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ABSTRACT

In online advertising, uncertainty calibration aims to adjust a rank-

ing model’s probability predictions to better approximate the true

likelihood of an event, e.g., a click or a conversion. However, exist-

ing calibration approaches may lack the ability to effectively model

complex nonlinear relations, consider context features, and achieve

balanced performance across different data subsets. To tackle these

challenges, we introduce a novel model called Monotonic Calibra-

tion Networks, featuring three key designs: a monotonic calibration

function (MCF), an order-preserving regularizer, and a field-balance

regularizer. The nonlinearMCF is capable of naturally modeling and

universally approximating the intricate relations between uncali-

brated predictions and the posterior probabilities, thus being much

more expressive than existing methods. MCF can also integrate con-

text features using a flexible model architecture, thereby achieving

context awareness. The order-preserving and field-balance regular-

izers promote the monotonic relationship between adjacent bins

and the balanced calibration performance on data subsets, respec-

tively. Experimental results on both public and industrial datasets

demonstrate the superior performance of our method in generating

well-calibrated probability predictions.
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1 INTRODUCTION

In recent years, machine learning models have been extensively

used to assist or even replace humans in making complex decisions

in practical scenarios. Numerous applications, such as medical diag-

nosis [2], autonomous driving [1], and online advertising [11], have

significant implications for people’s safety or companies’ economic
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incomes. Therefore, the performance of these models is of para-

mount importance. Apart from classification accuracy or ranking

performance, it is also crucial for the predicted score to accurately

reflect the true likelihood of an event [8]. However, modern neural

networks often struggle to predict accurate uncertainty, despite ex-

celling at classification or ranking tasks. This limitation, influenced

by their model architectures and regularization methods such as

weight decay and batch normalization [8, 20], significantly hinders

their application in real-world scenarios.

In this paper, we focus on the scenario of online advertising.

Typically, ECPM (Effective Cost Per Mille) serves as a key metric

for measuring the revenue earned by the platform for every 1,000 ad

impressions. In Pay-Per-Click advertising, ECPM is estimated as the

product of the predicted Click-Through Rate (CTR) and the bidding

price, i.e., 𝐶𝑇𝑅 × 𝑏𝑖𝑑 × 1000, which is used for ad ranking. This

requires a model to output the predicted CTR that precisely reflects

the probability of a user clicking on a given advertisement, as it

directly influences bidding results and, consequently, the platform’s

revenue. However, as highlighted in [4, 16], the widely used deep

ranking models heavily suffer from miscalibration, meaning the

predicted CTR does not accurately represent the true probability.

To tackle this challenge, uncertainty calibration has been widely

studied [4, 16, 25]. The goal is to train a well-calibrated predictor

that can generate predictive scores accurately reflecting the actual

probability of an event [5]. In this paper, we focus on the post-hoc

calibration paradigm [4, 28] due to its flexibility and widespread

adoption in practice. Post-hoc methods fix the base predictor and

learn a new calibration function to transform the predicted scores

from the base predictor into calibrated probabilities. As a result,

they can be conveniently used as a model-agnostic, plug-and-play

module placed on top of the base predictor in real systems.

Post-hoc methods mainly contain binning-based methods [28,

29], scaling-based methods [13, 17], and hybrid methods [4, 16].

Binning-based methods, such as Histogram Binning [28] and Iso-

tonic Regression [29], first divide data samples into multiple bins

and then directly use the empirical posterior probability as the

calibrated probability for each bin. Consequently, their calibration

function is a piecewise constant function (see Fig. 1a), making the

samples within a bin lose their order information. To alleviate this,

scaling-based methods employ parametric functions for calibration.

While preserving the order information among samples, they still

face limitations in expressiveness due to their strong assumptions

on the distributions of the class-conditional predicted scores, such

as the Gaussian distribution in Platt Scaling [17]. Moreover, hybrid

methods integrate binning-based and scaling-based methods into

a unified solution to fully leverage their advantages. Representa-

tive methods, including SIR [4], NeuCalib [16], and AdaCalib [24],

typically learn a piecewise linear calibration function (see Fig. 1

(b) and (c)). Therefore, they are incapable of learning a perfect
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calibration function when dealing with complex nonlinear relation-

ships between uncalibrated scores and the true data distribution,

which is often encountered in real-world applications. We defer to

Section 4.1 for a more detailed and intuitive analysis.

In addition to limited expressiveness, existing post-hoc methods

also struggle to adaptively capture varying miscalibration issues

across contexts, and fail to achieve a balanced performance across

different data fields. Specifically, NeuCalib introduces an additional

module to capture context information, which heavily relies on an

additional dataset. On the other hand, AdaCalib learns independent

calibration functions for different data subsets, but it suffers from

the data-efficiency issue. In summary, existing methods fall short in
developing an effective calibration function due to several key issues:
their limited expressiveness, lack of context-awareness, and failure to
consider field-balance calibration performance.

In this paper, we propose a novel hybrid approach,Monotonic

Calibration Network (MCNet), designed to address the aforemen-

tioned challenges in uncertainty calibration. Like other hybrid

methods, MCNet comprises a binning phase for dividing samples

into multiple bins and a scaling phase for learning the calibra-

tion function for each bin. The success of MCNet hinges on three

key designs, including a monotonic calibration function (MCF), an

order-preserving regularizer, and a field-balance regularizer. Firstly,

the MCF serves as a powerful approximator for capturing the in-

tricate relationship between uncalibrated scores and the true data

distribution (see Fig. 1 (d)). It is constructed using monotonic neu-

ral networks, ensuring the monotonically increasing property by

enforcing the positivity of its derivative. Additionally, MCF can

effectively model uncalibrated scores and context features with

a flexible model architecture, thus achieving context-awareness

efficiently. Secondly, the order-preserving regularizer is intended to

promote monotonicity between different bins by penalizing calibra-

tion functions of two adjacent bins that violate the relative order at

the split point of the two bins. The proposed calibration function,

along with this regularizer, effectively address the first two issues.

Additionally, we introduce a field-balance regularizer to address

the third issue, which penalizes the variance of the calibration per-

formance across different fields. By incorporating this regularizer,

MCNet can attain a more balanced calibration performance.

In summary, this paper makes the following contributions:

• We propose a novel hybird approach, Monotonic Calibration

Networks, to achieve expressive, monotonically increasing,

context-aware, and field-balanced uncertainty calibration.

• We design a monotonic calibration function, constructed using

monotonic neural networks, to capture the complex relation-

ship between uncalibrated scores and the true data distribution.

• We propose an order-preserving regularizer and a field-balance

regularizer, which can significantly preserve order informa-

tion and effectively promote balanced calibration performance

among different fields, respectively.

• We conduct extensive experiments on two large-scale datasets: a

public dataset AliExpress and a private industrial dataset from

the advertising platform of Huawei browser, encompassing

both click-through rate and conversion rate prediction tasks.

The empirical results clearly demonstrate the effectiveness of

MCNet in generating well-calibrated predictions.

2 RELATEDWORK

2.1 Uncertainty Calibration

In real-world scenarios, the learnedmodel must handle data samples

from diverse contexts with varying data distributions. Therefore,

it is crucial for the calibration function to consider the contextual

information to enable adaptive calibration across contexts. Here,

we broadly categorize existing uncertainty calibration approaches

into two types: context-agnostic calibration [4, 8, 14, 17, 28] and

context-aware calibration [16, 24].

Context-agnostic calibration. The uncalibrated score is the

unique input of the calibration function. The binning-based meth-

ods, such as Histogram Binning [28] and Isotonic Regression [29],

divide the samples into multiple bins, according to the sorted un-

calibrated probabilities. In these non-parametric methods, the cali-

brated probability within each bin is the bin’s posterior probability.

Isotonic Regression merges adjacent bins to ensure the bins’ poste-

rior probabilities are non-decreasing. The scaling-based approaches,

such as Platt Scaling [17] and Gamma Scaling [13], propose para-

metric functions that map the uncalibrated scores to calibrated ones.

These parametric functions assume that the class-conditional scores

follow Gaussian distribution (Platt Scaling) or Gamma distribution

(Gamma Scaling). Smoothed Isotonic Regression (SIR) [4] learns a

monotonically increasing calibration function with isotonic regres-

sion and linear interpolation, thus jointly exploiting the strengths

of the binning- and scaling-based methods.

Context-aware calibration. In addition to the uncalibrated

score, the context information, such as the field id denoting the

source of data samples, has also been considered recently. NeuCalib,

as the pioneering work, uses a univariate calibration function to

transform the uncalibrated logits, and an auxiliary neural network

that considers the sample features for context-adaptive calibration.

However, it is important to note that the calibration function itself

in NeuCalib does not directly consider the context information.

AdaCalib [24], on the other hand, divides the validation set into

several fields and learns an isotonic calibration function for each

field using the field’s posterior statistics. This approach, however,

suffers from data efficiency issues due to the need for field-specific

calibration. Both NeuCalib and AdaCalib adopt piecewise linear

calibration functions, which may lack expressiveness when model-

ing the complex nonlinear relationships between the uncalibrated

scores and the true data distribution. Our approach, MCNet, ad-

dresses this issue by learning nonlinear calibration functions with

monotonic neural networks. Additionally, MCNet can naturally

achieve context awareness by incorporating the context feature

as input to its monotonic calibration function. Moreover, MCNet

is equipped with a novel field-balance regularizer to ensure more

balanced calibration performance across various fields.

2.2 Monotonic Neural Networks

Monotonic neural networks are models that exhibit monotonicity

with respect to some or all inputs [3, 18]. Pioneering methods like

MIN-MAX networks [19] achieve monotonicity through monotonic

linear embeddings and max-min-pooling. Daniels and Velikova [3]

extended this approach to construct partially monotone networks

that are monotonic with respect to a subset of inputs. However,
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these methods can be challenging to train, which limits their practi-

cal adoption. Further, deep lattice networks (DLNs) [27] is designed

to combine linear embeddings, lattices, and piecewise linear func-

tions to build partially monotone models. Other recent work, such

as UMNN [23] and LMN [15], ensures monotonicity by learning a

function whose derivative is strictly positive. Our work is inspired

by monotonic neural networks, and is generally applicable to any

implementation of monotonic neural networks.

3 PRELIMINARIES

3.1 Problem Formulation

In this paper, we study the problem of uncertainty calibration and

formulate it from the perspective of binary classification. In binary

classification, the aim is to predict the label 𝑦 ∈ {0, 1} of a data

sample given its feature vector 𝒙 ∈ X by learning a predictor

𝑔(·) with a labeled training dataset. Then, given a data sample 𝒙 ,
the predicted probability of positive label is 𝑝 = 𝑔(𝒙), where the
positive label refers to 1 and the negative label refers to 0.

Currently, the most widely used predictors such as logistic re-

gression and deep neural networks are not well calibrated [4, 11].

It means that the predicted probability 𝑝 could not accurately rep-

resent the true probability of the event 𝐸 [𝑌 |𝑋 ] defined as

𝐸 [𝑌 |𝑋 = 𝒙] = lim

𝜖→0
+
𝑃 (𝑌 = 1|∥𝑋 − 𝒙 ∥ ≤ 𝜖) . (1)

To tackle this problem, the post-hoc calibration, as a common par-

adigm, fixes the base predictor and learns a new mapping function

to transform the raw model output 𝑝 into the calibrated probability.

Specifically, the aim of uncertainty calibration in post-hoc calibra-

tion is to find a function 𝑓 ∗ that takes the predicted score from 𝑔 as

input such that the calibration error could be minimized, i.e.,

𝑓 ∗ = argmin

𝑓

∫
X
(𝐸 [𝑌 |𝑋 = 𝒙] − 𝑓 (𝑔(𝒙)))2𝑑𝒙 . (2)

In practice, the calibration function 𝑓 is learned based on a vali-

dation dataset D
val

= {(𝒙 (𝑖 ) , 𝑦 (𝑖 ) )}𝑁
𝑖=1

with 𝑁 samples. It can be a

parametric or non-parametric function.

To evaluate the calibration performance, Eq. (2) is not a feasible

metric due to the unobservable event likelihood 𝐸 [𝑌 |𝑋 = 𝒙]. A
common practice is to utilize the empirical data to approximate

the true likelihood and quantify the calibration performance. Many

metrics have been proposed. Predicted click over click (PCOC) [7, 9],

as the most commonly used metric, calculates the ratios of the

average calibrated probability and the posterior probability as

PCOC = ( 1

|D|

|D |∑︁
𝑖=1

𝑝 (𝑖 ) )/( 1

|D|

|D |∑︁
𝑖=1

𝑦 (𝑖 ) ), (3)

whereD = {(𝒙 (𝑖 ) , 𝑦 (𝑖 ) )} |D |
𝑖=1

is the test dataset. PCOC is insufficient

to evaluate the calibration performance, since it neither considers

the distribution of calibrated probabilities nor takes into account the

field information. To improve it, many more fine-grained metrics

have been proposed. For example, calibration-𝑁 [4] and probability-

level calibration error (Prob-ECE) [14] make use of the calibrated

distribution based on binning method. Further, a more reliable met-

ric, i.e., field-level relative calibration error (F-RCE) is proposed [16],

which is a weighted sum of the average bias of predictions in each

data subset divided by the true outcomes as

F-RCE =
1

|D|

| C |∑︁
𝑐=1

𝑁𝑐
|∑ |D |

𝑖=1
(𝑦 (𝑖 ) − 𝑝 (𝑖 ) )I𝑐 (𝑐 (𝑖 ) ) |∑ |D |

𝑖=1
(𝑦 (𝑖 ) + 𝜖)I𝑐 (𝑐 (𝑖 ) )

, (4)

where 𝑐 represents a specific field feature (which is usually a part

of feature vector 𝒙), 𝑁𝑐 is the number of samples of field 𝑐 with∑ | C |
𝑐=1

𝑁𝑐 = |D|, 𝜖 is a small positive number (e.g., 𝜖 = 0.01) to avoid

division by zero, and I𝑐 (·) is an indicator function with value as 1

if the input is 𝑐 otherwise 0.

3.2 Key Properties of Calibration

To learn a well-performed calibration function, several key charac-

teristics should be carefully considered and balanced.

Expressiveness. The underlying data distribution in real sce-

narios can be highly complex, and the discrepancy between this

distribution and the learned base predictor 𝑔 can be substantial.

Therefore, the mapping function 𝑓 must be sufficiently expressive

to facilitate the complex nonlinear transformations required to

calibrate uncalibrated scores to the true data distribution.

Order-Preserving. This suggests that the calibrated probability

output by 𝑓 should preserve the order of the original scores pro-

duced by the uncalibrated model 𝑔. Typically, the base predictor 𝑔

is a strong deep neural network that excels in ranking tasks. For

instance, sophisticated deep models are widely used in CTR pre-

diction in industry [30]. This property allows us to improve the

predicted probability while maintaining the ranking performance.

Context-Awareness. In many applications, the trained model

needs to handle data samples from various contexts (e.g., domains

or categories) with significantly different distributions. The calibra-

tion function 𝑓 should incorporate context information to achieve

adaptive calibration. However, this property can conflict with the

order-preserving property. Specifically, for samples in different con-

texts, ground-truth probabilities can differ despite the same uncali-

brated scores due to different miscalibration issues, thus violating

the order-preserving property. Consequently, careful balancing of

these two properties is essential.

Field-Balance. It is crucial for the calibration model to perform

consistently across different fields (e.g., domains or categories). In-

consistent performance can lead to various issues. For example,

in an online advertising platform, if the calibration model 𝑓 over-

estimates the probabilities for samples from certain fields while

underestimating them for others, it can result in overexposure in

some fields and underexposure in others. This imbalance can cause

unfairness and negatively impact the ad ecosystem.

4 OUR APPROACH

In this section, we propose a novel hybrid approach, Monotonic

Calibration Networks (MCNet), for uncertainty calibration. We

begin by motivating the proposal of MCNet through an analysis of

existing methods, followed by a detailed description of our method.

4.1 Analysis and Motivation

To begin with, we provide a discussion of some representative

methods in post-hoc paradigm in terms of the key properties. We

also intuitively demonstrates the calibration function of different

3
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methods with a toy example in Figure 1.

Binning-based methods. The binning-based methods, such

as Histogram Binning [28], first divide the samples into multiple

bins according to the sorted uncalibrated probabilities (in ascending

order), and then obtain the calibrated probability within each bin by

computing the bin’s posterior probability. Suppose the samples are

divided into 𝐾 bins as {[𝑏0, 𝑏1), · · · , [𝑏𝑘−1, 𝑏𝑘 ), · · · , [𝑏𝐾−1, 𝑏𝐾 )}.
Then, the calibration function can be formulated as

𝑓
(
𝑔(𝒙)

)
=

𝐾∑︁
𝑘=1

∑𝑁
𝑖=1 𝑦

(𝑖 ) · I[𝑏𝑘−1,𝑏𝑘 )
(
𝑔(𝒙 (𝑖 ) )

)∑𝑁
𝑖=1 I[𝑏𝑘−1,𝑏𝑘 )

(
𝑔(𝒙 (𝑖 ) )

) I[𝑏𝑘−1,𝑏𝑘 )
(
𝑔(𝒙)

)
, (5)

where I[𝑏𝑘−1,𝑏𝑘 ) (·) is an indicator with value as 1 if the input falls

into [𝑏𝑘−1, 𝑏𝑘 ) otherwise 0. Essentially, the calibration function is a

piecewise constant function (see Fig. 1a). It gives the same calibrated

probability to all samples of the same bin, and thus loses the ranking

information. Besides, they could not achieve context-awareness,

and do not have any mechanism to enhance field-balance.

Hybrid methods. The hybrid methods integrate the binning

and scaling methods into a unified solution so as to make full use

of their advantages, which have achieved state-of-the-art perfor-

mance. Representative approaches, such as SIR [4], NeuCalib [16],

and AdaCalib [24], have piecewise linear calibration functions (see

Fig. 1b and 1c). They first obtain multiple bins similarly as the

binning-based methods, and then learn a linear calibration function

for each bin. The calibration function can be formalized as

𝑓
(
𝑔 (𝒙 )

)
=

𝐾∑︁
𝑘=1

[
𝑎𝑘−1 +

(
𝑔 (𝒙 ) − 𝑏𝑘−1

) 𝑎𝑘 − 𝑎𝑘−1
𝑏𝑘 − 𝑏𝑘−1

]
I[𝑏𝑘−1,𝑏𝑘 )

(
𝑔 (𝑥 )

)
, (6)

where {𝑏𝑘 }𝐾+1𝑘=0
are binning boundaries and {𝑎𝑘 }𝐾+1𝑘=0

are learned

differently for hybrid models. Specifically, SIR directly calculates

{𝑎𝑘 }𝐾+1𝑘=0
from the statistics of the validation dataset, NeuCalib de-

notes them as learnable model parameters, and AdaCalib applies

neural networks to learn them, respectively. Although these exist-

ing methods gradually use more and more complicated functions

to learn {𝑎𝑘 }𝐾+1𝑘=0
, their calibration functions are essentially linear

and have limited expressiveness. Besides, NeuCalib and AdaCalib

rely on similar additional order-preserving constraints to keep the

order information, and do not consider field-balance.

Motivation. Figure 1 provides an intuitive illustration of the

calibration errors of existing methods. As we can see, these meth-

ods, because of their limited expressiveness, are unable to achieve

perfect uncertainty calibration when confronted with complex non-

linear transformation relations. This motivates us to design a more

expressive calibration function with stronger modeling capabilities.

4.2 Monotonic Calibration Networks

As motivated above, we propose an expressive Monotonic Calibra-

tion Network that has the capacity to learn a perfect uncertainty

calibration function, as shown in Figure 1d. MCNet is a hybrid

method consisting of two phases, i.e., the binning phase and the

scaling phase. In the binning phase, the validation samples in D𝑣𝑎𝑙

are divided into 𝐾 bins with equal frequency, and the interval for

the 𝑘-th bin is [𝑏𝑘−1, 𝑏𝑘 ). 𝑏0 and 𝑏𝐾 are two pre-defined numbers

to ensure that all samples can be assigned to a specific bin. In the

scaling phase, 𝐾 calibration functions are designed and learned for

the 𝐾 bins, respectively.

(a) Histogram Binning

P
ro

b
a
b
ility

Uncalibrated Score Uncalibrated Score

(b) SIR

(c) NeuCalib or AdaCalib

Uncalibrated Score Uncalibrated Score

(d) MCNet (ours)

Ground Truth Calibration Error Posterior

P
ro

b
a
b
ility

P
ro

b
a
b
ility

P
ro

b
a
b
ility

Figure 1: Illustration of different calibration functions.

Figure 2 shows the architecture of our proposed Monotonic Cal-

ibration Network, which aims to achieve accurate calibration. MC-

Net relies on three key designs: a monotonic calibration function, an

order-preserving regularizer, and a field-balance regularizer. Next,

we provide a detailed introduction to each of these components.

4.2.1 Monotonic Calibration Function. The monotonic calibration

function (MCF) is built uponmonotonic neural networks (MNNs) [3,

15, 23], which inherently possess the property of monotonicity and

serve as strong approximators of the true data distribution. In this

work, we implement the MCF based on an unconstrained MNN [23],

which is designed with an architecture that ensures its derivative

is strictly positive, thereby achieving the desired monotonicity.

Denote a sample as (𝒙, 𝑐, 𝑦) where 𝒙 represents all features and 𝑐

(𝑐 ∈ C = {𝑐1, 𝑐2, · · · , 𝑐 | C | }) represents a specific field feature (which
is usually a part of 𝒙). Here, the field feature 𝑐 is used as the context
feature without loss of generality, and can be readily replaced with

any other features. The proposed monotonic calibration function

can jointly model the uncalibrated scores and context features with

a flexible model architecture, thus achieving context-awareness.

Compared with AdaCalib, which learns the calibration function

for different fields independently, the MCF is shared by all fields

within the same bin, making it more data-efficient.

Specifically, the calibration function MCF of MCNet for the 𝑘-th

bin is formulated as follows:

𝑓 𝑘
(
𝑔 (𝒙 ), 𝑐

)
=

∫ 𝑔 (𝒙 )

0

𝑓 𝑘
1

(
𝑡, ℎ𝑘 (𝑐 ;𝚽𝑘 ) ;𝚯𝑘

1

)
𝑑𝑡︸                                    ︷︷                                    ︸

Integration Term

+ 𝑓 𝑘
2

(
ℎ𝑘 (𝑐 ;𝚽𝑘 ) ;𝚯𝑘

2

)
︸                   ︷︷                   ︸

Bias Term

, (7)

where f
𝑘
1
(·;𝚯𝑘

1
), 𝑓 𝑘

2
(·;𝚯𝑘

2
), and ℎ𝑘 (·;𝚽𝑘 ) are parametric functions,

and 𝚯
𝑘
1
, 𝚯

𝑘
2
, and 𝚽

𝑘
are the corresponding model parameters.

ℎ𝑘 (·;𝚽𝑘 ) is an embedding function that transforms the input con-

text feature id into embedding vectors. Both 𝑓 𝑘
1

and 𝑓 𝑘
2

can be

implemented with any neural networks.

The MCF consists of an integration term and a bias term. Most

importantly, the integration term jointly considers the uncalibrated

score 𝑔(𝒙) and the context feature 𝑐 in a natural way to achieve

both monotonicity and context-awareness. Figure 2 illustrates this

term within the dashed box on the right side and demonstrates its
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Figure 2:Model architecture ofMCNet.MCNet jointlymodels the uncalibrated score and the context feature to learn amonotonic

calibration function. Given a specific context feature (e.g., context 1 and 2), MCNet generates the calibrated probabilities that

are context-adaptive and monotonically increasing with the corresponding uncalibrated probabilities.

properties intuitively. Specifically, 𝑓 𝑘
1
is the derivative of 𝑓 𝑘 with

respect to the input 𝑔(𝒙), and it is designed to be a strictly positive

parametric function, thus ensuring the function is monotonically

increasing given the same context and contextually adaptive across

different contexts. In experiments, we leverage the sigmoid as the

activation function for 𝑓 𝑘
1
to ensure the positiveness of its outputs.

The bias term 𝑓 𝑘
2
is designed to further capture the contextual infor-

mation, and does not impact the monotonicity with respect to 𝑔(𝒙).
It should be noted that the context feature 𝑐 is an optional input

depending on whether contextual information plays an important

role in the application.

Then, the overall calibration function of 𝐾 bins is formulated as

𝑓
(
𝑔(𝒙), 𝑐

)
=

𝐾∑︁
𝑘=1

𝑓 𝑘
(
𝑔(𝑥), 𝑐

)
I[𝑏𝑘−1,𝑏𝑘 )

(
𝑔(𝑥)

)
, (8)

where I[𝑏𝑘−1,𝑏𝑘 ) (·) is an indicator with value as 1 if the input falls

into [𝑏𝑘−1, 𝑏𝑘 ) otherwise 0.
Theorem 1 (Expressiveness). If the uncalibrated scores possess

accurate order information and the ground truth calibration function
is continuously differentiable, then the monotonic calibration function
𝑓 (·) serves as a universal approximator of the ground truth function.

This theorem suggests that MCNet is capable of learning the

perfect nonlinear calibration function under certain conditions. We

provide the proof of Theorem 1 in Appendix A.1.

To train MCNet, we quantify the instance-level calibration error

with the negative log-likelihood loss, which is formulated as

L𝑙𝑜𝑔𝑙𝑜𝑠𝑠 =
1

𝑁

𝑁∑︁
𝑖=1

[
−𝑦 (𝑖 ) log 𝑝 (𝑖 ) − (1 − 𝑦 (𝑖 ) ) log(1 − 𝑝 (𝑖 ) )

]
, (9)

where 𝑝 (𝑖 ) = 𝑓
(
𝑔(𝒙 (𝑖 ) ), 𝑐 (𝑖 )

)
is the calibrated probability obtained

via the MCF.

4.2.2 Order-Preserving Regularizer. The proposed monotonic cali-

bration function (Eq. (7)) can ensure the monotonicity within sam-

ples of the same bin, while samples across different bins are not

constrained. To address this issue, we design a regularizer to en-

courage the monotonicity between different bins as follows

L𝑜𝑟𝑑𝑒𝑟 =
| C |∑︁
𝑖=1

𝐾−1∑︁
𝑘=1

max

{
𝑓 𝑘

(
𝑔(𝑏𝑘 ), 𝑐𝑖

)
− 𝑓 𝑘+1

(
𝑔(𝑏𝑘 ), 𝑐𝑖

)
, 0

}
. (10)

It penalizes calibration functions of the two adjacent bins that

violate the monotonicity, i.e., the ending of the 𝑘-th calibration

curve (which is located between 𝑏𝑘−1 and 𝑏𝑘 ) is greater than the

beginning of the (𝑘 + 1)-th one. With this regularizer, MCNet can

preserve the order information of all samples if no context feature

is given, i.e., the output of ℎ𝑘 is set to an all-zero vector. If the field

id is used as the context feature for calibration, MCNet can also

maintain the order-preserving property within each field, while it

might achieve better calibration performance for each specific field

due to the consideration of context features.

4.2.3 Field-Balance Regularizer. In many real scenarios, it is highly

important to keep a balance of the calibration performance among

different fields. For example, in online advertising platform, a bal-

anced performance can enhance fairness of different bidders and

improve the healthiness of the business ecosystem. PCOC and

its variants are widely leveraged to quantify the calibration per-

formance [4]. However, it can easily cause high variance issue if

directly used as the evaluation metric in our regularizer due to its

division operation. To avoid this issue, we design a new metric for

quantifying the calibration performance for field 𝑐 as follows

𝐷𝐼𝐹𝐹𝑐 =
1

𝑁

𝑁∑︁
𝑖=1

[
𝑓
(
𝑔(𝒙 (𝑖 ) ), 𝑐 (𝑖 )

)
− 𝑦 (𝑖 )

]
· I𝑐

(
𝑐 (𝑖 )

)
, (11)

where I𝑐 (·) is an indicator function with value as 1 if the input

is 𝑐 otherwise 0. Different from PCOC, it computes the diference

between the calibrated probability and the posterior probability

of the data through subtraction, which can quantify both overesti-

mation and underestimation as PCOC. To enhance the balance of

calibration performance among different fields, we use the standard

variance of DIFF of different fields as the field-balance regularizer

L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =

√√∑ | C |
𝑖=1

(𝐷𝐼𝐹𝐹𝑖 − 𝐷𝐼𝐹𝐹 )2

|C| , (12)

where 𝐷𝐼𝐹𝐹 is the mean of {𝐷𝐼𝐹𝐹𝑖 } | C |
𝑖=1

.

The overall training loss for MCNet is formulated as

L𝑀𝐶𝑁𝑒𝑡 = L𝑙𝑜𝑔𝑙𝑜𝑠𝑠 + 𝛽 · L𝑜𝑟𝑑𝑒𝑟 + 𝛼 · L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , (13)

where 𝛽 and 𝛼 are hyperparameters to control the importance of

the regularization terms.
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4.2.4 Discussion. MCNet flexibly balances the properties of order-

preserving and context-awareness. Specifically, the calibration func-

tion 𝑓𝑘 is strictly monotonically increasing with respect to the input

uncalibrated score, thereby perfectly preserving the order informa-

tion for samples of the same context within the same bin. Further,

the relative order of samples across bins can be easily constrained

using the order-preserving regularizer. For samples of different

contexts, the ground-truth probability can differ even with the

same uncalibrated score, due to different miscalibration issues. Our

MCNet enables context-adaptive calibration by naturally modeling

the contextual information. For scenarios where context features

convey limited information, MCNet can directly disregard them

and preserve the order information across contexts.

4.3 Training Algorithm

The proposed MCNet cannot be trivially trained with stochastic

gradient descent (SGD) methods due to the existence of integration

operation in Eq. (7). To tackle this problem, we use Clenshaw-Curtis

quadrature (CCQ) [6, 21] to compute the forward and backward

integration. In CCQ, the integration is computed by constructing

a polynomial approximation, involving 𝑇 forward operation of 𝑓1.

Thus, the complexity of MCNet is a constant times of a normal

neural network positively depending on 𝑇 . Luckily, the 𝑇 forward

operations can be computed in parallel, making it time efficient. In

the backward step, we integrate the gradient instead of comput-

ing the gradient of the integral to avoid storing additional results,

making it memory efficient. Thus, CCQ enables the computation

of gradients of MCNet efficiently and thus the optimization of it

with SGD effectively. Appendix A.2 provides the detailed training

algorithms based on CCQ as well as the empirical analysis of time-

and memory-efficiency.

5 EXPERIMENTS

In this section, extensive experiments are conducted to investigate

the following research questions (RQs).

• RQ1: How does MCNet perform on the calibration tasks com-

pared with the state-of-the-art baseline approaches?

• RQ2: What are the effects of the auxiliary neural network and

the field-balance regularizer on the performance of MCNet?

• RQ3: What are the strengths of nonlinear calibration functions

learned by MCNet?

• RQ4: Howwill the hyperparameters affectMCNet’s performance?

5.1 Experimental Setup

5.1.1 Datasets. The experiments are conducted on two large-scale

datasets: one public dataset (AliExpress
1
) and one private industrial

dataset (Huawei Browser). Both datasets are split into three subsets

for training, validation, and testing, respectively. For AliExpress,

the field feature 𝑐 is set as the country where the data are collected.

With such a categorical feature as the field information, AliExpress

can be divided into 4 fields (i.e., 4 disjoint subsets), representing

the 4 countries. The Huawei Browser dataset is extracted directly

from the Huawei online advertising system with samples across 9

days. It is partitioned into 3 fields, indicating the 3 advertisement

1https://tianchi.aliyun.com/dataset/74690

sources. More detailed descriptions are provided in Appendix B.1.

5.1.2 Baselines. We make comparisons with three categories of

baselines. (1) Binning-based methods: Histogram Binning [28] and

Isotonic Regression [29]. (2) Scaling-based methods: Platt Scal-

ing [17], Gaussian Scaling [13], and Gamma Scaling [13]. (3) Hybrid

methods: SIR [4], NeuCalib [16], and AdaCalib [24]. More detailed

decriptions of them are provided in Appendix B.2.

Our method,MCNet, is also a hybrid approach, including two

variants: MCNet-None and MCNet-Field. MCNet-None is a vari-

ant without considering the context feature. The output of embed-

ding functionℎ𝑘 is set to an all-zero vector. MCNet-Field is a variant

that takes the field information as the context feature.

5.1.3 Implementation Details. In our methods, the parametric func-

tions 𝑓1 (·) and 𝑓2 (·) for each bin are implemented as multilayer

perceptions (MLPs) with two 128-dimensional hidden layers. ℎ(·)
is an embedding lookup table with an embedding dimension of

128. The balance coefficient 𝛽 in Eq. (13) is set as 1. The proposed

calibration models are trained using the Adam optimizer [12] with

a batch size of 2048. The default learning rates for MCNet-None

and MCNet-Field are 1e-5 and 1e-4, respectively. The base predictor

𝑔(·) is deep click-through rate prediction model [22]. The baseline

calibration approaches are implemented based on their papers. We

set the number of bins to 20 for all methods that require binning.

The base predictor is trained on the training set. All calibration

methods are trained using the validation set and evaluated on the

test set. We conduct both the CTR and CVR calibration on the

AliExpress and Huawei Browser datasets. We choose PCOC as the

field-agnostic calibration metric, F-RCE as the field-level calibration

metric, and AUC score as the ranking metric.

5.2 Performance Study (RQ1)

As shown in Table 1, compared with the base predictor, all ap-

proaches have improved calibration metrics (i.e., PCOC and F-RCE)

on both datasets. For example, on the AliExpress dataset, MCNet-

None significantly reduces the F-RCE from 16.10% to 1.77% on the

CTR task and from 34.21% to 10.07% on the CVR task. In compari-

son with the baseline calibration approaches, MCNet-None yields

the best PCOC and F-RCE on both the CTR and CVR tasks based

on results of the paired-t-test compared with the best baseline,

indicating MCNet-None is more expressive to approximate the pos-

terior probabilities of the test set. On the Huawei Browser dataset,

MCNet-None still obtains competitive calibration performance on

both tasks. With the field information incorporated, MCNet-Field

achieves the lowest F-RCE scores on both CTR and CVR tasks

and the second-best PCOC on the CTR task. Thus, MCNet-None

and MCNet-Field are more favorable on AliExpress and Huawei

Browser, respectively, and they can be chosen based on their perfor-

mance on a specific task. Since MCNet-Field incorporates the field

features, priority can be given to MCNet-Field if the field features

are vital. Moreover, on these two datasets, both MCNet-None and

MCNet-Field maintain AUC scores the same as or close to those of

the base predictor, thus largely preserving the original ranking of

uncalibrated probabilities. Therefore, our methods, MCNet-None

and MCNet-Field, excel in uncertainty calibration by learning non-

linear calibration functions with monotonic neural networks.

6
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Table 1: Results on the AliExpress and Huawei Browser datasets. The highest results in each column are in boldface, the

second-best values are underlined, and the values inside “()” represent the standard deviation across three different runs.

CTR (AliExpress) CVR (AliExpress) CTR (Huawei Browser) CVR (Huawei Browser)

Method PCOC F-RCE AUC PCOC F-RCE AUC PCOC F-RCE AUC PCOC F-RCE AUC

Base 0.7727 16.10% 0.7216 1.4324 34.21% 0.7892 1.0750 3.18% 0.8758 0.9814 1.60% 0.8500

Histogram Binning 0.8467 10.86% 0.7198 1.1966 16.04% 0.7865 0.9634 2.15% 0.8687 1.0042 0.80% 0.8493

Isotonic Regression 0.8482 10.74% 0.7215 1.1989 16.18% 0.7883 0.9701 0.76% 0.8758 1.0037 0.81% 0.8499

Platt Scaling

0.8441

(0.0050)

11.03%

(0.35%)

0.7216

(0.0000)

1.3700

(0.0024)

29.39%

(0.18%)

0.7892

(0.0000)

0.9692

(0.0069)

0.83%

(0.17%)

0.8758

(0.0000)

1.0030

(0.0006)

0.95%

(0.05%)

0.8500

(0.0000)

Gaussian Scaling

0.8440

(0.0101)

11.05%

(0.72%)

0.7216

(0.0000)

1.3092

(0.0084)

24.75%

(0.66%)

0.7892

(0.0000)

0.9638

(0.0201)

1.11%

(0.49%)

0.8758

(0.0000)

1.0045

(0.0023)

0.93%

(0.12%)

0.8500

0.0000)

Gamma Scaling

0.8484

(0.0070)

10.73%

(0.50%)

0.7216

(0.0000)

1.2720

(0.0043)

21.77%

(0.34%)

0.7892

(0.0000)

0.9670

(0.0238)

1.10%

(0.55%)

0.8758

(0.0000)

1.0064

(0.0039)

1.13%

(0.20%)

0.8500

(0.0000)

SIR 0.7821 15.44% 0.7216 1.1913 15.60% 0.7892 0.9448 1.51% 0.8758 1.0037 0.82% 0.8500

NeuCalib

0.8472

(0.0040)

10.82%

(0.29%)

0.7216

(0.0000)

1.1798

(0.0231)

14.66%

(1.86%)

0.7892

(0.0000)

0.9902

(0.0052)

1.27%

(0.05%)

0.8758

(0.0000)

1.0050

(0.0028)

0.87%

(0.17%)

0.8500

(0.0000)

AdaCalib

0.8599

(0.0274)

9.93%

(1.94%)

0.7217

(0.0000)

1.1892

(0.0047)

15.21%

(0.39%)

0.7880

(0.0001)

0.9746

(0.0367)

1.14%

(0.95%)

0.8757

(0.0000)

1.0071

(0.0096)

1.04%

(0.60%)

0.8499

(0.0000)

MCNet-None (ours)

0.9745

(0.0141)

1.77%

(1.00%)

0.7215

(0.0001)

1.1094

(0.0036)

10.07%

(0.24%)

0.7892

(0.0000)

0.9721

(0.0021)

0.92%

(0.00%)

0.8758

(0.0000)

1.0059

(0.0074)

0.96%

(0.52%)

0.8499

(0.0002)

MCNet-Field (ours)

0.8642

(0.0032)

9.63%

(0.22%)

0.7215

(0.0001)

1.1728

(0.0048)

14.03%

(0.29%)

0.7877

(0.0001)

0.9804

(0.0159)

0.83%

(0.35%)

0.8757

(0.0000)

1.0056

(0.0012)

0.61%

(0.10%)

0.8500

(0.0000)

5.3 Ablation Study (RQ2)

5.3.1 Study on the auxiliary neural network. An auxiliary neural

network can be incorporated into MCNet as NeuCalib and Ada-

Calib, serving as an optional component to improve the ranking

performance. The auxiliary neural network takes the sample feature

vectors as inputs. When the auxiliary network is used, MCNet takes

uncalibrated logit
ˆ𝑙 as the input and outputs calibrated logit 𝑙 . The

calibrated probability is calculated by adding the outputs of the cal-

ibration function and the auxiliary neural network. An illustration

is provided in Appendix A.3. Note that the auxiliary network relies

on an independent validation set. If the validation set for calibra-

tion is a subset of the training set, the auxiliary network should be

removed. Table 2 reports the calibration and ranking metrics with

an auxiliary neural network (Aux) incorporated into each model,

including AdaCalib, NeuCalib, MCNet-None, and MCNet-Field. The

auxiliary neural network is implemented as a 2-layer MLP. The

experimental settings are the same as those of Section 5.2.

By comparing the results in Table 2 and Table 1, it is observed

that the auxiliary network increases the AUC scores of MCNet-

None and MCNet-Field in most cases. For instance, on the CTR

task of Huawei Browser dataset, the relative AUC improvements

obtained by the auxiliary network are 1.10% for MCNet-None and

0.82% for MCNet-Field, respectively. Similar observations can be

found in NeuCalib and AdaCalib. Hence, the auxiliary network can

improve the ranking ability of a calibration model. However, the

calibration metrics (i.e., PCOC and F-RCE) sometimes get worse

with the auxiliary network integrated. For example, worse values

of PCOC and F-RCE can be seen in MCNet-None-Aux compared

with MCNet-None. It reveals that the auxiliary network may have

a negative impact on a model’s calibration ability.

5.3.2 Study on the field-balance regularizer. Table 3 shows the

results with the field-balance regularizer (i.e., L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , see Sec-

tion 4.2.3) applied. A field’s PCOC reveals the calibration perfor-

mance on this field. It can be seen that the field-balance regularizer

reduces the PCOC standard deviations of all calibration approaches.

For example, the PCOC standard deviations of MCNet-None and

MCNet-Field decrease from 3.56% to 2.93% and from 2.36% to 1.81%,

respectively. Such observations demonstrate that the field-balance

regularizer can improve the balance of calibration performance on

different fields, thus promoting the fairness of the product ecosys-

tem. In addition, under the field-balance regularizer, the overall

PCOC is improved in most cases. Moreover, the field-balance reg-

ularizer achieves a reduced or comparable F-RCE, and maintains

the AUC score. Thus, the field-balance regularizer can keep the

calibration and ranking metrics while promoting the field-balance.

5.4 Calibration Function Analysis (RQ3)

Figure 3 shows the calibration functions of MCNet-None and three

baselines, i.e., SIR, NeuCalib, and AdaCalib. These calibration func-

tions are learned using the validation set. The blue bar is the poste-

rior probability of test samples in each bin. The bin number is set

as 10. As introduced in Section 4.1, the piecewise linear calibration

function of SIR is constructed directly using the posterior proba-

bilities of the validation set. Consequently, the two ends of each

line are within the bins. The ordinate value of each endpoint is the

bin’s posterior probability. By comparing the calibration curve of

SIR and the posterior statistics of the test set, it can be observed

that the validation and test sets have distinct distributions of pos-

terior probabilities. In comparison with the baseline approaches,
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Table 2: Ablation study on the auxiliary neural network.

CTR (AliExpress) CVR (AliExpress) CTR (Huawei Browser) CVR (Huawei Browser)

Method PCOC F-RCE AUC PCOC F-RCE AUC PCOC F-RCE AUC PCOC F-RCE AUC

Base 0.7727 16.10% 0.7216 1.4324 34.21% 0.7892 1.0750 3.18% 0.8758 0.9814 1.60% 0.8500

NeuCalib-Aux 0.8966 7.33% 0.7258 1.1175 9.58% 0.7850 1.0334 1.24% 0.8814 1.0060 0.62% 0.8515

AdaCalib-Aux 0.8920 7.65% 0.7244 0.9597 2.73% 0.7873 1.0042 0.22% 0.8847 1.0187 2.00% 0.8519

MCNet-None-Aux 0.8857 8.10% 0.7261 1.0168 2.58% 0.7894 1.0273 1.19% 0.8854 1.0061 1.40% 0.8536

MCNet-Field-Aux 0.8908 7.73% 0.7254 1.0122 1.94% 0.7870 1.0002 0.20% 0.8829 0.9949 0.60% 0.8522

Table 3: Ablation study on the field-balance regularizer with

CTR task on AliExpress. “All” and “STD” denote the overall

PCOC and the PCOC standard deviation of the four fields,

respectively.

Model L𝑏 F-RCE AUC

PCOC

All Field 0 Field 1 Field 2 Field 3 STD

M-N

× 0.63% 0.7214 0.991 0.997 0.915 0.942 0.930 3.56%

✓ 0.72% 0.7216 1.002 1.007 0.938 0.966 0.956 2.93%

M-F

× 9.56% 0.7216 0.865 0.867 0.878 0.828 0.837 2.36%

✓ 8.99% 0.7213 0.873 0.875 0.864 0.849 0.833 1.81%

N

× 10.54% 0.7216 0.851 0.855 0.803 0.822 0.798 2.59%

✓ 10.02% 0.7216 0.859 0.862 0.811 0.831 0.806 2.53%

A

× 7.51% 0.7217 0.894 0.894 0.934 0.877 0.934 2.83%

✓ 8.19% 0.7216 0.885 0.885 0.891 0.874 0.853 1.67%

* M-N: MCNet-None, M-F: MCNet-Field, N: NeuCalib, A: AdaCalib, L𝑏 :L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 .

Method PCOC F-RCE

SIR 0.7178 20.00%

NeuCalib 0.8477 10.78%

AdaCalib 0.8990 7.14%

MCNet-None 1.0035 1.02%

Figure 3: Visualization of calibration functions.

the calibration function of MCNet-None can more closely approxi-

mate the posterior probabilities of the test set. This point can also

be supported by the preferable PCOC and F-RCE of MCNet-None.

Note that, in MCNet-None, the gap between two adjacent cali-

bration curves is caused by the order-preserving regularizer (see

Section 4.2.2). With such an order-preserving regularizer, the cali-

brated probabilities are non-decreasing, thus keeping the original

ranking of uncalibrated probabilities.

5.5 Hyperparameter Sensitivity Analysis (RQ4)

Figure 4 shows the calibration metrics of MCNet under two key

hyperparameters, i.e., bin number and balance coefficient 𝛽 . Bin

number is the number of bins that the validation set is divided. In

each bin, a monotonic calibration function is learned for calibration.

𝛽 is the balance coefficient in the overall loss function (i.e., Eq. (13)).

The experiments are conducted on the AliExpress datasets with the

F-RCE and PCOC of the CTR task reported. When investigating
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Figure 4: Calibration metrics across different bin numbers

and balance coefficients 𝛽 .

one hyperparameter, the remaining hyperparameters are set as the

default values described in Section 5.1.3. Compared with MCNet-

None, MCNet-Field is more sensitive to bin number while less

sensitive to the balance coefficient 𝛽 . When varying the bin number,

the F-RCE and PCOC of MCNet-None only slightly change. The

calibration metrics of MCNet-Field become worse under larger bin

numbers. When changing the value of 𝛽 , the calibration metrics of

MCNet-Field remain stable, while those of MCNet-None fluctuate.

The optimal setting of 𝛽 is 1.0 for MCNet-None. We also study the

effect of training epochs, and provide an analysis on the robustness

of MCNet against overfitting, in Appendix B.4.

6 CONCLUSION

We have proposed a novel hybrid method, Monotonic Calibration

Networks (MCNet), to tackle the current challenges in uncertainty

calibration for online advertising. MCNet is equipped with three

key designs: a monotonic calibration function (MCF), an order-

preserving regularizer, and a field-balance regularier. The proposed

MCF is capable of learning complex nonlinear relations by leverag-

ing expressive monotonic neural networks. Additionally, its flexible

architecture enables efficient joint modeling of uncalibrated scores

and context features, facilitating effective context-awareness. The

two proposed regularizers further enhance MCNet by improving

the monotonicity increasing property for preserving order informa-

tion and the field-balanced calibration performance, respectively.

Finally, extensive experiments on both public and industrial datasets

are conducted to demonstrate the superiority of MCNet in the CTR

and CVR tasks.
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Appendices

Appendix A MODEL DETAILS

A.1 Proof of Theorem 1

Theorem 1 (Expressiveness). If the uncalibrated scores possess
accurate order information and the ground truth calibration function
is continuously differentiable, then the monotonic calibration function
𝑓 (·) serves as a universal approximator of the ground truth function.

Proof. If the uncalibrated scores possess accurate order infor-

mation, then the true probability is monotonically increasing with

respect to the uncalibrated scores. This implies that the ground

truth calibration function has a strictly positive derivative. The

derivative of the proposed calibration function 𝑓 𝑘 (𝑝, 𝑐) is given by

𝑑
𝑑𝑝
𝑓 𝑘 (𝑝, 𝑐) = 𝑓 𝑘

1
(𝑝,ℎ𝑘 (𝑐)), which is strictly positive, as guaranteed

by the output activation. Based on [10], a multi-layer feedforward

network with sufficient hidden units is a universal approximator

for our problem. Thus, the function 𝑓 𝑘
1
(·) can be implemented with

multi-layer feedforward networks with sufficient hidden units, al-

lowing it to readily accommodate any positive continuous functions.

Hence, 𝑓 𝑘 (𝑝, 𝑐) can precisely match the groundtruth calibration

function of the 𝑘-th bin. □

A.2 Algorithm and Complexity

Algorithm 1 and Algorithm 2 show the detailed training procedures

for both forward and backward integration with Clenshaw-Curtis

quadrature (CCQ) [21, 23], respectively. In CCQ, the integration is

computed by constructing a polynomial approximation, involving

𝑇 (set to 50 empirically) forward operation of 𝑓1. Thus, the com-

plexity of MCNet is a constant times of a normal neural network

positively depending on 𝑇 . Luckily, the 𝑇 forward operations can

be computed in parallel, making it time efficient. In the backward

step, we integrate the gradient instead of computing the gradient of

the integral to avoid storing additional results, making it memory

efficient.

In addition, we provide the training time per epoch and the GPU

memory consumption of closely-related baselines and our methods

in Table 4, verifying that MCNet is both time- and memory-efficient.

Although MCNet takes several times longer than the baseline meth-

ods, this is acceptable in practical applications because the calibra-

tion dataset is usually much smaller than the training dataset.

A.3 Auxiliary Neural Network

Figure 5 illustrates the model architecture with an additional auxil-

iary network incorporated into the MCNet model. The inputs are

the sample feature vectors (including the context features). The

calibrated probability is obtained by adding the outputs of MCNet

and the auxiliary network.

Appendix B MORE EXPERIMENTS

B.1 Experimental Datasets

The experiments are conducted on two real-world datasets: one pub-

lic dataset (AliExpress
2
) and one private industrial dataset (Huawei

2https://tianchi.aliyun.com/dataset/74690

Sample Feature 𝒙  

Uncalibrated Logit መ𝑙

Calibrated Prob 𝑝

Monotonic Calibration 
Network (MCNet)

Uncalibrated 
Model

Auxiliary
Neural Network

Context 
Feature 𝑐  

Calibrated Logit 𝑙

activation

Figure 5: Model architecture with an additional auxiliary

network.

Table 4: Training time per epoch (min) and GPU memory

consumption (MiB).

AliExpress Huawei Browser

Method 𝑁 Time Memory Time Memory

NeuCalib - 0.63 1,457 23.0 23,855

AdaCalib - 1.3 1,497 21.7 24,263

MCNet-None 10 5.5 1,515 69.6 24,889

MCNet-None 20 5.5 1,515 79.0 24,838

MCNet-None 50 5.4 1,509 74.6 24,824

Browser).We provide the detailed statistics of experimental datasets,

i.e., AliExpress and Huawei Browser, in Table 5. For AliExpress, the

provided training and test sets are split along the time sequence.

Since the timestamp information is not available in the original

training set, following AdaCalib [24], we split the original training

set to be a new training set and a validation set with a proportion

of 3:1. Field feature 𝑐 (see Section 4.2.1) is set as the country where

the data are collected. With such a categorical feature as the field

information, AliExpress can be divided into 4 fields (i.e., 4 disjoint

subsets), representing the 4 countries. The Huawei Browser dataset

is extracted directly from the Huawei online advertising system,

which has samples across 9 days. To simulate the real scenario, we

split this dataset by the date, i.e., the first 7 days for training, the

8th day for validation, and the 9th day for testing. Huawei Browser

dataset is partitioned into 3 fields, indicating the 3 advertisement

sources.

B.2 Baseline Methods

Wemake comparisonswith three categories of baselines. (1)Binning-

based methods: Histogram Binning [28] partitions the ranked

uncalibrated scores into multiple bins, and assigns the calibrated

probability of each bin to be the bin’s posterior probability. Isotonic

Regression [29] improves over Histogram Binning by merging

the adjacent bins to ensure the bin’s posterior probability keeps

10
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Algorithm 1: Forward Integration for MCNet with Clenshaw-Curtis quadrature

Input :𝑝: The superior integration bounds, i.e., the uncalibrated score 𝑔(𝑥) in Eq. (7).

ℎ: The vector that representing embeddings of the input feature id, and ℎ is denoted as ℎ𝑘 for the 𝑘-th bin.

Output : 𝑓 : The integral of
∫ 𝑝
0
𝑓1 (𝑡 ;ℎ;𝚽)d𝑡 , and 𝑓 is denoted as 𝑓 𝑘 for the 𝑘-th bin.

Hyperparameters : 𝑓1: A derivable function R→ R with model parameters as 𝚽.

𝑇 : The number of integration steps.

1 // Compute Clenshaw-Curtis weights and evaluation steps

2 𝑤 , 𝛿𝑝 = compute_clenshaw_curtis_weights(𝑇 )

3 𝑓 = 0

4 for 𝑖 = 1, . . . ,𝑇 do

5 𝑝𝑖 = 𝑝0 + 1

2
(𝑝 − 𝑝0) (𝛿𝑝 [𝑖] + 1) // Compute the next point to evaluate

6 𝛿𝑓 = 𝑓1 (𝑝𝑖 ;ℎ;𝚽)
7 𝑓 = 𝑓 +𝑤 [𝑖]𝛿𝑓
8 end

9 𝑓 =
𝑓
2
(𝑝 − 𝑝0)

10 return 𝑓

Algorithm 2: Backward Integration for MCNet with Clenshaw-Curtis quadrature

Input :𝑝: The superior integration bounds.

ℎ: The vector that representing embeddings of the input feature id, and ℎ is denoted as ℎ𝑘 for the 𝑘-th bin.

∇𝑜𝑢𝑡 : The derivatives of the loss function with respect to

∫ 𝑝
0
𝑓1 (𝑡 ;ℎ;𝚽)d𝑡 for all 𝑝 .

Output :∇
𝚽
: The gradient of

∫ 𝑝
0
𝑓1 (𝑡 ;ℎ;𝚽)d𝑡 with respect to the parameters 𝚽 of 𝑓1.

∇ℎ : The gradient of
∫ 𝑝
0
𝑓1 (𝑡 ;ℎ;𝚽)d𝑡 with respect to feature embeddings ℎ.

Hyperparameters : 𝑓1: A derivable function R→ R with model parameters as 𝚽.

𝑇 : The number of integration steps.

1 // Compute Clenshaw-Curtis weights and evaluation steps

2 𝑤 , 𝛿𝑝 = compute_clenshaw_curtis_weights(𝑇 )

3 𝑓 ,∇
𝚽
,∇ℎ = 0, 0, 0

4 for 𝑖 = 1, . . . ,𝑇 do

5 𝑝𝑖 = 𝑝0 + 1

2
(𝑝 − 𝑝0) (𝛿𝑝 [𝑖] + 1) // Compute the next point to evaluate

6 𝛿𝐹 =𝑓1 (𝑝𝑖 ;ℎ;𝚽)
7 // Sum up for all samples of the batch the gradients with respect to inputs ℎ

8 𝛿∇ℎ =

∑𝐵
𝑗=1 ∇ℎ 𝑗

(
𝛿
𝑗

𝑓

)
∇ 𝑗𝑜𝑢𝑡 (𝑝 𝑗 − 𝑝

𝑗

0
)

9 // Sum up for all samples of the batch the gradients with respect to parameters 𝚽

10 𝛿∇𝚽
=

∑𝐵
𝑗=1 ∇𝚽

(
𝛿
𝑗

𝑓

)
∇ 𝑗𝑜𝑢𝑡 (𝑝 𝑗 − 𝑝

𝑗

0
)

11 ∇ℎ = ∇ℎ +𝑤 [𝑖]𝛿∇ℎ
12 ∇

𝚽
= ∇

𝚽
+𝑤 [𝑖]𝛿∇𝚽

13 end

14 return ∇
𝚽
, ∇ℎ

increasing. (2) Scaling-based methods: They design parametric

calibration functions with the assumption that the class-conditional

scores follow the Gaussian distribution (Platt Scaling [17] and

Gaussian Scaling [13]) or Gamma distribution (Gamma Scal-

ing [13]). (3) Hybrid methods: These methods borrow ideas from

both the binning- and scaling-based methods. SIR [4] constructs

calibration functions using isotonic regression and linear interpola-

tion. NeuCalib [16] computes the calibrated probabilities with a

linear calibration function and a field-aware auxiliary neural net-

work.AdaCalib [24] learns one linear calibration function for each

field using the field’s posterior statistics.

B.3 Evaluation Metrics

To make the evaluations comprehensive, we provide the expected

calibration error (ECE) scores of MCNet and three critical baselines

(SIR, NeuCalib, and AdaCalib) on both AliExpress and Huawei

Browser in Table 6. Fellow NeuCalib [16], ECE is calculated by

ECE =
1

|D|

𝐾∑︁
𝑘=1

������
|D |∑︁
𝑖=1

(𝑦 (𝑖 ) − 𝑝 (𝑖 ) )I[𝑏𝑘−1,𝑏𝑘 )
(
𝑝 (𝑖 )

) ������ . (14)
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Table 5: Statistics of the AliExpress and Huawei Browser datasets.

Training Validation Test

Field ID #Impression #Click #Conversion #Impression #Click #Conversion #Impression #Click #Conversion

AliExpress

0 8,355,111 166,433 5,742 2,785,326 55,176 1,913 5,115,069 123,544 4,191

1 219,651 5,451 311 73,068 1,828 158 132,654 3,960 234

2 445,559 9,992 514 148,164 3,240 108 253,662 7,052 415

3 98,100 2,112 117 32,915 739 41 57,916 1,551 71

All 9,118,421 183,988 6,684 3,039,473 60,983 2,220 5,559,301 136,107 4,911

Huawei

Browser

0 273,615,005 1,114,264 515,301 39,978,390 147,305 66,452 40,125,618 147,868 65,944

1 52,593,839 466,101 281,313 6,759,591 62,973 37,404 6,941,224 63,692 38,088

2 16,687,407 245,595 163,380 2,037,187 32,509 21,974 2,191,654 33,340 22,146

All 342,896,251 1,825,960 959,994 48,775,168 242,787 125,830 49,258,496 244,900 126,178

Table 6: ECE on the AliExpress and Huawei Browser datasets.

The best result of each column is in boldface.

AliExpress Huawei Browser

Method CTR CVR CTR CVR

Base 0.005564 0.020246 0.000373 0.016186

SIR 0.005335 0.007328 0.000274 0.001906

NeuCalib 0.004628 0.008705 0.000129 0.002497

AdaCalib 0.004708 0.007529 0.000042 0.004615

MCNet-None 0.002634 0.005352 0.000147 0.004055

MCNet-Field 0.005195 0.007270 0.000172 0.002420

Table 7: PCOC under every 2 training epochs (10 epochs in

total).

Dataset Method PCOC (2-10 epochs)

AliExpress

MCNet-None 1.0999 | 1.1127 | 1.1089 | 1.1089 | 1.1165

MCNet-None-Aux 1.0168 | 0.9895 | 0.9837 | 0.9753 | 0.9678

Huawei

Browser

MCNet-None 0.9995 | 0.9997 | 0.9998 | 1.0001 | 1.0003

MCNet-None-Aux 0.9988 | 1.0020 | 1.0110 | 0.9976 | 1.0061

Table 8: AUC under every 2 training epochs (10 epochs in

total).

Dataset Method AUC (2-10 epochs)

AliExpress

MCNet-None 0.7892 | 0.7892 | 0.7892 | 0.7892 | 0.7892

MCNet-None-Aux 0.7894 | 0.7893 | 0.7893 | 0.7892 | 0.7890

Huawei

Browser

MCNet-None 0.8497 | 0.8497 | 0.8497 | 0.8497 | 0.8497

MCNet-None-Aux 0.8549 | 0.8552 | 0.8543 | 0.8535 | 0.8536

It shows that MCNet-None achieves the best ECE scores on both

the CTR and CVR tasks of AliExpress, while MCNet-Field achieves

comparable performance with the baselines. For Huawei Browser,

the best results on CTR and CVR tasks are achieved by AdaCalib

and SIR, respectively. Our MCNet demonstrates comparable perfor-

mance with other baselines on Huawei Browser. Overall, the results

of ECE are consistent with those on PCOC largely (see Table 1).

The reason might be that both ECE and PCOC do not consider the

fine-grained field information.

B.4 Model Robustness against Overfitting

MCNet is designed to be robust against overfitting via three strate-

gies: 1) constraining the calibration function of each bin to be

monotonic regarding the uncalibrated scores, 2) applying 𝐿2 reg-

ularization and employing a small number of training epochs, 3)

taking simple inputs, i.e., only the uncalibrated scores (MCNet-

None) or together with the context features (MCNet-Field) [26].

The auxiliary neural network is an optional module of MCNet to

enhance the ranking performance. To avoid overfitting, the auxil-

iary network is implemented as a simple 2-layer MLP. Table 7 and

Table 8 report the PCOC and AUC scores on the CVR task under

every 2 training epochs (10 epochs in total), demonstrating that a

training epoch within the range of 2 to 10 has a negligible impact

on the final calibration and ranking performance. Therefore, MC-

Net is robust against overfitting, even with the auxiliary network

incorporated.
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