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ABSTRACT

Modern machine learning models are trained on diverse datasets and tasks to im-
prove generalization. A key challenge in multitask learning is determining the
optimal data mixing and sampling strategy across different data sources. Prior
research in this multi-task learning setting has primarily focused on mitigating gra-
dient conflicts between tasks. However, we observe that many real-world multitask
learning scenarios—such as multilingual training and multi-domain learning in
large foundation models—exhibit predominantly positive task interactions with
minimal or no gradient conflict. Building on this insight, we introduce PiKE
(Positive gradient interaction-based K-task weights Estimator), an adaptive data
mixing algorithm that dynamically adjusts task contributions throughout training.
PiKE optimizes task sampling to minimize overall loss, effectively leveraging
positive gradient interactions with almost no additional computational overhead.
We establish theoretical convergence guarantees for PiKE and demonstrate its
superiority over static and non-adaptive mixing strategies. Additionally, we extend
PiKE to promote fair learning across tasks, ensuring balanced progress and pre-
venting task underrepresentation. Empirical evaluations on large-scale language
model pretraining show that PiKE consistently outperforms existing heuristic and
static mixing strategies, leading to faster convergence and improved downstream
task performance.

1 INTRODUCTION

Modern foundation models, such as large language models (LLMs), have demonstrated impressive
generalization and multitask learning capabilities by pretraining on diverse datasets across multiple
domains (Liu et al., 2024a; Team et al., 2024a; Chowdhery et al., 2022; Radford et al., 2019). The
effectiveness of these models is heavily influenced by the composition of their training data (Du et al.,
2022; Hoffmann et al., 2022). However, determining the optimal data mixture (across different tasks
and data sources) remains a fundamental challenge due to the substantial size of both models and
datasets, as well as the high computational cost of training. In most cases, training large models
is limited to a single experimental run, making it impractical to iteratively fine-tune the weights of
different data sources/tasks.

Current approaches to multitask learning typically rely on fixed dataset weights (aka mixing or
sampling strategies), often determined heuristically or based on the performance of smaller proxy
models. For example, mT5 (Xue, 2020) assigns dataset weights based on their relative abundance,
GLaM (Du et al., 2022) selects weights by evaluating downstream performance on smaller models,
and the 405B LLaMA-3 model (Dubey et al., 2024) heuristically constructs its training corpus from
diverse sources. More recently, DoReMi (Xie et al., 2024) introduced a method that pretrains a small
model using group distributionally robust optimization to determine dataset weights for larger-scale
training. However, the optimality of these approaches is unclear, as the capabilities of large and small
models differ significantly (Team et al., 2024b; Wortsman et al., 2023). Moreover, the loss landscape
evolves throughout training (Zhang et al., 2024; Li et al., 2018), meaning that static dataset weights
determined at initialization may not remain optimal (as we will further elaborate in Section 3.1).

Another line of research addresses multitask optimization by modifying gradient updates to mitigate
gradient conflicts, where task gradients point in opposing directions, slowing down optimization.
Techniques such as PCGrad (Yu et al., 2020), GradNorm (Chen et al., 2018), and MGDA (Désidéri,
2012) attempt to minimize these conflicts by adjusting gradient directions during training. While
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these methods improve performance, they introduce significant computational and memory overhead,
making them impractical for large-scale models with numerous tasks (Xin et al., 2022). Furthermore,
while gradient conflicts are prevalent in vision-based multitask learning (Wang et al., 2020; Liu
et al., 2021) and small-scale language models, we observe that they rarely occur when training
large language models, as we will elaborate in Section 3. Instead, task gradients in such models
often exhibit positive interactions, suggesting that existing conflict-mitigation strategies may not
be necessary for large-scale multitask learning. Given these observations, we pose the following
question:

Can we design a multitask learning mixing strategy that leverages the absence of gradient conflict to
improve efficiency and performance in training large models on diverse datasets?

To answer this, we introduce PiKE (Positive gradient interaction-based K-task weight Estimator), a
novel adaptive data mixing strategy that dynamically adjusts task contributions throughout training.
Unlike static and heuristic approaches, PiKE optimizes data allocation based on gradient informa-
tion, effectively leveraging positive gradient interactions to enhance model performance. Our key
contributions are as follows:

1. We propose PiKE, an approach that dynamically adjusts the mixture of data sources during
training based on task gradient magnitudes and variance. This enables PiKE to scale efficiently
with increasing model size and the number of tasks, overcoming the limitations of static and
heuristic task weighting strategies.

2. We establish the theoretical convergence of PiKE when applied with stochastic gradient de-
scent (SGD). Additionally, we extend PiKE to incorporate tilted empirical risk minimization (Li
et al., 2020; Mo & Walrand, 2000), promoting fair learning across tasks and preventing task
underrepresentation.

3. We conduct comprehensive experiments across various language multitask learning settings,
including pretraining language models on multilingual text corpora and English datasets from
diverse domains. Across different scales (110M, 270M, 750M, and 1B parameters) and scenarios,
PiKE consistently outperforms existing static and heuristic data mixing methods. Notably, in
multilingual pretraining for 1B models, PiKE improves average downstream accuracy by 7.1%
and achieves baseline accuracy 1.9× faster. On the GLaM dataset with 750M models, PiKE
surpasses DoReMi (Xie et al., 2024) by 3.4%. Importantly, PiKE achieves these improvements
with only negligible additional computational overhead.

The rest of this paper is structured as follows. Section 2 introduces notations and problem formulation.
Section 3 presents the PiKE algorithm, its theoretical analysis, and an extension for fairness. Section 4
provides experimental results, followed by discussions in Section 5. Further related work is discussed
in Appendix A.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION AND NOTATIONS

We aim to train a single model with parameters θ ∈ Rd to perform K ≥ 2 tasks simultaneously.
Each task is associated with a smooth (possibly non-convex) loss function ℓk(θ, x) : Rd × Rdx → R
where x is the data point. Then, it is common to minimize the total expected loss:

min
θ∈Rd

L(θ) :=
K∑

k=1

Ex∼Dk
[ℓk(θ;x)], (1)

where Dk represents the data distribution for task k. We define Lk(θ) := Ex∼Dk
[ℓk(θ;x)]. For

notation, ∥ · ∥ represents the Euclidean norm, Tr(·) denotes the trace operator, and a function h is
L-Lipschitz if ∥h(θ)− h(θ′)∥ ≤ L∥θ − θ′∥ for any θ,θ′ in the domain of h(·). A function f(·) is
L-smooth if its gradient is L-Lipschitz continuous.

2.2 SAMPLING STRATEGIES: RANDOM, ROUND-ROBIN, AND MIX

To optimize equation (1) using stochastic optimizers such as Adam or SGD, we must select batches
from one or multiple tasks at each training step. The choice of batch selection strategy significantly
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Figure 1: Pre-training metric (average downstream task accuracy), higher is better. Left: 1B models on
multilingual C4 (en) and C4 (hi) datasets. Right: 750M models on GLaM datasets with six domains. PiKE
dynamically optimizes K-task weights during language model pre-training. We compare PiKE against baselines
in two multitask learning scenarios: multilingual training and the training on GLaM dataset. Mix uses equal
batch size for each task (bk = b/K, ∀k ∈ K), GLaM Du et al. (2022) uses fixed domain weights tuned for
downstream performance, and DoReMi Xie et al. (2024) requires pre-training a smaller model to determine
optimized weights for training larger models. PiKE introduces negligible computation and memory overhead
while outperforming all baselines. In pre-training 1B language models on multilingual C4 (en) and C4 (hi),
PiKE improves average downstream accuracy by 7.1% and achieves baseline accuracy 1.9× faster. For 750M
models pre-trained on the GLaM dataset, PiKE improves average downstream accuracy by 3.4% compared to
DoReMi. Tables 8 and 9 provide additional experiments and detailed results.

impacts model performance (Bengio et al., 2009; Ge et al., 2024; Ye et al., 2024; Xie et al., 2024; Liu
et al., 2024c). Below, we define three common sampling strategies: Random, Round-Robin, and Mix.

Random Sampling. At each step, a single task k is randomly chosen with probability pk
(
∑K

k=1 pk = 1), and a batch of b samples is drawn from Dk (dataset of task k). The model pa-
rameters θ are updated using the gradient of the selected task’s loss function evaluated on the
batch.

Round-Robin Sampling. Tasks are selected cyclically, ensuring each task is chosen once every
K steps. At iteration t, task k = (t mod K) + 1 is selected, and a batch is sampled from Dk. The
model parameters are then updated based on the loss gradient evaluated on the selected batch.

Mix Sampling. Each batch contains samples from all K tasks, with bk samples drawn from Dk

such that the total batch size is b =
∑K

k=1 bk. The model update at iteration t is based on the
combined gradient:

gt =
1

b

K∑
k=1

bk∑
i=1

∇ℓk(θt;xi), xi ∼ Dk. (2)

Unlike the Random and Round-Robin, Mix strategy ensures that each task contributes to the computed
gradient at each optimization step.

Historically, Mix has been preferred in computer vision multitask learning (Dai et al., 2016; Misra
et al., 2016; Chen et al., 2018; Ruder et al., 2019; Yu et al., 2020; Liu et al., 2024b), while Random
and Round-Robin have been more common in early language model multitask training (Liu et al.,
2015; Luong et al., 2015; Liu et al., 2019). Recent studies on large-scale language models (Devlin,
2018; Raffel et al., 2020; Brown et al., 2020; Team et al., 2023) have revisited these strategies,
finding that **Mix** generally yields superior performance, particularly when training across diverse
datasets (Du et al., 2022; Chowdhery et al., 2023; Xie et al., 2024; Raffel et al., 2020; Gao et al., 2020;
Wang et al., 2019). Figure 2 (and Figure 4 in the appendix) illustrate this by comparing downstream
accuracy on multilingual mC4 (Xue, 2020) and GLaM (Du et al., 2022) datasets. Across all scenarios,
Mix consistently outperforms the other two strategies, motivating its use in pretraining large language
models.
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Figure 2: Left: Average accuracy across four downstream tasks (ArcE, CSQA, HellaSwag, and PIQA) for 750M
GPT-2 large-style language models pre-trained using Mix, Round-Robin, and Random sampling strategies. Mix
allocates equal batch sizes (bk = b/K,∀k ∈ K), while Random employs uniform sampling (pk = 1/K, ∀k).
Additional results are available in Appendix E.1. Right: Cosine similarity between task gradients during
pre-training 750M GPT-2 style language model on GLaM datasets. “data1-data2” denotes the cosine similarity
between the gradient evaluated on data1 (task 1) and the gradient of data2 (task 2). More results can be found in
Appendix E.2.

2.3 GRADIENT CONFLICTS IN MULTITASK LEARNING

A key challenge in multitask learning prior literature is managing gradient conflicts (Liu et al., 2021;
Yu et al., 2020), where the gradient of a task opposes the overall optimization direction. Formally, a
conflict occurs at iteration t if there exists a task k such that

⟨∇L(θt),∇Lk(θt)⟩ < 0,

indicating that updating θt may increase the loss for task k, thereby hindering balanced learning
across tasks. Existing methods attempt to mitigate gradient conflicts by adjusting gradients (Yu et al.,
2020), but these approaches introduce computational overhead, often requiring O(K) complexity per
step, making them impractical for large-scale models.

While gradient conflicts are common in vision-based multitask learning and small-scale language
models, we observe that they rarely occur in large-scale language model training. In such models,
task gradients are typically aligned (or close to orthogonal) rather than conflicting. This insight
suggests that instead of mitigating conflicts, a more effective strategy is to leverage nonnegative
gradient interactions to enhance training efficiency—a key motivation for our approach, as discussed
in the next section.

3 METHOD

3.1 MOTIVATION

Our approach is based on two key observations: (1) gradient conflicts are rare in LLMs, and (2) the
Mix sampling strategy can be made adaptive rather than static:

3.1.1 REEVALUATING GRADIENT CONFLICTS IN LLMS

The assumption that gradient conflicts dominate multitask learning does not necessarily hold for LLM
pretraining. Our experiments show that task gradients in such models exhibit minimal conflicts. To
illustrate this, we pretrain (i) a 1B GPT-2-style (Radford et al., 2019) model on the multilingual mC4
dataset (Xue, 2020) (six languages: English, Hindi, German, Chinese, French, and Arabic) and (ii) a
750M model on the GLaM dataset (Du et al., 2022) (English text from six domains). Experimental
details are in Appendix D. Figures 2 and 5 show cosine similarity trends for task gradients. Key
observations are: 1) Gradient similarity starts high but decreases over time. 2) Multilingual gradient
similarity varies with linguistic proximity (e.g., English-German align closely), while GLaM tasks
exhibit uniformly aligned gradients. 3) Task gradients rarely conflict—multilingual cosine similarity
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seldom drops below −0.1, while GLaM gradients remain mostly positive. These patterns align with
prior work (Wang et al., 2020).

These findings challenge the conventional focus on mitigating gradient conflicts in multitask learning.
Therefore, instead of reducing conflicts, we should leverage non-conflicting gradients. Existing
conflict-aware methods like PCGrad (Yu et al., 2020) and AdaTask (Yang et al., 2023) are ineffective
in this setting since they focus on resolving gradient conflict (which is indeed not present). As
shown in Figure 7, 1) PCGrad performs similarly to Mix, as it only adjusts gradients when conflicts
occur—which is rare. 2) AdaTask converges slower due to noisy gradients and suboptimal optimizer
state updates. Additionally, both methods are memory-intensive, requiring O(K) storage for task
gradients (PCGrad) or optimizer states (AdaTask), making them impractical for large models like the
540B PaLM (Chowdhery et al., 2022).

Crucially, these methods fail to exploit the non-conflicting interactions among tasks, focusing instead
on resolving conflicts that seldom arise. This highlights the need for a new approach that actively
leverages lack of gradient conflicts to enhance training efficiency.

3.1.2 ADAPTIVE VERSUS STATIC MIXING

Prior work using the Mix sampling strategy typically relies on fixed (static) sampling weights, keeping
(b1, . . . , bK) constant throughout training. However, dynamically adjusting batch composition can
significantly enhance efficiency. We illustrate this with a simple example:

Example 3.1. Consider training on K = 2 tasks with losses ℓ1(θ;x1) = 1
2 (θ

⊤e1)
2 + x⊤

1 θ and
ℓ2(θ;x2) =

1
2 (θ

⊤e2)
2 +x⊤

2 θ, where e1 = [1 0]⊤, e2 = [0 1]⊤, and θ ∈ R2. Data for task 1 follows
x1 ∼ N (0, σ2

1I), while task 2 follows x2 ∼ N (0, σ2
2I). The overall loss for task k simplifies to

Lk(θ) =
1
2 (θ

⊤ek)
2. Using b1 samples from task 1 and b2 samples from task 2 in a batch at iteration

t, the gradient is:

gt =
1

b1 + b2

(
b1e1e

⊤
1 + b2e2e

⊤
2

)
θt + z,

where z ∼ N (0,
b1σ

2
1+b2σ

2
2

b2 I) with b = b1 + b2. Updating θt via SGD, θt+1 = θt − ηgt, we have

E[L(θt+1)] =
1

2
(1− η

b1
b
)2θ21,t +

1

2
(1− η

b2
b
)2θ22,t

+ η2
b1σ

2
1 + b2σ

2
2

b2
,

(3)

where θ1,t and θ2,t denote the first and second component of the vector θt. The derivation details
of equation (3) can be found in Appendix F.1. Letting w1 := b1

b , w2 := b2
b , and relaxing them to take

real values, we can optimize the mixing weights w1 and w2 as

w∗
1 = Π

(
b−1(σ2

2 − σ2
1) + η−1(θ21,t − θ22,t) + θ22,t

θ21,t + θ22,t

)
(4)

and w∗
2 = 1−w∗

1 where Π(ξ) = min{max{ξ, 0}, 1} is the projection operator onto the interval [0, 1].
This result shows that optimal batch composition b1, b2 should evolve over time to maximize training
efficiency.

Figure 3 compares static mixing strategies with an adaptive approach based on equation (4), high-
lighting the superiority of adaptive mixing. Moreover, the adaptive mixing strategy in this example
does not require any hyperparameter tuning, while finding the best static mixing requires tuning.
This simple example mirrors key aspects of multitask learning in large models: 1) The optimal
solution θ∗ = 0 minimizes all task losses simultaneously, reflecting the high expressive power of
large models. 2) Task gradients are non-conflicting, resembling real-world gradient interactions
observed in Figure 2. Moreover, equation (4) further reveals that optimal data mixing depends on (1)
gradient norm squared per task (∥∇L1(θ)∥2 = θ21 , ∥∇L2(θ)∥2 = θ22) and (2) gradient variance (σ2

1 ,
σ2
2). As we will see next, these factors play a crucial role in defining optimal mixing strategies for

more general settings.
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Figure 3: Adaptive vs. static mixing for Example 3.1. Adaptive mixing consistently outperforms
static mixing.

3.2 PIKE: CONCEPTUAL VERSION

As discussed in Section 2, Mix sampling provides greater stability and generalization than Random
and Round-Robin in LLM pretraining. Therefore, we focus on Mix but adopt a dynamic rather than
static approach, as motivated in Section 3.1. To develop our method and motivated by the discussions
in section 3.1, we first quantify gradient conflicts:

Definition 3.2. For a given point θ, we say gradients are c-conflicted (with c ≥ 0) if, for all task
pairs j, k, j ̸= k,

−c
(
∥∇Lj(θ)∥2 + ∥∇Lk(θ)∥2

)
≤ ⟨∇Lj(θ),∇Lk(θ)⟩ .

The above definition is implied by a lower bound on the gradients cosine similarity. In particular, if
⟨∇Lj(θ),∇Lk(θ)⟩
∥Lj(θ)∥∥Lk(θ)∥ ≥ −c̃, then the gradients are c-conflicted for c = c̃/2. Therefore, experiments in

section 3.1 show that c is typically small for LLM training. The reader is also referred to Figures 5
and 6 in Appendix E.2, where we plot the ratio ⟨∇Lj(θ),∇Lk(θ)⟩

∥Lj(θ)∥2+∥Lk(θ)∥2 for the same experiment in
Figure 2.

While Definition 3.2 quantifies the conflict between gradients, we also observed in section 3.1 that
the gradients of different tasks are also not completely aligned. To quantify the level of alignment,
we define the following concept:

Definition 3.3. For a given point θ, we say that the gradients are c̄-aligned (with c̄ ≥ 0) if, for all
task pairs j, k, j ̸= k,

⟨∇Lj(θ),∇Lk(θ)⟩ ≤ c̄∥∇Lj(θ)∥2∥∇Lk(θ)∥2.

While c̄ = 1 and c = 1/2 always hold, smaller values allow for more refined analysis. Notably, when
both c̄ and c are small, the value of ∥∇L(θ)∥ is small if and only if ∥∇Lk(θ)∥ is small for all k (see
Lemma F.1 in Appendix F).

To proceed, we make the following standard assumptions.

Assumption 3.4. For all tasks k ∈ {1, . . . ,K}, the gradients are L-Lipschitz, unbiased, and have
bounded variance:

∥∇Lk(θ1)−∇Lk(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1,θ2 (5)
Ex∼Dk

[∇ℓk(θ;x)] = ∇Lk(θ), ∀θ (6)

Ex∼Dk
[∥∇ℓk(θ;x)−∇Lk(θ)∥2] ≤ σ2

k, ∀θ (7)

Using a Mix batch with bk samples per task k, the estimated gradient follows equation (2). The next
theorem characterizes the descent obtained under low conflict conditions:

Theorem 3.5. Suppose Assumption 3.4 holds and the gradients are c-conflicted and c̄-aligned
at θt with c < 1

K−2+b/bk
,∀k. Moreover, assume the gradient is computed according to the mix

6
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sampling equation (2). Then,

E[L(θt − ηgt)] ≤ L(θt) +
K∑

k=1

bk

(
− η

b
β∥∇Lk(θt)∥2

+
Lη2

2b2
σ2
k

)
+

K∑
k=1

b2k
Lη2

2b2
γ∥∇Lk(θt)∥2 (8)

where β ≜ mink(1 + c(−K + 2− b
bk
)) and γ ≜ 1 + c̄(K − 1).

A formal proof is provided in Theorem F.3 (Appendix F). To maximize descent in Mix sampling, we
minimize the right-hand side of equation (8). Assuming a large b, we relax bk to continuous values
wk = bk/b and solve:

min
w1,...,wK≥0

K∑
k=1

wkλk +
1

2
w2

kκk s.t.
K∑

k=1

wk = 1 (9)

where λk ≜ −ηβ∥∇Lk(θ)∥2 + Lη2

2b σ2
k and κk ≜ Lη2γ∥∇Lk(θ)∥2. Using KKT conditions, the

optimal solution is given by

w∗
k = max

{
0,−µ+ λk

κk

}
(10)

where µ is chosen such that
∑K

k=1 w
∗
k = 1 (see Lemma F.2, Appendix F). This leads to the conceptual

version of PiKE (Positive gradient Interactions-based K-task weight Estimator), summarized in
Algorithm 2 in Appendix B.

The conceptual version of PiKE (Algorithm 2) adaptively adjusts sampling weights. This adaptive
adjustment makes the stochastic gradients biased, i.e., E[gt] ̸= ∇L(θt). Due to this introduced bias,
the classical convergence results of SGD can no longer be applied. The following theorem establishes
the convergence of conceptual PiKE:

Theorem 3.6. Suppose the assumptions in Theorem 3.5 hold and the Conceptual PiKE Algorithm
(Algorithm 2) initialized at θ0 with the SGD optimizer in Step 10 of the algorithm. Let ∆L =
L(θ0) − minθ L(θ) and σmax = maxk σk. Suppose δ > 0 is a given constant and the stepsize
η ≤ βδ

Lσ2
max/b+Lηδ . Then, after T = 2β∆L

ηδ iterations, Algorithm 2 finds a point θ̄ such that

E∥∇Lk(θ̄)∥2 ≤ δ, ∀k = 1, . . . ,K. (11)

Moreover, if we choose η = βδ
Lσ2

max/b+Lηδ , then the Conceptual PiKE algorithm requires at most

T̄ =
2L∆L(σ

2
max/b+ γδ)

δ2β2

iterations to find a point satisfying equation (11).

The proof of this theorem is provided in Theorem F.4 in Appendix F. This theorem states that with
enough steps, the gradient of all task losses become small. It is also worth noting that the gradient
norm becomes small with the iteration complexity T = O(1/δ2), which is the best known rate for
nonconvex smooth stochastic setting.

3.3 PIKE: SIMPLIFIED COMPUTATIONALLY EFFICIENT VERSION

Solving equation (9) requires estimating {σk}Kk=1 and {∥∇Lk(θt)∥2}Kk=1, which necessitates large
batch computations, slowing convergence. To speed up the algorithm, we update these estimates every
T iterations. However, this can cause abrupt changes in sampling weights (w1, . . . , wK), leading
to instability, especially with optimizers like Adam, where sudden shifts may disrupt momentum
estimates. To mitigate this, we update (w1, . . . , wK) using a single mirror descent step on equation (9),
ensuring gradual adjustments:

wk ← wk exp

(
αη(β − Lηγwk)∥∇Lk(θ)∥2 −

αLη2

2b
σ2
k

)
followed by normalization: w← w/∥w∥1, where α is the mirror descent step size.

7
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Algorithm 1 PiKE: Positive gradient Interaction-based K-task weights Estimator
1: Input: θ, T , total batch size b, task k dataset Dk, hyperparameters ζ1 and ζ2, prior weights w′

2: Initialize: wk ← 1/K or wk ← w′
k

3: for t = 0, 1, . . . do
4: if t mod T = 0 then
5: Estimate ∥∇Lk(θt)∥2 and σ2

k for every k

6: wk ← wk exp

(
ζ1∥∇Lk(θt)∥2 − ζ2

2bσ
2
k

)
7: w← w/∥w∥1
8: (b1, . . . , bK)← round(b(w1, . . . , wK))
9: end if

10: Sample bk data points from each task k
11: Compute the gradient g using the estimates samples
12: Update: θt+1 ← Optimizer(η,θt,g)
13: end for

Fine-tuning L, γ, α, and β can be challenging, but we simplify this by noting two observations: 1)
The coefficient of σ2

k is constant, independent of wk. 2) For small η and wk < 1, the coefficient
of ∥∇Lk(θ)∥ remains nearly constant: αη(β − Lηγwk) ≈ αηβ. Thus, in practice, we use tunable
constant coefficients for variance and gradient norm terms, simplifying implementation. The final
algorithm is summarized in Algorithm 1.

3.4 PIKE: FAIRNESS CONSIDERATIONS ACROSS TASKS

Algorithm 1 is designed to minimize the average loss across tasks as in equation (1). To ensure fair
learning across all tasks, we can consider a fairness-promoting objective based on tilted empirical
risk minimization (Li et al., 2020), also known as the α-fairness utility (Mo & Walrand, 2000):

min
θ
L̃(τ ;θ) := 1

τ
log

(
K∑

k=1

eτLk(θ)

)
. (12)

This formulation reduces to equation (1) as τ → 0, while for τ > 0, it promotes fairness. In
the limit τ → ∞, it optimizes for the worst-case task loss, i.e., maxk Lk(θ), ensuring no task is
disproportionately neglected. Moderate values of τ balance fairness and performance.

We can use Fenchel duality (Rockafellar, 2015), to connect the objective in equation (12) to a
weighted version of equation (1) through the following lemma:

Lemma 3.7. Let x ∈ RK
+ and τ > 0. Then,

log

(
K∑

k=1

eτxk

)
= max

y∈RK
+∑K

k=1 yk=τ

(
K∑

k=1

ykxk −
K∑

k=1

yk
τ

log
(yk
τ

))

The proof of this Lemma F.5 can be found in Appendix F.3. Using this lemma, equation (12) can be
rewritten as

min
θ

max
y∈RK

+∑K
k=1 yk=τ

K∑
k=1

ykLk(θ)−
K∑

k=1

yk
τ

log
(yk
τ

)
,

ehrtr the optimal y, for a fixed θ, has a closed-form solution:

y⋆k =
τeτLk(θ)−1∑K
j=1 e

τLj(θ)−1
, ∀k.

(see Lemma F.6 in Appendix F.3). On the other hand, fixing y, the problem reduces to a weighted
minimization over tasks, where regular PiKE sampling with proper weights yk in front of each loss
can be applied to determine the optimal mixing strategy. This leads to fair-PiKE algorithm, described
in Appendix C, which balances overall loss minimization and fair learning of all tasks.
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Table 1: We report the perplexities (lower the better) on the validation split of multilingual C4 datasets.
We also compare the accuracies (%, higher the better) of different models on HellaSwag and its
corresponding translated version. Bolding indicates the best model in the task; Metrics means the
average across different tasks. Additional results can be found in Table 8.

C4 (en) C4 (hi) C4 (de) HellaSwag (en) HellaSwag (hi) HellaSwag (de)

Perplexity ↓ Perplexity ↓ Perplexity ↓ Perplexity ↓ Accuracy(%) ↑ 0-shot ↑ 0-shot ↑ 0-shot ↑
C4 (en), C4 (hi), and C4 (de) datasets, GPT-2 large style, 1B params, 36 Layers default, 120K training steps
Mix 8.29 11.13 4.45 9.29 27.5 28.1 27.1 27.6
Round-Robin 8.41 11.31 4.97 9.46 26.5 27.6 26.7 26.3
Random 8.48 11.38 4.54 9.55 26.6 27.0 26.9 26.1

PiKE 9.56 9.49 5.32 13.87 28.7 33.0 27.2 26.2
Fair-PiKE (τ = 1) 8.29 11.12 4.46 9.31 27.9 28.3 27.4 28.0
Fair-PiKE (τ = 3) 8.18 10.14 4.93 9.49 28.9 31.3 27.3 28.1
Fair-PiKE (τ = 5) 8.42 10.02 6.30 8.94 28.9 31.2 26.9 28.6

Table 2: We report perplexity (lower is better) on the validation split of the GLaM datasets, averaging
perplexities across six domains when applicable or reporting a single perplexity when only training
with a single domain. We also compare the accuracies (%, higher the better) of different models on
four different Q/A tasks. HellaSwag and ArcE tasks have 4 choices, CSQA has 5 choices, and PIQA
has 2 choices. PiKE (Uniform) means PiKE using initial sampling weights of 1/6 for each task and
PiKE (GLaM) means PiKE using GLaM tuned weights as initial task weights. Bolding indicates the
best model in the task, Metrics means the average across different tasks, underlining indicates PiKE
beating Mix, Round-Robin, Random methods. Additional results can be found in Table 9.

.
GLaM ArcE CSQA HellaSwag PIQA

Perplexity ↓ Accuracy(%) ↑ 7-shot ↑ 7-shot ↑ 7-shot ↑ 7-shot ↑
Six domains of GLaM dataset, GPT-2 large style, 750M params, 36 layers default
Mix 12.77 46.4 47.2 39.6 37.9 60.9
Round-Robin 12.98 44.3 43.5 36.7 36.8 60.3
Random 12.99 42.7 41.7 34.2 36.6 58.2
GLaM 13.20 45.3 46.9 39.8 38.0 56.4
DoReMi 13.25 46.5 48.6 40.1 37.5 59.6
PiKE (Uniform) 13.22 47.6 49.6 43.2 37.2 60.4
PiKE (GLaM) 13.35 48.1 49.8 43.5 38.0 61.2

4 EXPERIMENTS

We evaluate PiKE in two multitask pretraining scenarios: 1) Pretraining language models on
multilingual mC4 dataset (Xue, 2020), a dataset covering diverse languages from Common Crawl
corpus. 2) Pretraining language models on the GLaM dataset (Du et al., 2022), an English dataset
spanning six domains. As we will see, across multiple model sizes (110M, 270M, 750M, and 1B
parameters), PiKE consistently outperforms static and heuristic data mixing methods. For 1B models
trained on multilingual C4 (en, hi), PiKE improves average downstream accuracy by 7.1% and
reaches baseline accuracy 1.9× faster. For 750M models pre-trained on the GLaM dataset, PiKE
improves averge downstream accuracy by 3.4% over DoReMi (Xie et al., 2024) and 6.2% over
GLaM’s original strategy.

4.1 EXPERIMENT SETUP

Baselines: For multilingual pretraining, we compare five sampling strategies: 1. Mix, 2. Round-
Robin, 3. Random, 4. PiKE, and 5. fair-PiKE. For GLaM-based pretraining, we evaluate: 1. Mix,
2. GLaM (Du et al., 2022), 3. DoReMi (Xie et al., 2024), and 4. PiKE. DoReMi trains a small proxy
model for weight estimation, while GLaM assigns static domain weights based on downstream
performance of smaller models. In contrast, PiKE dynamically adjusts weights during training based
on gradient information. Hence, PiKE does not require another smaller model and is computationally
much more efficient than DoReMi and GLaM.

Datasets: For multilingual experiments, we use mC4 (Xue, 2020), focusing on English (en), Hindi
(hi), and German (de). An overview of these datasets is provided in Table 3. For GLaM-based
experiments, we use the six-domain GLaM dataset (Du et al., 2022), with domain weights from (Du

9
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et al., 2022; Xie et al., 2024). Details regarding the GLaM dataset and the domain weights used by
GLaM and DoReMi are presented in Table 4.

Evaluation: Perplexity is measured on held-out validation data. Downstream evaluation follows
the OLMES suite (Gu et al., 2024). For multilingual downstream tasks, we use multilingual Hel-
laSwag (Dac Lai et al., 2023), covering 26 languages. For models trained on GLaM, we evaluate on
downstream tasks ARC-Easy (Clark et al., 2018), CommonsenseQA (Talmor et al., 2018), PIQA (Bisk
et al., 2019), and HellaSwag (Zellers et al., 2019).

Further details on our experimental setup and evaluation are in Appendix D.

4.2 PIKE OUTPERFORMS MIX, ROUND-ROBIN, AND RANDOM IN MULTILINGUAL
PRETRAINING

Table 1 presents results for pretraining a 1B multilingual GPT-2 model (Radford et al., 2019) on
English, Hindi, and German, with additional results in Table 8. We evaluate GPT-2 models at two
scales (270M and 1B parameters) across two language settings: (1) English and Hindi, and (2)
English, Hindi, and German.

We observe that PiKE and its fair variation consistently achieve the highest average accuracy of
downstream tasks across all language settings and model scales, demonstrating its effectiveness in
multilingual pretraining.

We also observe that fair-PiKE balances fairness among tasks. We pre-trained 1B models using
Fair-PiKE with different fairness parameters τ ∈ {1, 3, 5}. Higher τ values promotes greater fairness
by reducing the gap between task losses. At τ = 5, perplexity values across tasks become more
uniform, indicating improved fairness. Notably, Fair-PiKE with τ = 3 achieves the best balance,
yielding the lowest perplexity and highest downstream performance. These results highlight the
benefits of incorporating fairness considerations in pretraining.

4.3 PIKE OUTPERFORMS DOREMI, GLAM, AND STATIC MIX IN PRETRAINING WITH GLAM
DATASETS

Table 2 presents results for pretraining a 750M multilingual GPT-2 model on the GLaM dataset, with
additional results in Table 9. We evaluate two model sizes (110M and 750M) across six domains.

PiKE consistently achieves the highest average performance. In both 110M and 750M configurations,
PiKE outperforms DoReMi, GLaM, and Mix in downstream accuracy. For 750M models, PiKE
improves the average downstream task accuracy by 3.4% over DoReMi and 6.2% over GLaM. For
110M models, PiKE achieves 37.8% accuracy, surpassing DoReMi (36.0%) and GLaM (35.3%).
Unlike DoReMi and GLaM, PiKE achieves these improvements without additional computational
overhead, as DoReMi requires training a proxy model and GLaM involves tuning weights based on
smaller models.

PiKE benefits from apriori downstream-tuned weights. We evaluate PiKE with two initializations:
(1) uniform weights bk = b/K and (2) GLaM-tuned weights. In both small and large GPT-2
configurations, PiKE benefits from utilizing already fine tuned weights as initialization, achieving
48.1% accuracy with GLaM-tuned weights vs. 47.6% with uniform initialization. This shows that
PiKE can effectively leverage pre-existing fine-tuned weights while still outperforming other methods
with uniform initialization.

Mixing datasets improves language model generalization. We compare models trained on individual
domains to those trained on mixed-domain datasets. Table 9 shows that single-domain training
underperforms compared to mixed-domain training, even with simple Mix sampling. This reinforces
the importance of diverse data for pretraining and aligns with prior work (Liu et al., 2024c; Hoffmann
et al., 2022).

Discussion on perplexity. Table 9 reveals that validation perplexity does not always align with
downstream performance. For instance, while Mix sampling yields lower perplexity in 750M models,
PiKE achieves better downstream accuracy. This aligns with prior findings (Tay et al., 2021; Liu
et al., 2023; Wettig et al., 2024), suggesting that perplexity alone is not a reliable performance metric.
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CONCLUSION

In this work, we introduced PiKE, an adaptive data mixing algorithm for multitask learning that
dynamically adjusts task sampling based on gradient interactions. Unlike prior approaches that
focus on mitigating gradient conflicts, PiKE leverages the positive gradient interactions commonly
observed in large-scale language model training. Our theoretical analysis established the convergence
guarantees of PiKE, while empirical results demonstrated its effectiveness across diverse pretraining
scenarios. Furthermore, we extended PiKE to incorporate fairness considerations, ensuring balanced
learning across tasks. Our results indicate that Fair-PiKE effectively reduces task performance
disparities while maintaining strong overall model performance.

A key limitation of our work is that PiKE does not explicitly account for data abundance when
adjusting sampling weights. Future work could explore integrating dataset prevalence into the
adaptive mixing strategy to further optimize learning efficiency. Additionally, extending PiKE to
other domains beyond language modeling presents an exciting direction for future research.
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A RELATED WORK

Data Curation and Selection. The effectiveness of language models heavily depends on the quality of
the pre-training corpus. Consequently, significant efforts have been made to enhance pre-training
data. These efforts include heuristic-based filtering (Raffel et al., 2020; Rae et al., 2021; Laurençon
et al., 2022; Penedo et al., 2023; Soldaini et al., 2024) and deduplication (Abbas et al., 2023; Lee
et al., 2021; Chowdhery et al., 2022; Dubey et al., 2024). Recently, Vo et al. (2024) proposed an
automated method for constructing large, diverse, and balanced datasets for self-supervised learning
by applying hierarchical k-means clustering. Sachdeva et al. (2024) introduced techniques that
leverage instruction-tuned models to assess and select high-quality training examples, along with
density sampling to ensure diverse data coverage by modeling the data distribution. Additionally,
Guu et al. (2023) simulated training runs to model the non-additive effects of individual training
examples, enabling the analysis of their influence on a model’s predictions.

Multitask Learning Optimization The approach most closely related to our method is multitask learning
(MTL) optimization, which modifies gradient updates to mitigate gradient conflicts—situations where
task gradients point in opposing directions, slowing down optimization (Vandenhende et al., 2021; Yu
et al., 2020). The Multiple Gradient Descent Algorithm (MGDA) (Désidéri, 2012; Sener & Koltun,
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2018) updates the model by optimizing the worst improvement across all tasks, aiming for equal
descent in task losses. Projected Gradient Descent (PCGrad) (Yu et al., 2020) modifies task gradients
by iteratively removing conflicting components in a randomized order, ensuring that updates do
not interfere destructively across tasks. Conflict-Averse Gradient Descent (CAGRAD) (Liu et al.,
2021) optimizes for the worst task improvement while ensuring a decrease in the average loss.
NASHMTL (Navon et al., 2022) determines gradient directions by solving a bargaining game that
maximizes the sum of log utility functions. While these methods improve performance, they introduce
significant computational and memory overhead, making them impractical for large-scale models
with numerous tasks (Xin et al., 2022). Similar challenges exist in AdaTask (Yang et al., 2023),
which improves multitask learning by balancing parameter updates using task-wise adaptive learning
rates, mitigating task dominance, and enhancing overall performance. Unlike previous approches
that requires requiring O(K) storage for task gradients (e.g. PCGrad) or optimizer states (e.g.
AdaTask), FAMO (Liu et al., 2024b) balances task loss reductions efficiently using O(1) space and
time. However, these methods fail to exploit the non-conflicting interactions among tasks, focusing
instead on resolving conflicts that seldom arise. This highlights the need for a new approach that
actively leverages lack of gradient conflicts to enhance training efficiency.

Another line of work focuses on adjusting the domain mixture to improve data efficiency during
training (Xie et al., 2024; Xia et al., 2023; Jiang et al., 2024). However, these methods require
a target loss for optimization, which has been shown to not always correlate with downstream
performance (Tay et al., 2021; Liu et al., 2023; Wettig et al., 2024). In contrast, our method leverages
the absence of gradient conflict and the presence of positive gradient interactions between tasks or
domains. This approach provides a more reliable and effective way to enhance the final model’s
performance.

B PIKE: CONCEPTUAL VERSION

Here, we present the conceptual (basic) version of PiKE. As discussed in the main text, this approach
lacks computational efficiency due to the frequent estimation of the norm and the variance of the
per-task gradient.

Algorithm 2 Conceptual version of PiKE: Positive gradient Interaction-based K-task weights Estima-
tor

1: Input: θ, total batch size b, stepsize η, task k datasetDk, constants β, L, γ, and prior weights w′

2: Initialize: wk ← 1/K or wk ← w′
k,∀k

3: for t = 0, 1, . . . do
4: Estimate ∥∇Lk(θt)∥2 and σ2

k for every k

5: Compute λk ≜ −ηβ∥∇Lk(θt)∥2 + Lη2

2b σ2
k and κk ≜ Lη2γ∥∇Lk(θt)∥2

6: set w∗
k = max{0,−µ+λk

κk
} where µ is found (by bisection) such that

∑K
k=1 w

∗
k = 1

7: Set (b1, . . . , bK)← round(b(w∗
1 , . . . , w

∗
K))

8: Sample bk data points from each task k
9: Compute the gradient g using the estimates samples

10: Update: θt+1 ← Optimizer(η,θt,g)
11: end for

As discussed in section 3.3, this algorithm is computationally inefficient as it requires estimating
∇Lk(θt) and σk at each iteration. To improve efficiency, we introduced modifications that led to the
development of the PiKE algorithm (Algorithm 1 in the main body).

C FAIR-PIKE: FAIRNESS CONSIDERATIONS ACROSS TASKS

Here, we present the fair-PiKE algorithm in more detail. As discussed in the main body, the main
difference with PiKE is that the fair version requires the computation of the coefficients

y⋆k =
τeτLk(θ)−1∑K
k=1 e

τLk(θ)−1
,∀k
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Then updating the sampling weights by

wk ← wk exp

(
(y⋆k)

2ζ1∥∇Lk(w)∥2 − (y⋆k)
2 ζ2
2b

σ2
k

)
, ∀k

The overall algorithm is summarized in Algorithm 3. For our experiments, we evaluate three different
values of τ : 1, 3, and 5. A larger τ results in a stronger balancing effect between different tasks.

Algorithm 3 fair-PiKE: Fairness considerations across tasks
1: Input: θ, T , total batch size b, task k dataset Dk, hyperparameters ζ1 ζ2, τ , prior weights w′

2: Initialize: wk ← 1/K or wk ← w′
k

3: for t = 0, 1, . . . do
4: if t mod T = 0 then
5: Estimate ∥∇Lk(θt)∥2, σ2

k, and Lk(θt) for every k

6: y⋆k = τeτLk(θ)−1∑K
k=1 eτLk(θ)−1

7: wk ← wk exp
(
(y⋆k)

2ζ1∥∇Lk(w)∥2 − (y⋆k)
2 ζ2
2bσ

2
k

)
8: w← w/∥w∥1
9: (b1, . . . , bK)← round(b(w1, . . . , wK))

10: end if
11: Sample bk data points from each task k
12: Compute the gradient g using the estimates samples
13: Update: θt+1 ← Optimizer(η,θt,g)
14: end for

D EXPERIMENTS SETUP

D.1 DATASET DETAILS

Our experiments construct two primary scenarios for multitask learning: multilingual tasks and
diverse task mixtures spanning multiple domains. We consider two widely-used datasets for our
study: mC4 (Xue, 2020) and GLaM (Du et al., 2022).

mC4 Dataset The mC4 dataset (Xue, 2020) is a multilingual text corpus derived from the Common
Crawl web archive, covering a diverse range of languages. It has been widely used for pretraining
multilingual models, such as mT5 (Xue, 2020) and ByT5 (Xue et al., 2021). The dataset is curated by
applying language-specific filtering to extract high-quality text, ensuring a balanced representation
across languages. Mixture weights for training models on mC4 are often chosen based on token
counts. In our cases, we mainly focus on English (en), Hindi (hi), and German (de). We report their
details in Table 3.

Table 3: Partial statistics of the mC4 corpus, totaling 6.3T tokens.

ISO code Language Tokens (B)

en English 2,733
hi Hindi 24
de German 347

GLaM Dataset The GLaM dataset (Du et al., 2022) comprises English text from six distinct sources
and has been used to train the GLaM series models and PaLM (Chowdhery et al., 2023). Mixture
weights for GLaM training were determined based on small model performance (Du et al., 2022),
while (Xie et al., 2024) employed group distributionally robust optimization (Group DRO) to compute
domain-specific weights. Table 4 summarizes the six domains in the GLaM dataset and the mixture
weights selected by GLaM and DoReMi. We use these weights as oracle baselines for comparison
with PiKE, which dynamically adjusts task weights over time using gradient information, unlike the
fixed weights employed by GLaM and DoReMi.
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Table 4: GLaM dataset (Du et al., 2022) and fixed mixture weights used in GLaM (Du et al., 2022)
and DoReMi (Xie et al., 2024).

Dataset Tokens (B) Weight chosen by GLaM (Du et al., 2022) Weight chosen by DoReMi (Xie et al., 2024)

Filtered Webpages 143 0.42 0.51
Wikipedia 3 0.06 0.05
Conversations 174 0.28 0.22
Forums 247 0.02 0.04
Books 390 0.20 0.20
News 650 0.02 0.02

Table 5: Architecture hyperparameters for different model scales used in the paper. All models are
GPT-2-like decoder-only architectures. The multilingual models employ a vocabulary size of 250K,
whereas GLaM training uses a vocabulary size of 32K. Differences in the total number of parameters
arise due to the variation in vocabulary sizes.

Size # Params Layers Attention heads Attention head dim Hidden dim

GPT-2 small 110M/270M 12 12 64 768
GPT-2 large 750M/1B 36 20 64 1280

D.2 TRAINING DETAILS

Our experiments explore two distinct scenarios for multitask learning: multilingual training and
diverse task mixtures spanning multiple domains. To achieve optimal results, we customize the
training setups for each scenario and present them separately in this section. All training is performed
from scratch.

Multilingual Training To address the complexities of tokenizing multilingual data, we utilize the
mT5 tokenizer (Xue, 2020), which features a vocabulary size of 250K. Both GPT-2 small and
GPT-2 large models are trained with a context length of 1024 and a batch size of 256. The AdamW
optimizer (Loshchilov & Hutter, 2019) is employed with consistent hyperparameters and a learning
rate scheduler. Additional details on hyperparameter configurations are provided in Appendix D.5.

GLaM Training For GLaM training, we use the T5 tokenizer (Raffel et al., 2020), implemented as
a SentencePiece tokenizer trained on the C4 dataset with a vocabulary size of 32,000. Both GPT-2
small and GPT-2 large models are trained with a context length of 1024 and a batch size of 256. The
AdamW optimizer (Loshchilov & Hutter, 2019) is used, and additional details on hyperparameters is
in Appendix D.5.

D.3 MODEL ARCHITECTURE

The detailed architecture is summarized in Table 5. Our implementation utilizes pre-
normalization (Radford et al., 2019) Transformers with qk-layernorm (Dehghani et al., 2023).
Consistent with Chowdhery et al. (2022), we omit biases, and the layernorm (Ba et al., 2016)
value remains set to the Flax (Heek et al., 2023) default of 1e-6. Additionally, we incorporate rotary
positional embeddings (Su et al., 2021).

D.4 EXPERIMENTAL RESOURCE

All experiments are conducted on 8 Google TPUv4. The training time for GPT-2 small and GPT-2
large models for 120K steps are approximately 1 day and 2 days per run, respectively.

D.5 HYPER-PARAMETERS

Table 6 shows the detailed hyperparameters that we used in all our experiments. We also report our
hyperparameters grid for tuning PiKE in Table 7.
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Table 6: Hyperparameter settings for our experiments.

Hyperparameters Values

Optimizer AdamW (β1 = 0.95, β2 = 0.98)
Initial and final learning rate 7e− 6
Peak learning rate 7e− 4
Weight decay 0.1
Batch size 256
Context length 1024
Gradient clipping norm 1.0
Training step 120, 000
Warm-up step 10, 000
Schedule Linear decay to final learning rate

Table 7: Hyperparameter settings for running PiKE (Algorithm 1).

Hyperparameters Values

PiKE hyperparameter ζ1 {0.025, 0.01, 0.75}
PiKE hyperparameter ζ2 {5, 10, 15}
Check interval T 1000

D.6 IMPLEMENTATION DETAILS

Our implementation builds upon the Nanodo training infrastructure (Wortsman et al., 2023), incorpo-
rating enhancements for efficiency. This framework relies on Flax (Heek et al., 2023), JAX (Bradbury
et al., 2018), and TPUs (Jouppi et al., 2017).

To enable training of larger models, we shard both model and optimizer states, following the method-
ology of FSDP (Ren et al., 2021), and define these shardings during JIT compilation. Checkpointing
is handled using Orbax (Gaffney et al., 2023), while deterministic data loading is facilitated by
Grain (Google, 2023).

For data loading, sequences are packed to avoid padding. When a sequence contains fewer tokens
than the context length hyperparameter, an end-of-sequence token is appended. This differs from
Nanodo (Wortsman et al., 2023), where both begin-of-sequence and end-of-sequence tokens are
added.

D.7 EVALUATION

Our evaluation adheres to the OLMES suite (Gu et al., 2024). For multilingual downstream per-
formance, we utilize the multilingual version of HellaSwag (Dac Lai et al., 2023), which supports
evaluations across 26 languages. English downstream tasks are assessed using ARC-Easy (Clark et al.,
2018), CommonsenseQA (Talmor et al., 2018), PIQA (Bisk et al., 2019), and HellaSwag (Zellers
et al., 2019). Unless specified otherwise, multilingual evaluations are performed in a 0-shot set-
ting, while GLaM pretraining evaluations employ 7-shot in-context learning, with demonstration
candidates separated by two line breaks. For HellaSwag and its translated variants, we evaluate the
first 3,000 examples. For all other downstream tasks, evaluations are conducted on their respective
validation sets. In the case of multiple-choice tasks, different candidates are included in the prompt,
and the average log-likelihood for each candidate is computed. The candidate with the highest score
is then selected as the predicted answer.

E ADDITIONAL EXPERIMENT RESULTS

E.1 COMPARISON OF PERFORMANCE USING MIX, RANDOM, AND ROUND-ROBIN SAMPLING
STRATEGIES

Figure 4 presents the average downstream accuracies of language models pre-trained using Mix,
Random, and Round-Robin sampling strategies. In both multilingual pre-training and GLaM pre-
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training, the Mix sampling strategy consistently outperforms the other two. This motivates us its use
in pre-training large language models.
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(a): 1B models on multilingual C4 (en), C4 (hi),
and C4 (de) datasets
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(b): 750M models on GLaM datasets with six
domains

Figure 4: Average downstream task accuracy of pretraining language models using Mix, Round-
Robin, and Random sampling strategies. Mix and Random use equal batch size for each task
(bk = b/K,∀k ∈ K).

E.2 COSINE SIMILARITY AND c-CONFLICTED GRADIENTS

Figures 5 and 6 show the cosine similarity, defined as ⟨Lj(θ),Lk(θ)⟩
∥Lj(θ)∥∥Lk(θ)∥ and the “ratio,” defined as

⟨Lj(θ),Lk(θ)⟩
∥Lj(θ)∥2+∥Lk(θ)∥2 . In particular, if ⟨∇Lj(θ),∇Lk(θ)⟩

∥Lj(θ)∥∥Lk(θ)∥ ≥ −c̃, then the gradients are c-conflicted for
c = c̃/2, which aligns with the observations in Figures 5 and 6.
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Figure 5: 1B models trained on multilingual mC4 datasets. Left: Cosine similarity between task
gradients during language model pre-training over time. Right: The “ratio,” which defined as

⟨Lj(θ),Lk(θ)⟩
∥Lj(θ)∥2+∥Lk(θ)∥2 , between task gradients during language model pre-training over time. “data1-
data2” denotes the cosine similarity or ratio between the gradient of data1 and the gradient of data2.

E.3 COMPARISON OF PERFORMANCE USING PCGRAD, ADATASK, AND MIX

Figure 7 presents the average downstream task performance on HellaSwag (en) and HellaSwag
(hi) for 270M multilingual language models pre-trained using PCGrad, AdaTask, and Mix. As
shown in Figure 7: 1) PCGrad performs similarly to Mix, as it only adjusts gradients when conflicts
occur—which is rare. 2) AdaTask converges more slowly due to noisy gradients and suboptimal
optimizer state updates. Additionally, both methods are memory-intensive, requiring O(K) storage
for task gradients (PCGrad) or optimizer states (AdaTask), making them impractical for large-scale
models such as the 540B PaLM (Chowdhery et al., 2022).
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Figure 6: 750M models on GLaM datasets with six domains. Left: Cosine similarity between
task gradients during language model pre-training over time. Right: The “ratio,” which defined as

⟨Lj(θ),Lk(θ)⟩
∥Lj(θ)∥2+∥Lk(θ)∥2 , between task gradients during language model pre-training over time. “data1-
data2” denotes the cosine similarity or ratio between the gradient of data1 and the gradient of data2.
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Figure 7: Eval perplexity of pretraining 270M GPT-2 style multilingual language models on mC4
datasets (English and Hindi) using Mix, PCGrad, and AdaTask.

E.4 PRE-TRAINING RESULTS

Tables 8 and 9 present the complete results of pre-training language models across various scales
(110M, 270M, 750M, and 1B) and scenarios (Multilingual and GLaM datasets). PiKE consistently
outperforms all baselines across all scales and scenarios.

E.5 ADAPTIVE SAMPLING WEIGHTS OF PIKE DURING PRE-TRAINING

Figure 8 illustrates how the adaptive sampling weights of PiKE evolve during language model
pre-training. Compared to the Mix sampling strategy, which assigns equal sampling weights to each
task, PiKE adaptively adjusts the sampling weights among English, German, and Hindi by leveraging
the positive interaction of task gradients. This adaptive data selection allows PiKE to achieve superior
performance compared to fixed or heuristic-based baselines.

F DERIVATIONS AND PROOFS

F.1 DETAILED DERIVATION OF EQUATION (3)

Recall that

gt =
1

b1 + b2

(
b1e1e

⊤
1 + b2e2e

⊤
2

)
θt + z,
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Table 8: We report the perplexities (lower the better) on the validation split of multilingual C4 datasets.
We also compare the accuracies (%, higher the better) of different models on HellaSwag and its
corresponding translated version. HellaSwag and its translated versions have 4 choices. Bolding
indicates the best model in the task, Metrics means the average across different tasks.

C4 (en) C4 (hi) C4 (de) HellaSwag (en) HellaSwag (hi) HellaSwag (de)

Perplexity ↓ Perplexity ↓ Perplexity ↓ Perplexity ↓ Accuracy(%) ↑ 0-shot ↑ 0-shot ↑ 0-shot ↑
Single dataset, GPT-2 small style, 270M params, 12 layers default, 120K training steps
C4 (en) 13.25 13.25 * * 26.5 26.5 * *
C4 (hi) 4.97 * 4.97 * 26.4 * 26.4 *
C4 (de) 11.27 * * 11.27 26.1 * * 26.1

C4 (en) and C4 (hi) datasets, GPT-2 small style, 270M params, 12 layers default, 120K training steps
Mix 10.50 15.46 5.55 * 25.5 24.4 26.5 *
Round-Robin 10.57 15.57 5.57 * 25.6 25.2 26.0 *
Random 10.57 15.57 5.57 * 25.3 24.3 26.3 *
PiKE 10.15 14.31 5.99 * 26.5 26.0 27.0 *

C4 (en), C4 (hi), and C4 (de) datasets, GPT-2 small style, 300M params, 12 layers default, 120K training steps
Mix 12.00 16.30 5.88 13.83 25.3 24.4 26.0 25.5
Round-Robin 12.10 16.44 5.91 13.95 25.1 24.3 26.0 24.9
Random 12.16 16.49 5.95 14.03 25.1 24.7 26.6 23.9
PiKE 12.01 15.48 5.92 14.64 25.6 25.4 26.4 24.8

Single dataset, GPT-2 large style, 1B params, 36 Layers default, 120K training steps
C4 (en) 9.30 9.30 * * 33.6 33.6 * *
C4 (hi) 3.87 * 3.87 * 27.5 * 27.5 *
C4 (de) 7.72 * * 7.72 28.1 * * 28.1

C4 (en) and C4 (hi) datasets, GPT-2 large style, 1B params, 36 Layers default, 120K training steps
Mix 7.41 10.60 4.22 * 27.3 28.2 26.5 *
Round-Robin 7.49 10.72 4.25 * 27.5 28.0 27.0 *
Random 7.52 10.76 4.28 * 28.0 28.9 27.0 *
PiKE 7.21 9.63 4.80 * 30.0 32.7 27.3 *

C4 (en), C4 (hi), and C4 (de) datasets, GPT-2 large style, 1B params, 36 Layers default, 120K training steps
Mix 8.29 11.13 4.45 9.29 27.5 28.1 27.1 27.6
Round-Robin 8.41 11.31 4.97 9.46 26.5 27.6 26.7 26.3
Random 8.48 11.38 4.54 9.55 26.6 27.0 26.9 26.1
PiKE 9.56 9.49 5.32 13.87 28.7 33.0 27.2 26.2
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Figure 8: The sampling weights for each dataset during the pre-training of 1B GPT-2-style multilin-
gual language models on mC4 (English), mC4 (Hindi), and mC4 (German). Here, wen represents the
sampling weight for the English dataset, whi for the Hindi dataset, and wde for the German dataset.

Then

θt+1 = θt − η
1

b1 + b2

(
b1e1e

⊤
1 + b2e2e

⊤
2

)
θt − ηz

= θt −
η

b

[
b1 0
0 b2

]
θt − ηz

Now consider the loss functions for task 1, L1(θt+1), and task 2, L2(θt+1), separately, taking the
expectation over the randomness of z

E[L1(θt+1)]) = E
[
1

2
(e⊤1 θt+1)

2

]
= E

[
1

2

(
e⊤1

[
1− ηb1

b 0

0 1− ηb2
b

]
θt − e⊤1 ηz

)2
]

=
1

2

([
1− ηb1

b 0
]
θ⊤)2 + 1

2
η2e⊤1 Qe1
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Table 9: We report perplexity (lower is better) on the validation split of the GLaM datasets, averaging
perplexities across six domains when applicable or reporting a single perplexity when only training
with a single domain. We also compare the accuracies (%, higher the better) of different models on
four different Q/A tasks. HellaSwag and ArcE tasks have 4 choices, CSQA has 5 choices, and PIQA
has 2 choices. PiKE (Uniform) means PiKE using initial sampling weights of 1/6 for each task and
PiKE (GLaM) means PiKE using GLaM tuned weights as initial task weights. Bolding indicates the
best model in the task, Metrics means the average across different tasks, underlining indicates PiKE
beating Mix, Round-Robin, Random methods

GLaM ArcE CSQA HellaSwag PIQA

Perplexity ↓ Accuracy(%) ↑ 7-shot ↑ 7-shot ↑ 7-shot ↑ 7-shot ↑
Single domain of GLaM dataset, GPT-2 small style, 110M params, 12 layers default
Wikipedia 9.96 33.5 32.5 20.9 27.3 53.3
Filtered Webpage 16.05 37.2 38.4 26.8 27.6 55.8
News 9.33 33.8 31.1 22.7 27.0 54.5
Forums 22.87 35.5 32.1 23.4 28.7 57.6
Books 16.81 34.7 34.3 22.1 27.8 54.7
Conversations 18.27 36.1 32.6 25.6 28.6 57.6

Six domains of GLaM dataset, GPT-2 small style, 110M params, 12 layers default
Mix 18.27 36.2 35.6 24.1 28.5 56.7
Round-Robin 18.45 35.9 35.8 24.2 27.5 56.0
Random 18.48 35.5 34.3 22.4 28.4 56.8
GLaM 18.91 35.8 35.3 24.1 28.5 55.1
DoReMi 18.98 37.0 36.0 28.3 28.2 55.3
PiKE (Uniform) 18.44 37.4 36.8 27.5 28.5 57.0
PiKE (GLaM) 19.34 37.8 39.0 27.0 28.0 57.0
Single domain of GLaM dataset, GPT-2 large style, 750M params, 36 layers default
Wikipedia 7.24 35.9 35.1 24.0 30.5 53.9
Filtered Webpage 11.12 40.9 36.7 33.2 34.2 56.5
News 6.62 37.4 33.6 24.7 34.1 57.3
Forums 16.29 43.6 38.0 35.8 39.7 60.7
Books 11.83 41.3 40.0 33.0 34.5 57.8
Conversations 13.50 42.2 36.9 33.2 39.2 59.6

Six domains of GLaM dataset, GPT-2 large style, 750M params, 36 layers default
Mix 12.77 46.4 47.2 39.6 37.9 60.9
Round-Robin 12.98 44.3 43.5 36.7 36.8 60.3
Random 12.99 42.7 41.7 34.2 36.6 58.2
GLaM 13.20 45.3 46.9 39.8 38.0 56.4
DoReMi 13.25 46.5 48.6 40.1 37.5 59.6
PiKE (Uniform) 13.22 47.6 49.6 43.2 37.2 60.4
PiKE (GLaM) 13.35 48.1 49.8 43.5 38.0 61.2

=
1

2

((
1− ηb1

b

)
θ1,t

)2

+
1

2
η2e⊤1 Qe1

Similarly, for task 2, we have

E[L2(θt+1)]) =
1

2
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1− ηb2

b

)
θ2,t

)2

+
1

2
η2e⊤2 Qe2

where θ1,t and θ2,t denote the first and second component of the vector θt. Combining the losses for
both tasks, the total expected loss becomes

E[L(θt+1)] = E[L1(θt+1)]) + E[L2(θt+1)])

=
1
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which completes the derivations.

F.2 PIKE: MAIN THEORETICAL RESULTS

Lemma F.1. Assume 1
2(K−1) > c. If ∥∇L(θ)∥2 ≤ ϵ, we have

K∑
k=1

∥∇Lk(θ)∥2 ≤
ϵ

1− 2 c (K − 1)
.

Conversely, if ∥∇Lk(θ)∥2 ≤ δk, ∀k, then

∥∇L(θ)∥2 ≤ (1− c̄)

K∑
k=1

δk + c̄

(
K∑

k=1

√
δk

)2

Proof: We first prove the first direction. Notice that

∥∇L(θ)∥2 = ∥
K∑

k=1

∇Lk(θ)∥2

=

K∑
k=1

∥∇Lk(θ)∥2 +
K∑

k=1

∑
j ̸=k

⟨∇Lj(θ),∇Lk(θ)⟩ ≤ ϵ

where we use the definition of∇L(θ) and expand the term. Then we have
K∑

k=1

∥∇Lk(θ)∥2 +
K∑

k=1

∑
j ̸=k

⟨∇Lj(θ),∇Lk(θ)⟩
(a)

≥
K∑

k=1

∥∇Lk(θ)∥2 − c

K∑
k=1

∑
j ̸=k

(
∥∇Lj(θ)∥2 + ∥∇Lk(θ)∥2

)
(b)

≥
K∑

k=1

∥∇Lk(θ)∥2 (1− 2c(K − 1))

where (a) uses the Definition 3.2, (b) uses symmetric identity. Thus we get
K∑

k=1

∥∇Lk(θ)∥2 ≤
ϵ

1− 2 c (K − 1)

This completes the proof of the first inequality. We now prove the second inequality. Notice that

∥∇L(θ)∥2 = ∥
K∑

k=1

∇Lk(θ)∥2 =

K∑
k=1

∥∇Lk(θ)∥2 +
K∑

k=1

∑
j ̸=k

⟨∇Lj(θ),∇Lk(θ)⟩

(a)

≤ ∥∇Lk(θ)∥2 + c̄

K∑
k=1

∑
j ̸=k

∥∇Lj(θ)∥2∥Lk(θ)∥2

= (1− c̄)∥∇Lk(θ)∥2 + c̄∥∇Lk∥2 + c̄

K∑
k=1

∑
j ̸=k

∥∇Lj(θ)∥2∥Lk(θ)∥2

(b)

≤ (1− c̄)

K∑
k=1

δk + c̄

(
K∑

k=1

√
δk

)2

where (a) use the Definition 3.3 and (b) combines the second and third terms and use the condition
that ∥∇Lk(θ)∥2 ≤ δk. This completes the proof of the second inequality.
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Lemma F.2. For the optimization problem

min
w1,...,wK

K∑
k=1

wkλk +
1

2
w2

kκk

s.t.
K∑

k=1

wk = 1, wk ≥ 0, ∀k
(13)

the optimal solution is

w∗
k = max

{
0,−µ+ λk

κk

}
(14)

where µ is chosen such that
∑K

k=1 w
∗
k = 1

Proof: Consider the Lagrangian function

L(w1, . . . , wk, µ, α1, . . . , αk) =

K∑
k=1

wkλk +
1

2
w2

kκk + µ

(
K∑

k=1

wk − 1

)
−

K∑
k=1

αkwk

where µ is Lagrange multiplier for the equality constraint for the constraint
∑K

k=1 wk = 1 and
αK ≥ 0 are Lagrange multipliers for the nonnegativity constraints wk. Take the partial derivative of
L with respect to wk and set it to 0:

∂L
∂wk

= λk + wkκk + µ− αk = 0

From the Karush-Kuhn-Tucker (KKT) conditions, we also have w⋆
k ≥ 0, αk ≥ 0, and αkw

⋆
k = 0. If

w⋆
k > 0, then αk = 0, which implies

0 = λk + w⋆
kκk + µ =⇒ w⋆

k = −µ+ λk

κk

If − (µ+ λk) /κk is negative, then w⋆
k = 0 must hold. Combining these, we get

w∗
k = max

{
0,−µ+ λk

κk

}
Finally, the Lagrange multiplier µ is determined by enforcing the equality constraint:

K∑
k=1

w∗
k = 1

with µ chosen so that the w∗
k sum to 1 . This completes the proof.

Theorem F.3. (Theorem 3.5 in the main body) Suppose Assumption 3.4 is satisfied. Assume that at
the given point θt the gradients are c-conflicted and c̄-aligned with c < 1

K−2+b/bk
,∀k. Moreover,

assume the gradient is computed according to the mix strategy equation (2). Then, we have

E[L(θ − ηg)] ≤ L(θ) +
K∑

k=1

bk

(
− η

b
β∥∇Lk(θ)∥2 +

Lη2

2b2
σ2
k

)
+

K∑
k=1

b2k
Lη2

2b2
γ∥∇Lk(θ)∥2 (15)

where 0 ≤ β ≜ mink(1 + c(−K + 2− b
bk
)) and γ ≜ 1 + c̄(K − 1).

Proof: We begin by revisiting the multi-task optimization problem under consideration. The objective
is defined as:

min
θ∈Rd

L(θ) :=
K∑

k=1

Ex∼Dk
[ℓk(θ;x)] , (16)

where L(θ) is the expected aggregate loss over all tasks. Assume we mix the gradients with taking bk
i.i.d. samples from task k for k = 1, . . . ,K. Then under the Assumption 3.4 the estimated gradient
direction is given by
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g =
1∑K

k=1 bk

 K∑
k=1

bk∑
i=1

xi∼Dk

∇ℓk(θ;xi)


=

1

b

K∑
k=1

(bk∇ℓk(θ)) + z, (17)

where the random variable z is defined as z =
∑K

k=1

∑bk
i=1,xi∼Dk

(∇ℓk(θ, xi) − ∇Lk(θ)) over
the randomness of the sampling strategy. Let θ+ be the updated point after gradient descent with
θ+ = θ − ηg. By the descent lemma, the following inequality holds for the updated parameter θ+:

L(θ+) ≤ L(θ)− ηg⊤∇L(θ) + Lη2

2
∥g∥2, (18)

Taking the expectation over the randomness of z, we obtain:

E
[
L(θ+)

]
≤ L(θ)− ηE[g]⊤∇L(θ) + Lη2

2
E
(
∥g∥2

)
(a)
= L(θ)− η

(
1

b

K∑
k=1

bk∇Lk(θ)

)⊤( K∑
k=1

∇Lk(θ)

)

+
Lη2

2b2

( K∑
k=1

bk∇Lk(θ)

)2

+

K∑
k=1

(bkσ
2
k)


(b)
= L(θ)− η

b

 K∑
k=1

bk∥∇Lk(θ)∥2 +
K∑

k=1

∑
j ̸=k

bk ⟨∇Lj(θ),∇Lk(θ)⟩


+

Lη2

2b2

( K∑
k=1

bk∇Lk(θ)

)2

+

K∑
k=1

(bkσ
2
k)

 ,

where (a) substitutes the definition of g and uses the Assumption 3.4, and (b) expands the terms. We
have

E
[
L(θ+)

] (a)

≤ L(θ)− η

b

 K∑
k=1

bk∥∇Lk(θ)∥2 −
K∑
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∑
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bkc(∥∇Lj(θ)∥2 + ∥∇Lk(θ)∥2)


+

Lη2

2b2

 K∑
k=1

b2k∥∇Lk(θ)∥2 +
K∑

k=1

∑
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2
k
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(b)
= L(θ)− η

b
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∑
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bkσ
2
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(c)

≤ L(θ)− η
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(d)
= L(θ)− η

b

(
K∑
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= L(θ)− η

b

(
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)

+
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K∑
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b2k∥∇Lk(θ)∥2 +
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bkσ
2
k

)
(19)

where (a) applies Definition 3.2 to the second term and expands the third term, (b) expands the
summation in the second term, (c) uses the identity

∑K
k=1

∑
j ̸=k bj =

∑K
k=1(b− bk) in the second

term and applies Definition 3.3 to the third term, (d) combines terms in the third term, and (e) uses
the inequality ∥∑N

i=1 ui∥2 ≤ N
∑N

i=1 u
2
i , where u is a column vector. We define β and γ such that

β = min
k

(1 + c(−K + 2− b

bk
))

γ = 1 + c̄(K − 1)

(20)
Then using the definition of β and γ, substituting back we have
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)

+
Lη2

2b2

(
γ

K∑
k=1

b2k∥∇Lk(θ)∥2 +
K∑

k=1

bkσ
2
k

)

= L(θ) +
K∑

k=1

bk

(
−ηβ

b
∥∇Lk(θ)∥2 +

Lη2

2b2
σ2

)
+

K∑
k=1

b2k
Lη2

2b2
γ∥∇Lk(θ)∥2

which we complete the proof.

Theorem F.4. (Theorem 3.6 in the main body) Suppose the assumptions in Theorem F.3 is satisfied
and we run the Conceptual PiKE Algorithm (Algorithm 2) initialized at θ0 with the SGD optimizer
in Step 10 of the algorithm. Let ∆L = L(θ0) − minθ L(θ) and σmax = maxk σk. Suppose
δ > 0 is a given constant and the stepsize η ≤ βδ

Lσ2
max/b+Lηδ . Then, after T = 2β∆L

ηδ iterations,
Algorithm Algorithm 2 finds a point θ̄ such that

E∥∇Lk(θ̄)∥2 ≤ δ, ∀k = 1, . . . ,K. (21)

Moreover, if we choose η = βδ
Lσ2

max/b+Lηδ , then the Conceptual PiKE algorithm requires at most

T̄ =
2L∆L(σ

2
max/b+ γδ)

δ2β2

iterations to find a point satisfying equation (21).

Proof: We prove this by contradiction. Assume that maxk ∥∇Lk(θt)∥2 > δ for t = 0, . . . , T . First
notice that Theorem F.3 implies that for all t, we have

E[L(θt+1)] ≤ L(θt) +
K∑

k=1

w⋆
k

(
−ηβ∥∇Lk(θt))∥2 +

Lη2σ2
max

2b

)
+

K∑
k=1

w⋆
k

2

(
Lη2γ∥∇Lk(θt)∥2

)
(22)
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where {w⋆
k}Kk=1 is the minimizer of the RHS of the equation (22) on the constrained set

{(w1, . . . , wk)|
∑K

k=1 wk = 1, wk ≥ 0 ∀k ∈ K}. Since w⋆
k is the minimizer of the RHS of

equation (22), we have

w⋆
k

(
−ηβ∥∇Lk(θt)∥2 +

Lη2

2b
σ2

max

)
+
w⋆

k

2
Lη2γ∥∇Lk(θt)∥2 ≤

(
−ηβ∥∇Lk⋆

t
(θt)∥2 +

2η2

2b
σ2

max

)
+
Lη2

2
γ∥∇Lk⋆

t
(θt)∥2

(23)
where k⋆t ∈ argmaxk ∥∇Lk(θt)∥2. Moreover since

η ≤ β∥∇Lk(θ)∥2

L
σ2

max
b + Lγ∥∇Lk(θt)∥2

,

we have (
−ηβ∥∇Lk⋆

t
(θt)∥2 +

2η2

2b
σ2

max

)
+

Lη2

2
γ∥∇Lk⋆

t
(θt)∥2 ≤ −

βη

2
∥∇Lk⋆

t
(θt)∥2 (24)

Combining equation (22), (23), and (24), we obtain

E[L(θt+1)] ≤ L(θt)−
βη

2
∥∇Lk⋆

t
(θt)∥2

Or equivalently

E[L(θt+1)] ≤ L(θt)−
βη

2
max

k
∥∇Lk(θt)∥2

Summing the above inequality from t = 0 to t = T − 1, we get

E[L(θT )] ≤ L(θ0)− E
βη

2

T−1∑
t=1

max
k
∥∇Lk(θt)∥2

According to the contradiction assumption, we get

E[L(θT )] ≤ L(θ0)−
βη

2
Tδ

Using the definition ∆L ≜ L(θ0)−minθ L(θ), we get

T ≤ 2∆L

βηδ

Finally notice that by setting η = βδ

L
σ2

max
b +Lγδ

, we get

T ≤ T̄ =
2∆L

βη
=

2L∆L

βδ2

(
σ2

max

b
+ γδ

)
which means after iteration T steps, we have

min
t

{
max

k
∥∇Lk(θt)∥2

}
≤ δ,

which completes the proof.

F.3 PIKE: FAIRNESS RELATED RESULTS

Consider the tilted empirical risk minimization (Li et al., 2020):

min
θ

L̃(τ ;θ) := 1

τ
log

(
K∑

k=1

eτLk(θ)

)
.

As we described in the main body, we connect this problem to the minimization of the weighted sum
of Lk’s using the following lemma:

Lemma F.5. (Lemma 3.7 in the main body) Let x ∈ RK and τ > 0. Then

log

(
K∑

k=1

eτxk

)
= max

y∈RK
+∑K

k=1 yk=τ

(
K∑

k=1

ykxk −
K∑

k=1

yk
τ

log
(yk
τ

))
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Proof: Let

f(x) = log

(
K∑

k=1

eτxk

)
Then, the conjugate dual of the function f(·) can be computed as

f⋆(y) = sup
x

(
K∑

k=1

xkyk − log

(
K∑

k=1

eτxk

))
Taking the partial derivative of the objective with respect to xi and setting it to zero gives

x⋆
k =

1

τ
log

(
ϕ

τ

)
+

1

τ
log (yk)

where ϕ ≜
∑K

k=1 e
τxk . Substituting the optimal value of x⋆

k, we get

f⋆(y) =

K∑
k=1

yk

(
1

τ
log

(
ϕ

τ

)
+

1

τ
log yk

)
− log

(
K∑

k=1

ϕyk
τ

)

=
K∑

k=1

yk
τ

log

(
ϕ

τ

)
+

K∑
k=1

yk
τ

log (yk)− log

(
K∑

k=1

ϕyk
τ

)
(a)
= log

(
ϕ

τ

)
+

K∑
k=1

yk
τ

log(yk)− log(ϕ)

= − log(τ) +

K∑
k=1

yk
t
log yk

=

K∑
k=1

yk
τ

log(
yk
τ
)

where (a) uses the condition that
∑K

k=1 yk = τ . We apply Fenchel’s duality theorem again, and then
we have

f(x) = f⋆⋆(x) = max
y∈RK∑K
k=1 yk=τ

(
K∑

k=1

ykxk −
K∑

k=1

yk
τ

log
(yk
τ

))
,

which completes the proof.

Lemma F.6. For the problem

max
y∈RK

+∑K
k=1 yk=τ

(
K∑

k=1

ykxk −
K∑

k=1

yk
τ

log
(yk
τ

))
,

the optimal y is given by

y⋆k =
τeτxk−1∑K
k=1 e

τxk−1

Proof: We start by forming and maximizing the Lagrangian function

max
y∈RK

(
K∑

k=1

ykxk −
K∑

k=1

yk
τ

log
(yk
τ

)
+ µ

(
K∑

k=1

yk − τ

))
where µ is a free variable. Taking the partial derivative of the objective with respect to yk and setting
it to zero gives

y⋆k = ατeτxk−1,

where the coefficient α should be chosen such that
∑

k y
∗
k = 1, implying

y⋆k =
τeτxk−1∑K
k=1 e

τxk−1
.
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