, exhibits a copy-paste effect, where subjects are directly overlaid onto the video, leading
to poor integration with the background. In comparison, OmniCustom effectively avoids boundary
artifacts, achieves seamless integration with the video background, and maintains strong identity
preservation—demonstrating its superior performance in video editing tasks.

A.8 ROBUSTNESS TO DIVERSE REAL-WORLD SCENARIOS

To address concerns regarding the diversity of scenario testing and further validate the robustness of
our model, we conducted additional experiments on more challenging real-world conditions, including
low-light environments and rapid motion involving multiple subjects. As shown in Table A.8, our
model maintains strong performance across all tested scenarios. In low-light and rapid motion
settings, there is a slight decline in certain metrics, such as Face-Sim and FVD, which is expected
due to increased scene complexity. Nevertheless, OmniCustom consistently produces plausible and
coherent video content, demonstrating its ability to generalize beyond standard conditions. The
model’s temporal consistency remains high even under adverse settings, and identity preservation and
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Models Face-Sim ↑ DINO-Sim ↑ CLIP-B-T ↑ CLIP-L-T ↑ FVD ↓ Temp-Consis ↑
OmniCustom 0.624 0.607 0.309 0.261 1305 0.961

OmniCustom (Low-light) 0.605 0.591 0.304 0.261 1587 0.963
OmniCustom (rapid motion) 0.598 0.584 0.303 0.256 1492 0.926

Target ID Target Product Generated Videos

Prompt: A person is introducing the Product.

Figure 11: The results of our OmniCustom in virtual human advertisement, where OmniCustom can
generate advertisement videos with good interaction between the human and products.

prompt adherence are only minimally affected. These results highlight the robustness and adaptability
of our approach, underscoring its potential applicability in diverse and complex real-world scenarios.

A.9 MORE APPLICATIONS

Virtual Human Advertisement. Leveraging our multi-subject customization capability, Omni-
Custom enables applications that previous methods cannot achieve. A significant application is in
virtual human advertising, where OmniCustom takes a human image and a product image as inputs
to generate a corresponding advertisement video. The results, shown in Fig. 11, demonstrate that
OmniCustom effectively maintains the identity of the human while preserving the details of the target
product, including the text on it. Furthermore, the interaction between the human and the product
appears natural, and the video adheres closely to the given prompt, highlighting the substantial
potential of OmniCustom in generating advertisement videos.

Audio-driven virtual try-on. Utilizing its multi-subject customization capability, OmniCustom also
supports audio-driven multi-subject video customization, offering a wide range of applications. In
the main paper, we demonstrated OmniCustom’s capabilities in virtual human advertising. Here, we
further explore its generation ability in virtual try-on, driven by both text prompts and audios. The
results, shown in Fig. 12, illustrate the integration of virtual try-on with audio-driven video generation.
The generated videos effectively preserve the target identities while naturally the specified attire
and synchronizing vividly with the given audio. This highlights OmniCustom’s robust capability in
multi-modal video customization.

A.10 LIMITATIONS AND SOCIETAL IMPACTS

Limitations. Current video generation models (Kong et al., 2024; Wang et al., 2025) still face
challenges in accurately modeling the real world, particularly when it comes to capturing complex
physical rules and interactions. Therefore, when generating customized videos involving multiple
subjects engaged in intricate interactions, OmniCustom sometimes struggles to faithfully represent
the relationships between subjects. As a result, artifacts may appear in both the visual appearance

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Target ID Target Clothes Audio-Conditioned Generated Videos

Prompt: A person is sitting at a desk and talking.

Figure 12: The results of our OmniCustom in audio-driven multi-subject customization, where we
can generate humans in different clothes, while speaking the given audio vividly.

and motion of the generated subjects. For example, the model may fail to maintain correct spatial
relationships, leading to unnatural overlaps or collisions, or it may generate unrealistic motions that
do not adhere to the expected physical dynamics. These limitations highlight the need for further
research to improve the ability of video generation models to understand and reproduce complex
multi-subject interactions in a realistic manner.

Societal impacts. The development of OmniCustom, a controllable and multi-modal video generation
model, has the potential to greatly benefit society by lowering the barriers to high-quality, personalized
video creation for entertainment, education, advertising, and more. Its ability to generate subject-
consistent videos from diverse inputs can empower both individuals and organizations to express
creativity and communicate ideas more effectively. However, this technology also raises concerns
about potential misuse, such as the creation of deepfakes or unauthorized use of personal likenesses.
It is therefore important to promote responsible use and develop safeguards to ensure that such
advancements contribute positively to society.
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