
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCURATE AND SCALABLE GRAPH NEURAL NET-
WORKS VIA MESSAGE INVARIANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Message passing-based graph neural networks (GNNs) have achieved great success
in many real-world applications. For a sampled mini-batch of target nodes, the
message passing process is divided into two parts: message passing between nodes
within the batch (MPIB) and message passing from nodes outside the batch to those
within it (MPOB). However, MPOB recursively relies on higher-order out-of-batch
neighbors, leading to an exponentially growing computational cost with respect to
the number of layers. Due to the neighbor explosion, the whole message passing
stores most nodes and edges on the GPU such that many GNNs are infeasible to
large-scale graphs. To address this challenge, we propose an accurate and fast
mini-batch approach for large graph transductive learning, namely topological
compensation (TOP), which obtains the outputs of the whole message passing
solely through MPIB, without the costly MPOB. The major pillar of TOP is a novel
concept of message invariance, which defines message-invariant transformations
to convert costly MPOB into fast MPIB. This ensures that the modified MPIB has the
same output as the whole message passing. Experiments demonstrate that TOP is
significantly faster than existing mini-batch methods by order of magnitude on vast
graphs (millions of nodes and billions of edges) with limited accuracy degradation.

1 INTRODUCTION

Message passing-based graph neural networks (GNNs) have been successfully applied to many
practical applications involving graph-structured data, such as social network prediction (Hamilton
et al., 2017; Kipf & Welling, 2017; Deng et al., 2019), drug reaction (Do et al., 2019; Duvenaud et al.,
2015), and recommendation systems (Ying et al., 2018; Fan et al., 2019). The key idea of GNNs is
to iteratively update the embeddings of each node based on its local neighborhood. Thus, as these
iterations progress, each node embedding encodes more and more information from further reaches
of the graph (Hamilton, 2020, Chap. 5).

However, training GNNs on a large-scale graph is challenging due to the well-known neighbor
explosion problem. Specifically, the embedding of a node at the l-th GNN layer depends on the
embeddings of its local neighborhood at the (l− 1)-th GNN layer. Thus, around the target mini-batch
nodes, these message passing iterations of an L-layer GNN form a tree structure by unfolding their
L-hop neighborhoods (Hamilton, 2020, Chap. 5), whose size exponentially increases with the GNN
depth L (see Figure 1(a)). The exploded source neighborhoods may contain most nodes in the
large-scale graph, leading to expensive computational costs.

To alleviate this problem, recent graph sampling techniques approximate the whole message passing
with the small size of the source neighborhoods (Ma & Tang, 2021, Chap. 7). For example, node-wise
(Hamilton et al., 2017; Chen et al., 2018a; Balin & Catalyurek, 2023) and layer-wise (Chen et al.,
2018b; Zou et al., 2019; Huang et al., 2018) sampling recursively sample a small set of local neighbors
over message passing layers. The expectation of the recursive sampling obtains the whole message
passing and thus the recursive sampling is accurate and provably convergent (Chen et al., 2018a).
Different from the recursive fashion, subgraph sampling (Chiang et al., 2019; Zeng et al., 2020; Fey
et al., 2021; Zeng et al., 2021) adopts a cheap and simple one-shot sampling fashion, i.e., sampling
the same subgraph induced by a mini-batch for different GNN layers. It preserves message passing
between in-batch nodes (MPIB) and eliminates message passing from out-of-batch neighbors to
in-batch nodes (MPOB), achieving a linear complexity with respect to the number of GNN layers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

v2

v3

v1

v4

v5

v6

Input

v2

v3

v1

v4

v5

v6

Output

v2 v3v1

v2 v3v1 v4

v2 v3v1 v4 v5 v6

(a) Original GNNs

v2

v3

v1

v4

v5

v6

Input

v2

v3

v1

v4

v5

v6

Output

v2 v3v1

v2 v3v1

v2 v3v1

(b) Subgraph Sampling

v2

v3

v1

v4

v5

v6

Input

v2

v3

v1

v4

v5

v6

Output

v2 v3v1

v2 v3v1

v2 v3v1

v1

v2

v3

+

+
= v4

(c) TOP

Mini-batch selection
Message passing
Topological compensation

Figure 1: Mini-batch processing of original GNNs, subgraph sampling, and TOP. Given a
mini-batch, the computational costs of original GNNs exponentially increase with GNN depth (a). To
address this challenge, many subgraph sampling methods preserve message passing between the in-
batch nodes (MPIB) and eliminate message passing from out-of-batch neighbors to the in-batch nodes
(MPOB) to reduce the computational costs (b). However, the final embeddings of subgraph sampling
are usually different from the result of the original GNNs. By noticing the message invariance
h4 = 0 · h1 + 0 · h2 + 1 · h3, TOP converts MPOB v4 → v3 into MPIB v3 → v3 without approximation
errors in the example (c).

Nonetheless, accuracy and efficiency are two important but conflicting factors for existing graph
sampling techniques. Specifically, accurate recursive sampling maintains the whole message passing
at the expense of efficiency, while fast one-shot sampling eliminates MPOB at the expense of accuracy.
This motivates us to develop an accurate and fast mini-batch method for GNNs to approximate the
outputs of the whole message passing solely through MPIB with marginal errors.

In this paper, we first propose a novel concept of message invariance, which defines message-invariant
transformations to convert MPOB into MPIB, ensuring that the modified MPIB has the same output
as the whole message passing. Figure 1 shows a motivating example for message invariance, where
converting MPOB v4 → v3 to MPIB v3 → v3 (the red edge) does not affect the output of GNNs.
Although the resulting subgraphs are different from the original graph, the in-batch embeddings and
corresponding computation graphs are always the same. We conduct extensive experiments to show
the approximation of message invariance is effective in various real-world datasets (see Section 5.2)

Building on the message-invariant transformations, we propose a fast subgraph sampling method,
namely topological compensation (TOP), which is applicable to various real-world graphs. Specifi-
cally, TOP models the message invariance using the linear message-invariant transformations, which
assume the linear independence between embeddings of the in-batch nodes and their out-of-batch
neighbors. In Figure 1, the out-of-batch embedding of v4 is a linear combination of the in-batch
embeddings of (v1, v2, v3) with coefficients (0, 0, 1). We estimate the coefficients using a simple
and efficient linear regression on sampled basic embeddings (e.g. the embeddings in GNNs with
random initialization). We further show that TOP achieves the convergence rate of O(ε−4) to reach
an ε-approximate stationary point (see Theorem 5.1), which is significantly faster than O(ε−6) of
existing subgraph sampling methods (Shi et al., 2023). We conduct extensive experiments on graphs
with various sizes to demonstrate that TOP is significantly faster than existing mini-batch methods
with limited accuracy degradation (see Figures 3 and 5). Notably, the speedup of TOP is up to one
order of magnitude on vast graphs with millions of nodes and billions of edges (see Figures 4).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

In this section, we discuss some works related to our proposed method.

Node-wise sampling. Node-wise sampling (Hamilton et al., 2017; Chen et al., 2018a; Yu et al., 2022)
aggregates messages from a subset of uniformly sampled neighborhoods at each GNN layer, which
decreases the bases in the exponentially increasing dependencies. The idea is originally proposed in
GraphSAGE (Hamilton et al., 2017). VR-GCN (Chen et al., 2018a) further alleviates the bias and
variance by historical embeddings, and then shows that its convergence rate to reach an ε-approximate
stationary point is N = O(ε−4), where N denotes the number of iterations in Theorem 2 in (Chen
et al., 2018a). GraphFM-IB further alleviates the staleness of the historical embeddings based on the
idea of feature momentum. Although the node-wise sampling methods achieve the convergence rate
of O(ε−4), their computational complexity at each step is still exponentially increasing due to the
neighborhood explosion issue.

Layer-wise sampling. To avoid the exponentially growing computation of node-wise sampling,
layer-wise sampling (Chen et al., 2018b; Zou et al., 2019; Huang et al., 2018) samples a fixed number
of nodes for each GNN layer and then uses importance sampling (IS) to reduce variance. However,
the optimal distribution of IS depends on the up-to-date embeddings, which are expensive. To tackle
this problem, FastGCN (Chen et al., 2018b) proposes to approximate the optimal distribution of
IS by the normalized adjacency matrix. Adapt (Huang et al., 2018) proposes a learnable sampled
distribution to further alleviate the variance. Nevertheless, as the above-mentioned methods sample
nodes independently in each GNN layer, the sampled nodes from two consecutive layers may be
connected (Zou et al., 2019). Thus, LADIES (Zou et al., 2019) consider the dependency of sampled
nodes between layers by one step forward. By combining the advantages of node-wise and layer-wise
sampling approaches using Poisson sampling, LABOR (Balin & Catalyurek, 2023) significantly
accelerates convergence under the same node sampling budget constraints..

Subgraph sampling. Subgraph sampling methods sample a mini-batch and then construct the
subgraph based on the mini-batch (Ma & Tang, 2021, Chap. 7). Thus, we can directly run GNNs on
the subgraphs. One of the major challenges is to efficiently encode neighborhood information of the
subgraph. To tackle this problem, one line of subgraph sampling is to design subgraph samplers to
alleviate the inter-connectivity between subgraphs. For example, CLUSTER-GCN (Chiang et al.,
2019) propose subgraph samplers based on graph clustering methods (e.g., METIS (Karypis &
Kumar, 1998) and Graclus (Dhillon et al., 2007)) and GRAPHSAINT propose edge, node, or random-
walk based samplers. SHADOW (Zeng et al., 2021) proposes to extract the L-hop neighbors of a
mini-batch and then select an important subset from the L-hop neighbors. IBMB (Gasteiger et al.,
2022) proposes a novel subgraph sampler where the subgraphs are induced by the mini-batches with
high influence scores, such as personalized PageRank scores. Another line of subgraph sampling is
to design efficient compensation for the messages from the neighborhood based on existing subgraph
samplers. For example, GAS (Fey et al., 2021) proposes historical embeddings to compensate
for messages in forward passes and LMC (Shi et al., 2023) further proposes historical gradients
to compensate for messages in backward passes. GraphFM-OB (Yu et al., 2022) alleviates the
staleness of the historical embeddings based on the idea of feature momentum. Besides the traditional
optimization algorithm, SubMix (Abu-El-Haija et al., 2023) proposes a novel learning-to-optimize
method for subgraph sampling, which parameterizes subgraph sampling as a convex combination of
several heuristics and then learns to accelerate the training of subgraph sampling.

3 PRELIMINARIES

We first introduce notations in Section 3.1. Then, we introduce graph neural networks and the
neighbor explosion issue in Section 3.2.

3.1 NOTATIONS

A graph G = (V, E) is defined by a set of nodes V = {1, 2, . . . , n} and a set of edges E among these
nodes. Let (i, j) ∈ E denote an edge going from node i ∈ V to node j ∈ V . Let (B1 → B2) denote the
set of edges {(i, j)|i ∈ B1, j ∈ B2, (i, j) ∈ E} from B1 to B2. Let Ni = {j ∈ V|(i, j) ∈ E} denote the
neighborhood of node i. Let NB = (∪i∈BNi) ∪ B denote the neighborhoods of a mini-batch B with

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

itself. Let N c
B = NB −B denote the out-of-batch neighbors of the mini-batch B. We recursively define

the set of k-hop neighborhoods as N k
B = NNk−1

B
with N 1

B = NB. The adjacency matrix is A ∈ Rn×n

with Aij = 1 if (j, i) and Aij = 0 otherwise. Given sets S1 = (ip)
|S1|
p=1,S2 = (jq)

|S2|
q=1, the submatrix

AS1,S2 satisfies [AS1,S2]p,q = Aip,jq . For a positive integer L, JLK denotes {1, . . . , L}.

Let the boldface character xi ∈ Rdx denote the feature of node i with dimension dx. Let hi ∈ Rd

be the d-dimensional embedding of the node i. Let X = (x1,x2, . . . ,xn)
⊤ ∈ Rn×dx and H =

(h1,h2, . . . ,hn)
⊤ ∈ Rn×d. We also denote the node features and embeddings of a mini-batch

B = (ik)
|B|
k=1 by XB = (xi1 ,xi2 , . . . ,xi|B|)

⊤ ∈ R|B|×dx and HB ∈ R|B|×d respectively.

3.2 GRAPH CONVOLUTIONAL NETWORKS

For simplicity of the derivation, we present our algorithm with graph convolutional networks (GCNs)
(Kipf & Welling, 2017). However, our algorithm is also applicable to arbitrary message passing-based
GNNs (see Appendix B.1).

A graph convolution layer is defined as

H(l+1) = f (l+1)(H(l), Ã) = σ(Z(l+1)W(l)) = σ(ÃH(l)W(l)), (l + 1) ∈ JLK, (1)

where Ã = (D+ I)−1/2(A+ I)(D+ I)−1/2 is the normalized adjacency matrix and D is the in-degree
matrix (Duu =

∑
v Auv). The initial node feature is H(0) = X, σ is an activation function, and W(l)

is a trainable weight matrix. For simplicity, we denote the GNN parameters {W(l)}L−1
l=0 by W. Thus,

GCNs take node features and the normalized adjacency matrix (X, Ã) as input

H(L) = GCN(X, Ã),

where GCN = f (L) ◦ f (L−1) · · · ◦ f (1).

The neighbor explosion issue is mainly due to feature propagation Z(l+1) = ÃH(l). Specifically, the
mini-batch embeddings at the (l + 1)-th layer

H
(l+1)
B = σ

(
Z

(l+1)
B W(l)

)
= σ

(
ÃB,NBH

(l)
NB

W(l)
)

(2)

recursively depend on H
(l)
NB

at the l-th layer. Thus, the dependencies of nodes (i.e., H(L)
B depends

on H
(0)

NL
B

1) are exponentially increasing with respect to the number of layers L due to O(|NL
B |) =

O(|B|degLmax) with the maximum degree degmax.

4 MESSAGE INVARIANCE

In this section, we elaborate on the details of the proposed message invariance. First, we present the
definition of message invariance in Section 4.1. Then, we provide a case study for message invariance
in Section 4.2.

4.1 MESSAGE INVARIANCE

We first separate the mini-batch feature propagation in Equation (2) into two parts, i.e.,

Z
(l+1)
B = ÃB,BH

(l)
B︸ ︷︷ ︸

MPIB

+ ÃB,N c
B
H

(l)
N c

B︸ ︷︷ ︸
MPOB

, (3)

where MPIB and MPOB denote message passing between the in-batch nodes and message passing
from their out-of-batch neighbors to the in-batch nodes respectively.

To avoid the recursive dependencies induced by MPOB, we first introduce a novel concept of (global)
message invariance, which bridges the gap between costly MPOB and fast MPIB.
Definition 4.1 (Message invariance). We say that a transformation g : R|B|×d → R|Nc

B|×d is message-
invariant if it satisfies

H
(l)
N c

B
= g(H

(l)
B). (4)

for any GNN parameters W.
1NL

B = ∥[ÃL]B∥0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Given the message invariance, the composition of the original MPOB operator ÃB,Nc
B
: R|Nc

B|×d →
R|B|×d and the transformation g : R|B|×d → R|Nc

B|×d leads to a new MPIB operator (ÃB,Nc
B
g) :

R|B|×d → R|B|×d. Thus, the mini-batch feature propagation (3) becomes

Z
(l+1)
B = ÃB,BH

(l)
B︸ ︷︷ ︸

MPIB

+ ÃB,N c
B
g(H

(l)
B)︸ ︷︷ ︸

MPIB

, (5)

which is independent of the neighborhood embeddings H
(l)
Nc

B
. Therefore, the message-invariant

transformation g avoids the recursive dependencies and expensive costs of out-of-batch neighborhood
embeddings.

4.2 A CASE STUDY FOR MESSAGE INVARIANCE

Due to the arbitrariness of graph structures and the nonlinearity of GNNs, the formula of the message-
invariant transformation g is usually unknown. Here we provide a case study for a specific form of
g by simplifying the graph structures or the GNN architectures. The case study will motivate us to
estimate the message-invariant transformation g in Section 5.1.

4.2.1 MESSAGE INVARIANCE ON GRAPH WITH SYMMETRY

The first example is shown in Figure 1, where the node features are finite and the GNN architectures
are arbitrary. Due to the permutation equivariance of GNNs, the nodes in the graph are categorized
into two sets S1 = {v1, v2, v5, v6} and S2 = {v3, v4}, where the nodes in the same set are isomorphic
to each other. The embeddings of isomorphic nodes are always the same, regardless of the GNN
architectures. Therefore, the message-invariant transformation is

h
(l)
4 = g(h

(l)
1 ,h

(l)
2 ,h

(l)
3) = 0 · h(l)

1 + 0 · h(l)
2 + 1 · h(l)

3 .

Notably, the selection of mini-batches does not require considering the symmetry of the graph in
Figure 1. If the mini-batch B consists of two nodes v2 and v3 from S1 and S2 respectively, then finding
g is still easy by h

(l)
1 = 1 · h(l)

2 + 0 · h(l)
3 and h

(l)
4 = 0 · h(l)

2 + 1 · h(l)
3 . In the example, the condition for

the existence of the message-invariant transformation is that the mini-batch B contains at least one
node from each of S1 and S2.

The example discusses a small graph with six nodes, while many real-world large-scale graphs contain
millions of nodes. From a probabilistic perspective, the sets S1 and S2 represent two peaks of the data
distribution. Then, the condition becomes that the mini-batch B contains the most frequent node inputs
(the node features and their neighborhood structures). These frequent node inputs are also sampled
with a high probability under a large enough batch size. Thus, the message-invariant transformation
is easy to find in large-scale graphs. We provide the detailed formulation and theoretical results in
Appendix E.

4.2.2 MESSAGE INVARIANCE FOR LINEAR GNNS

We use linear GNNs (Xu et al., 2021; Wang & Zhang, 2022) as the second example, which simplifies
the GNN architectures without restricting the graph structures. Linear GNNs use an identity mapping
σ as the activation function. For linear GNNs H(l) = ÃlXW(0) . . .W(l−1), the linear dependence
between embeddings H(l) is equal to the linear dependence between the corresponding parameter-free
features ÃlX. Specifically, if the l-hop features X

(l)
B = (ÃlX)B is a full-column-rank matrix, then

there exists a coefficient matrix R such that X(l)
Nc

B
= RX

(l)
B . Then, the linear dependence between

embeddings is

H
(l)
N c

B
= X

(l)
N c

B
W(0) . . .W(l−1) = RX

(l)
B W(0) . . .W(l−1) = RH

(l)
B .

Thus, the message-invariant transformation g in Equation (4) is a linear transformation for the
coefficient matrix R.

For non-linear GNNs, the relation between embeddings of the in-batch nodes and their out-of-batch
neighbors may be non-linear and unknown. Nonetheless, on the real-world datasets, the linear
message-invariant transformation has achieved marginal approximation errors in practice as shown in
Section 5.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 TOPOLOGICAL COMPENSATION

In this section, we present the details of the proposed topological compensation framework (TOP).
First, we introduce the formulation of TOP inspired by the case study of message invariance in
Section 5.1. Then, based on the linear estimation of TOP, we conduct experiments to demonstrate that
the message invariance significantly reduces the discrepancy between MPIB and the whole message
passing in Section 5.2. Finally, we analyze the convergence of TOP in Section 5.3.

5.1 FORMULATION OF TOPOLOGICAL COMPENSATION

Formulation. Inspired by the linear message-invariant transformation in the case study in Section
4.2, we propose to model message invariance H

(l)
Nc

B
by H

(l)
Nc

B
≈ RH

(l)
B , where the coefficient matrix

R ∈ R|Nc
B|×|B| are the weights of linear combinations of the in-batch embeddings of H(l)

B . Combining
the approximation and the mini-batch feature propagation (3) leads to

Z
(l+1)
B ≈ ÃB,BH

(l)
B + ÃB,N c

B
RH

(l)
B = (ÃB,B + ∂AB,B)H

(l)
B︸ ︷︷ ︸

MPIB

, (6)

where we call ∂AB,B ≜ ÃB,Nc
B
R the topological compensation (TOP). The topological compensation

implements the message invariance by adding weighted edges to the induced subgraph ÃB,B. Then,
TOP directly runs a GCN on the modified subgraph as follows

H
(L)
B = GCN(XB, ÃB,B + ∂AB,B).

The formulation of TOP makes it easy to incorporate the existing subgraph sampling methods.

Estimation of topological compensation. To reduce the discrepancy between the modified MPIB
in Equation (6) and the whole message passing (3), we estimate R by

min
R

∥RHB −HN c
B
∥F ,

where H denotes the basic embeddings and ∥ · ∥F is the Frobenius norm. The basic embeddings
reflect the similarity between nodes.

Selection of basic embeddings. Before the training, we select the basic embeddings of a GNN
at random initialization by H(W(rand)) = (H(0,rand),H(1,rand), . . . ,H(T,rand)) ∈ Rn×(T+1)d, where
W(rand) are the randomly initialized parameters and H(j,rand) are the corresponding embeddings at
the j-th layer. The basic embeddings are the concatenation of all embeddings at different layers.

An appealing feature of H(W(rand)) is that they can identify the 1-WL indistinguishable node pairs
by Theorem E.3 in Appendix E. The property ensures that the learned g is message-invariant on
graphs with symmetry or large-scale graphs like the first motivating example in Section 4.2.1.

The linear message-invariant transformation with the basic embeddings H(W(rand)) is very accurate
on real-world datasets as shown in Section 5.2. Thus, we estimate TOP in the pre-processing phase
and then reuse it during the training phase for efficiency in our experiments. When TOP based
on H(W(rand)) suffers from high errors, a solution is to update g using the up-to-date embeddings
H(W(t)) at the t-th training step.

5.2 MEASURING MESSAGE INVARIANCE IN REAL-WORLD DATASETS.

In this section, we conduct experiments to demonstrate that the message invariance significantly
reduces the discrepancy between MPIB and the whole message passing in many real-world datasets.
To ensure the robustness and generalizability of TOP in practice, we provide more results in Tables
3, 7, and 8, including more experiments on heterophilous graphs and experiments under various
subgraph samplers. The whole experiments are conducted on five GNN models (GCN, GAT, SAGE,
GCNII, and PNA) and eight datasets (Ogbn-arxiv, Reddit, Yelp, Ogbn-products, amazon-ratings,
minesweeper, questions, and questions).

Measuring message invariance in real-world datasets. We first train GNNs by the full-batch
gradient descent for each dataset. Then, we measure the discrepancy between MPIB and the whole

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10 20 30 40 50
Subgraph ratio | |/| | (%)

0

5

10

15

20

25

30

Re
la

tiv
e

Er
ro

rs
(%

)

Full-batch
CLUSTER
GAS
TOP

(a) Ogbn-arxiv & GCN

10 20 30 40 50
Subgraph ratio | |/| | (%)

0

5

10

15

20

25

30

Re
la

tiv
e

Er
ro

rs
(%

)

Full-batch
CLUSTER
GAS
TOP

(b) Ogbn-arxiv & GAT

10 20 30 40 50
Subgraph ratio | |/| | (%)

0

5

10

15

20

25

30

Re
la

tiv
e

Er
ro

rs
(%

)

Full-batch
CLUSTER
GAS
TOP

(c) Ogbn-products & SAGE

10 20 30 40 50
Subgraph ratio | |/| | (%)

65

66

67

68

69

70

71

72

Te
st

 A
cc

ur
ac

y(
%

)

Full-batch
CLUSTER
GAS
TOP

(d) Ogbn-arxiv & SAGE

10 20 30 40 50
Subgraph ratio | |/| | (%)

90

92

94

96

Te
st

 A
cc

ur
ac

y(
%

)
Full-batch
CLUSTER
GAS
TOP

(e) Reddit & GCNII

10 20 30 40 50
Subgraph ratio | |/| | (%)

63.8

64.0

64.2

64.4

64.6

64.8

Te
st

 A
cc

ur
ac

y(
%

)

Full-batch
CLUSTER
GAS
TOP

(f) Yelp & GCNII

Figure 2: Measuring the message invariance in real-world datasets. The output of TOP is very
close to the whole message passing (denoted by Full-batch). Please refer to Table 3 in Appendix C.1
for more results.

message passing (denoted by Full-batch) by relative approximation errors and accuracy degradation.
The relative approximation errors and accuracy degradation are defined by√

(
∑b

i=1 ∥H
(L,∗)
Bi

−H
(L)
Bi

∥2F)
∥H(L,∗)∥F

and
1

b

b∑
i=1

acc(H(L,∗)
Bi

,YBi
)− acc(H(L)

Bi
,YBi

),

where we run the whole message passing (i.e., Full-batch) to obtain H
(L,∗)
Bi

and Y is the matrix consist-
ing of the node labels. We partition the graph into 200 clusters and then sample b in {20, 40, 60, 80, 100}
clusters to construct subgraphs. If we decrease the batch size b, then the ratio of messages in MPOB
increases and thus MPOB becomes important.

Our baselines include two subgraph sampling methods using MPIB (i.e., CLUSTER (Chiang et al.,
2019) and GAS (Fey et al., 2021)). We introduce these baselines in Appendix A. We report the test
accuracy vs. subgraph ratio in Figure 2. The relative approximation errors of TOP are less than 5%
and the test accuracy of TOP is very close to Full-batch under different batch sizes.
5.3 CONVERGENCE OF TOP

Based on message invariance (4), we develop the convergence analysis of TOP in this section. The
assumption of Theorem 5.1 is widely used in convergence analysis (Shi et al., 2023; Chen et al.,
2018a; Yu et al., 2022). All proofs are provided in Appendix D.

Theorem 5.1. Let L(W) =
∑

i∈V ℓ(h
(L)
i , yi)/|B| and dW = ∇W

∑
i∈B ℓ(h

(L,TOP)
i , yi)/|B| be the loss

of the full-batch method and the gradient of TOP respectively, where ℓ is the loss function and yi is the
label of node i. Assume that (1) the optimal value L∗ = inf L(W) is finite (2) at the k-th iteration, a
batch of nodes Vk

B is uniformly sampled from V (3) function ∇WL is γ-Lipschitz with γ > 1 (4) norms
∥∇WL∥2 and ∥dW∥2 are bounded by G > 1. With the learning rate η = O(ε2) and the training step
N = O(ε−4), TOP then finds an ε-stationary solution such that E[∥∇WL(W(R))∥2] ≤ ε after running
for N iterations, where R is uniformly selected from JNK.

The convergence rate N = O(ε−4) is the same as the standard SGD (Nesterov, 2013; Fang et al.,
2018). Notably, the convergence rate of TOP is faster than that of LMC (Shi et al., 2023) (i.e.,
N = O(ε−6)), as TOP avoids the staleness issue of the historical embeddings and gradients of LMC.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Statistics of the datasets in our experiments. “#" denotes the number and “Avg. degree"
denotes the average degree. The task is node classification, which is a standard task to evaluate the
scalability on the large-scale graph (Chiang et al., 2019; Zeng et al., 2020; Fey et al., 2021).

Dataset #Classes Total #Nodes Total #Edges Avg. degree Train/Val/Test
Reddit 41 232,965 11,606,919 49.8 0.660/0.100/0.240
Yelp 50 716,847 6,997,410 9.8 0.750/0.150/0.100

Ogbn-arxiv 40 169,343 1,157,799 6.9 0.537/0.176/0.287
Ogbn-products 47 2,449,029 61,859,076 25.3 0.100/0.020/0.880

Ogbn-papers100M 172 111,059,956 1,615,685,872 14.6 0.780/0.080/0.140

6 EXPERIMENTS

We first compare the convergence and efficiency of TOP with the state-of-the-art subgraph sampling
methods—which are the most related baselines—in Section 6.1. Then, we compare the convergence
and efficiency of TOP with the state-of-the-art node/layer-wise sampling methods in Section 6.2.
More experiments are provided in Appendix C.

6.1 COMPARISON WITH SUBGRAPH SAMPLING

Datasets. We evaluate TOP on five datasets with various sizes (i.e., Reddit (Hamilton et al.,
2017), Yelp (Zeng et al., 2020), Ogbn-arxiv, Ogbn-products, and Ogbn-papers (Hu et al., 2020)).
These datasets contain at least 100 thousand nodes and one million edges. Notably, Ogbn-papers
is very large, containing 100 million nodes and 1.6 billion edges. They have been widely used in
previous works (Fey et al., 2021; Zeng et al., 2020; Hamilton et al., 2017; Chiang et al., 2019; Chen
et al., 2018a;b). Table 1 summarizes the statistics of the datasets. We also conduct experiments on
heterophilous graphs in Appendix C.7.

Subgraph samplers. On the small and medium datasets (i.e., Ogbn-arxiv, Reddit, and Yelp), we
follow CLUSTER (Chiang et al., 2019) and GAS (Fey et al., 2021) to sample subgraphs based on
METIS (see Appendix A.1). Specifically, we first use METIS to partition the original graph into
many clusters and then sample a cluster of nodes to generate a subgraph. On the large datasets
(i.e., Ogbn-products and Ogbn-papers), as the METIS algorithm is too time-consuming (Zeng et al.,
2020), we uniformly sample nodes to construct subgraphs. More experiments under various subgraph
samplers are provided in Appendix C.8.

Baselines and implementation details. Our baselines include subgraph sampling (CLUSTER
(Chiang et al., 2019), SAINT (Zeng et al., 2020), and GAS (Fey et al., 2021)). We also compare TOP
with IBMB (Gasteiger et al., 2022) in Appendix C.3, a recent subgraph sampling method focused on
the design of subgraph samplers, which is orthogonal to TOP (see Section 2). We implement TOP,
CLUSTER, SAINT, and GAS based on the codes and toolkits of GAS (Fey et al., 2021) to ensure a
fair comparison. We introduce these baselines in Appendix A. We evaluate CLUSTER, GAS, SAINT,
and TOP based on the same GNN backbone, including the widely used GCN (Kipf & Welling, 2017)
and GCNII (Chen et al., 2020). We implement GCN and GCNII following (Fey et al., 2021) and
(Hamilton et al., 2017). Due to space limitation, we present the results with more GNN backbones
(e.g. SAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2018)) in Appendix C.3. We run all
experiments in this section on a single GeForce RTX 2080 Ti (11 GB), and Intel Xeon CPU E5-2640
v4. For other implementation details, please refer to Appendix B.

Figure 3 shows the convergence curves (test accuracy vs. runtime (s)) of TOP, CLUSTER, GAS,
SAINT, and Full-batch (i.e. full-batch gradient descent with the whole message passing). We provide
the convergence curves (test accuracy vs. epochs) in Appendix C. We use a sliding window to smooth
the curves in Figure 3 as the test accuracy is unstable. We ran each experiment five times. The solid
curves correspond to the mean, and the shaded regions correspond to values within plus or minus one
standard deviation of the mean. The convergence curves consider the runtime of pre-processing.

Results on small datasets. On the small datasets (i.e., Ogbn-arxiv and Reddit), the subgraph
ratio |B|/|V| is up to 50%, where |B| and |V| denote the sizes of subgraphs and the whole graph
respectively. The large ratio shows that the subgraph contains much information about the whole
graph. According to Figure 3(a), TOP is significantly faster than Full-batch, CLUSTER, GAS, and
SAINT without sacrificing accuracy. Further, TOP stably resembles the full-batch performance on
the Ogbn-arxiv and Reddit datasets, while CLUSTER, GAS, and SAINT are unstable. The standard

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80
Runtime (s)

0.66

0.68

0.70

0.72

0.74

Te
st

/A
cc

ogbn-arxiv & | |
| | = 50%

TOP
CLUSTER
GAS
SAINT
Full-batch

0 100 200 300
Runtime (s)

0.94

0.95

0.96

0.97

Te
st

/A
cc

Reddit & | |
| | = 50%

TOP
CLUSTER
GAS
SAINT
Full-batch

(a) GCN on small datasets

0 100 200 300 400
Runtime (s)

0.95

0.96

0.97

0.98

Te
st

/A
cc

Reddit & | |
| | = 50%

TOP
CLUSTER
GAS
SAINT
Full-batch

0 200 400 600 800
Runtime (s)

0.59
0.60
0.61
0.62
0.63
0.64
0.65

Te
st

/A
cc

Yelp & | |
| | = 12.5%

TOP
CLUSTER
GAS
SAINT

(b) GCNII on medium datasets

0 250 500 750 1000 1250
Runtime (s)

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

/A
cc

ogbn-products & | |
| | = 4%

TOP (remove valid and test nodes)
CLUSTER (remove valid and test nodes)
CLUSTER
GAS

0 250 500 750 1000 1250
Runtime (s)

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

/A
cc

ogbn-papers & | |
| | = 1%

TOP (remove valid and test nodes)
CLUSTER (remove valid and test nodes)

(c) GCNII on large datasets

Figure 3: Convergence curves (test accuracy vs. runtime (s)) of subgraph sampling. We use the
default |B| and |V|—which denote the sizes of subgraphs and the whole graph respectively—provided
in GAS Fey et al. (2021).

Reddit

 GCN
Reddit

GCNII
 Yelp

GCNII

ogbn-products

GCNII

0

0.5

1

1.5

R
el

at
iv

e
R

un
tim

e

Full-batch
 GAS
 TOP

(a) Relative runtime per epoch

RedditReddit

 GCN GCNII
 Yelp

GCNII

ogbn-products

GCNII

0

0.5

1

1.5

R
el

at
iv

e
M

em
or

y

Full-batch

 GAS
 TOP

(b) Relative memory consumption

Figure 4: Relative runtime per epoch and relative memory consumption. Please refer to Table 4
in Appendix C.4 for more results.

deviation of CLUSTER, GAS, and SAINT is large such that the mean test accuracy is lower than the
full-batch performance, as they are difficult to encode all available neighborhood information of the
subgraph. Specifically, CLUSTER and SAINT do not take MPOB into consideration and GAS uses
stale historical embeddings to approximate MPOB.

Results on medium datasets. On the medium datasets (i.e., Reddit, and Yelp), the subgraph ratio
|B|/|V| decreases from 50% to 12.5% due to GPU memory limitations. Thus, Full-batch runs out of
GPU memory on the Yelp dataset. Compared with GCN, the nonlinearity of GCNII becomes strong
due to the large model capacity of GCNII. Under the strong nonlinearity, TOP is still significantly
faster than CLUSTER, GAS, and SAINT on the Yelp dataset with a low subgraph ratio |B|/|V|
according to Figure 3(b). Moreover, TOP is significantly faster than GAS and Full-batch on the
Reddit dataset. Although the mean convergence curses of TOP and CLUSTER are similar on the
Reddit dataset, the low standard deviation demonstrates that TOP is more stable than CLUSTER.

Results on large datasets. On the large datasets (i.e., Ogbn-products, and Ogbn-papers), the
subgraph ratio |B|/|V| is very low due to GPU memory limitations. By noticing that the large number
of valid and test nodes in the large datasets is useless for TOP, we remove the valid and test nodes
from sampled subgraphs. For an ablation study, we report CLUSTER without valid and test nodes
in the sampled subgraphs. We do not remove the valid and test nodes for GAS, as GAS requires
updating the historical embeddings on the valid and test nodes to alleviate the staleness issue. Due to
a large number of historical embeddings, GAS runs out of CPU memory on the Ogbn-papers dataset.
According to Figure 3(c), TOP is significantly faster than CLUSTER and GAS by several orders of
magnitude. Moreover, the valid and test nodes in subgraphs are important for CLUSTER, as these
valid and test nodes are likely to be the neighbors of the training nodes. The valid and test nodes in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7
Number of Layers

5000

10000

15000

20000

GP
U

M
em

or
y

(M
B)

NS
LABOR
CLUSTER
TOP

(a) Memory.

0 25 50 75 100 125 150
Runtime (s)

0.86

0.88

0.90

0.92

0.94

Va
l/A

cc

ogbn-products
TOP
NS
LABOR

(b) Runtime on Products.

0 20 40 60 80 100 120
Runtime (s)

0.94

0.95

0.96

0.97

0.98

Va
l/A

cc

Reddit
TOP
NS
LABOR

(c) Runtime on Reddit.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Runtime (s)

0.55

0.60

0.65

0.70

0.75

Va
l/A

cc

ogbn-arxiv
TOP
NS
LABOR

(d) Runtime on Arxiv.

Figure 5: Memory consumption and convergence curves of TOP and node/layer-wise sampling.

subgraphs increase the ratio of messages in MPIB for CLUSTER. TOP does not depend on the valid
and test nodes due to its effective topological compensation.

Memory and runtime. We report the GPU memory consumption and the runtime per epoch
in Figure 4. TOP is significantly faster and more memory-efficient than GAS on all datasets, as
TOP does not require pulling and pushing historical embeddings frequently. Especially, the speedup
of TOP against GAS is up to 11x on the Ogbn-product dataset, which is one order of magnitude.
We analyze the computational complexity of TOP in Appendix B.5 and give the detailed costs of
pre-processing and training in Appendix C.5.

6.2 COMPARISON WITH NODE/LAYER-WISE SAMPLING

Baselines and implementation details We compare TOP with node-wise and layer-wise sampling
methods including neighbor sampling (NS) (Hamilton et al., 2017) and LABOR (Balin & Catalyurek,
2023) in Figure 5, where LABOR combines the advantages of node-wise and layer-wise sampling to
accelerate convergence. Unlike subgraph sampling, node/layer-wise sampling mainly focuses on the
certain SAGE model (Hamilton et al., 2017). We run NS and LABOR by the official implementation
of LABOR (Balin & Catalyurek, 2023). The reported runtime includes the runtime of pre-processing.
We run experiments in this section on a single A800 card.

Hyperparameters. For TOP, we uniformly sample nodes to construct subgraphs. To ensure a fair
comparison, TOP follows the GNN architectures, data splits, training pipeline, learning rate, and
hyperparameters of LABOR (Balin & Catalyurek, 2023). We adjust the batch size of TOP such that
the memory consumption of TOP is similar to LABOR.

Memory. We first evaluate the GPU memory consumption in terms of the number of GNN layers in
Figure 5(a). We increase the number of GNN layers from two to seven. The GPU memory of NS
and LABOR increases exponentially with the number of GNN layers, and thus they are difficult to
apply to deep GNNs (e.g. GCNII with six layers in Figure 3). The GPU memory of both CLUSTER
(Chiang et al., 2019) and TOP increases linearly with the number of GNN layers, corresponding with
the computational complexity in Table 2. The GPU memory of CLUSTER is slightly larger than
TOP, as CLUSTER uses the layer-wise inference (like GAS, see Appendix A.3) in the evaluation
phase while TOP only uses the mini-batch information (see Equation (6)).

Convergence curves. We further report the convergence curves of TOP, NS, and LABOR in Figures
5(b), 5(c), and 5(d). We have included the pre-processing time of TOP in the figures. Although
NS and LABOR do not require pre-processing, TOP finally outperforms NS and LABOR due to its
powerful convergence. The speedup of TOP against NS and LABOR is more than 2x on all datasets.

7 CONCLUSION

In this paper, we propose an accurate and fast subgraph sampling method, namely topological
compensation (TOP), based on a novel concept of message invariance. Message invariance defines
message-invariant transformations that convert expensive message passing acted on out-of-batch
neighbors (MPOB) into efficient message passing acted on in-batch nodes (MPIB). Based on the
message invariance, the proposed TOP uses efficient MPIB without performance degradation. We
conduct extensive experiments to demonstrate that the message invariance hold in practice. Another
appealing feature is that TOP is easy to implement for various message passing-based GNNs.
Experiments demonstrate that TOP is significantly faster than existing mini-batch methods by
order of magnitude on vast graphs (millions of nodes and billions of edges) without performance
degradation. While our experiments focus on message-invariant transformation for some common
and simple GNNs, non-linear message-invariant transformation needs to be empirically evaluated for
more GNNs with more complex aggregation. In the future, we plan to generalize our ideas to more
GNNs or graph transformers with global communication.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide key information from the main text and Appendix as follows.

1. Algorithm. We provide the pseudocode of TOP in Algorithms 1 and 2. We also provide the
detailed implementation of TOP in Appendix B. See Appendix B.3 for the hyperparameters
of TOP.

2. Theoretical Proofs. We provide all proofs in Appendix D.

3. Source Code. To ensure a fair comparison, we implement TOP in Sections 6.1 and
6.2 following the codes of GAS (https://github.com/rusty1s/pyg_autoscale) and LABOR
(https://github.com/dmlc/dgl/tree/master/examples/pytorch/labor) respectively, which are the
state-of-the-art methods of subgraph sampling and node/layer-wise sampling respectively.
We are committed to providing the source code if accepted.

4. Experimental Details. We provide the detailed experimental settings in Section 6 and
Appendix B.

REFERENCES

Sami Abu-El-Haija, Joshua V. Dillon, Bahare Fatemi, Kyriakos Axiotis, Neslihan Bulut, Johannes
Gasteiger, Bryan Perozzi, and Mohammadhossein Bateni. Submix: Learning to mix graph sampling
heuristics. In Robin J. Evans and Ilya Shpitser (eds.), Proceedings of the Thirty-Ninth Conference
on Uncertainty in Artificial Intelligence, volume 216 of Proceedings of Machine Learning Research,
pp. 1–10. PMLR, 31 Jul–04 Aug 2023. URL https://proceedings.mlr.press/v216/
abu-el-haija23a.html.

Muhammed Fatih Balin and Umit Catalyurek. Layer-neighbor sampling — defusing neighborhood
explosion in GNNs. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=Kd5W4JRsfV.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
942–950. PMLR, 10–15 Jul 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional networks
via importance sampling. In International Conference on Learning Representations, 2018b. URL
https://openreview.net/forum?id=rytstxWAW.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 1725–1735. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/
chen20v.html.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs for predicting
social events. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1007–1016, 2019.

Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell., 29(11):1944–1957, nov 2007. ISSN
0162-8828. doi: 10.1109/TPAMI.2007.1115. URL https://doi.org/10.1109/TPAMI.
2007.1115.

11

https://github.com/rusty1s/pyg_autoscale
https://github.com/dmlc/dgl/tree/master/examples/pytorch/labor
https://proceedings.mlr.press/v216/abu-el-haija23a.html
https://proceedings.mlr.press/v216/abu-el-haija23a.html
https://openreview.net/forum?id=Kd5W4JRsfV
https://openreview.net/forum?id=rytstxWAW
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v119/chen20v.html
https://doi.org/10.1109/TPAMI.2007.1115
https://doi.org/10.1109/TPAMI.2007.1115

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemical
reaction prediction. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi,
and George Karypis (eds.), Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pp.
750–760. ACM, 2019. doi: 10.1145/3292500.3330958. URL https://doi.org/10.1145/
3292500.3330958.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/
2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, WWW ’19, pp. 417–426,
2019.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf.

Matthias Fey, Jan E. Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 3294–3304. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/fey21a.html.

Johannes Gasteiger, Chendi Qian, and Stephan Günnemann. Influence-based mini-batching for
graph neural networks. In The First Learning on Graphs Conference, 2022. URL https:
//openreview.net/forum?id=b9g0vxzYa_.

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288,
2011. doi: 10.1137/090771806. URL https://doi.org/10.1137/090771806.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pp. 1025–1035, 2017.

William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 14(3):1–159, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances
in Neural Information Processing Systems, pp. 22118–22133, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
01eee509ee2f68dc6014898c309e86bf-Paper.pdf.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR (Poster). OpenReview.net, 2017.

Yao Ma and Jiliang Tang. Deep Learning on Graphs. Cambridge University Press, 2021.

12

https://doi.org/10.1145/3292500.3330958
https://doi.org/10.1145/3292500.3330958
https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf
https://proceedings.mlr.press/v139/fey21a.html
https://openreview.net/forum?id=b9g0vxzYa_
https://openreview.net/forum?id=b9g0vxzYa_
https://doi.org/10.1137/090771806
https://proceedings.neurips.cc/paper/2018/file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 4663–4673. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/murphy19a.html.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=tJbbQfw-5wv.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael M. Bronstein, and
Federico Monti. Sign: Scalable inception graph neural networks. CoRR, abs/2004.11198, 2020.
URL https://arxiv.org/abs/2004.11198.

Zhihao Shi, Xize Liang, and Jie Wang. LMC: Fast training of GNNs via subgraph sampling with
provable convergence. In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=5VBBA91N6n.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
2018.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 23341–23362. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/wang22am.html.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 6861–6871. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/wu19e.html.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of graph neural
networks: Implicit acceleration by skip connections and more depth. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 11592–11602. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/xu21k.html.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’18, pp. 974–983, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450355520. doi: 10.1145/3219819.3219890. URL https://doi.org/10.1145/
3219819.3219890.

13

https://proceedings.mlr.press/v97/murphy19a.html
https://proceedings.mlr.press/v97/murphy19a.html
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=tJbbQfw-5wv
https://arxiv.org/abs/2004.11198
https://openreview.net/forum?id=5VBBA91N6n
https://proceedings.mlr.press/v162/wang22am.html
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v139/xu21k.html
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and Shuiwang Ji. GraphFM:
Improving large-scale GNN training via feature momentum. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 25684–25701. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/yu22g.html.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=_IY3_4psXuf.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
91ba4a4478a66bee9812b0804b6f9d1b-Paper.pdf.

14

https://proceedings.mlr.press/v162/yu22g.html
https://proceedings.mlr.press/v162/yu22g.html
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=_IY3_4psXuf
https://openreview.net/forum?id=_IY3_4psXuf
https://proceedings.neurips.cc/paper/2019/file/91ba4a4478a66bee9812b0804b6f9d1b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/91ba4a4478a66bee9812b0804b6f9d1b-Paper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A BACKGROUND OF SUBGRAPH SAMPLING

Subgraph sampling is a general mini-batch framework for a wide range of GNN architectures. For
example, subgraph sampling directly runs a GCN on the subgraph induced by a mini-batch B

H
(L)
B ≈ GCN(XB,Norm(AB,B)),

where Norm(·) normalizes the adjacency matrix of the subgraph AB,B. For example, CLUSTER-
GCN (Chiang et al., 2019) and GraphSAINT (Zeng et al., 2020) use Norm(AB,B) = ÃB,B and
Norm(AB,B) = D−1

B,BAB,B respectively.

Compared with the whole message passing in Equation (1), subgraph sampling drops the edges
N c

B → B from the original graph AB,NB , leading to significant approximation errors. Thus, the mini-
batch selection of subgraph sampling aims to minimize the graph cut from a topological similarity
perspective, i.e.,

min
B

∥(AB,B,O)−AB,NB∥0 = min
B

|N c
B|, (7)

where O ∈ R|B|×|Nc
B| is a zero matrix. Notably, as a connected graph cannot be divided into two

disjointed subgraphs without dropping edges, the optimal value of (7) is always positive in the
connected graph.

To minimize the graph cut |N c
B|, the cluster-based samplers (Chiang et al., 2019; Fey et al., 2021;

Shi et al., 2023; Yu et al., 2022) first adopt graph clustering (e.g., METIS (Karypis & Kumar, 1998)
and Graclus (Dhillon et al., 2007)) to partition the large-scale graph into {B1,B2, . . . ,Bn} with small
|N c

Bi
| and then sample a subgraph induced by Bi. Besides, the random-walk based sampler (Zeng

et al., 2020) first uniformly samples root nodes and then generates random walks B starting from the
root nodes, which decreases the graph cut (Ma & Tang, 2021, Chap. 7).

A.1 METIS

METIS is a widely used graph clustering technique (Chiang et al., 2019; Fey et al., 2021). Graph
clustering aims to construct partitions over the nodes in a graph such that intra-links within clusters
occur much more frequently than inter-links between different clusters (Karypis & Kumar, 1998).
Intuitively, this results that neighbors of a node are located in the same cluster with high probability.
METIS minimizes the graph cut from a topological similarity perspective, i.e. Equation (7), to main-
tain enough information in the original graph, thus reducing the accesses of inaccurate compensation
made by the subgraph sampling method, making the computation faster and more accurate.

However, METIS algorithm is too time-consuming (Zeng et al., 2020) on large datasets (e.g. Ogbn-
products and Ogbn-papers). Thus, we uniformly sample nodes to construct subgraphs of large
datasets.

A.2 HISTORICAL EMBEDDINGS

GAS (Fey et al., 2021) further compensates for the messages from the out-of-batch neighbors by
historical embeddings, which are defined by

Z
(l+1)
B ≈ ÃB,BH

(l)
B︸ ︷︷ ︸

MPIB

+ ÃB,N c
B
H

(l)

N c
B︸ ︷︷ ︸

Bias

, (8)

where H
(l) are historical embeedings. GAS pulls historical embeddings from RAM or hard drive

storage, making it significantly faster and more memory-efficient than the methods computing real
up-to-date embeddings.

However, the historical embeddings suffer from large approximation errors due to the staleness issue
(Fey et al., 2021; Yu et al., 2022; Shi et al., 2023). Specifically, GAS updates the historical embeddings
in each mini-batch average once per epoch and keeps their values between two consecutive updates
of the mini-batch historical embeddings. Thus, if the size of the sampled subgraphs is significantly
smaller than the whole graph, the update of historical embeddings is infrequent due to very low node
sampling probability, leading to large approximation errors of GAS. Moreover, as the number of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the out-of-batch neighbors is more than that of the nodes in the mini-batch subgraph on large-scale
graphs (see Table 6 in (Fey et al., 2021)), pulling a large number of historical embeddings is still
expensive.

A.3 LAYER-WISE INFERENCE IN EVALUATION PHASE

To ensure the exact inference results on the large graphs, graph sampling usually adapts layer-
wise inference, which iteratively updates all node embeddings at each layer without dropping edges.
Specifically, the nodes are partitioned into n mini-batches with batch size |B|, denoted as B1,B2, ...,Bn.
At the l-th layer, layer-wise inference traverses all mini-baches by

H
(l+1)
Bi

= GCN(H
(l)
NBi

, ÃBi,NBi
), for i ∈ {1, 2, ..., n}.

Then, layer-wise inference iteratively updates H(l+1) on the entire graph based on the previous
embeddings H(l).

For each computation within a batch, the input H(l)
NBi

is exact, and the adjacency matrix ÃBi,NBi

aggregates all the neighbor information. Therefore, H(l+1)
NBi

is also exact. Since the model is computed
layer-wise, each layer’s H(l+1) is exact. As a result, the final output of the model is exact inference
results.

Due to the fact that this layer-wise inference requires the computation of a large amount of data
beyond the evolution dataset, it can lead to potential computational redundancy, resulting in signif-
icant computational overhead. TOP does not use this layer-wise inference in experiments, which
significantly saves computational costs.

B IMPLEMENTATION DETAILS

B.1 TOP FOR VARIANT GNNS

We also extend TOP to the message passing framework for variant message passing-based GNNs.
The l-th layer of GNNs is defined as

h
(l+1)
i = f (l+1)

(
h
(l)
i ,

{{
h
(l)
j

}}
j∈Ni

)
, (9)

where {{. . . }} denotes the multiset. We separate the neighborhood information in Equation (9) of the
multiset into two parts

h
(l+1)
i = f (l+1)

(
h
(l)
i ,

{{
h
(l)
j

}}
j∈Ni∩B

∪
{{

h
(l)
j

}}
j∈Ni−B

)
≈ f (l+1)

(
h
(l)
i ,

{{
h
(l)
j

}}
j∈Ni∩B

∪ {{rjHB}}j∈Ni−B

)
, (10)

where rj is the j-th row of the coefficient matrix R. Equation (10) does not depend on the out-of-batch
neighborhood information, achieving a linear computational complexity. We estimate the coefficient
matrix R by

min
R

∥HN c
B
−RHB∥F , (11)

We provide more details for the estimation of R in Appendix B.4.

B.2 IMPLEMENTATION OF GCNII

We follow the implementation2 of GAS (Fey et al., 2021), which introduces the jumping knowledge
connection (Xu et al., 2018) to accelerate the convergence (Xu et al., 2021) for some GNN models.

2https://github.com/rusty1s/pyg_autoscale

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 2: Time and space complexity per gradient update of full-batch gradient descent with
whole message passing (Full-batch), CLUSTER (Chiang et al., 2019), GAS (Fey et al., 2021),
LMC (Shi et al., 2023), and TOP.

Method Time complexity GPU Memory Neighborhood Compensation

Full-batch O(L(|E|d+ |V|d2)) O(L|V|d) ✓
CLUSTER O(L(degmax|B|d+ |B|d2)) O(L|B|d) ×
GAS and LMC O(L(degmax|B|d+ |B|d2)) O(degmaxL|B|d) ✓

TOP O(L(degmax|B|d+ |B|(d2 + k2))) O(L|B|d) ✓

We first run GCNII (Chen et al., 2020) to generate embeddings H
(l)
B for each GNN layer l. Then, we

compute the final embeddings by the jumping knowledge connection (Xu et al., 2018)

Hfinal
B = MLP output(

1

L+ 1

L∑
l=0

MLP (l)(H
(l)
B)),

where MLP is a multi-layer perceptron. We find the best hyperparameters α, λ of GCNII by grid
search on the Ogbn-products and Ogbn-papers dataset.

B.3 HYPERPARAMETERS

Comparison with subgraph sampling. To ensure a fair comparison, we follow the GNN architec-
tures, the data splits, training pipeline, and hyperparameters of GCN and PNA in (Fey et al., 2021).
We search the best hyperparameters of GCNII, GAT, and SAGE for TOP, CLUSTER, and GAS in the
same set.

Comparison with node/layer-wise sampling. We run NS and LABOR by the official implemen-
tation3 of LABOR (Balin & Catalyurek, 2023) and corresponding hyperparameters. For TOP, we
uniformly sample nodes to construct subgraphs. To ensure a fair comparison, TOP follows the data
splits, training pipeline, learning rate, and hyperparameters of LABOR (Balin & Catalyurek, 2023).
We adapt the batch size of TOP such that the memory consumption of TOP is similar to LABOR.

B.4 FAST ESTIMATION OF COEFFICIENT MATRIX

We compute the coefficient matrix R by solving Equation H
(l)
Nc

B
= RH

(l)
B . If the size of the subgraph

|B| is large, then solving the linear equation H
(l)
Nc

B
= RH

(l)
B is expensive. As the rank of HB is less

than the hidden dimension d << |B|, there exists a low-rank matrix decomposition such that

HB = QQ⊤HB,

where Q ∈ R|B|×k has orthogonal columns. k ≥ d is a hyperparameter. We use k = d in all
experiments. We use the proto-algorithm (Halko et al., 2011) to efficiently compute Q. By letting
R̂ = RQ ∈ R|Nc

B|×d, Equation (11) becomes

min
R̂

∥YB(H)− ÃB,N c
B
R̂(Q⊤HB)∥F . (12)

Further, we uniformly sample a small set S with |S| = k from B to reduce the costs by

min
R̂

∥YB(H)− ÃB,N c
B
R̂(Q⊤

SHS)∥F ,

which is equivalent to

min
R̂

∥ÃB,N c
B
(HN c

B
− R̂(Q⊤

SHS))∥F .

Since HS is usually the full-column-rank matrix, we can compute R̂ by R̂ = HNc
B
(Q⊤

SHS)
† and then

save ∂ÂB = ÃB,Nc
B
R̂ in the pre-processing phase, where (Q⊤

SHS)
† is the Moore-Penrose inverse of

3https://github.com/dmlc/dgl/tree/master/examples/pytorch/labor

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Q⊤
SHS . At the training phase, Equation (6) becomes

Z
(l+1)
B = ÃB,BH

(l)
B + ∂ÂB(Q

⊤
SH

(l)
S), (13)

where ∂ÂB ∈ R|B|×k, Q̂S ∈ Rk×k, and H
(l)
S ∈ Rk×d. The time complexity of the second term in

Equation 13 is O(|B|k2 + k2d), which is significantly lower than that in Equation (6), i.e., O(|B|2d),
as |B| >> d.

The analysis for message passing-based GNNs is similar.

B.5 COMPLEXITY ANALYSIS

We summarize TOP in Algorithms 1 and 2. TOP first pre-processes the topological compensation by
Algorithm 1 and then reuses the topological compensation during the training phase.

Algorithm 1 Pre-processing phase of TOP
1: Input: Mini-batches {Bi}mi=1

2: Compute H(l) with a model at random initialization.
3: for i = 1, ...,m do
4: Compute QSi by the proto-algorithm.
5: Compute R̂ by solving Equation (12).
6: Compute ∂ÂBi

= ÃBi,N c
Bi
R̂

7: end for
8: Save {QSi

}mi=1 and {∂ÂBi
}mi=1

9: Output: {QSi
}mi=1 and {∂ÂBi

}mi=1

Algorithm 2 Training phase of TOP

1: Input: Mini-batches {Bi}mi=1, {QSi
}mi=1, and {∂ÂBi

}mi=1
2: for i = 1, . . . , N do
3: Randomly sample Bi from {Bi}mi=1

4: Initialize H
(0)
Bi

= XBi

5: for l = 0, . . . , L− 1 do
6: Compute H

(l+1)
Bi

= σ(ÃB,BH
(l)
Bi

+ (∂ÂBi
(QT

Si
H

(l)
Bi
))W(l))

7: end for
8: Compute the mini-batch loss
9: Update parameters by backward propagation

10: end for

As the costs of pre-processing are marginal, we compare the computational complexity of the training
phase in Table 2. TOP compensates for the neighborhood messages with the least time and memory
complexity among existing subgraph sampling methods.

C MORE EXPERIMENTS

C.1 MEASURING MESSAGE INVARIANCE IN REAL-WORLD DATASETS.

We conduct extensive experiments on four real-world datasets with five GNN backbones to demon-
strate that the message invariance holds in real-world datasets. Table 3 shows that the relative
approximation errors of TOP are less than 5% and the test accuracy of TOP is very close to the whole
message passing.

C.2 CONVERGENCE CURVES (TEST ACCURACY VS. EPOCHS)

We provide the convergence curves (test accuracy vs. epochs) in Figure 6. Notably, we report
the test accuracy of the full-batch gradient descent (GD) every two steps rather than per epoch, as

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Message invariance in real-world datasets. TOP approximates the whole message passing
solely through MPIB with marginal approximation errors.

Dataset GNN Methods Relative approximation errors ↓ Test accuracy degradation ↓
10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Ogbn-arxiv

GCN
CLUSTER 23.8% 20.2% 18.0% 15.8% 12.1% 5.03% 3.67% 2.99% 2.66% 1.40%

GAS 17.1% 15.3% 14.1% 12.8% 9.9% 0.80% 0.78% 0.58% 0.61% 0.33%
TOP 3.5% 2.8% 2.4% 2.2% 1.6% 0.15% 0.10 % 0.15% 0.12% 0.13%

GCNII
CLUSTER 13.5% 11.5% 10.2% 9.0% 6.9% 4.72% 3.60% 2.99% 2.38% 1.90%

GAS 9.6% 8.8% 8.1% 7.3% 6.0% 2.37% 2.06% 1.88% 1.67% 1.46%
TOP 2.5% 2.3% 2.0% 1.8% 1.4 % 0.42% 0.28% 0.35% 0.17% 0.18%

SAGE
CLUSTER 15.58% 13.08% 11.08% 9.91% 7.06% 4.37% 3.69% 3.04% 2.80% 1.91%

GAS 24.77% 20.97% 16.80% 16.02% 10.47% 6.84% 4.83% 3.98% 3.75% 1.77%
TOP 4.38% 3.69% 3.21% 2.89% 2.03% 0.08% 0.11% 0.01% 0.10 % 0.00%

GAT
CLUSTER 23.37% 20.22% 18.00% 16.27% 12.67% 5.99% 4.34% 3.73% 3.09% 2.04%

GAS 14.96% 13.47% 12.51% 11.53% 9.08% 1.17% 0.97% 0.89% 0.80% 0.67%
TOP 3.41% 2.99% 2.56% 2.30 % 1.63% 0.15% 0.16% 0.10% 0.08% 0.08%

Reddit

GCN
CLUSTER 29.20% 22.10% 18.10% 16.02% 11.53% 3.85% 3.05% 2.34% 1.88% 1.14%

GAS 27.13% 23.87% 21.07% 18.69% 15.00% 1.27% 1.22% 0.82% 0.68% 0.49%
TOP 0.78% 0.65% 0.55% 0.53% 0.39% 0.09% 0.09% 0.08% 0.06% 0.03%

GCNII
CLUSTER 25.32% 19.62% 16.45% 14.94% 11.29% 4.79% 3.59% 2.45% 2.78% 1.46%

GAS 32.87% 30.74% 27.52% 26.00% 23.05% 7.76% 5.82% 4.41% 4.51% 2.77%
TOP 4.54% 4.75% 5.22% 3.62% 2.58% 0.33% 0.41% 0.54% 0.31% 0.30%

SAGE
CLUSTER 10.74% 7.58% 6.80% 5.35% 3.44% 3.84% 2.85% 2.60% 2.13% 1.37%

GAS 7.03% 5.95% 5.64% 3.43% 1.90% 0.94% 0.60% 0.79% 0.41% 0.43%
TOP 1.31% 1.10% 1.05% 0.85% 0.61% 0.31% 0.27% 0.21% 0.19% 0.11%

PNA
CLUSTER 24.13% 21.40% 18.60% 16.70% 13.60% 4.16% 3.20% 1.76% 1.43% 1.13%

GAS 22.39% 20.16% 18.77% 16.54% 13.38% 2.60% 2.49% 1.74% 1.64% 0.72%
TOP 13.01% 11.18% 10.48% 9.35% 7.42% 1.48% 1.28% 0.76% 0.97% 0.62%

Yelp

GCNII
CLUSTER 5.74% 4.48% 3.82% 3.25% 2.38% 0.89% 0.57% 0.45% 0.34% 0.21%

GAS 7.36% 6.52% 5.84% 5.15% 4.01% 1.08% 0.93% 0.77% 0.64% 0.50%
TOP 1.36% 1.24% 1.14% 1.05% 0.86% 0.13% 0.11% 0.09% 0.08% 0.05%

SAGE
CLUSTER 15.55% 12.53% 10.85% 9.35% 6.99% 1.13% 0.87% 0.66% 0.56% 0.35%

GAS 5.21% 4.65% 4.19% 3.85% 2.96% 0.77% 0.62% 0.59% 0.53% 0.40%
TOP 2.41% 2.18% 2.02% 1.84% 1.54% 0.07% 0.07% 0.05% 0.04% 0.04%

Ogbn-products SAGE
CLUSTER 9.55% 8.50% 7.43% 6.91% 5.34% 1.67% 1.67% 1.67% 1.67% 1.67%

GAS 2.44% 2.18% 1.91% 1.80% 1.37% 0.37% 0.34% 0.31% 0.27% 0.19%
TOP 0.86% 0.73% 0.63% 0.58% 0.44% 0.17% 0.14% 0.12% 0.11% 0.11%

Average
CLUSTER 17.86% 14.66% 12.67% 11.22% 8.48% 3.68% 2.83% 2.24% 1.97% 1.33%

GAS 15.54% 13.88% 12.40% 11.19% 8.83% 2.36% 1.88% 1.52% 1.41% 0.88%
TOP 3.46% 3.05% 2.85% 2.45% 1.86% 0.31% 0.27% 0.22% 0.20% 0.15%

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epochs

0.66

0.68

0.70

0.72

0.74

Te
st

/A
cc

ogbn-arxiv & | |
| | = 50%

TOP
CLUSTER
GAS
SAINT
GD

0 100 200 300 400
Epochs

0.94

0.95

0.96

0.97

Te
st

/A
cc

Reddit & | |
| | = 50%

TOP
CLUSTER
GAS
SAINT
GD

(a) GCN on small datasets

0 100 200 300 400
Epochs

0.94

0.95

0.96

0.97

0.98

Te
st

/A
cc

Reddit & | |
| | = 50%

TOP
CLUSTER
GAS
GD
SAINT

0 50 100 150 200
Epochs

0.59
0.60
0.61
0.62
0.63
0.64
0.65

Te
st

/A
cc

Yelp & | |
| | = 12.5%

TOP
CLUSTER
GAS
SAINT

(b) GCNII on medium datasets

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

/A
cc

ogbn-products & | |
| | = 4%

TOP (remove valid and test nodes)
CLUSTER (remove valid and test nodes)
CLUSTER
GAS

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

/A
cc

ogbn-papers & | |
| | = 1%

TOP (remove valid and test nodes)
CLUSTER (remove valid and test nodes)

(c) GCNII+JK on large datasets

Figure 6: Convergence curves (test accuracy vs. epoch). |B| and |V| denote the sizes of subgraphs
and the whole graph respectively.

GD performs backward backpropagation once per epoch while other methods perform backward
backpropagation twice per epoch on the Ogbn-arxiv and Reddit datasets. The convergence curves
of TOP are close to GD on the Ogbn-arxiv and Reddit datasets, while other subgraph sampling
methods fail to resemble the full-batch performance on the Ogbn-arxiv dataset. Moreover, TOP
significantly accelerates the convergence on the medium and large datasets, e.g., Yelp, Ogbn-products,
and Ogbn-papers.

C.3 TOP ON ARCHITECTURE VARIANTS

We compare subgraph sampling methods (including TOP, CLUSTER (Chiang et al., 2019), GAS
(Fey et al., 2021), SAINT (Zeng et al., 2020), and IBMB (Gasteiger et al., 2022)) on more GNN
architectures (i.e., GAT (Veličković et al., 2018) and SAGE (Hamilton et al., 2017)) in Figure 7.
TOP is faster than the existing subgraph sampling methods on GAT and SAGE architectures due to
its powerful convergence and high efficiency. The experiments demonstrate that TOP is a general
framework for different GNN architectures.

0 20 40 60 80
Runtime (s)

0.68

0.70

0.72

0.74

0.76

Ac
cu

ra
cy

GCN
TOP
CLUSTER
GAS
SAINT
IBMB

(a) TOP with GCN

0 5 10 15 20 25 30
Runtime (s)

0.60

0.65

0.70

Ac
cu

ra
cy

GAT
CLUSTER
GAS
SAINT
TOP
IBMB

(b) TOP with GAT

0 10 20 30 40 50
Runtime (s)

0.70

0.72

0.74

Ac
cu

ra
cy

SAGE
CLUSTER
GAS
SAINT
TOP
IBMB

(c) TOP with SAGE

Figure 7: Convergence curves (test accuracy vs. runtime (s)) on more GNN architectures (i.e.,
GAT (Veličković et al., 2018) and SAGE (Hamilton et al., 2017)).

C.4 RELATIVE RUNTIME PER EPOCH AND RELATIVE MEMORY CONSUMPTION

We report the relative runtime per Epoch and relative Memory Consumption in Table 4. As the
graph size increases, the subgraph ratio |B|/|V| decreases. TOP enjoys the least runtime and memory
consumption among the baselines.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 4: Efficiency of the full-batch gradient descent (Full-batch), GAS, TOP. R∗ and M∗
denote the runtime per epoch and memory consumption of the algorithm ∗ respectively.

Dataset Model |B|
|V| |B| Runtime (s)↓ RGAS

RTOP

Memory (MB)↓ MGAS

MTOPFull-batch GAS TOP Full-batch GAS TOP
Ogbn-arxiv GCN 50.0% 84672 0.63 0.35 0.33 1.07 2463.03 1566.89 1071.27 1.46

Reddit GCN 50.0% 116483 2.05 1.33 0.91 1.46 2796.30 2444.25 1334.78 1.83
Reddit GCNII 50.0% 116483 3.21 1.94 1.49 1.30 8240.29 5509.85 3837.94 1.44
Yelp GCNII 12.5% 89606 OOM 4.29 3.98 1.08 OOM 6752.89 2231.76 3.03

Ogbn-products GCNII+JK 4.0% 97961 OOM 70.68 6.04 11.70 OOM 6574.37 1406.60 4.67

C.5 COST OF PRE-PROCESSING AND TRAINING

We report the cost of pre-processing and training in experiments in Table 5. On the small and medium
datasets (i.e., Ogbn-arxiv, REDDIT, and YELP), the total time of different methods is similar and TOP
achieves the least GPU consumption in most experiments. On the large datasets (i.e. Ogbn-products),
TOP is significantly faster and more memory-efficient than existing subgraph sampling methods, as
it can remove the valid and test nodes from the sampled subgraph without significant performance
degradation. Specifically, Equation (6) compensates the neighborhood information from the valid and
test nodes based on the mini-batch training nodes. However, the valid and test nodes in subgraphs are
important for CLUSTER, as these valid and test nodes are likely to be the neighbors of the training
nodes. Directly removing these nodes without any compensation results in significant performance
degradation (see Figures 3 and 6). Besides, GAS needs to update the historical embeddings of valid
and test nodes many times, leading to expensive computational costs.

Table 5: The cost of pre-processing and training.
GNN & Dataset Methods Pre-processing time (s) Training time (s) Total Time (s) Memory (MB)

GCN & arxiv

GraphSAINT 0.0 122.0 122.0 1144.1
CLUSTER 1.7 92.8 94.5 1312.0
GAS 3.0 105.0 108.0 1566.9
TOP 5.0 99.0 104.0 1071.3

SAGE & arxiv

GraphSAINT 0.0 114.5 114.5 1716.2
CLUSTER 1.6 93.3 94.9 1450.1
GAS 3.0 107.8 110.7 1616.1
TOP 5.3 98.9 104.1 1110.2

GAT & arxiv

GraphSAINT 0.0 63.3 63.3 2060.9
CLUSTER 1.7 43.7 45.4 2253.6
GAS 3.0 52.8 55.7 3025.9
TOP 4.4 58.7 63.1 3177.9

GCN & REDDIT

GraphSAINT 0.0 387.6 387.6 1398.2
CLUSTER 14.9 351.7 366.7 1955.2
GAS 16.6 532.0 548.6 2444.3
TOP 20.1 364.0 384.1 1334.8

GCNII & REDDIT

GraphSAINT 0.0 672.0 672.0 3935.2
CLUSTER 14.7 595.0 609.7 4242.2
GAS 17.4 776.0 793.4 5509.9
TOP 21.2 596.0 617.2 3837.9

GCNII & YELP

GraphSAINT 0.0 1648.6 1648.6 6011.7
CLUSTER 12.6 1871.6 1884.2 5940.4
GAS 17.3 2145.0 2162.3 6752.9
TOP 25.3 1990.0 2015.3 2231.8

GCNII+JK & products
CLUSTER 35.5 3964.4 3999.9 2048.7
GAS 45.5 7068.0 7113.5 6574.4
TOP 35.8 604.0 639.8 1406.6

GCNII+JK & papers CLUSTER 0.00 1007.42 1007.42 1526.91
TOP 144.53 1094.01 1238.54 1560.34

C.6 PREDICTION PERFORMANCE ON VARIOUS GRAPHS

Datasets. We report the prediction performance of TOP on four datasets, i.e., Flickr (Zeng et al.,
2020), Ogbn-arxiv, Ogbn-products and Ogbn-papers (Hu et al., 2020), where the two challenging
large datasets (i.e., Ogbn-products and Ogbn-papers (Hu et al., 2020)) contain at least 100 thousand

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Prediction Performance. Bold font indicates the best result and underline indicates the
second best result.

nodes 169K 89K 2.4M 111M
edges 1.2M 450K 61.9M 1.6B

Method Ogbn-arxiv Flickr Ogbn-products Ogbn-papers
acc↑ acc↑ acc↑ acc↑

NS-SAGE 71.49 50.10 78.70 67.06
CLUSTER-GCN — 48.10 78.97 —
GraphSAINT — 51.10 79.08 —
SHADOW-GAT 72.74 53.52 80.71 67.08
SGC — 48.20 — 63.29
SIGN — 51.40 80.52 66.06

GD-GCNII 72.83 55.28 OOM OOM
CLUSTER-GCNII 72.39 55.33 79.62 51.73
GAS-GCNII 72.50 55.42 79.99 OOM

TOP-GCNII 72.52 ± 0.34 55.21 ± 0.46 81.96 ± 0.24 67.21 ± 0.12

nodes and one million edges. As shown by Table 4, as the batch size is significantly lower than the
size of the whole graph, the convergence of mini-batch methods under small batch sizes becomes
very important.

Baselines and implementation details. Our baselines are from the OGB leaderboards (Hu et al.,
2020), including node-wise sampling methods (GraphSAGE (Hamilton et al., 2017), subgraph-wise
sampling methods (CLUSTER-GCN in the original paper (Chiang et al., 2019), GraphSAINT (Zeng
et al., 2020), SHADOW (Zeng et al., 2021) and GAS (Fey et al., 2021)), precomputing methods
(SGC (Wu et al., 2019) and SIGN (Rossi et al., 2020)). The GNN backbones of these baselines
are different, as more scalable methods usually use more advanced but more memory-consuming
GNN backbones. Due to the differences in GNN backbones, frameworks, weight initialization, and
optimizers in the baselines, we report CLUSTER-GCNII and GAS-GCNII for ablation studies. The
hyperparameter settings are the same as Section 6.1. The results of the baselines are taken from the
referred papers and the OGB leaderboards.

Prediction performance. We report the prediction performance of TOP in Table 6. On the small
datasets (i.e., the ogbn-arxiv and flickr datasets), which have fewer than 170k nodes, the prediction
performance of several subgraph sampling methods (CLUSTER, GAS, and TOP) is comparable
to gradient descent (GD), as they can use a large subgraph ratio |B|/|V| on the small dataset (e.g.
50% used in GAS), such that the sampled subgraphs are close to the whole graph. On the large
datasets (i.e., the ogbn-products and ogbn-papers datasets), as the large subgraph ratio may suffer
from the out-of-GPU memory issue, we use a small subgraph ratio (less than 4%). However, the
small subgraph ratio increases the ratio of missing messages in MPOB for CLUSTER and results in
the severe staleness issue for GAS (the update of historical embeddings in GAS is infrequent due
to very low node sampling probability). The accuracy of TOP is larger than other baselines, as it
compensates the messages in MPOB by the message-invarant trasformation g and relies solely on
up-to-date embeddings, thus avoiding the staleness issue of the historical embeddings.

C.7 EXPERIMENTS ON HETEROPHILOUS GRAPHS

The message invariance still holds on heterophilous graphs. To verify our claim, we conduct
experiments on five heterophilous graphs (i.e., roman-empire, amazon-ratings, minesweeper, tolokers,
and questions) provided by the recent heterophilous benchmark (Platonov et al., 2023), as shown
in Table 7. We set the subgraph ratio to be 50%, as the heterophilous graphs (10k-50k nodes)
are significantly smaller than the homophilic graphs (200k-112000k nodes) in Section 6. On the
heterophilous graphs, although a node may be very different from its neighbors, the neighbors may
be similar to other nodes in the subgraph. Notably, the message-invariant transformation in Equation
4 does not restrict that the embedding of an in-batch node should be similar to its neighborhood

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

embeddings, and thus the message-invariant transformation is able to approximate the neighborhood
embeddings by other nodes in the subgraph.

Table 7: Approximation errors of TOP, CLUSTER, and TOP on heterophilous graphs.
Heterophilous Graph CLUSTER GAS TOP

amazon-ratings 4.14% 1.36% 1.02%
minesweeper 54.53% 19.68% 3.12%

questions 20.25% 9.54% 4.90%
roman-empire 5.42% 1.65% 0.88%

Figure 8 further reports the convergence curves of TOP, CLUSTER, and GAS on the homophily
datasets. From Table 7, the approximation errors of TOP are significantly lower than CLUSTER and
GAS on minesweeper, tolokers, and questions. Accordingly, TOP is also significantly faster than
CLUSTER and GAS on the three datasets.

0 5 10 15 20
Runtime (s)

0.45

0.50

0.55

0.60

Te
st

/A
cc

amazon-ratings
TOP
CLUSTER
GAS

0 2 4 6 8 10
Runtime (s)

0.85

0.90

0.95

1.00

Te
st

/A
cc

minesweeper
TOP
CLUSTER
GAS

0 2 4 6 8 10
Runtime (s)

0.75

0.80

0.85

0.90
Te

st
/A

cc
tolokers

TOP
CLUSTER
GAS

0 1 2 3 4
Runtime (s)

0.65

0.70

0.75

0.80

Te
st

/A
cc

roman-empire
TOP
CLUSTER
GAS

0 1 2 3
Runtime (s)

0.65

0.70

0.75

0.80

Te
st

/A
cc

questions
TOP
CLUSTER
GAS

Figure 8: Convergence curves of TOP, CLUSTER, and GAS on real-world heterophilous graphs.

C.8 EXPERIMENTS UNDER VARIOUS SUBGRAPH SAMPLERS

We conduct experiments to demonstrate that TOP consistently brings performance improvement for
various subgraph samplers. We first evaluate the relative approximation errors of TOP, CLUSTER,
and GAS under METIS, Random, GraphSAINT (Zeng et al., 2020), and SHADOW (Zeng et al., 2021)
sampling in Table 8. The results demonstrate that TOP significantly alleviates approximation errors
by integrating different subgraph sampling techniques. Specifically, different subgraph sampling
techniques are designed to encourage the connections between the sampled nodes with a trade-off
for efficiency. METIS aims to directly achieve this goal, while it may be more time-consuming than
other sampling techniques. Random sampling is the fastest sampling baseline among them, while it
does not consider the connections between the sampled nodes. Thus, Random sampling significantly
amplifies the approximation errors of CLUSTER and GAS, while TOP is robust under Random,
GraphSAINT, and SHADOW sampling.

Table 8: Message invariance in real-world datasets with various subgraph samplers.

Dataset GNN Methods Relative Approximation Errors ↓
Random SAINT SHADOW METIS

Ogbn-arxiv GCN
CLUSTER 30.02% 15.79% 12.49% 12.10%

GAS 45.29% — — 9.89%
TOP 7.61% 5.94% 3.41% 1.58%

Reddit SAGE
CLUSTER 25.91% 22.22% 21.32% 3.44%

GAS 13.91% — — 1.90%
TOP 3.10% 1.45% 1.27% 0.61%

Yelp GCNII
CLUSTER 4.87% 1.13% 0.91% 2.38%

GAS 7.86% — — 4.01%
TOP 2.68% 0.74% 0.64% 0.86%

Figure 9 further shows the convergence curves of TOP, CLUSTER, and GAS under Random sampling.
Due to the accurate and fast message passing of TOP, TOP significantly outperforms CLUSTER and

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

GAS in terms of accuracy and converge speeds. By integrating the results with Figures 3(a) and 3(b),
the performance improvement of TOP is consistent for various subgraph sampling methods.

0 10 20 30
Runtime (s)

0.68

0.70

0.72

Te
st

/A
cc

ogbn-arxiv & GCN
TOP
CLUSTER
GAS

0 10 20 30
Runtime (s)

0.95

0.96

0.97

0.98

Te
st

/A
cc

Reddit & SAGE
TOP
CLUSTER
GAS

0 100 200 300 400
Runtime (s)

0.5

0.6

0.7

Te
st

/A
cc

Yelp & GCNII
TOP
CLUSTER
GAS

Figure 9: Convergence curves of TOP, CLUSTER, and GAS under the Random sampler.

D PROOF FOR CONVERGENCE

We first show that TOP based on Equation (5) provides unbiased gradients. We assume that subgraph
B is uniformly sampled from V. When the sampling is not uniform, we use the normalization
technique (Zeng et al., 2020) to enforce the assumption.
Theorem D.1. Suppose that the message invariant transformations (4) exist and the subgraph
B is uniformly sampled from V. The iterative message passing of Equations (5) and H

(l+1)
B =

σ(Z
(l+1)
B W(l)) leads to unbiased mini-batch gradients dW such that

E[dW] = ∇WL.

Proof. Given any mini-batch B, the embeddings H
(l)
B of TOP are the same as that of SGD due to

H
(l)
Nc

B
= g(H

(l)
B) for any GNN parameters W(l). Thus, their total objective functions of L = LTOP are

the same.

If TOP is biased, then the expected gradient ∇WLTOP ̸= ∇WL. Thus, there exists ϵ > 0 and W0 such
that LTOP (W0) = L(W0) while LTOP (W0 − ϵ∇W0L) ̸= L(W0 − ϵ∇W0L) due to different directional
derivatives ⟨∇W0L,∇W0LTOP ⟩ ≠ ∥∇W0L∥2F , which contradicts to L = LTOP . The unbiasedness
holds immediately.

D.1 PROOF OF THEOREM 5.1: CONVERGENCE GUARANTEES OF TOP

In this subsection, we give the convergence guarantees of TOP. The proof follows the proof of
Theorem 2 in Appendix C.4 of (Chen et al., 2018a).

Proof. As ∇L is γ-Lipschitz, we have
L(W(k+1))

= L(W(k)) +

∫ 1

0

⟨∇L(W(k) + t(W(k+1) −W(k))),W(k+1) −W(k)⟩ dt

= L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩

+

∫ 1

0

⟨∇L(W(k) + t(W(k+1) −W(k)))−∇L(W(k)),W(k+1) −W(k)⟩ dt

≤ L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩

+

∫ 1

0

∥∇L(W(k) + t(W(k+1) −W(k)))−∇L(W(k))∥2∥W(k+1) −W(k)∥2 dt

≤ L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩+
∫ 1

0

γt∥W(k+1) −W(k)∥22 dt

= L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩+ γ

2
∥W(k+1) −W(k)∥22.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Notice that the update formula of W(k) is

W(k+1) = W(k) − ηd
(k)
W ,

where d
(k)
W is the gradient of TOP at the k-th iteration and we select η < 2

γ
. Let ∆(k) ≜ d

(k)
W −

∇L(W(k)), then

L(W(k+1))

≤ L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩+ γ

2
∥W(k+1) −W(k)∥22

= L(W(k))− η⟨∇L(W(k)),d
(k)
W ⟩+ η2γ

2
∥d(k)

W ∥22

= L(W(k))− η(1− ηγ)⟨∇L(W(k)),∆(k)⟩ − η(1− ηγ

2
)∥∇L(W(k))∥22 +

η2γ

2
∥∆(k)∥22.

By taking the expectations of both sides, we have

E[L(W(k+1))]

≤ E[L(W(k))]− η(1− ηγ)E[⟨∇L(W(k)),∆(k)⟩]− η(1− ηγ

2
)E[∥∇L(W(k))∥22] +

η2γ

2
E[∥∆(k)∥22].

By the properties of the expectations and Theorem D.1, we have

E[⟨∇L(W(k)),∆(k)⟩] = E[E[⟨∇L(W(k)),∆(k)⟩|∇L(W(k))]]

= E[⟨∇L(W(k)),E[∆(k)|∇L(W(k))]⟩]

= E[⟨∇L(W(k)),E[d(k)
W −∇L(W(k))|∇L(W(k))]⟩]

= E[⟨∇L(W(k)),E[d(k)
W |∇L(W(k))]−∇L(W(k))⟩]

= E[⟨∇L(W(k)),∇L(W(k))−∇L(W(k))⟩]
= 0,

which leads to

E[L(W(k+1))] ≤ E[L(W(k))]− η(1− ηγ

2
)E[∥∇L(W(k))∥22] +

η2γ

2
E[∥∆(k)∥22]

⇒η(1− ηγ

2
)E[∥∇L(W(k))∥22] ≤ E[L(W(k))]− E[L(W(k+1))] +

η2γ

2
E[∥∆(k)∥22].

By summing up the above inequalities for k ∈ JNK and dividing both sides by Nη(1− ηγ
2
), we have∑N

k=1 E[∥∇L(W(k))∥22]
N

≤ L(W(1))− E[L(W(N+1))]

Nη(1− ηγ
2)

+
ηγ

2− ηγ

∑N
k=1 E[∥∆(k)∥22]

N

≤ L(W(1))− L∗

Nη(1− ηγ
2)

+
ηγ

2− ηγ

∑N
k=1 E[∥∆(k)∥22]

N
.

By noticing that

E[∥∇L(W(R))∥22] = E[E[∥∇WL(W(R))∥22 | R]] =

∑N
k=1 E[∥∇L(W(k))∥22]

N

and

E[∥∆(k)∥22] = E[∥d(k)
W −∇L(W(k))∥22]

≤ 2(E[∥d(k)
W ∥22] + E[∥∇L(W(k))∥22])

≤ 4G2,

we have

E[∥∇L(W(R))∥22] ≤
L(W(1))− L∗

Nη(1− ηγ
2)

+
4G2ηγ

2− ηγ
.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

If η < 1
γ
, η = O(N− 1

2), we have

E[∥∇L(W(R))∥22] ≤
2(L(W(1))− L∗)

Nη
+ 8G2ηγ = O(N− 1

2).

Therefore, by letting ε = (2(L(W(1))−L∗)
Nη

+ 8G2ηγ)
1
2 = O(N− 1

4), Theorem 5.1 follows immediately.

E ENCODING SYMMETRY IN GRAPHS VIA TOP

In this section, we show that the embeddings of GNNs at random initialization can encode the
symmetry in the original graph, which is a specific node similarity.

Notations For brevity, N i = Ni ∪ {i} denotes the neighborhood of node i with itself. We recursively
define the set of neighborhoods within k-hops as N k

i = NNk−1
i

with N 1
i = N i. For Theorem E.4, we

denote all the possible embeddings at the l-th layer by E(l) = {h(l)
1 , h

(l)
2 , . . . ,h

(l)

t(l)
}, where t(l) ≤ t is

the number of different embeddings at the l-th layer, l ∈ JLK.

Motivation for the symmetry. We first motivate the basic embeddings from the graph isomorphism
perspective. The 1-dimensional Weisfeiler-Lehman test (i.e., 1-WL test) (Weisfeiler & Leman, 1968)
is widely used to distinguish whether two nodes or graphs are isomorphic.

Given initial node feature/representation h
(0)
u , at the l-th iterations, 1-WL test for GCNs updates the

node representation h
(l−1)
i based on the local neighborhood by

h
(l)
i = Hash({{h(l−1)

u , u ∈ N i}}). (14)

Following (Xu et al., 2019), we show the connections between GNNs and 1-WL test in Lemma E.1.

Without loss of generality, we present the theories for the GCN version. Extending them to other
GNNs is easy.
Lemma E.1. Given a graph G = (V, E) and a GNN, if nodes i, j ∈ V are indistinguishable under l
iterations of the 1-WL test, then there holds

H
(l)
i = H

(l)
j ,

for all GNN parameters.

Proof. As i, j are indistinguishable under l iterations of 1-WL test, we have h
(l)
i = h

(l)
j . Notice that

the function Hash is injective, we have

{{h(l−1)
u , u ∈ N i}} = {{h(l−1)

v , v ∈ N j}} and |N i| = |N j |.
Then, we can know that

{{h(l−2)
p , p ∈ N u, u ∈ N i}} = {{h(l−2)

q , q ∈ N v, v ∈ N j}}
and {{|N u|, u ∈ N i}} = {{|N v|, v ∈ N j}}.

which is equivalent to

{{h(l−2)
p , p ∈ N 2

i }} = {{h(l−2)
q , q ∈ N 2

j}} and {{|N u|, u ∈ N i}} = {{|N v|, v ∈ N j}}.
Recursively, we have

{{h(l−3)
p , p ∈ N 3

i }} = {{h(l−3)
q , q ∈ N 3

j}} and {{|N u|, u ∈ N 2

i }} = {{|N v|, v ∈ N 2

j}}
...

{{h(0)
p , p ∈ N l

i}} = {{h(0)
q , q ∈ N l

j}} and {{|N u|, u ∈ N l−1

i }} = {{|N v|, v ∈ N l−1

j }}.

By xk = h
(0)
k and incorporating the equations above, we can know that

{{(xp, Ãup), u ∈ N l−1

i , p ∈ N l

i}} = {{(xq, Ãvq), v ∈ N l−1

j , q ∈ N l

j}}.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Thus, we have

H
(1)

N l−1
i

= σ(ÃN l−1
i ,N l

i
XN l

i
W(0)) = σ(ÃN l−1

j ,N l
j
XN l

j
W(0)) = H

(1)

N l−1
j

...

H
(l−1)

N i
= σ(ÃN i,N

2
i
H

(l−2)

N 2
i

W(l−2)) = σ(ÃN j ,N
2
j
H

(l−2)

N 2
j

W(l−2)) = H
(l−1)

N j

H
(l)
i = σ(Ãi,N i

H
(l−1)

N i
W(l−1)) = σ(Ãj,N j

H
(l−1)

N j
W(l−1)) = H

(l)
j

for all GNN parameters.

However, as many GNNs are less expressive than the 1-WL test, it is difficult to find 1-WL isomorphic
node pairs by detecting the embeddings in GNNs. Fortunately, TOP does not require as strong
expressiveness as the 1-WL test. For two nodes, we do not need to identify whether they are 1-WL
isomorphic, but only need to identify whether they are indistinguishable by GNNs.
Definition E.2. (Isomorphism under GNNs). Given initial node feature/representation H(0), at the
l-th iteration, node pairs (i, j) are isomorphic if they are indistinguishable under l iterations of GNNs,
i.e. H(l)

i = H
(l)
j for all GNN parameters.

From the definition E.2, if two nodes are isomorphic under l iterations of GNNs, then their embeddings
at the l-th layer are the same for all GNN parameters. Therefore, given two indistinguishable nodes
under l iterations of GNNs, we can use one to extrapolate the other without any bias.

Finding isomorphic node pairs. We estimate the coefficient matrix R by solving Problem (12)
with H(Wrand) are the embeddings of GNNs at random initialization. Intuitively, a neural network at
random initialization is likely to be a hash function, as it maps different inputs to different vectors
in the high dimensional space. The hash function can detect isomorphic node pairs with the same
embeddings. We show this by the following theorem.
Theorem E.3. Assume that the activation function σ is the LeakyReLU function and GCNs are ran-
domly initialized. If node pairs (i, j) are not isomorphic, then H

(l,rand)
i ̸= H

(l,rand)
j with probability

one.

Proof. Suppose node pairs (i, j) are not isomorphic. For l = 1, we have

σ(ÃiXW(0)) = H
(1)
i ̸≡ H

(1)
j = σ(ÃjXW(0)).

Since the activation function σ = LeakyReLU is injective, we have

ÃiXW(0) ̸≡ ÃjXW(0),

leading to

ÃiX ̸= ÃjX.

Thus, we have

ÃiXW(0,rand) ̸= ÃjXW(0,rand)

H
(1,rand)
i = σ(ÃiXW(0,rand)) ̸= σ(ÃjXW(0,rand)) = H

(1,rand)
j

for all GCN parameters.

For l ≥ 2, similar to the case of l = 1, we have

Ãi σ(AH(l−2)W(l−2)) = ÃiH
(l−1) ̸≡ ÃjH

(l−1) = Ãj σ(AH(l−2)W(l−2)).

We only need to prove that {W(l−2) ∈ Rd×d | Ãi σ(AH(l−2)W(l−2)) = Ãj σ(AH(l−2)W(l−2))}
is a Null set in Rd×d. For simplicity, we denote α⊤ = Ãi, β⊤ = Ãj and B = AH(l−2). Thus,
Ãi σ(AH(l−2)W(l−2)) = Ãj σ(AH(l−2)W(l−2)) is equivalent to (α− β)⊤σ(BW(l−2)) = 0⊤.

Notice that

σ(x) = LeakyReLU(x) =

{
x, if x ≥ 0

kx, if x < 0
,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where k ∈ R is the negative slope with the default value 1e-2.

Then we can know that

(σ(BW(l−2)))uv = σ(

d∑
s=1

BusW
(l−2)
sv) =

d∑
s=1

σuvBusW
(l−2)
sv ,

where u ∈ JnK, v ∈ JdK, σuv = 1 or k.

Therefore,

((α− β)⊤σ(BW(l−2)))v =

n∑
u=1

(αu − βu)

d∑
s=1

σuvBusW
(l−2)
sv

=

d∑
s=1

W(l−2)
sv

n∑
u=1

σuvBus(αu − βu).

Let γsv =
∑n

u=1 σuvBus(αu − βu) ∈ R and γ = (γsv) ∈ Rd×d. Then

((α− β)⊤σ(BW(l−2))) = 0⊤

is equivalent to

d∑
s=1

W(l−2)
sv γsv = ((α− β)⊤σ(BW(l−2)))v = 0

for all v ∈ JdK.

However, γ ̸= 0 for all value of σuv since the isomorphism of node pairs (i, j). As a result, for σuv

fixed, the solution to
∑d

s=1 W
(l−2)
sv γsv = 0, v ∈ JdK forms a subspace in Rd×d with the dimension

d× d− 1 at most.

Thus, the set {W(l−2) ∈ Rd×d | Ãi σ(AH(l−2)W(l−2)) = Ãj σ(AH(l−2)W(l−2))} is contained by the
union of several subspaces in Rd×d with the dimension d× d− 1 at most, which means it is a Null
set in Rd×d.

Therefore, H(l,rand)
i ̸= H

(l,rand)
j with probability one.

From Theorem E.3, for an out-of-batch node j ∈ N c
B, if randomly initialized GCNs detect i ∈ B

such that H(l,rand)
i = H

(l,rand)
j , then node pairs (i, j) is probably isomorphic. Thus, we can estimate

the solution R to Problem (12) that Rj = e⊤
i . Moreover, the estimation probably leads to a zero

approximation error at node j since H
(l)
j = e⊤

i H
(l)
B = H

(l)
i holds for all GCN parameters.

In practice, the ratio of the indistinguishable node pairs increases as the batch size |B| increases. The
following theorem shows that the approximation error of TOP decreases to zero if the batch size |B|
is large enough.

Theorem E.4. Assume that B is uniformly selected from V , the initial features X are sampled from a
finite set, the number of different embeddings is bounded by t, and |B| ≥ B0 ≜ t log(Ltε−1). Then,
there exists the coefficient matrix R such that HNc

B
= RHB with probability 1−O(ε) for any GCN

parameters.

Proof. By Theorem E.3, if for any out-of-batch node j, there exists an isomorphic in-batch node
i ∈ B, then we can easily find the coefficient matrix R with Ri = ej such that HNc

B
= RHB.

As a result, we only need to estimate the probability of the existence of such an in-batch node i.
Notice that, if for all l ∈ JLK, {{H(l)

v , v ∈ B}} contains all the embeddings in E(l), then the existence
follows immediately. Thus, we estimate the probability of E(l) ⊂ {{H(l)

v , v ∈ B}}, ∀l ∈ JLK as a
lower bound.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

By considering the contrary, for |B| fixed, we have

p(E(l) ⊂ {{H(l)
v , v ∈ B}} | |B|) = 1− p(E(l) ̸⊂ {{H(l)

v , v ∈ B}} | |B|)
= 1− p(∃ h(l)

u /∈ {{H(l)
v , v ∈ B}} | |B|)

≥ 1−
t(l)∑
u=1

p(h(l)
u /∈ {{H(l)

v , v ∈ B}} | |B|).

Notice that t(l) ≤ t and p(h
(l)
u /∈ {{H(l)

v , v ∈ B}} | |B|) = (1− 1

t(l)
)|B| ≤ (1− 1

t
)|B|, we have

p(E(l) ⊂ {{H(l)
v , v ∈ B}} | |B|) ≥ 1−

t(l)∑
u=1

p(h(l)
u /∈ {{H(l)

v , v ∈ B}} | |B|)

≥ 1−
t(l)∑
u=1

(1− 1

t
)|B|

≥ 1− t(1− 1

t
)|B|,

which leads to

p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK | |B|) = 1− p(∃E(l) ̸⊂ {{H(l)

v , v ∈ B}} | |B|)

≥ 1−
L∑

l=1

p(E(l) ̸⊂ {{H(l)
v , v ∈ B}})

≥ 1− Lt(1− 1

t
)|B|.

By the condition of the batch size |B|, we know that

|B| ≥ t log(Ltε−1)

=
log(Ltε−1)

1
t

≥ log(Ltε−1)

− log(1− 1
t)

= − log1− 1
t
(Ltε−1),

leading to

p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK | |B|) ≥ 1− Lt(1− 1

t
)|B|

≥ 1− Lt(1− 1

t
)
− log

1− 1
t
(Ltε−1)

= 1− ε.

Thus, we have

p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK) =

|V|∑
|B|=B0

p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK | |B|)p(|B|)

≥
|V|∑

|B|=B0

(1− ε)p(|B|)

= 1− ε.

Therefore, the probability of the existence of the coefficient matrix R is

p ≥ p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK) ≥ 1− ε,

which means p = 1−O(ε).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Remark E.5. The assumption of discrete features in Theorem E.4 is widely used to analyze expres-
siveness (Xu et al., 2019; Murphy et al., 2019). In real-world graphs with continuous features, finding
the exactly indistinguishable node pairs is difficult. For example, the probability of sampling two
points with the same value from the Gaussian distribution is zero. Fortunately, Equation (12) still
achieves small approximation errors in practice. To verify this claim, we empirically demonstrate
that TOP compensates for neighborhood messages well in Figure 2 in Section 5.2.

F LIMITATIONS AND BROADER IMPACTS

In this paper, we propose a novel subgraph-wise sampling method to accelerate the training of
GNNs on large-scale graphs, i.e., TOP. The acceleration of TOP is due to the assumption of message
invariance. We have conducted extensive experiments to demonstrate that the message invariance
holds in various datasets. However, it is still possible that the message invariance assumption does
not hold in certain datasets and complex GNN models.

Moreover, this work is promising in many practical and important scenarios such as search engines,
recommendation systems, biological networks, and molecular property prediction. Nonetheless,
this work may have some potential risks. For example, using this work in search engine and
recommendation systems to over-mine the behavior of users may cause undesirable privacy disclosure.

30

	Introduction
	Related Work
	Preliminaries
	Notations
	Graph Convolutional Networks

	Message Invariance
	Message Invariance
	A Case Study for Message Invariance
	Message Invariance on Graph with Symmetry
	Message Invariance for Linear GNNs

	Topological Compensation
	Formulation of Topological Compensation
	Measuring message invariance in real-world datasets.
	Convergence of TOP

	Experiments
	Comparison with Subgraph Sampling
	Comparison with Node/Layer-wise Sampling

	Conclusion
	Background of Subgraph Sampling
	METIS
	Historical Embeddings
	Layer-wise Inference in Evaluation Phase

	Implementation Details
	TOP for Variant GNNs
	Implementation of GCNII
	Hyperparameters
	Fast Estimation of Coefficient Matrix
	Complexity Analysis

	More Experiments
	Measuring Message Invariance in Real-world Datasets.
	Convergence Curves (Test Accuracy vs. Epochs)
	TOP on Architecture Variants
	Relative Runtime per Epoch and Relative Memory Consumption
	Cost of Pre-processing and Training
	Prediction Performance on Various Graphs
	Experiments on Heterophilous Graphs
	Experiments under Various Subgraph Samplers

	Proof for Convergence
	Proof of Theorem 5.1: Convergence Guarantees of TOP

	Encoding Symmetry in Graphs via TOP
	Limitations and Broader Impacts

