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ABSTRACT

Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive
alternatives to Transformers for sequence modeling, offering efficient training and
linear-time inference. However, existing architectures face a fundamental trade-
off between expressivity and efficiency, dictated by the structure of their state-
transition matrices. While diagonal matrices used in architectures like Mamba,
GLA, or mLSTM yield fast runtime, they suffer from severely limited expressiv-
ity. To address this, recent architectures such as (Gated) DeltaNet and RWKV-7
adopted a diagonal plus rank-1 structure, allowing simultaneous token-channel
mixing, which overcomes some expressivity limitations with only a slight de-
crease in training efficiency. Building on the interpretation of DeltaNet’s recur-
rence as performing one step of online gradient descent per token on an associa-
tive recall loss, we introduce DeltaProduct, which instead takes multiple (nh) steps
per token. This naturally leads to diagonal plus rank-nh state-transition matrices,
formed as products of nh generalized Householder transformations, providing a
tunable mechanism to balance expressivity and efficiency and a stable recurrence.
Through extensive experiments, we demonstrate that DeltaProduct achieves su-
perior state-tracking and language modeling capabilities while exhibiting signif-
icantly improved length extrapolation compared to DeltaNet. Additionally, we
also strengthen the theoretical foundation of DeltaNet by proving that it can solve
dihedral group word problems in just two layers.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has revolutionized natural language process-
ing through its self-attention mechanism, enabling both parallel computation across the sequence
length and effective context retrieval. Despite outperforming traditional LSTM models (Hochreiter
& Schmidhuber, 1997) across numerous tasks, Transformers’ quadratic computational complexity
with sequence length presents challenges when dealing with longer sequences. Linear RNNs have
emerged as a promising solution that combines parallel training across the sequence length with lin-
ear inference-time complexity. At the core of these models are the state-transition matrices govern-
ing the recurrence, which fundamentally determine their expressivity (Merrill et al., 2024). While
early linear RNNs like S4 (Gu et al., 2022) or LRU (Orvieto et al., 2023) use token-independent
state-transition matrices, current linear RNNs exclusively use token-dependent state-transition ma-
trices due to their superior expressivity. The first generation of token-dependent linear RNNs, in-
cluding Mamba (Gu & Dao, 2024; Dao & Gu, 2024), GLA (Yang et al., 2024a), and mLSTM (Beck
et al., 2024), uses diagonal state-transition matrices for efficient sequence processing. Newer ar-
chitectures have incorporated non-diagonal structures, often diagonal plus rank-1, enabling simul-
taneous mixing of information across both tokens and channels. This innovation has led to more
expressive models such as (Gated) DeltaNet (Yang et al., 2024b; 2025), TTT-Linear (Sun et al.,
2024), RWKV-7 (Peng et al., 2025), and Titans (Behrouz et al., 2024), which demonstrate superior
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Figure 1: (Left) DeltaProductnh

learns higher-order permutation
groups like S4 in one layer, while
DeltaNet (nh=1) is limited to S2

(parity). (Right) Length extrap-
olation of DeltaProduct improves
significantly with higher nh.

language modeling and in-context retrieval performance, often with only a reasonable decrease in
training efficiency.

Recent work has revealed a fundamental trade-off between training efficiency and expressivity of
linear RNNs, dictated by the structure of their state-transition matrices (Merrill et al., 2024; Sarrof
et al., 2024; Grazzi et al., 2025). Models with diagonal state-transition matrices, such as Mamba and
GLA, are highly efficient to train but face severe expressivity limitations - for instance, they cannot
perform addition modulo 3 on arbitrary length sequences in finite precision (Grazzi et al., 2025,
Theorem 2). Also Transformers face similar limitations (Hahn, 2020; Merrill & Sabharwal, 2023),
since they can be seen as special linear RNNs with state-transition matrix equal to the identity, albeit
with an infinite dimensional state (Katharopoulos et al., 2020). DeltaNet partially overcomes these
limitations through generalized Householder matrices, achieving greater expressivity with only a
modest increase in training cost, though it still requires multiple layers for certain tasks. At the other
extreme, linear RNNs with full state-transition matrices offer maximal expressivity (Cirone et al.,
2024), capable of recognizing any regular language with a single layer (Merrill et al., 2024), but are
prohibitively expensive to train.

To bridge this gap, we propose DeltaProduct, a method that balances expressivity and efficiency
of the recurrence computation. While DeltaNet’s recurrence performs a single gradient step per to-
ken on the squared loss of a linear key-to-value mapping (Wang et al., 2025; Yang et al., 2024b),
DeltaProduct takes nh gradient steps using additional keys and values, yielding state-transition ma-
trices that are products of nh generalized Householder matrices. This connection between the num-
ber of optimization steps and the matrix structure provides an elegant way to interpolate between
diagonal and dense matrices: increasing the number of gradient steps automatically increases the
number of Householder matrices in the product, providing a tunable mechanism to control the re-
currence’s expressivity. Additionally, this structure enables precise control over the norm of state
transition matrices, ensuring they remain ≤ 1 to maintain stability during training on long sequences.

Concretely, we make the following contributions:

• We propose (gated) DeltaProduct, which generalizes (gated) DeltaNet by using products of
generalized Householder transformations as state-transition matrices (Section 3).

• We prove that DeltaNet (DeltaProduct with nh = 1) with 2 layers and an expanded eigenvalue
range can solve word problems for dihedral groups (including S3), extending prior analysis that
was limited to cyclic groups (Grazzi et al., 2025, Theorem 6). This advances our understanding
of DeltaNet’s expressivity when multiple layers are used (Section 4).

• We empirically validate DeltaProduct’s superior performance across multiple domains: solv-
ing complex state-tracking tasks beyond DeltaNet’s capabilities (see Figure 1), achieving bet-
ter results on Chomsky hierarchy benchmarks, and improving language modeling performance
with significantly enhanced length extrapolation (Section 5).

2 BACKGROUND & RELATED WORK

2.1 LINEAR RNNS

Linear RNNs consist of stacked layers, each processing an input sequence of vectors x1, . . . ,xt

(output of the previous layer) to produce an output sequence of vectors ŷ1, . . . , ŷt. We write the
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forward pass of each layer placing emphasis on the linear recurrence (as in Grazzi et al. (2025)) as

Hi = A(xi)Hi−1 +B(xi), ŷi = dec(Hi,xi), where i ∈ 1, . . . , t (1)

H0 ∈ Rn×d is the initial hidden state, A : Rl → Rn×n maps the input to a state-transition matrix,
B : Rl → Rn×d, and dec : Rn×d ×Rl → Rp. The functions A, B, and dec are learnable, with dec
typically containing a feedforward neural network. Different linear RNN variants are distinguished
by their specific implementations of these functions. For example, Mamba (Gu & Dao, 2024; Dao &
Gu, 2024), GLA (Yang et al., 2024a), and mLSTM (Beck et al., 2024) use variations of a diagonal
state-transition matrix A(xi). For a comparison of different linear RNN architectures see Yang
et al. (2024b, Table 4). The linearity of the recurrence allows it to be parallelized along the sequence
length, either via a chunkwise parallel form (Hua et al., 2022; Sun et al., 2023; Yang et al., 2025) or
using a parallel scan (Blelloch, 1990; Martin & Cundy, 2018; Smith et al., 2023; Fan et al., 2024;
Gu & Dao, 2024).

DeltaNet. We base our work on the DeltaNet architecture (Schlag et al., 2021a;b), which has re-
cently attracted renewed interest through the work of Yang et al. (2024b; 2025) who demonstrated
how to parallelize DeltaNet across the sequence length. The DeltaNet layer is parameterized as

A(xi) = I − βikik
⊤
i , B(xi) = βikiv

⊤
i , dec(Hi,xi) = ψ(H⊤

i qi),

where βi = sigmoid(w⊤
β xi), qi,ki ∈ Rn (with ∥ki∥ = 1), vi ∈ Rd are output of learnable

functions of xi and wβ ∈ Rl is a learnable parameter. DeltaNet’s state-transition matrices are
generalized Householder transformations. Unlike diagonal matrices which only mix tokens, these
non-diagonal transformations enable token-channel mixings, significantly enhancing the model’s
expressivity compared to diagonal linear RNNs (Grazzi et al., 2025; Merrill et al., 2024; Peng et al.,
2025). From a geometric perspective, the parameter βi controls the type of transformation. For in-
stance, βi = 0 corresponds to the identity, βi = 1 yields a projection operation, and βi = 2 produces
a reflection in the hyperplane with normal vector ki. DeltaNet also has a natural interpretation from
an online learning perspective. As noted by Yang et al. (2024b); Wang et al. (2025); Liu et al. (2025),
each step of the DeltaNet recurrence can also be viewed as one step of online gradient descent on a
quadratic loss:

Li(H) =
1

2
∥H⊤ki−vi∥22, Hi = Hi−1−βi ∇Li(Hi−1) = Hi−1−βi ki

(
k⊤
i Hi−1−v⊤

i

)
(2)

State-Tracking. Recent work by Grazzi et al. (2025) demonstrates that expanding the eigenvalue
range of linear RNNs’ state transition matrices from [0, 1] to [−1, 1] significantly enhances their
expressivity. For DeltaNet, this modification requires only a simple scaling of βi by 2, enabling one
layer to handle state-tracking tasks such as parity checking and, more generally, any group word
problem where each element of the input sequence corresponds to a permutation of at most two
elements, while for other state-tracking tasks, DeltaNet requires multiple layers (Grazzi et al., 2025,
Theorem 2 and 6). A group word problem associated with a group G consists in mapping sequences
of group elements x1, . . . , xt with xi ∈ G into sequences y1, . . . , yt, where yi = x1 · x2 · · ·xi and
· is the group operation. Group word problems are a way to model state-tacking tasks, and the one
of the permutation group of 5 elements (S5) is notoriously hard to solve for both Transformers and
linear RNNs (Liu et al., 2023; Merrill & Sabharwal, 2023; Merrill et al., 2024).

2.2 RELATED WORK

Linear RNNs have recently been studied from two main perspectives: state-space models and causal
linear attention. State-space models, originating from continuous dynamical systems, inspired vari-
ants such as S4 (Gu et al., 2022), H4 (Fu et al., 2021), and LRU (Orvieto et al., 2023) (see Tiezzi
et al. (2024) for a comprehensive survey). Models like Mamba (Gu & Dao, 2024; Dao & Gu, 2024)
further enhance these by incorporating input-dependent gating mechanisms, significantly improving
language modeling performance. In parallel, Katharopoulos et al. (2020) showed that causal linear
attention Transformers can be reformulated as RNNs with linear sequence-length scaling. Follow-
ing this, Gated Linear Attention (GLA) (Yang et al., 2024a) introduced gating mechanisms similar
to Mamba. Recent studies explored more expressive recurrences via non-diagonal transition matri-
ces, such as DeltaNet (Schlag et al., 2021a; Irie et al., 2023; Yang et al., 2024b), TTT-Linear (Sun
et al., 2024), RWKV-7 (Peng et al., 2025), B’MOJO (Zancato et al., 2024), and Titans (Behrouz
et al., 2024). Additionally, Beck et al. (2024) introduced xLSTM, combining linear and nonlinear
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RNN architectures inspired by LSTM (Hochreiter & Schmidhuber, 1997). Our work shares con-
ceptual similarities with Adaptive Computation Time (ACT) (Graves, 2016), as both approaches
allow RNNs to dynamically determine the computational steps required for each input, resulting in
enhanced flexibility and task performance. This adaptive approach has been further developed in
works like the Universal Transformer (Dehghani et al., 2019), with recent work by Geiping et al.
(2025) demonstrating its effectiveness in modern reasoning tasks. Concurrently to our work, Schöne
et al. (2025) and Movahedi et al. (2025) have explored how fixed point iterations can increase the
expressivity of linear RNNs. Unlike our approach, which enhances the expressivity by increasing
the complexity of the linear recurrence, their approach works by applying the same recurrence mul-
tiple times, effectively increasing the depth of the model without increasing the parameter count.
The two approaches are orthogonal and could be combined.

Products of structured matrices (Kissel & Diepold, 2023) have previously been used as state-
transition matrices in non-linear RNNs—including (Givens) rotation matrices (Dorobantu et al.,
2016; Jing et al., 2017), Kronecker products (Jose et al., 2018), and Householder reflections
(Mhammedi et al., 2017)—chosen for their orthogonal, norm-preserving properties that encour-
age long-term dependency learning (Hochreiter, 1991; Bengio et al., 1994). Recently, Biegun et al.
(2024) applied rotation matrices as state-transition matrices in non-selective state-space models. In
contrast, DeltaProduct is more flexible, since we use products of generalized householder matrices,
which can interpolate between identity, projection, or reflection transformations on a per token basis.

3 DELTAPRODUCT

In this work, we propose DeltaProduct, a generalization of DeltaNet that enhances its expressivity by
featuring state transition matrices formed as a product of generalized Householder matrices. While
DeltaNet’s recurrence can be seen as performing one step of online gradient descent per token,
DeltaProduct further refines the hidden state update multiple times per token, naturally leading to a
more expressive state-transition matrix, where each additional step expands the range of achievable
linear transformations.

Formally, for each input token xi to the layer we generate nh keys as ki,j = Wjxi/∥Wjxi∥2,
nh values as vi,j = Vjxi, and nh betas as βi,j = ϕ(Ujxi) where Wj ,Vj ,Uj , are learnable
weight matrices specific to the j-th gradient step, while ϕ is either the sigmoid or 2× the sigmoid as
suggested by Grazzi et al. (2025) to increase the expressivity and state-tracking capabilities. Then,
we compute nh gradient descent steps using the losses Li,j(H) = ∥H⊤ki,j − vi,j∥22/2, i.e. for
j = 1 . . . nh

Hi,j = Hi,j−1 − βi,j∇Li,j(Hi,j−1) =
(
I − βi,jki,jk

⊤
i,j

)
Hi,j−1 + βi,jki,jv

⊤
i,j ,

where Hi,0 = Hi−1 and Hi,nh
= Hi. Unrolling, we get Hi = A(xi)Hi−1 +B(xi) with

A(xi) =

nh∏
j=1

(
I − βi,j ki,jk

⊤
i,j

)
, B(xi) =

nh∑
j=1

( nh∏
k=j+1

(
I − βi,k ki,kk

⊤
i,k

))
βi,j ki,jv

⊤
i,j .

Hence, by taking multiple gradient descent steps per token, DeltaProduct’s state-transition matrices
are products of generalized Householder transformations, and by expanding such product, A(xi)
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Figure 2: Overview of state-transition matrices in linear RNNs: Diagonal matrices (e.g., in
Mamba/mLSTM) mix tokens only; rank-1 updates (DeltaNet/TTT) mix tokens and channels; and
our proposed DeltaProduct performs rank-nh updates, further increasing the expressivity.

4



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

takes the form of identity plus a matrix of rank at most nh as shown in Figure 2. This formulation
enables DeltaProduct to interpolate between generalized Householder (nh = 1 as in DeltaNet) and
dense matrices, since increasing nh increases the rank of the update performed on the hidden state.

An important consequence of using Householder products is that it allows us to efficiently bound the
norm of A(xi), since the norm of the product is upper bounded by the product of the norms (each
≤ 1), ensuring the stability of the recurrence. This bound would not be possible with a the direct
formulation A(xi) = I −

∑nh

j=1 βi,jki,jk
⊤
i,j , which would also restrict the matrix to be symmetric.

Notably, for each layer, DeltaProduct uses nh distinct key projection matrices to generate different
keys ki,1, . . . ,ki,nh

for the same input token. This ability to generate multiple, potentially orthog-
onal keys is essential for enhancing the recurrence’s expressivity beyond DeltaNet. For instance,
if we were to use identical keys across steps, the product of generalized Householders would col-
lapse into a single generalized Householder transformation with a scaled β (see Lemma 1). Just as
DeltaNet extends to Gated DeltaNet by incorporating a forget gate (Yang et al., 2025), DeltaProduct
can similarly be extended to Gated DeltaProduct (see Appendix B for details).

Implementation. Since each step of DeltaProduct follows the same recurrence structure as
DeltaNet, we can reuse its recurrence implementation written in Triton (Tillet et al., 2019), which
is available through the FLASH-LINEAR-ATTENTION library (Yang & Zhang, 2024). However,
DeltaProduct differs by using nh keys and values per token, resulting in a recurrence nh times
longer than DeltaNet’s. For a sequence of length l with nh Householders, the keys (and similarly
the values and betas) are arranged as: [k1,1, . . . ,k1,nh

,k2,1, . . . ,k2,nh
, . . .] . For gating, we multiply

a scalar gate to the state transition matrix, as in Gated DeltaNet (Yang et al., 2025), using a single
gate gi ∈ R per token xi, structured as: [g1, 1, . . . , 1, g2, 1, . . . , 1, . . .] where each gi is followed
by (nh − 1) ones to match the number of keys and values. Once the recurrence is evaluated, we
keep only every nh-th element of the output, so that the output sequence retains the same length as
the input sequence. Note that the runtime of DeltaProduct scales linearly with nh as demonstrated
in Appendix C.

Theoretical Expressivity. As shown by Grazzi et al. (2025, Theorem 3 and 4), a linear RNN with
state-transition matrices parameterized as the product of nh generalized Householder transforma-
tions (whose eigenvalues lie in [−1, 1]) can solve any group word problem with state-transitions
limited to permutations of at most nh + 1 elements in one layer. Moreover, multiple layers allow it
to recognize any regular language with sufficiently large nh. Hence, by increasing nh, DeltaProduct
provides a tunable mechanism to control the expressivity of the recurrence, making it particularly
effective for tasks requiring complex state tracking. Moreover, since each Householder transform
is weighted by a coefficient βi,j , the model can learn to set specific βi,j values to zero when pro-
cessing certain tokens. This adaptively “skips” one or more gradient steps, effectively allowing the
network to modulate compute on a token-by-token basis, thereby providing a route toward dynamic
computation, reminiscent of ACT (Graves, 2016).

4 TWO LAYER DELTANET CAN SOLVE DIHEDRAL GROUP WORD PROBLEMS

In contrast to increasing the number of gradient steps per token, the expressivity of DeltaNet (equiv-
alent to DeltaProduct with nh = 1) can also be enhanced by increasing the number of layers and its
theoretical limit is still unknown. In Grazzi et al. (2025, Theorem 6) it is shown that with 2 layers
and the extended eigenvalue range, DeltaNet can compute addition modulo m, which corresponds
to solving the group word problem for the cyclic group Zm, for any m ∈ N.

We extend Grazzi et al. (2025, Theorem 6) to prove that, under identical assumptions, DeltaNet can
solve the group word problem for the dihedral group Dm, for any m ∈ N. The dihedral group
Dm represents the symmetries (both rotations and reflections) of a regular m-sided polygon. As a
notable example, D3 is isomorphic to the symmetric group S3. The linear RNN construction used
in this result can be implemented using a 2-layer DeltaNet Model with two heads in the first layer.
Theorem 1 (Dihedral group word problems with reflections). A finite precision linear RNN with
two layers in the form (1), where in the first layer A(xt) = diag(a(xt)), with a(xt) ∈ {1,−1}2
and in the second layer A(xt) ∈ H ⊂ R2×2 where H = {I − 2vv⊤ : v ∈ R2, ∥v∥ = 1} is the set
of all 2D reflections, can solve the group world problem of the dihedral group Dm for any m ∈ N .

The complete proof is provided in Appendix D and uses the following construction. In the first
layer, the linear RNN will compute parity for rotations and reflections separately, i.e. it will record
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Figure 3: Accuracy on state-tracking tasks for permutation groups S3, S4, A5, and S5, plot-
ted against sequence length (x-axis). (Top row) Varying the number of Householder products
nh for a single layer DeltaProductnh

[−1, 1]. (Bottom row) Varying the number of layers l of
DeltaProduct1[−1, 1]/DeltaNet[−1, 1] (single Householder). Dashed vertical line at training con-
text length 128. Higher nh improves extrapolation to longer sequences of permutations, e.g., S3 can
be learned with nh = 2 with a single layer while three layers are required when keeping nh = 1.

if the number of past rotations (reflections) is even or odd. The recurrent state of the second layer
will have 2m possible values (same as the order of Dm) and each will be decoded differently based
on the parity of reflections. The parity of rotations, combined with the group element, determines
which reflection matrix to use as the state transition matrix of the second layer.

5 EXPERIMENTS

We evaluate DeltaProduct on a range of tasks—from state-tracking and chomsky hierarchy problems
to standard language modeling—to assess its expressivity and efficiency. In each experiment, unless
otherwise specified, we vary the number of Householder transformations per token (nh) while keep-
ing other parameters fixed, thereby trading-off increased computational cost and parameter count
for enhanced expressivity. Throughout the experiments we use either the suffix [−1, 1] or [0, 1] after
each method, to denote the eigenvalue ranges of its state transition matrices.

5.1 STATE-TRACKING

H0
H1

k0

k1

θ

2θ

x

x′

x′′

Figure 4: Two reflec-
tions produce a rotation:
Reflecting x across
planes H0 and H1 (with
normals k0 and k1)
yields a rotation by 2θ,
where θ is the angle
between the planes.

Setup. We evaluate DeltaProduct’s ability to capture complex state dy-
namics using group word problems of increasing difficulty, specifically
on the permutation groups S3, S4, A5, and S5, as implemented by Mer-
rill et al. (2024). We train on sequences of up to 128 products of per-
mutations/tokens in length and subsequently measure extrapolation on
sequences of up to 512 tokens. Throughout, we use the extended setting,
allowing eigenvalues in [−1, 1]. DeltaProduct models failed to learn even
the training context-length when restricted to the standard eigenvalue
range [0, 1], regardless of the number of Householder transformations
nh and so we omit the results. See Appendix E.1 for details on the ex-
perimental setup.

Results. Figure 3 (top row) demonstrates the benefits of increasing the
number of gradient steps nh per token for a single layer DeltaProduct.
In agreement with Grazzi et al. (2025, Theorem 3), for S3, achieving
reliable performance beyond sequence lengths of 128 requires nh = 2,
while S5 needs nh = 4. Unexpectedly, S4 and A5 can extrapolate ro-
bustly using only nh = 2 despite the theorem suggesting 3 and 4 re-
spectively. This efficiency arises from their isomorphism to subgroups
of SO(3,R) (Schwarzbach, 2010, Ch. 1, Sec. 2.4): each element can be mapped to a 3D rotation
via just two Householder reflections (see Figure 4); a consequence of the Cartan-Dieudonné theo-
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rem (Gallier, 2011) stating that any orthogonal transformation (e.g. rotations) can be expressed as a
composition of reflections. See Appendix E.1 for details on the isomorphisms of S4, A5, and S5.

In Figure 3 (bottom row), we explore the limits of the expressivity of DeltaNet (i.e. nh = 1) with
multiple layers, which is still not fully understood theoretically. Increasing the number of layers
while keeping nh = 1 improves performance but less effectively than increasing nh. Interestingly,
DeltaNet cannot learn S4 and S5 even with 5 layers, and with two layers, it performs poorly also
on S3, even though Theorem 1 shows that it can solve it. This suggests that simply increasing
the number of layers may not be sufficient to attain the improvements of DeltaProduct enabled by
incorporating more Householder transformations.

Analysis. To empirically validate whether DeltaProduct2[−1, 1] exploits the isomorphism of S4 to
subgroups of SO(3,R), we verified two hypotheses: whether both householders act as reflections
(β0 = β1 = 2) composing to form rotations, and whether the keys exist in a three-dimensional
subspace. By recording β0 and β1 values (representing the first and second householder in the
product) across all 24 permutations of S4, we find that a single head had indeed learned to use
both Householder transformations as reflections where β0 = β1 = 2, effectively creating rotation
matrices as shown in Figure 11. This pattern is evident in Figure 5 (left), where this head con-
sistently displays beta values of approximately 2, confirming that the model successfully learns to
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Figure 5: (Left) Estimated beta values for
DeltaProduct2[−1, 1] on all permutations of S4,
clustering near 2 (reflection). (Right) PCA of key
vectors shows that the first three components explain
most of the variance.

approximate rotations by combining two re-
flections. To further verify whether the
keys are in a three-dimensional subspace,
we apply Principal Component Analysis
(PCA) (Pearson, 1901) to the key vectors
of the head where beta values approached
2. The results, displayed in Figure 5 (right),
demonstrate that three principal compo-
nents account for over 95% of the variance
in the key space. This finding strongly sup-
ports our theoretical understanding, as it in-
dicates that the model primarily operates in
a three-dimensional subspace, which aligns
with the structure of SO(3,R).

5.2 CHOMSKY HIERARCHY
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Figure 6: Results on Modular Arithmetic
with brackets: DeltaProduct [−1, 1] con-
sistently outperforms all other methods.

Setup. We conducted experiments on selected formal
language tasks originally introduced by Deletang et al.
(2023). Our goal is to demonstrate the improvements in
length extrapolation that can be achieved using multi-
ple Householder matrices in the state-transition matrix
compared to DeltaNet. Following Grazzi et al. (2025),
we focus on three tasks: parity, modular arithmetic
without brackets (both regular languages), and modu-
lar arithmetic with brackets (a context-free language).
We trained DeltaProductnh

with nh ∈ {2, 3, 4} on se-
quences of length 3 to 40 and tested on sequences rang-
ing from 40 to 256 to evaluate generalization to longer
inputs. We compare our results against Transformer, mLSTM and sLSTM from Beck et al. (2024),
Mamba (Gu & Dao, 2024), and DeltaNet (Yang et al., 2024b). For both Mamba and DeltaNet, we
experiment with eigenvalue ranges restricted to [0, 1] and extended to [−1, 1].

Results. As shown in Table 2, DeltaProductnh
with nh ≥ 2 demonstrates greater expressivity com-

pared to DeltaNet and other baselines. This performance improvement is particularly pronounced
when using the extended eigenvalue range [−1, 1], which aligns with the findings of Grazzi et al.
(2025). Notably, we observe the most significant improvement in the modular arithmetic with brack-
ets task, where DeltaNet[−1, 1] previously showed limitations (Grazzi et al., 2025) (see Figure 6).
Additional experimental details and hyperparameter values are provided in Appendix E.2.
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Table 1: Performance comparison using lm-eval-harness benchmark (Gao et al., 2024) (SlimPajama
(SPJ) reproduced from Yang et al. (2024b), Fine-Web (FW) ours). Results are shown for DeltaProd-
uct and Gated DeltaProduct. We use 8 heads for each layer, unless otherwise specified.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg. SWDE SQUAD FDA
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ ↑ cont. ↑ cont. ↑ cont. ↑

15
B

to
ke

ns
SP

J 340M params
Transformer++ 28.39 42.69 31.0 63.3 34.0 50.4 44.5 24.2 41.2 42.2 22.1 21.4
Mamba [0, 1] 28.39 39.66 30.6 65.0 35.4 50.1 46.3 23.6 41.8 12.4 23.0 2.1
GLA [0, 1] 29.47 45.53 31.3 65.1 33.8 51.6 44.4 24.6 41.8 24.0 24.7 7.3
DeltaNet [0, 1] 28.24 37.37 32.1 64.8 34.3 52.2 45.8 23.5 42.1 26.4 28.9 12.8

35
B

to
ke

ns
F

W

DeltaNet[−1, 1] 340M 26.92 43.07 29.8 69.0 41.0 50.9 46.6 24.5 43.6 26.4 30.2 3.7
DeltaNet[−1, 1] 12 heads, 392M 26.57 36.76 31.8 69.2 42.3 50.9 47.2 24.4 44.3 15.8 11.0 0.18
DeltaProduct2[−1, 1] 392M 26.43 30.66 34.0 68.9 42.4 53.1 48.9 25.9 45.5 32.0 30.0 3.9
DeltaProduct3[−1, 1] 443M 25.94 29.91 34.2 69.9 43.2 51.9 48.2 24.1 45.2 30.6 30.4 5.3

Gated DeltaNet[−1, 1] 340M 25.97 33.57 33.1 69.5 44.1 51.1 50.9 26.7 45.9 27.4 31.4 4.2
Gated DeltaProduct2[−1, 1] 393M 25.12 30.03 34.2 69.1 44.6 55.3 49.8 25.3 46.4 30.1 31.6 6.6
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Figure 7: Length extrapolation results for DeltaProductnh
[−1, 1] on long context datasets, where

nh ∈ {1, 2, 3}, tested on sequences up to 16,384 tokens. Solid and dashed lines represent models
with 8 and 12 heads respectively. Note that DeltaProduct2[−1, 1] with 8 heads (392M parameters)
matches the parameter count of DeltaNet (nh = 1) with 12 heads, while achieving significantly
better length extrapolation.
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Figure 8: Scaling analy-
sis of DeltaProductnh

[−1, 1]
(H=heads) w.r.t. final train-
ing perplexity on FineWeb
(top), WikiText, and Lam-
bada via lm-eval harness.

Setup. We trained two model variants: DeltaProductnh
[−1, 1] and

Gated DeltaProductnh
[−1, 1] using the FineWeb dataset (Penedo

et al., 2024) with 35B tokens. We adopted the training hyper-
parameters and pipeline of Grazzi et al. (2025) (detailed in Ap-
pendix E.3.1). We evaluated the models using language understand-
ing, reasoning, and retrieval benchmarks from lm-eval-harness (Gao
et al., 2024), with task specifics in Appendix E.3.2. To assess extrap-
olation, we measured perplexity beyond the training context length
of 2048 tokens on CodeParrot (Tunstall et al., 2022) for coding,
OpenThoughts-114k-Math (Team, 2025) for math, TriviaQA (Joshi
et al., 2017) for knowledge retrieval, and SlimPajama (Soboleva
et al., 2023) for language modeling.

Results. Our experiments demonstrate that both DeltaProduct and
Gated DeltaProduct on average outperform their baseline counter-
parts (DeltaNet[−1, 1] and Gated DeltaNet[−1, 1]) across the con-
sidered language modeling benchmarks when we increase nh, as
shown in Table 1. Interestingly, DeltaProduct3[−1, 1] achieves com-
parable performance to Gated DeltaNet[−1, 1], despite lacking a
forget gate mechanism - a component considered crucial for lan-
guage modeling tasks (Hochreiter & Schmidhuber, 1997; Gu & Dao,
2024). Furthermore, our training process remained stable even as we
increased the value of nh (see Figure 12). Remarkably, as shown
in Figure 7, DeltaProduct’s length extrapolation performance in-
creases significantly with higher nh values, and at nh = 3, the performance degradation is minimal
across the sequence length (see also Figure 13 for results up to 32k sequence length). We hypothe-
size that DeltaProduct achieves better length extrapolation by enhancing DeltaNet’s forgetting mech-
anism. While DeltaNet requires n rank-1 updates to reset its state to zero, DeltaProduct can accel-

8



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

erate this forgetting process by a factor of nh. This improvement could allow DeltaProduct3[−1, 1]
to learn effective forgetting patterns during training without an additional scalar forget gate, unlike
Gated DeltaNet. With a head embedding dimension of 128, DeltaProduct3[−1, 1] can reset its state
in approximately 43 tokens, making it much more efficient at handling long-range dependencies.
However, our experiments show that DeltaProduct2[−1, 1] still performs better with a forget gate,
as demonstrated by its improved results when compared to the non-gated version (see Figure 13).
To fairly compare DeltaProduct and DeltaNet, we conducted scaling experiments that accounted for
DeltaProduct’s additional parameters from its extra key, value, and β projection layers. We varied
the number of heads in both models. As shown in Figure 8 (top), DeltaProduct consistently achieves
better performance than DeltaNet, though the perplexity difference is modest. We expanded our
analysis by evaluating DeltaProduct2[−1, 1] and DeltaNet across multiple benchmarks from lm-
eval-harness (Gao et al., 2024). The results, shown in Figure 8 (bottom), reinforce our findings from
the fineweb dataset. DeltaProduct maintains its performance advantage on both WikiText and Lam-
bada tasks, showing improved perplexity across all model configurations. Our results align with the
findings from Section 5.1 on state tracking: adding more householders proves more effective for
improving length extrapolation compared to increasing the number of heads/layers.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We presented DeltaProduct, an extension of DeltaNet that uses products of Householder transforma-
tions as state-transition matrices. This approach bridges the gap between structured and dense ma-
trices, with each recurrence step interpretable as multiple steps of gradient descent on an associative
recall loss (compared to DeltaNet’s single step). The number of Householder matrices (nh) serves as
a tunable parameter balancing expressivity and computational efficiency. Our experiments demon-
strate DeltaProduct’s superior performance over DeltaNet in state tracking, formal language recog-
nition, and language modeling, with particularly strong length extrapolation results. DeltaProduct
represents a promising step toward developing sequence models that are both more capable while
still remaining scalable. Limitations. DeltaProduct has several key limitations. First, compared to
DeltaNet, it requires more computational resources and memory, with requirements scaling linearly
in nh. Second, while both models can learn group word problems, we lack a comprehensive theoret-
ical framework for understanding which problems can be learned when using multiple layers with
relatively small values of nh (relative to the group’s complexity). Future Work. Future research
could focus on integrating alternative matrix parametrizations, such as those used in RWKV-7, and
identifying problems that DeltaProduct cannot solve under finite precision constraints, following the
work by Sarrof et al. (2024) and Grazzi et al. (2025).

ACKNOWLEDGEMENTS

We would like to thank Songlin Yang and Eddie Bergman for constructive discussions. We ac-
knowledge the support and assistance of the Data Science and Computation Facility and its Support
Team, in particular Mattia Pini, in utilizing the IIT High-Performance Computing Infrastructure,
on which we run part of our experiments. This research was partially supported by the follow-
ing sources: PNRR MUR Project PE000013 CUP J53C22003010006 “Future Artificial Intelligence
Research (FAIR)“, funded by the European Union – NextGenerationEU, and EU Project ELSA un-
der grant agreement No. 101070617. TAILOR, a project funded by EU Horizon 2020 research
and innovation programme under GA No 952215; the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under grant number 417962828; the European Research Council
(ERC) Consolidator Grant ’Deep Learning 2.0’ (grant no. 10 This research was partially funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant num-
ber 539134284, through EFRE (FEIH 2698644) and the state of Baden-Württemberg. Frank Hutter
acknowledges financial support by the Hector Foundation. The authors acknowledge support from
ELLIS and ELIZA. Funded by the European Union. The authors gratefully acknowledge the Gauss
Center for Supercomputing eV (www.gauss-centre.eu) for funding this project by provid-
ing computing time on the GCS supercomputer JUWELS at Jülich Supercomputing Center (JSC).
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Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb Datasets: Decanting the Web for
the Finest Text Data at Scale, 2024.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Haowen Hou, Janna Lu, William Merrill,
Guangyu Song, Kaifeng Tan, Saiteja Utpala, Nathan Wilce, Johan S. Wind, Tianyi Wu, Daniel
Wuttke, and Christian Zhou-Zheng. RWKV-7 ”Goose” with Expressive Dynamic State Evolution,
2025.

12



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 784–789, 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The Expressive Capacity of State Space Models:
A Formal Language Perspective. Advances in Neural Information Processing Systems, 2024.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021a.

Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative inference
using fast weight memory. In International Conference on Learning Representations, 2021b.
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A DELTAPRODUCT WITH IDENTICAL KEYS

Lemma 1. Let k ∈ Rn be nonzero, and let α1, . . . , αm be real scalars. Then
m∏
j=1

(
I − αj kk

⊤) = I − α∗ kk⊤

for some real scalar α∗ depending on {αj}mj=1.

Proof. Without loss of generality, assume ∥k∥ = 1. Otherwise, factor out ∥k∥ to rescale each αj .

If m = 1, then the statement is trivially satisfied with α∗ = α. Suppose the statement is true for
m ≥ 1, i.e.

∏m
j=1(I− αj kk

⊤) = I− α(m) kk⊤. Multiplying by (I− αm+1 kk
⊤) produces

I−
[
α(m) + αm+1 − α(m)αm+1

]
kk⊤.

Hence, by induction, the product of any number of such factors remains of the form I−α∗kk⊤.

B GATED DELTAPRODUCT

When adapting the Gated DeltaNet approach to Gated DeltaProduct, we define the state-transition
matrices A and input matrices B as follows:

A(xi) = gi

nh∏
j=1

(
I − βi,j ki,jk

⊤
i,j

)
, B(xi) =

nh∑
j=1

( nh∏
k=j+1

(
I − βi,k ki,kk

⊤
i,k

))
βi,j ki,jv

⊤
i,j .

where the gating term gi is computed as:

gi = sigmoid(wgxi) ∈ [0, 1], wg ∈ Rl
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Figure 9: DeltaProductnh
scales linearly with nh. Runtime analysis of a single layer of DeltaProd-

uct.

We evaluate the DeltaProduct layer on sequence lengths logarithmically spaced between 64 and
8192, while varying the number of Householder reflections from 1 to 4. Experiments were con-
ducted on an Nvidia L40 GPU using bfloat16 precision with a fixed batch size of 4. For each
configuration, the model was run for 200 iterations and the runtimes were averaged following a
burn-in phase of 3 iterations. The model was configured with a hidden size of 1024, a head dimen-
sion of 128 with 8 attention heads, and an expansion factor of 1.0. All models were compiled using
torch.compile to ensure optimized performance. At a sequence length of 8192, the Delta Prod-
uct layer achieved runtimes of approximately 0.006 seconds for 1 Householder, 0.010644 seconds
for 2 Householder reflections, 0.01527 seconds for 3, and 0.01986 seconds for 4, respectively. These
results, as shown in Figure 9, provide empirical evidence that the runtime increases linearly with the
number of householders, since the computational cost scales as nh times the sequence length.
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D PROOF OF THEOREM 1

Proof. The elements of the dihedral groupDm can be divided intom rotations R = {r0, . . . , rm−1}
and m reflections S = {s0, . . . , sm−1}. The identity is r0. To be able to solve the corresponding
word problem, we would like to map sequences of group elements x1, . . . , xt with xi ∈ R∪ S into
sequences y1, . . . , yt with yi = x1 · x2 · · ·xi and · is the group operation, that for dihedral groups is
defined as

ri · rj = ri+j mod m, ri · sj = si+j mod m, si · rj = si−j mod m, si · sj = ri−j mod m. (3)

Note that a product of two rotations is commutative, while the product of two reflections or a reflec-
tion with a rotation is not. Indeed for m ≥ 3 Dm, is not an abelian group.

The constructions of the two layers of the linear RNN builds upon the one for the cyclic group Zm

outlined in (Grazzi et al., 2025, Theorem 6). The first layer is constructed to output parity separately
for rotations and reflections. In particular, using the following diagonal recurrence which indicates
in the first (second) coordinate whether the number of rotations (reflections) is even (0) or odd (1).

h
(1)
0 = 0, h

(1)
t = a(xt)⊙ h

(1)
t−1 + b(xt), y

(1)
t = dec(1)(ht, xt) = (xt, ht,1, ht,2).

a(xi)1 =

{
−1 if xi ∈ R
1 if xi ∈ S a(xi)2 =

{
−1 if xi ∈ S
1 if xi ∈ R

b(xi)1 =

{
1 if xi ∈ R
0 if xi ∈ S b(xi)2 =

{
1 if xi ∈ S
0 if xi ∈ R

This recurrence can be implemented also by DeltaNet, which uses generalized Householder matri-
ces, but it requires at least 2 heads. For the second layer, we have instead the following constructions,
which selects the appropriate reflection based on the parity of the rotations and uses the parity of the
reflections for dec.

h
(2)
0 = (1, 0)⊤, h

(2)
t = A(2)(y

(1)
t )h

(2)
t−1, y

(2)
t = dec(2)(h

(2)
t ,y

(1)
t )

A(2)(y) = H(θ(y1, y2)) =

[
cos θ(y1, y2) sin θ(y1, y2)
sin θ(y1, y2, ) − cos θ(y1, y2)

]
dec(2)(h,y) =

{
ri∗ if y3 = 0

sm−i∗ if y3 = 1
, i∗ = argmax

i∈{0,...,m−1}
max(c⊤i h,d

⊤
i h)

where y = (y1, y2, y3)
⊤ ∈ R∪S×{0, 1}×{0, 1}, H(α) is the 2×2 reflection matrix that reflects

all vectors by a line having an angle of α/2 with the line passing from the origin and the vector
(1, 0)⊤ and θ : R ∪ S × {0, 1} → R determines the angle of the reflection and is defined for all
i ∈ {0, . . . ,m− 1} as

θ(ri, 1) =
(1− 2i)π

m
, θ(ri, 0) =

(1 + 2i)π

m
, θ(sj , 1) =

−2iπ

m
, θ(si, 0) =

(2 + 2j)π

m
.

Moreover, C = {c0, . . . , cm−1} and D = {d0, . . . ,dm−1} are two sets of states and are defined as

d0 = h
(2)
0 = (1, 0)⊤, c0 = H(π/m)d0,

di = R(2iπ/m)d0, ci = R(−2iπ/m)c0 for all i ∈ {0, . . . ,m− 1},
where R(β) is a rotation matrix with angle β ∈ R.

Let α, γ ∈ R, the following are standard identities of products of 2D rotations and reflections.

R(α)R(γ) = R(α+ γ), H(α)H(γ) = R(α− γ),

R(α)H(γ) = H (α+ γ) H(γ)R(α) = H (γ − α) .

From our choice of d0 = (1, 0)⊤ and c0, for any α ∈ R we have

R(α)d0 = H(α)d0, and
R(α)c0 = R(α)H(π/m)d0 = R(α)R(π/m)d0 = R(α+ π/m± π/m)d0

= H(α+ 2π/m)H(π/m)d0 = H(α+ 2π/m)c0.
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Moreover, from our choice of θ, di and ci, using the identities above and the the fact that R is a
periodic function with period 2π we have that

di = R(2iπ/m)d0 = R(2iπ/m)H(π/m)c0 = H(θ(ri, 0))c0

ci = R(−2iπ/m)c0 = R(−2iπ/m)H(π/m)d0 = H(θ(ri, 1))d0

dm−i = R(−2iπ/m)d0 = H(−2iπ/m)d0 = H(θ(si, 1))d0

cm−i = R(+2iπ/m)c0 = H((2 + 2i)π/m)c0 = H(θ(si, 0))c0

for every i ∈ {0, . . . ,m− 1}. Therefore, we can write

H(θ(rj , 1))di = R(θ(rj , 1)− θ(ri, 0))c0 = R(−2(i+ j)π/m)c0 = ci+j mod m,

H(θ(rj , 0))ci = R(θ(rj , 0)− θ(ri, 1))d0 = R(2(i+ j)π/m)d0 = di+j mod m,

H(θ(sj , 1))di = R(θ(sj , 1)− θ(sm−i, 1))d0 = R(−2(i+ j)π/m)d0 = d−i−j mod m,

H(θ(sj , 0))ci = R(θ(sj , 0)− θ(sm−i, 0))c0 = R((2 + 2(i+ j))π/m)c0 = c−i−j mod m,

(4)

for every i, j ∈ {0, . . . ,m−1}. We proceed to verify that the output of the second layer is computed
correctly: satisfying the product rule for the dihedral group in (3), i.e. we want to verify that

y
(2)
t =


ri+j mod m if y(2)t−1 = ri, xt = rj

si+j mod m if y(2)t−1 = ri, xt = sj

si−j mod m if y(2)t−1 = si, xt = rj

ri−j mod m if y(2)t−1 = si, xt = sj

(5)

Where we set y(2)0 = r0. First note that when y(2)t ∈ S , then y(1)t,3 = 1 and when y(2)t ∈ R, then

y
(1)
t,3 = 0. We consider two cases.

Case 1. If y(2)t−1 = ri and hence y(1)t−1,3 = 0, then using (4) we obtain

h
(2)
t = A(2)(y(1))h

(2)
t−1 =


H(θ(rj , 1))di = ci+j mod m if xt = rj , y

(1)
t,2 = 1

H(θ(rj , 0))ci = di+j mod m if xt = rj , y
(1)
t,2 = 0

H(θ(sj , 1))di = d−i−j mod m if xt = sj , y
(1)
t,2 = 1

H(θ(sj , 0))ci = c−i−j mod m if xt = sj , y
(1)
t,2 = 0

This, together with the definition of dec(2) implies that

y
(2)
t = dec(2)(h

(2)
t ,y

(1)
t ) =

{
ri+j mod m if xt = rj , y

(1)
t,3 = 0

si+j mod m if xt = sj , y
(1)
t,3 = 1

(6)

Case 2. If instead y(2)t−1 = si and hence y(1)t−1,3 = 1, then using (4) we obtain

h
(2)
t = A(2)(y(1))h

(2)
t−1 =


H(θ(rj , 1))dm−i = cj−i mod m if xt = rj , y

(1)
t,2 = 1

H(θ(rj , 0))cm−i = dj−i mod m if xt = rj , y
(1)
t,2 = 0

H(θ(sj , 1))dm−i = di−j mod m if xt = sj , y
(1)
t,2 = 1

H(θ(sj , 0))cm−i = ci−j mod m if xt = sj , y
(1)
t,2 = 0

This, together with the definition of dec(2) implies that

y
(2)
t = dec(2)(h

(2)
t ,y

(1)
t ) =

{
si−j mod m if xt = rj , y

(1)
t,3 = 1

ri−j mod m if xt = sj , y
(1)
t,3 = 0

. (7)

Note that (6) and (7) imply (5). Setting the output of the linear RNN equal to the output of the
second layer concludes the proof.

E EXPERIMENTS

E.1 STATE-TRACKING
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Figure 10: The
permutations of the
diagonals of the
cube resulting from
rotating the cube
are exactly the S4

group.

Clarification on the isomorphisms of S4, A5, and S5 The rotation group of
a cube is isomorphic to the symmetric group S4. This correspondence arises
because the cube has exactly four space diagonals, and every proper rota-
tion—that is, every orientation-preserving isometry of the cube about an axis
through its center—permutes these diagonals in all possible ways (see Fig-
ure 10). In particular, these proper rotations include, for example, the 90◦,
180◦, and 270◦ rotations about axes passing through the centers of opposite
faces, the 180◦ rotations about axes through the midpoints of opposite edges,
and the 120◦/240◦ rotations about axes through opposite vertices. Hence, the
proper rotational symmetries of the cube correspond precisely to the permu-
tations of its four space diagonals (Gallian, 2021).

Similarly, a regular dodecahedron contains exactly five special cubes sym-
metrically arranged within it. Each proper rotation of the dodecahedron—
that is, every orientation-preserving rigid motion mapping the dodecahedron
onto itself—rearranges these inscribed cubes by an even permutation. This
property makes the rotation group of the dodecahedron isomorphic to the alternating group A5, the
group of all even permutations of five elements (Foster, 1990).

When both proper rotations and reflections (orientation-reversing symmetries) are considered, the
full symmetry group of the dodecahedron corresponds exactly to the symmetric group S5, since
reflections allow both even and odd permutations of the five hidden cubes (Foster, 1990).

Experimental Details. We used the experimental setup from Merrill et al. (2024) and sampled
2,000,000 training datapoints at sequence length 128 and 500,000 test datapoints at sequence length
512. We did not use a curriculum over sequence length during training. The models were trained
using AdamW optimizer (Loshchilov & Hutter, 2019) with parameters β1 = 0.9, β2 = 0.999, and
ϵ = 10−8 in PyTorch (Paszke et al., 2019). We used a learning rate of 10−3 with cosine annealing
(Loshchilov & Hutter, 2017) and trained for 100 epochs with a batch size of 1024, except for the S3

models which required a batch size of 2048 for more reliable results. All models used a single-layer
DeltaProduct architecture featuring 12 heads (more heads made the results more reliable) and a head
dimension of 32. We applied a weight decay coefficient of 10−6. The β values were extracted from
the forward pass of the trained models using NNsight (Fiotto-Kaufman et al., 2024). We use the
PCA implementation in scikit-learn (Pedregosa et al., 2011).

0

2
Head 0 Head 1 Head 2 Head 3

0

2
Head 4 Head 5 Head 6 Head 7

0 2
0

2
Head 8

0 2

Head 9

0 2

Head 10

0 2

Head 11

0

1

Figure 11: β0 and β1 values across all 24 permutations in S4 in DeltaProduct2[−1, 1]. We find that
only head 6 (shown in Figure 5) learns to use both Householders as reflections (β0 ≈ 2, β1 ≈ 2)
allowing it to learn the rotation to solve S4.
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E.2 CHOMSKY HIERARCHY

Here, we provide additional details on the formal language tasks and experimental protocol of Sec-
tion 5.2.

E.2.1 EXPERIMENTAL SETUP

Similar to Beck et al. (2024), we trained each model with sequence lengths ranging from 3 to 40
and evaluated on lengths from 40 to 256, to understand the length generalization capabilities. We
take the results shown in Table 2 for Transformer (Vaswani et al., 2017), mLSTM, sLSTM (Beck
et al., 2024), Mamba (Gu & Dao, 2024) directly from Grazzi et al. (2025). All DeltaProduct and
DeltaNet models contain 3 layers with 1 head each and heads’ dimensions set to 128, except for
modular arithmetic with brackets, where we use 12 heads and set the heads’ dimensions to 32.
Both models use a causal depthwise 1D convolution with a kernel size of 4 after the query/key/value
projection. For modular arithmetic, we also use a gradient clipping norm of 1.0. We train each model
using AdamW (Loshchilov & Hutter, 2019) using a learning rate of 5e-4, batch size of 1024, 0.1
weight decay, and a cosine annealing learning rate schedule (Loshchilov & Hutter, 2017) (minimum
learning rate: 1e-6) after 10% warm-up steps. We train on the modular arithmetic and parity tasks
for 100k and 20k steps in total, respectively. At each training step, we make sure to generate a valid
random sample from the task at hand (see below). We repeat the runs 3 times with different seeds
each, and later pick the best to report in Table 2.

E.2.2 EVALUATED TASKS

In Section 5.2, we empirically evaluated three tasks—parity, modular arithmetic without brackets,
and modular arithmetic with brackets—spanning different levels of the Chomsky Hierarchy. These
tasks were originally introduced by Deletang et al. (2023) and later used for benchmarking xL-
STM (Beck et al., 2024, Figure 4). Below, we provide details for each task, where |Σ| denotes the
vocabulary size and Accrand represents the accuracy of random guessing:

• Parity (|Σ| = 2, Accrand = 0.5). Given a binary sequence x = x1 . . . xt ∈ {0, 1}t, the parity
label yt ∈ {0, 1} is 1 if the total number of ones in the sequence is odd, and 0 otherwise. This task
is equivalent to computing the sum of all previous values modulo 2, i.e., yt = (

∑t
i=1 xi) mod 2.

• Modular Arithmetic without Brackets (|Σ| = 10, Accrand = 1/5). Given a set of special
tokens Σs = {+,−, ∗,=, [PAD]} and a modulus m ≥ 1, we define Σ = Σs ∪ {0, . . . ,m − 1}.
The label yt corresponds to the result of evaluating the arithmetic operations in the sequence
x = x1, . . . , xt, computed modulo m. In our experiments, we set m = 5. An example is:

2+ 1− 2 ∗ 2− 3 = 1 [PAD]

• Modular Arithmetic with Brackets (|Σ| = 12, Accrand = 1/5). This task follows the same
definition as modular arithmetic without brackets but includes an extended set of special tokens,
Σs = {+,−, ∗,=, ), (, [PAD]}, allowing for nested expressions. Again, we setm = 5. An example
sequence is:

((1− (−2)) + ((4) + 3)) = 0 [PAD]

E.3 LANGUAGE MODELING

E.3.1 EXPERIMENTAL SETUP

We follow the same basic training setup as in (Grazzi et al., 2025). We use the training pipeline
flame from the flash-linear-attention (Yang & Zhang, 2024) repository. All of our models are
trained on NVIDIA L40s or NVIDIA A100 40GB GPUs. We used 16 to 32 GPUs at a time to train
one model, in either a 2 or 4 node setup, depending on resource availability. We used DeepSpeed
with ZeRO-2 (Rajbhandari et al., 2020) for distributed training. All models were trained for 66 758
steps with a global batch size of 524 288, a learning rate of 3e-4, and a training context length of
2 048 tokens. We used two steps of gradient accumulation in the 16 GPU setup. We optimized
the models with AdamW (Loshchilov & Hutter, 2019) (0.01 weight decay) and used cosine anneal-
ing (Loshchilov & Hutter, 2017) for the learning rate schedule with linear warm up for 512 steps.
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Table 2: Performance of DeltaProductnh
[−1, 1], nh ∈ {2, 3, 4}, on formal language tasks. We

report the best of 3 runs. Scores are scaled accuracy, with 1.0 indicating perfect performance and
0.0 random guessing. The results for the other models were taken directly from Grazzi et al. (2025).

Model Parity Mod. Arithm.
(w/o brackets)

Mod. Arithm.
(w/ brackets) Avg.

Transformer 0.022 0.031 0.067 0.040

mLSTM 0.087 0.040 0.114 0.080
sLSTM 1.000 0.787 0.178 0.655
Mamba [0, 1] 0.000 0.095 0.123 0.073
Mamba [−1, 1] 1.000 0.241 0.116 0.452
DeltaNet [0, 1] 0.233 0.302 0.253 0.263
DeltaProduct2 [0, 1] 0.264 0.402 0.249 0.305
DeltaProduct3 [0, 1] 0.285 0.402 0.288 0.325
DeltaProduct4 [0, 1] 0.295 0.369 0.288 0.317

DeltaNet [−1, 1] 0.982 0.915 0.281 0.726
DeltaProduct2 [−1, 1] 0.896 0.887 0.329 0.704
DeltaProduct3 [−1, 1] 0.932 0.736 0.330 0.666
DeltaProduct4 [−1, 1] 0.982 0.893 0.342 0.739

E.3.2 EVALUATION TASKS

We use the lm-eval-harness benchmark (Gao et al., 2024) to assess model performance. Follow-
ing Yang et al. (2024b), the evaluation encompasses multiple task categories: Language Under-
standing Tasks. The evaluation includes LAMBADA (LMB) (Paperno et al., 2016) for testing text
comprehension, PIQA (Bisk et al., 2020) for physical reasoning assessment, HellaSwag (Hella.)
(Zellers et al., 2019) for situational understanding, and Winogrande (Wino.) (Sakaguchi et al., 2021)
for commonsense reasoning evaluation. Reasoning. The ARC dataset provides two distinct testing
sets: ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al., 2018), measuring varying levels
of scientific knowledge comprehension. Recall-Based Tasks. The evaluation incorporates recall-
intensive assessments through FDA (Arora et al., 2023), SWDE (Lockard et al., 2019), and SQUAD
(Rajpurkar et al., 2018).

E.3.3 TRAINING BEHAVIOR
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Figure 12: Training loss curves of DeltaProductnh
[−1, 1]. The curves demonstrate stable training

behavior as nh increases, with higher values of nh consistently yielding lower losses throughout
training and convergence. While the absolute differences in loss between different nh values are
relatively small, they correspond to significant differences in length extrapolation performance.
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E.3.4 ADDITIONAL RESULTS ON LENGTH EXTRAPOLATION
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Figure 13: Gated DeltaProductnh
[−1, 1] and DeltaProductnh

[−1, 1] show improved length extrap-
olation when increasing nh. (Top) 4 096 token context. (Middle) 16 384 token context. (Bottom)
32 768 token context.
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