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Abstract001

Large language models (LLMs) have achieved002
remarkable progress in many natural language003
processing tasks. However, our experiment re-004
veals that, in stance detection tasks, LLMs may005
generate biased stances due to sentiment-stance006
spurious correlations and preference towards007
certain individuals and topics, thus harming008
their performance. Therefore, in this paper, we009
propose to Mitigate Biases of LLMs in stance010
detection with Calibration (MB-Cal). To be spe-011
cific, a novel calibration network is devised to012
calibrate potential bias in the stance prediction013
of LLMs. Further, to address the challenge014
of effectively learning bias representations and015
the difficulty in the generalizability of debi-016
asing, we construct counterfactual augmented017
data. This approach enhances the calibration018
network, facilitating the debiasing and out-of-019
domain generalization. Experimental results on020
in-target and zero-shot stance detection tasks021
show that the proposed MB-Cal can effectively022
mitigate biases of LLMs, achieving state-of-023
the-art results.024

1 Introduction025

Stance detection aims at automatically identifying026

the author’s opinionated standpoint or attitude (e.g.,027

Favor, Against, or Neutral) expressed in the content028

towards a specific target, topic, or proposition (So-029

masundaran and Wiebe, 2010; Mohammad et al.,030

2016). With the development of social media plat-031

forms, stance detection plays a pivotal role in ana-032

lyzing public opinion on social media topics (Jang033

and Allan, 2018; Ghosh et al., 2019; Stefanov et al.,034

2020; Sun et al., 2018; Chen et al., 2021).035

Large Language Models (LLMs), such as Chat-036

GPT1, Bard2, and LLaMA (Touvron et al., 2023),037

have demonstrated impressive language compre-038

hension and task-handling capabilities by lever-039

aging extensive corpus and knowledge. However,040

some existing studies have indicated that the results041

of LLMs in stance detection on certain datasets or042

certain targets are significantly suboptimal (Zhang043

et al., 2023b; Li et al., 2023), which hampers the044

utility of LLMs for the stance detection task.045

1https://openai.com/blog/chatgpt/
2https://bard.google.com/

Our experiment reveals that LLMs are influenced 046

by two types of bias patterns in stance detection3: 047

1) spurious correlations of sentiment with stance, in 048

which the sentiment expression of the sentence can 049

mislead the judgment of stance towards a specific 050

target; 2) preference towards certain individuals 051

and topics, in which LLMs exhibit a certain stance 052

bias towards certain individuals or topics. Such bi- 053

ased stances can not only degrade the performance 054

of LLMs in stance detection tasks but also be mali- 055

ciously exploited to manipulate the stance predic- 056

tions. Consequently, mitigating the bias of LLMs 057

in stance detection is crucial for using LLMs in the 058

stance detection task. 059

Existing research of debiasing in stance detec- 060

tion largely centered on the creation of unbiased 061

training samples and the retraining of stance de- 062

tection models (Kaushal et al., 2021; Yuan et al., 063

2022b). However, there are two core limitations 064

to the application of these debiasing methods in 065

LLMs. Limitation#1, research (Luo et al., 2023) 066

has shown that such retraining processes will under- 067

mine the generality of LLMs, potentially leading 068

to catastrophic forgetting; not to mention that there 069

are restrictions with certain closed-source LLMs 070

like GPT-3.5-turbo, which can only be accessed 071

with a restricted inference API, preventing access 072

to internal model parameters. The extensive com- 073

putational resources necessitated for the retraining 074

of LLMs are also considerably substantial. Limi- 075

tation#2, existing approaches to constructing unbi- 076

ased training samples typically entail the analysis 077

of prevalent bias patterns, subsequently automat- 078

ing their construction based on these identified 079

patterns, exemplified by substituting "Men" with 080

"Women". However, when dealing with stance de- 081

tection tasks, our forthcoming analysis illuminates 082

that these samples display varying bias propensi- 083

ties, attributable to divergences in sentiments and 084

stance objectives. Consequently, utilizing conven- 085

tional methods to create unbiased samples poses a 086

significant challenge. 087

Therefore, to address the above two limitations, 088

3The analysis of stance biases and causal graphs are demon-
strated in Section 3.
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we propose to Mitigate Biases of LLMs in stance089

detection with Calibration, coined as MB-Cal. We090

establish a trainable calibration network to approx-091

imate the inverse projection function of the bias092

label distribution within LLMs. This calibration093

network receives samples, along with stance judg-094

ments and rationales from LLMs, and generates095

calibrated stance judgments. Through supervised096

training, the calibration network can capture biases097

present in specific samples, thereby performing098

debiasing. To address the issue of limited represen-099

tation of bias within the training set and difficulty100

in constructing unbiased training samples, we con-101

struct counterfactual augmented data against the102

training data to rectify stance biases. The counter-103

factual samples are constructed from both causal104

and non-causal features, which can enhance the105

calibration network to yield unbiased stances and106

accomplish out-of-domain generalization.107

The main contributions of our work are summa-108

rized as follows:109

1) We are the first to investigate the biases of110

LLMs on stance detection, categorizing the biases111

into two main types from the perspective of causal-112

ity and proposing metrics to quantify these two113

types of biases.114

2) We propose MB-Cal, a novel framework con-115

sisting of a calibration network and counterfactual116

data augmentation to mitigate biases of LLMs on117

stance detection.118

3) A series of experiments demonstrate that our119

MB-Cal can effectively reduce the bias of LLMs120

in stance detection, improving the performance in121

both in-target and zero-shot stance detection tasks4.122

2 Related Work123

Biases in Large Language Models Some stud-124

ies (Gonçalves and Strubell, 2023) have exam-125

ined the biases existing in Large Language Mod-126

els (LLMs), these biases mainly include gender127

and religion (Salinas et al., 2023), politics (Jenny128

et al., 2023; He et al., 2023), and spurious cor-129

relations (Zhou et al., 2023). The associated de-130

biasing efforts are centered around retraining the131

language model with debiased samples (Dong et al.,132

2023; Limisiewicz et al., 2023). Zheng et al. (2023)133

found that LLMs are vulnerable to option position134

changes in MCQs due to their inherent ’selection135

bias’. They perform debiasing by approximating136

the overall bias distribution. while based on our137

4The code is available at url.

analysis in Section 3.3, the bias distribution varies 138

significantly across different stance detection sam- 139

ples, so this method is not applicable. 140

Mitigating Biases in Stance Detection Cur- 141

rently, studies developed for mitigating biases in 142

stance detection are oriented toward fine-tuned 143

models. Kaushal et al. (2021) analyzed two biases 144

existing in the current datasets: target-independent 145

lexical choices and target-independent sentiment- 146

stance correlations, and built an unbiased dataset. 147

Yuan et al. (2022a) incorporated the stance rea- 148

soning process as task knowledge to retrain the 149

model to reduce bias. Yuan et al. (2022b) con- 150

structed unbiased samples through counterfactual 151

reasoning and performed adversarial bias learning. 152

These methods involve retraining models and con- 153

structing unbiased training samples through special 154

marks, which cannot be directly applied to LLMs. 155

3 Biases of LLMs in Stance Detection 156

3.1 Bias Measurement 157

Stance bias refers to the systematic errors where 158

models tend to choose certain stances due to the in- 159

fluence of specific biases and stereotypes. Inspired 160

by Zheng et al. (2023), the standard deviation of 161

recalls (RStd) on stance labels is an excellent met- 162

ric for quantitatively measuring systematic errors. 163

It is resistant to label imbalance and effectively re- 164

flects the model’s stance tendency on samples. The 165

formula is as follows: 166

RStd =

√√√√√ 1

K

K∑
i=1

TPi

Pi
− 1

K

K∑
j=1

TPj

Pj

2

(1) 167

Where K is the number of stance labels, TPi is the 168

number of true positive instances for stance label i, 169

and Pi is the number of instances of stance label i. 170

A larger RStd represents a larger bias. 171

3.2 Experimental Result 172

Through statistical analysis of the results from 173

LLMs, we identified two significant types of bias: 174

Sentiment-stance Spurious Correlations and Tar- 175

get Preference Bias. 176

3.2.1 Sentiment-Stance Spurious Correlations 177

Sentiment can influence the judgment of the stance 178

but is not the major factor determining the stance. 179

If the model excessively relies on sentiments to 180

evaluate the stance, it indicates an influence from 181

2

url


POS NEU NEG

20

0

20

G
PT

-3
.5

-tu
rb

o

POS NEU NEG
50

25

0

25

50

POS NEU NEG

50

0

50

POS NEU NEG

Sem16

20

10

0

10

20

LL
aM

A
-2

-7
0b

POS NEU NEG

P-Stance

50

25

0

25

50

POS NEU NEG

VAST

50

0

50 Favor
Neutral
Against

Figure 1: The recall score, normalizing by subtracting
the overall recall across all sentiments, on Sem16, P-
Stance, and VAST dataset. POS for positive, NEU for
neutral, NEG for negative.

sentiment-stance spurious correlations, resulting in182

biased stance judgments. To investigate stance bias183

across different sentiments, we first obtain the senti-184

ment label for each sample. For the Sem16 dataset,185

each sample has annotated sentiment labels, cat-186

egorized as positive, neutral, or negative. for the187

P-Stance and VAST datasets, we utilize GPT-4 to188

annotate the sentiment labels. To gain a prelimi-189

nary understanding of sentiment-stance spurious190

correlations, we calculate the recall score on each191

stance label, normalizing by subtracting the overall192

recall across all sentiments, as shown in Figure 1.193

We can observe that LLMs exhibit a clear error194

pattern: they are highly inclined to predict support195

for samples with positive sentiment and against for196

samples with negative sentiment. We posit that197

this proclivity for errors, deviating from the an-198

ticipated sample pattern, instigates a stance bias.199

Hence, we identify the Sentiment-stance Spurious200

Correlations (SSC) as a type of bias in LLMs on201

stance detection.202

We calculate the average of the RStd across203

all sentiments as our quantification for sentiment-204

stance spurious correlations:205

Bias-SSC =
1

|S|
∑
s∈S

RStd(Xs) (2)206

where Xs represents instances with sentiment la-207

bel s, |S| denotes the number of sentiment labels,208

which in our experiment, is 3.209

We conducted experiments in various settings:210

Task-Des used task-related descriptions for stance211

judgment, CoT-Demo used the task description212

with 4-shot chain-of-thought demonstration, and213

Debias-Instruct used the task description indicat-214

ing that sentiment was spurious cues for stance215

judgment. Refer to Appendix A for the detailed216

Sem16 P-Stance VAST
SSC↓ F1↑ SSC↓ F1↑ SSC↓ F1↑

LLaMA-2-70b-chat
Task-Des 17.80 60.08 23.36 79.89 16.87 68.36
CoT-Demo 27.52 58.68 22.81 80.77 22.55 67.08
Debias-Instruct 19.24 63.62 24.86 78.85 19.63 68.68
GPT-3.5-Turbo-0125
Task-Des 27.13 52.82 23.72 81.62 28.70 49.86
CoT-Demo 18.08 67.59 22.75 80.88 16.32 69.90
Debias-Instruct 23.75 51.77 23.48 81.48 30.53 48.68

Table 1: Bias-SSC and macro F1-score of stance detec-
tion on the Sem16, P-Stance and VAST dataset. Refer
to Appendix B for detailed results on each sentiment.
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Figure 2: The recall score, normalizing by subtracting
the overall recall across all targets, on Sem16, P-Stance,
and VAST dataset. HC for Hillary Clinton, LA for
Legalization of Abortion, AT for Atheism, JB for Joe
Biden, BS for Bernie Sanders, DT for Donald Trump,
CH for Christian, CL for Election, HP for Humanity
Program.

prompts. The results are shown in Table 1. We 217

can observe that in most cases, a larger bias-SSC 218

leads to poorer stance detection results. Moreover, 219

prompt engineering methods proved ineffectual in 220

mitigating this inherent bias. 221

3.2.2 Target Preference Bias 222

LLMs exhibit bias towards certain individuals or 223

topics. This bias can interfere with their ability to 224

judge stances based on the text, leading to biased 225

stance judgments. We refer to this bias as target 226

preference bias. To preliminarily observe the target 227

preference bias of LLMs, we randomly sampled 228

some targets from different datasets and calculated 229

the recall score on these targets, normalizing by 230

subtracting the overall recall across all targets, as 231

shown in Figure 2. We observed that, on different 232

targets, LLMs displayed markedly different tenden- 233

cies in stance selection, which ultimately affected 234

the correctness of stance judgment. Therefore, we 235

identify the Target Preference Bias (TPB) as a type 236

of bias in LLMs on stance detection. 237

We calculate the average of the RStd of all tar- 238
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Sem16 P-Stance VAST
TPB↓ F1↑ TPB↓ F1↑ TPB↓ F1↑

LLaMA-2-70b-chat
Task-Des 17.59 60.08 9.09 79.89 7.76 68.36
CoT-Demo 27.56 58.68 11.57 80.77 9.64 67.08
Debias-Instruct 16.37 61.40 8.94 78.70 4.86 69.10
GPT-3.5-Turbo-0125
Task-Des 22.64 52.82 5.43 81.62 28.44 49.86
CoT-Demo 13.47 67.59 6.61 80.88 8.40 69.90
Debias-Instruct 21.87 53.33 5.79 81.59 26.77 51.66

Table 2: Bias-TPB and macro F1-score of stance detec-
tion on the Sem16, P-Stance and VAST dataset. Refer
to Appendix B for detailed results on each target.
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C C

Figure 3: Causal graph on stance detection. X donates
the text, T donates the target, H donates the features of
the interaction of text and target, Y donates the stance
label and C refers to confounding, which could bias the
judgment of the stance.

gets as our quantification for target preference bias:239

Bias-TPB =
1

|T |
∑
t∈T

RStd(Xt) (3)240

where Xt represents instances with stance target t,241

|T | denotes the number of targets.242

We conduct experiments based on Task-Des,243

CoT-Demo, and Debias-Instruct which emphasize244

the need to judge the stance based on the text and245

not to include the inherent attitude towards the tar-246

get. Refer to Appendix A for the detailed prompts.247

The results are shown in Table 2. We can observe248

that in most cases, a larger bias-TPB also leads to249

poorer stance detection results, and bias-TPB can-250

not be effectively mitigated by prompt engineering.251

3.3 Bias Analysis252

We analyze the bias of LLMs in stance detection253

from the perspective of causal graphs. Stance de-254

tection requires the model to detect the stance of a255

text on a specific target. Thus, the ultimate stance256

results derived from the interaction of text and tar-257

get, as illustrated in (a) of Figure 3. For LLMs, as258

depicted in (b), sentiment-stance spurious correla-259

tions originated from the biased reasoning paths260

X → C → Y, where stances are judged solely261

based on certain spurious clues in the text. Target262

preference bias represents biased reasoning path 263

T → C → Y, which are stance inferences based 264

exclusively on the target preference of LLMs. Both 265

of these two paths can introduce biases to the final 266

stance. Based on the observation of Figure 1 and 267

Figure 2, we found that the distribution of biases 268

differs significantly for samples with different emo- 269

tional or stance targets. Therefore, we consider 270

such confounding to be specific to each sample: 271

Ci ∼ {xi, ti}. 272

4 Mitigating Bias with Calibration 273

Given X = {xn, tn}Nn=1 as the labeled dataset, 274

where x denotes the input text and t denotes the cor- 275

responding target, LLMs obtain the stance predic- 276

tions y through the task instructions I for stance de- 277

tection: Pobs(yi|I;xi, ti). Inspired by Zheng et al. 278

(2023), we believe that it can be deconstructed into 279

the unbiased distribution Punbiased of the LLMs 280

performing the stance detection task, and the bias 281

distribution Pbias formed by confounding Ci: 282

Pobs = Punbiased(yi|xi, ti)Pbias(yi|Ci) (4) 283

We aim to estimate the unbiased stance distribution 284

Punbiased. 285

4.1 Calibration Network 286

By estimating the bias distribution based on the 287

overall distribution of known samples (from the 288

training set), we can obtain unbiased outputs by 289

multiplying the observed distribution of LLMs by 290

the inverse of the approximated bias distribution: 291

Punbiased = Pobs(y
′
i|I;xi, ti)P̃bias(y

′′
i |Ci)

−1

(5) 292

where y
′
i and y

′′
i represent the label distribution 293

output by LLMs and the label distribution affected 294

by bias, P̃bias represents the estimate of bias. 295

However, based on the bias analysis in Sec- 296

tion 3.3, we found that for stance detection, the 297

samples with different sentiments and stance tar- 298

gets have completely different stance bias distribu- 299

tions. Therefore, we propose employing a network 300

to capture the bias distribution specific to each sam- 301

ple, called the calibration network fCal. We use the 302

network fCal to approximate the inverse projection 303

function of the bias distribution: 304

fCal = Pbias(y
′′
i |C)−1 (6) 305

By inputting the predicted stance distribution Pobs 306

from LLMs, an approximating unbiased label can 307
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Leftwing activist @USER has declared that all
supporters of President #Trump are #racist, ...
In fact, @USER himself is a childish #racist

Target: Donald Trump

The text has a negative emotion and a politically charged 
tone, expressing the dissatisfaction with the racist remarks of 
left-wing activist @USER and all supporters of Trump. The 
author has a negative stance towards Donald Trump.
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Counterfactual Data Generation
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I believe the 45th President of the United States 
is a very decent person and not a racist.

Target: 45th President of US
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Causal Rationale

Non-Causal Rationale

The sentence expresses a positive stance towards the 45th 
President of the United States, stating that they believe he is a 
very decent person and not a racist. It implies that the 
speaker holds a favorable opinion of the 45th President.

@USER has declared all supporters of President
#Trump are #racist and I can’t agree more.

Target: Donald Trump

The speaker is agreeing with the statement that all supporters 
of President Trump are racist. This indicates a strong 
disapproval of both Trump and his followers, suggesting a 
belief that supporting him is synonymous with being racist. 
This sentence portrays a negative stance towards Donald 
Trump and his supporters.

Figure 4: The overall architecture of our proposed MB-Cal. (a) and (b) in the counterfactual data generation represent
two ways to generate counterfactual augmentation from the causal graph.

be obtained:308

Punbiased(ŷi) = fCal(Pobs(y
′
i|I;xi, ti)) (7)309

Specifically, as illustrated in Figure 4, we first use310

the CoT-Demo instruction (refer to Appendix A311

for the detail) to obtain the stance judgment and312

rationale from the LLMs. Then, we input the sam-313

ple, along with this stance judgment and rationale,314

into our calibration network (using RoBERTa-base315

in our setup) to obtain the debiased stance output.316

We train the calibration network using the cross-317

entropy loss function with ground truth label:318

LCE = −
N∑
i=1

yi log(fCal(Pobs(y
′
i|I;xi, ti)) (8)319

Through supervised training, our calibration net-320

work can capture biases present in specific samples,321

thereby performing debiasing.322

4.2 Counterfactual Data Augmentation323

One challenge in supervised training is the limited324

representation of bias within the overall training set,325

and the learned bias features are difficult to general-326

ize. To facilitate the calibration network to learn di-327

verse bias patterns, we generate the Counterfactual328

Augmented Data (CAD) against the training data.329

Kaushik et al. (2021) introduced two methods for330

constructing counterfactual augmented data: intro-331

ducing disturbances to non-causal features, which332

are the confounding features unrelated to stance;333

and inverting causal features, which are the core334

features for determining the stance. Our approach335

involves constructing counterfactual data based on336

these two methods, leveraging the bias patterns 337

identified through the causal graph analysis de- 338

tailed in Section 3.3. 339

For introducing disturbances to non-causal fea- 340

tures, as shown in counterfactual data generation 341

(a) in Figure 4, for the biased inference path X → 342

C → Y, we perturb the text xi against the spurious 343

correlation of sentiment. for the biased inference 344

path T → C → Y, we perturb the target ti against 345

the target preference. Specifically, we construct an 346

instruction that allows the LLMs to rephrase the 347

original sentence and target with different words 348

and sentiments while ensuring that the semantics 349

and the stance remain unchanged. Refer to Fig- 350

ure 10 for the detailed prompts. This obtains the 351

perturbed text x∗i and perturbed target t∗i . Since 352

we only disturbed confounding, the stance label 353

remains unaffected. We construct cross-entropy 354

loss on non-causal counterfactual augmented data 355

as follows: 356

Ln-cau
CAD = −

N∑
i=1

yi log(fCal(Pobs(y
′
i|I;x∗i , t∗i ))

(9) 357

For inverting causal features by making necessary 358

modifications to reverse the applicability of the 359

label, as shown in counterfactual data generation 360

(b) in Figure 4, we make necessary alterations to 361

text xi to reverse the stance to target ti, thereby 362

only perturbing the causal features. Refer to Fig- 363

ure 11 for the detailed prompts. This obtains the 364

perturbed text x̃i expressing a reversed stance to 365

target ti. We construct cross-entropy loss on causal 366
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Dataset Target Favor Against Neutral

Sem16

HC 163 565 256
FM 268 511 170
LA 167 544 222
A 124 464 145

CC 335 26 203
DT 148 299 260

P-Stance
Biden 3217 4079 -

Sanders 3551 2774 -
Trump 3663 4290 -

VAST - 6952 7297 4296

Table 3: Statistics of SemEval-2016 Task6, P-Stance
and VAST datasets.

counterfactual augmented data as follows:367

Ln-cau
CAD =

N∑
i=1

yi log(fCal(Pobs(y
′
i|I; x̃i, ti)) (10)368

4.3 Training Objective369

The final training objective is to incorporate coun-370

terfactual augmented data and perform joint train-371

ing:372

L = LCE + Ln-cau
CAD + Lcau

CAD (11)373

5 Experimental Setup374

5.1 Datasets375

We conduct experiments of in-target and zero-376

shot stance detection on three benchmark datasets:377

SemEval-2016 Task6 (Sem16) (Mohammad et al.,378

2016), P-Stance (Li et al., 2021) and Varied Stance379

Topics (VAST) (Allaway and McKeown, 2020).380

The statistic of datasets is shown in Table 3.381

5.2 Implementation Details382

For GPT-3.5-turbo, we utilize GPT-3.5-turbo-383

0125. For LLaMA2-70b, we utilize LLaMA2-70b-384

chat. For our calibration network, we employ the385

RoBERTa-Base model (Liu et al., 2019). For our386

counterfactual data augmentation, we employ GPT-387

3.5-turbo-0301 to generate counterfactual samples,388

guided by the instructions detailed in Appendix A.389

We use AdamW as an optimizer with a batch size390

of 32. Learning rate is set to 1e-5 and weight decay391

is set to 1e-3. We report averaged scores of 5 runs392

to obtain statistically stable results.393

5.3 Evaluation Metric394

Across three datasets, we used the same evaluation395

metric established by their proposers, which was396

also adopted by most of the subsequent baselines.397

Therefore, we ensure that the following compar-398

isons are fair. We adopt the macro-average of the399

F1-score as the evaluation metric. For Sem16 and 400

P-Stance, we report F1 = (Ffavor + Fagainst)/2. 401

For VAST, we report F1 = (Ffavor + Fagainst + 402

Fnone)/3. For in-target stance detection, we select 403

each target to divide training, validation, and test 404

sets. In zero-shot stance detection, for Sem16 and 405

P-Stance, we use the leave-one-target-out evalu- 406

ation setup. For the VAST dataset, we use their 407

original zero-shot dataset settings. We use standard 408

train/validation/test splits for in-target and zero- 409

shot stance detection across the three datasets. 410

5.4 Comparison Models 411

The fine-tuned model baselines include vanilla 412

RoBERTa (Liu et al., 2019), domain pre-trained 413

model: BERTweet (Nguyen et al., 2020), joint 414

contrastive learning framework: JointCL (Liang 415

et al., 2022), incorporating ConceptGraph knowl- 416

edge model: KEprompt (Huang et al., 2023), in- 417

corporating Wikipedia knowledge model: TarBK- 418

BERT (Zhu et al., 2022) and WS-BERT (He 419

et al., 2022), incorporating knowledge from LLMs: 420

KASD-BERT (Li et al., 2023). For large lan- 421

guage models, we compare baselines include Task- 422

Des (Zhang et al., 2022), CoT-Demo (Zhang et al., 423

2023b), the self-consistent chain-of-thought: CoT- 424

SC (Wang et al., 2023), incorporating Wikipedia 425

knowledge for retrieval-augmented generation: 426

KASD-ChatGPT and KASD-LLaMA-2 (Li et al., 427

2023), fine tuning LLaMA-2-7b using QLora- 428

int4 with training set: LLaMA-2-7b-FT, utiliz- 429

ing collaborative role-infused LLM-based agents: 430

COLA (Lan et al., 2023) and utilizing logically 431

consistent chain-of-thought: LC-CoT (Zhang et al., 432

2023a). 433

6 Experimental Results 434

6.1 In-Target Stance Detection 435

We perform experiments on Sem16 and P-Stance 436

for in-target stance detection. The results are pre- 437

sented in Table 4. It shows that our MB-Cal out- 438

performs all baselines based on different large lan- 439

guage models. We can observe that MB-Cal w/o 440

CAD, which without the counterfactual data en- 441

hancement, the calibration network trained exclu- 442

sively on the training set data can still improve 443

stance detection performance. Moreover, the ap- 444

plication of counterfactual data enhancement fur- 445

thers the model’s performance. When compared 446

to the LLaMA-2-7b-FT method, which fine-tunes 447

LLaMA-2-7b, our method attains superior accu- 448
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Sem16(%) P-Stance(%)
HC FM LA A CC Avg Biden Sanders Trump Avg

Fine-tuning Based Methods
Roberta 55.97 68.19 67.60 65.40 43.08 58.71 84.29 79.56 82.70 82.18
BERTweet 62.31 64.20 64.14 68.12 41.30 57.99 78.09 81.02 82.48 80.53
KPT 71.30 63.30 63.50 - - - 80.40 77.10 80.20 79.23
KEprompt 77.10♯ 68.30♯ 70.30♯ - - - 84.40♯ - 83.20♯ -
WS-BERT-Dual 75.26† 66.02† 70.42† 71.57† 57.31† 68.12† 83.50♭ 79.00♭ 85.80♭ 82.77♭

KASD-BERT 77.60† 70.38† 72.29† 72.32† 61.47† 70.81† 85.66† 80.39† 85.35† 83.80†

LLaMA-2 Based Methods
LLaMA-2-Task-Des 75.96 66.60 61.68 53.40 73.56 66.24 84.31 77.29 78.08 79.89
LLaMA-2-CoT-Demo 74.84 71.45 62.67 57.58 73.26 67.96 85.03 79.77 77.52 80.77
KASD-LLaMA-2 77.89† 67.29† 52.00† 35.78† 47.12† 56.02† 79.59† 71.32† 67.89† 72.93†

LLaMA-2-7b-FT 81.86 71.58 65.56 68.74 75.59 72.67 85.79 81.25 87.47 84.84
LLaMA-2-MB-Cal (Ours) 80.44 73.46⋆ 67.18 71.85 76.19 73.82⋆ 86.34 83.06⋆ 85.58 84.99
- w/o CAD 78.00 70.82 65.57 71.40 72.24 71.61 85.35 82.00 85.51 84.29
GPT-3.5-Turbo Based Methods
GPT-3.5-Turbo-Task-Des 73.33 66.81 67.22 25.18 72.54 61.02 83.20 80.02 81.66 81.62
GPT-3.5-Turbo-CoT-Demo 81.58 73.42 68.28 64.96 78.35 73.32 83.07 77.98 81.59 80.88
KASD-ChatGPT 80.92† 70.37† 63.26† 61.92† 62.72† 67.84† 84.59† 79.96† 85.06† 83.20†

GPT-3.5-MB-Cal (Ours) 83.38⋆ 78.46⋆ 69.36⋆ 69.56⋆ 80.05⋆ 76.16⋆ 86.03⋆ 81.60⋆ 84.95 84.20⋆

- w/o CAD 82.38 73.80 63.65 69.21 62.93 70.39 85.40 81.36 85.00 83.92

Table 4: In-target stance detection experiment results on Sem16 and P-Stance datasets. The results with ♯ are
retrieved from (Huang et al., 2023), ♭ from (He et al., 2022), † from (Li et al., 2023). The best scores over the same
type are in bold. Results with ⋆ denote the significance tests of our MB-Cal over the same type baseline models at
p-value < 0.05.

Sem16(%) P-Stance(%) VAST(%)
DT HC FM LA A CC Avg Biden Sanders Trump Avg All

Fine-tuning Based Methods
Roberta 32.12 43.45 40.38 38.79 26.80 18.70 33.37 76.29 72.07 67.56 71.97 73.18
BERTweet 26.88 44.82 21.97 31.91 30.49 12.48 28.09 73.13 68.22 67.66 69.67 71.10
JointCL 50.50♮ 54.80♮ 53.80♮ 49.50♮ 54.50♮ 39.70♮ 50.47♮ - - - - 72.30
TarBK-BERT 50.80♯ 55.10♯ 53.80♯ 48.70♯ 56.20♯ 39.50♯ 50.68♯ 75.49 70.45 65.80 70.58♯ 73.60♯

KASD-BERT 54.74† 64.78† 57.13† 51.63† 55.97† 40.11† 54.06† 79.04† 75.09† 70.84† 74.99† 76.82†

LLaMA-2 Based Methods
LLaMA-2-Task-Des 66.03 73.79 71.03 66.00 60.44 61.91 66.53 82.81 78.00 78.87 79.89 68.54
LLaMA-2-CoT-Demo 58.56 72.09 73.83 66.10 57.58 62.47 65.11 83.97 79.26 77.96 80.40 67.28
KASD-LLaMA-2 - 77.70† 65.57† 57.07† 39.55† 50.72† - 75.28† 74.09† 69.27† 72.88† 43.42†

LLaMA-2-7b-FT 63.99 55.49 59.46 33.18 46.37 58.24 52.79 83.93 77.00 74.35 78.43 77.80
LLaMA-2-MB-Cal (Ours) 66.96 77.19 74.71 72.49⋆ 58.29 67.71⋆ 69.56⋆ 84.04 81.22⋆ 77.57 80.94 79.62⋆

- w/o CAD 61.99 69.22 62.77 60.39 40.83 63.69 59.81 83.09 78.21 76.74 79.35 76.61
GPT-3.5-Turbo Based Methods
GPT-3.5-Turbo-Task-Des 61.72 72.70 71.71 67.89 28.87 59.36 60.38 84.08 80.38 82.38 82.28 50.21
GPT-3.5-Turbo-CoT-Demo 64.16 78.69 73.22 72.84 65.15 75.20 71.54 84.08 80.12 82.24 82.15 70.14
KASD-ChatGPT 64.23† 80.32† 70.41† 62.71† 63.95† 55.83† 66.24† 83.60† 79.66† 84.31† 82.52† 67.03†

COLA 71.20‡ 75.90‡ 69.10‡ 71.00‡ 62.30‡ 64.00‡ 68.92‡ - - - - 73.40‡

LC-CoT 71.70♭ 82.90♭ 70.40♭ 63.20♭ - - - - - - - 72.50♭

GPT-3.5-MB-Cal (Ours) 72.80⋆ 80.26 75.76⋆ 68.77⋆ 66.54⋆ 71.00 72.52⋆ 85.14 81.05⋆ 85.08 83.76⋆ 79.98⋆

- w/o CAD 63.28 72.65 60.88 62.07 41.65 67.80 61.39 84.26 77.80 75.26 79.11 77.50

Table 5: Zero-shot stance detection experiment results on Sem16, P-Stance and VAST dataset. The results with ♮
are retrieved from (Liang et al., 2022), ♯ from (Zhu et al., 2022), † from (Li et al., 2023), ‡ from (Lan et al., 2023), ♭
from (Zhang et al., 2023a). The best scores over the same type are in bold. Results with ⋆ denote the significance
tests of our MB-Cal over the same type baseline models at p-value < 0.05.

racy in stance detection with significantly reduced449

computation resources.450

6.2 Zero-Shot Stance Detection451

We conduct experiments on Sem16, P-Stance, and452

VAST for zero-shot stance detection. The results453

are shown in Table 5. It shows that our MB-Cal 454

outperforms all baselines including both fine-tuned 455

models and different large language models. This 456

indicates that our MB-Cal has strong generaliza- 457

tion capabilities and can perform well on unseen 458

targets. We can observe that MB-Cal w/o CAD ex- 459
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Sem16 P-stance Vast
SSC↓ TPB↓ SSC↓ TPB↓ SSC↓ TPB↓

LLaMA-2 Based Methods
Task-Des 17.80 17.59 23.36 9.09 23.87 17.76
CoT-Demo 27.52 27.56 22.81 11.57 22.55 9.64
CoT-SC 33.67 27.18 29.85 6.34 31.98 23.70
LLaMA-2-7b-FT 22.44 25.09 18.14 5.07 22.36 6.84
KASD-LLaMA-2 18.74 10.90 18.74 4.43 20.51 18.00
LLaMA-2-MB-Cal 9.61 5.52 17.15 2.81 19.89 5.42
- w/o CAD 15.43 12.07 19.15 5.81 21.89 11.42
GPT-3.5-Turbo Based Methods
Task-Des 27.13 22.64 23.72 5.43 28.70 28.44
CoT-Demo 18.08 13.47 22.75 6.61 16.32 18.40
CoT-SC 21.42 16.03 26.30 8.06 22.58 21.63
KASD-ChatGPT 19.49 20.17 20.90 13.94 20.54 15.56
GPT-3.5-MB-Cal 11.31 7.74 16.00 3.38 13.25 7.03
- w/o CAD 12.92 11.83 18.00 4.38 17.27 12.04

Table 6: The result of Bias-SSC and Bias-TPB in in-
target stance detection on Sem16, P-Stance datasets, and
zero-shot stance detection on the VAST dataset.

hibits subpar performance. This can be attributed460

to the constraints posed by the exclusive reliance461

on fine-tuning within the limited training dataset,462

making it an uphill task to generalize the model’s463

debiasing capability. Conversely, employing our464

counterfactual data enhancement bolsters the out-465

of-domain generalization prowess of the model466

considerably, yielding impressive results in zero-467

shot performance. Compared to the LLaMA-2-7b-468

FT, which performs poorly on zero-shot tasks, our469

method demonstrates strong generalization capa-470

bilities.471

6.3 Mitigating Biases Effect Analysis472

We conduct experiments to evaluate the Bias-SSC473

and Bias-TPB of LLMs and further assess the im-474

pact of our bias mitigation efforts. The results are475

shown in Table 6, which indicate that our MB-Cal476

can effectively alleviate Bias-SSC and Bias-TPB477

for both GPT-3.5-turbo and LLaMA2-70b, thus val-478

idating its effectiveness in mitigating biases. The479

inclusion of counterfactual data augmentation can480

effectively improve its debiasing ability, indicating481

the importance of our counterfactual data augmen-482

tation. Our findings also highlight that the integra-483

tion of counterfactual data augmentation enhances484

the debiasing capacity of the model, thereby em-485

phasizing the significance of this augmentation in486

our methodology.487

6.4 Ablation Study488

We conduct ablation studies to examine the im-489

pact of different components in our MB-Cal: (1)490

"w/o Calibration" denotes without the calibration491

Sem16 Vast
Avg↑ SSC↓ TPB↓ All↑ SSC↓ TPB↓

LLaMA-2-MB-Cal 73.82 9.61 5.52 79.62 19.89 5.42
w/o Calibration 67.96 27.52 27.56 67.28 22.55 9.64
w/o CAD 71.61 15.43 12.07 76.61 21.89 11.42
- w/o non-causal 71.29 13.12 13.25 79.38 24.04 7.12
- w/o causal 69.39 10.66 14.82 77.45 21.69 3.97
GPT-3.5-MB-Cal 76.16 11.31 7.74 79.98 13.25 7.03
w/o Calibration 73.32 18.08 13.47 70.14 16.32 18.40
w/o CAD 70.39 12.92 11.83 77.50 17.27 12.04
- w/o non-causal 74.08 14.36 11.80 79.38 26.48 9.32
- w/o causal 71.71 10.22 10.21 77.80 22.25 6.81

Table 7: Experimental results of ablation study of in-
target stance detection on the Sem16 dataset, and zero-
shot stance detection on the VAST dataset.

network, letting the LLMs directly output stance 492

labels. (2) "w/o CAD" denotes without the coun- 493

terfactual augmented data when training the cal- 494

ibration network. (2) "w/o non-causal" denotes 495

without the non-causal counterfactual augmented 496

data when training the calibration network. (3) 497

"w/o causal" denotes without the causal counterfac- 498

tual augmented data when training the calibration 499

network. 500

The results are presented in Table 7. Note that 501

despite utilizing the same stance reasoning, a lack 502

of calibration can result in sub-optimal results and 503

notable biases. Thus validating the effectiveness 504

of our gate calibration network. In addition, when 505

removing non-causal counterfactual data, the bias 506

would increase more significantly, proving that non- 507

causal counterfactual data has a strong role in en- 508

hancing the effect of mitigating bias. The removal 509

of causal counterfactual data declines the perfor- 510

mance more significantly, indicating that the causal 511

counterfactual data substantially improves the accu- 512

racy and generalizability of the calibration network 513

in stance detection. 514

7 Conclusion 515

In this paper, we categorize the biases of LLMs in 516

stance detection into two types from the perspective 517

of causality and propose metrics to quantify these 518

biases. Then, we propose to Mitigate Biases of 519

LLMs in stance detection with Calibration, coined 520

as MB-Cal. In which, a trainable calibration net- 521

work and counterfactual data augmentation are ex- 522

plored to mitigate the biases of LLMs in stance 523

detection. Experimental results on in-target and 524

zero-shot stance detection show that our MB-Cal 525

can effectively reduce the bias of LLMs in stance 526

detection and contribute to improved performance. 527
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Limitations528

Our framework involves using GPT-3.5 to generate529

counterfactual augmented data. As we discussed in530

Appendix C, these samples may contain errors, but531

overall are beneficial to the training of our calibra-532

tion network. The methods of constructing coun-533

terfactual augmented data using manual annotation534

or other methods remain to be explored.535

Ethics Statement536

The datasets used in this paper are sourced from537

open-access datasets. The VAST dataset provides538

complete text data in open access. In compliance539

with the privacy agreement of Twitter for academic540

usage, the Sem16 and P-Stance were accessed us-541

ing the official Twitter API5 through the Tweet IDs542

to fetch complete text data. We removed the in-543

formation on user privacy from the data. In these544

datasets, we analyze the biases and stereotypes in545

stance detection for some sensitive targets (e.g.,546

belief, politics, etc.). We DO NOT critique any bi-547

ases and stereotypes. We focus on analyzing their548

impacts on stance detection and mitigating these549

impacts. We used the counterfactual augmented550

data obtained from the GPT-3.5-Turbo API service551

from OpenAI. We followed their term and poli-552

cies. Some examples in our paper may include a553

stance or tendency. It should be clarified that they554

are randomly sampled from the dataset for better555

studying the dataset and task, and do not represent556

any personal viewpoints.557
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A Prompts Setting763

We present the prompt templates used in Sec-764

tion 3.2 and Section 4.2.765

Specifically, Figure 5 shows the prompt tem-766

plate we use with GPT-4 to obtain sentiment labels.767

Figures 6, 7, and 8 show the prompt templates768

corresponding to the Task-Des, CoT-Demo, and769

Debias-Instruct prompt settings in Section 3.2.1,770

respectively. Similarly, Figures 6, 7, and 9 dis-771

play the prompt templates corresponding to the772

Task-Des, CoT-Demo, and Debias-Instruct prompt773

settings in Section 3.2.2, respectively.774

Figures 10 and 11 illustrate the prompt templates775

used to obtain non-causal and causal counterfac-776

tual augmented data, respectively, as discussed in777

Section 4.2. Figure 10 presents the constructed778

instruction for acquiring non-causal counterfactual779

augmented data, while Figure 11 shows the instruc-780

tion for obtaining causal counterfactual augmented781

data.782

B Experimental Result of LLMs Bias783

We present the complete experimental results in784

Section 3. Tables 8, 9, and 10 show the RStd and785

the macro F1-Score of samples with different senti-786

ment on the Sem16, P-Stance, and VAST datasets.787

Tables 11 and 12 present the RStd and the macro788

F1-Score of samples with different stance target on789

the Sem16, P-Stance, and VAST datasets. We can790

observe that in most cases, a larger stance bias leads791

to poorer stance detection results. In Tables 8, 9,792

and 10, samples with positive and negative emo- 793

tions exhibited larger Rstd, indicating that senti- 794

ment influenced the stance judgment of LLMs as a 795

bias pattern. In Tables 11 and 12, on some contro- 796

versial debate topics such as the "Legalization of 797

Abortion", the "Feminist Movement", and specific 798

individuals like "Donald Trump" and "Hillary Clin- 799

ton", larger Rstd indicates that LLMs demonstrated 800

a relatively large target preference bias. 801

C Human Evaluation of Counterfactual 802

Augmented Data 803

We randomly select 500 samples and use human 804

evaluation (with three experienced researchers who 805

are not involved in this work and have worked on 806

natural language processing for over 3 years) to 807

measure the counterfactual data generated by GPT- 808

3.5-turbo. The primary consideration focuses on 809

the qualitative assessment of the generated sam- 810

ples, necessitating evaluators to confirm the accu- 811

racy of both the grammar and the affirmed stance. 812

The secondary consideration pertains to achieving 813

generating objectives, necessitating evaluators to 814

confirm if the samples were generated as guideline 815

instructions. Evaluators respond to these considera- 816

tions with a binary "yes" or "no". Subsequently, we 817

calculate the average ratio of affirmative responses 818

from three evaluators for each query. The results 819

in Table 13 show that the generated samples are 820

of high quality, contributing substantially to our 821

calibration network training. 822

D Case Study 823

We conduct a case study on Sem16, P-Stance and 824

VAST datasets, to analyze the biases of LLMs in 825

the stance detection task and the practical effec- 826

tiveness of our calibration network. The results 827

are show in Table 14, 15 and 16. The correct anal- 828

ysis patterns of LLMs are marked in blue, while 829

biased analysis patterns are marked in red. We can 830

observe that for some samples with strong senti- 831

ment expressions, such as the examples in Table 15, 832

LLMs are influenced by sentiment Spurious cues 833

and result in biased stance judgments. For some 834

controversial debate topics, such as the examples in 835

Table 14, LLMs generate hallucinations due to their 836

preferences, leading to biased stance judgments. 837
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[sentence]: {sentence}
What is the sentiment of [sentence]?
Only answer with "positive", "negative" or "neutral".

Figure 5: Prompt template of sentiment labels annotation by GPT-4. Fill the blue text with the corresponding text
from the sample.

Stance detection is to determine the attitude or tendency towards a certain 
target through a given sentence, including favor, against and neutral.

{sentence}

Question: What is the attitude of the sentence toward "{target}"? Please 
select the correct answer from "favor", "against" and "neutral".
Answer this question with JSON format:
```json
{{

"stance": "favor" | "against" | "neutral",
}}
```

Figure 6: Prompt template with Task-Des setting. We first outline the stance detection task, then instruct the LLMs
to determine the stance based on the sentence in relation to the target. Fill the blue text with the corresponding text
and target from the sample.

Stance detection is to determine the attitude or tendency towards a certain 
target through a given sentence, including favor, against and neutral. 
**Please read the following examples carefully and use them as references to 
judge the attitude of the sentence towards the target.**

[in-context examples]

Your sentence:

{sentence}

Question: What is the attitude of the sentence toward "{target}"? Please 
select the correct answer from "favor", "against" and "neutral".
Answer this question with JSON format:
```json
{{

"answer": "your answer",
"stance": "favor" | "against" | "neutral"

}}
```

Figure 7: Prompt template with CoT-Demo setting. We randomly select 4 samples from the training set, provide the
ground truth stance labels, and guide GPT-4 to generate chain-of-thought rationales as examples for this prompt.
Fill the green text with constructed examples, and fill the blue text with the corresponding text and target from the
sample.
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Stance detection is to determine the attitude or tendency towards a certain 
target through a given sentence, including favor, against and neutral. 
**Note that the sentiment of the sentence is not necessarily consistent with 
the author's attitude on the target, and avoid directly using emotion as the 
only basis for judging the attitude.**

{sentence}

Question: What is the attitude of the sentence toward "{target}"? Please 
select the correct answer from "favor", "against" and "neutral".
Answer this question with JSON format:
```json
{{

"stance": "favor" | "against" | "neutral",
}}
```

Figure 8: Prompt template with SSC Debias-Instruct setting. We add explicit debiasing instructions following the
task description. Fill the blue text with the corresponding text and target from the sample.

Stance detection is to determine the attitude or tendency towards a certain 
target through a given sentence, including favor, against and neutral. **Be 
careful to only judge the author's attitude on the target based on the 
content in the sentence, and do not include your inherent attitude towards 
the target.**

{sentence}

Question: What is the attitude of the sentence toward "{target}"? Please 
select the correct answer from "favor", "against" and "neutral".
Answer this question with JSON format:
```json
{{

"stance": "favor" | "against" | "neutral",
}}
```

Figure 9: Prompt template with TPB Debias-Instruct setting. We add explicit debiasing instructions following the
task description. Fill the blue text with the corresponding text and target from the sample.

[sentence]: {sentence}
[target]: {target}

The [sentence] expresses a {stance} stance to the [target]. Please rephrase 
the [sentence] using different words and emotions, and rewrite the [target] 
using different words while preserving the same meaning and stance as the 
original.

Figure 10: Prompt template that allows the LLMs to rephrase the original sentence with different words and
sentiments and express the target while ensuring that the semantics and the stance of the perturbed sample towards
the target remain unchanged. Fill the blue text with the corresponding text, target, and stance label from the sample.
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[sentence]: {sentence}
[target]: {target}

The [sentence] expresses a {stance} attitude to the [target]. Please make 
minimal changes to the [sentence] to express a reverse attitude to the 
[target].

Figure 11: Prompt template that makes necessary modifications to reverse the applicability of the label. Fill the blue
text with the corresponding text, target, and stance label from the sample.

Sem16(%)
Positive Neutral Negative

RStd↓ F1↑ RStd↓ F1↑ RStd↓ F1↑
GPT-3.5-Turbo-0125
Task-Des 29.37 48.37 25.22 58.78 26.80 55.44
CoT-Demo 16.02 65.77 25.47 61.69 12.74 70.69
Debias-Instruct 30.52 46.09 16.31 60.07 24.43 54.91
LLaMA-2-70b-chat
Task-Des 22.20 59.73 23.65 58.11 7.56 65.19
CoT-Demo 26.15 58.24 27.88 55.18 28.54 62.04
Debias-Instruct 26.86 55.04 25.51 58.20 5.34 68.61

Table 8: RStd of sentiment labels and macro F1-score of stance detection on Sem16 dataset.

P-Stance(%)
Positive Neutral Negative

RStd↓ F1↑ RStd↓ F1↑ RStd↓ F1↑
GPT-3.5-Turbo-0125
Task-Des 33.79 68.61 23.48 62.32 13.88 75.66
CoT-Demo 32.39 66.99 19.25 65.09 16.60 74.44
Debias-Instruct 33.56 68.00 20.05 63.19 16.83 75.07
LLaMA-2-70b-chat
Task-Des 33.32 68.42 19.98 62.68 16.77 72.97
CoT-Demo 32.62 67.17 15.10 65.00 20.70 73.61
Debias-Instruct 34.66 66.49 22.81 59.14 17.10 71.82

Table 9: RStd of sentiment labels and macro F1-score of stance detection on P-Stance dataset.

VAST(%)
Positive Neutral Negative

RStd↓ F1↑ RStd↓ F1↑ RStd↓ F1↑
GPT-3.5-Turbo-0125
Task-Des 36.33 44.58 19.75 52.72 30.03 46.74
CoT-Demo 26.01 69.05 8.78 66.73 14.17 67.38
Debias-Instruct 38.40 40.96 23.51 49.01 29.66 46.19
LLaMA-2-70b-chat
Task-Des 30.19 61.47 5.79 60.85 14.63 66.97
CoT-Demo 36.20 59.60 18.93 67.87 12.51 63.87
Debias-Instruct 34.60 56.63 10.82 59.49 13.48 67.61

Table 10: RStd of sentiment labels and macro F1-score of stance detection on VAST dataset.

14



Sem16(%)
HC FM LA A CC

RStd↓ F1↑ RStd↓ F1↑ RStd↓ F1↑ RStd↓ F1↑ RStd↓ F1↑
GPT-3.5-Turbo-0125
Task-Des 28.68 61.97 24.21 57.47 26.98 56.75 5.81 27.54 27.52 60.36
CoT-Demo 20.99 74.12 15.16 65.61 11.12 64.74 6.75 57.89 13.30 75.57
Debias-Instruct 28.07 63.07 27.81 54.72 24.08 57.11 5.43 29.14 23.94 62.63
LLaMA-2-70b-chat
Task-Des 11.59 73.64 24.41 58.33 6.84 59.36 15.12 48.94 29.98 60.15
CoT-Demo 28.36 64.71 35.98 52.96 19.27 57.10 19.91 55.87 34.26 62.78
Debias-Instruct 8.73 76.50 14.75 63.39 9.77 58.64 25.76 39.32 22.83 69.16

Table 11: RStd of targets and macro F1-score of stance detection on Sem16 dataset.

P-Stance(%) VAST(%)
JB BS DT ALL

RStd↓ F1↑ RStd↓ F1↑ RStd↓ F1↑ RStd↓ F1↑
GPT-3.5-Turbo-0125
Task-Des 0.53 83.20 4.82 80.02 10.94 81.66 28.44 49.86
CoT-Demo 3.22 83.07 4.01 77.98 12.59 81.59 8.40 69.90
Debias-Instruct 0.63 82.91 5.36 79.01 11.39 82.85 26.77 51.66
LLaMA-2-70b-chat
Task-Des 2.69 84.31 8.79 77.29 15.79 78.08 7.76 68.36
CoT-Demo 7.91 85.03 7.62 79.77 19.19 77.52 9.64 67.08
Debias-Instruct 1.58 82.63 9.29 75.10 15.96 78.36 4.86 69.10

Table 12: RStd of targets and macro F1-score of stance detection on P-Stance and VAST dataset.

CAD-non-causal CAD-causal
Quality Achievement Quality Achievement

Human Eval 96.67% 91.33% 95.33% 88.83%

Table 13: Human evaluation on Sem16, P-Stance, and VAST datasets. Quality stands for qualitative assessment of
the generated samples and Achievement stands for the achievement of generating objectives.

Text (Target: Legalization of Abortion) Label LLMs Pred LLMs Stance Rationale Calibration

A prochoice advocate but circumcise ur
baby? Fucking hypocrite! #circumci-
sion #humanrights

Against Favor

The sentence criticizes the hypocrisy of being a
prochoice advocate but supporting circumcision,
indicating a negative attitude towards circumcis-
ing babies. Since the author is prochoice, it can
be inferred that they are in favor of the legaliza-
tion of abortion.

Against

Text (Target: Feminist Movement) Label LLMs Pred LLMs Stance Rationale Calibration

Equality is the police burying a domes-
tic violence accusation against a female
sports star, too #wedidit #usa

Against Favor

The sentence mentions burying a domestic vi-
olence accusation against a female sports star,
which implies a negative view towards this un-
equal treatment. Therefore, the attitude of the
sentence towards the Feminist Movement is
likely favorable.

Against

Table 14: Case study on the Sem16 dataset.
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Text (Target: Donald Trump) Label LLMs Pred LLMs Stance Rationale Calibration
You might as well put a sock in it. Vot-
ers see these coordinated stupid attacks
are like your #Kavanaugh symphony.
#Dems can’t win with hollow attempts
to bash #Trump.

Favor Against

The sentence uses derogatory terms like ’stupid
attacks’ and ’hollow attempts to bash #Trump,’
indicating a critical perspective. Therefore, the
attitude of the sentence toward ’Donald Trump’
is against.

Favor

Text (Target: Joe Biden) Label LLMs Pred LLMs Stance Rationale Calibration

Saying that is as absurd as saying breast
cancer screening increases breast can-
cer. Is there any Republican who isn’t
as dumb as dirt?

Favor Against

The sentence implies negative assumptions
about the intelligence of Republicans. The men-
tion of Joe Biden in the context of criticizing
Republicans suggests a critical or skeptical atti-
tude towards Joe Biden.

Favor

Table 15: Case study on the P-Stance dataset.

Text (Target: Homosexual) Label LLMs Pred LLMs Stance Rationale Calibration
Yet that same Bible gives us Christians
a particular anthropology, and reveals
to us the meaning of sex and marriage
within the cosmic order. And herein lies
the problem. If you look to a "holy"
book written long, long ago and betray-
ing its human origins on every page for
guidance on issues of cosmology, bi-
ology, sexuality and other human and
natural sciences, you will inevitably be
in constant conflict with social progress
and, indeed, reality. There is no secular
opposition to homosexuality."

Favor Against

The sentence criticizing the use of a ’holy’ book
for guidance on issues related to sexuality and
natural sciences. It suggests that relying on such
sources will lead to conflict with social progress
and reality. Additionally, the statement asserts
that there is no secular opposition to homosexual-
ity, implying a negative view towards those who
oppose it based on religious beliefs. Overall, the
tone of the sentence is against homosexuality,
indicating a critical stance.

Favor

Text (Target: Gun Control) Label LLMs Pred LLMs Stance Rationale Calibration

Military and police, yes. They’re sworn
and trained to uphold the country and
the laws of the country. The rest is an
ego trip.

Favor Against

The sentence expresses a negative attitude to-
wards gun control in the military and police,
stating that they are sworn and trained to uphold
the country and its laws. However, it is critical
of the use of guns by others, referring to it as an
ego trip. Therefore, the attitude of the sentence
towards gun control is against

Favor

Table 16: Case study on the VAST dataset.

16


	Introduction
	Related Work
	Biases of LLMs in Stance Detection
	Bias Measurement
	Experimental Result
	Sentiment-Stance Spurious Correlations
	Target Preference Bias

	Bias Analysis

	Mitigating Bias with Calibration
	Calibration Network
	Counterfactual Data Augmentation
	Training Objective

	Experimental Setup
	Datasets
	Implementation Details
	Evaluation Metric
	Comparison Models

	Experimental Results
	In-Target Stance Detection
	Zero-Shot Stance Detection
	Mitigating Biases Effect Analysis
	Ablation Study

	Conclusion
	Prompts Setting
	Experimental Result of LLMs Bias
	Human Evaluation of Counterfactual Augmented Data
	Case Study

