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ABSTRACT

Message passing-based graph neural networks (GNNs) have achieved great success
in many real-world applications. For a sampled mini-batch of target nodes, the
message passing process is divided into two parts: message passing between nodes
within the batch (MPIB) and message passing from nodes outside the batch to those
within it (MPOB). However, MPOB recursively relies on higher-order out-of-batch
neighbors, leading to an exponentially growing computational cost with respect to
the number of layers. Due to the neighbor explosion, the whole message passing
stores most nodes and edges on the GPU such that many GNNs are infeasible to
large-scale graphs. To address this challenge, we propose an accurate and fast
mini-batch approach for large graph transductive learning, namely topological
compensation (TOP), which obtains the outputs of the whole message passing
solely through MPIB, without the costly MPOB. The major pillar of TOP is a novel
concept of message invariance, which defines message-invariant transformations
to convert costly MPOB into fast MPIB. This ensures that the modified MPIB has the
same output as the whole message passing. Experiments demonstrate that TOP is
significantly faster than existing mini-batch methods by order of magnitude on vast
graphs (millions of nodes and billions of edges) with limited accuracy degradation.

1 INTRODUCTION

Message passing-based graph neural networks (GNNs) have been successfully applied to many
practical applications involving graph-structured data, such as social network prediction (Hamilton
et al., 2017; Kipf & Welling, 2017; Deng et al., 2019), drug reaction (Do et al., 2019; Duvenaud et al.,
2015), and recommendation systems (Ying et al., 2018; Fan et al., 2019). The key idea of GNNs is
to iteratively update the embeddings of each node based on its local neighborhood. Thus, as these
iterations progress, each node embedding encodes more and more information from further reaches
of the graph (Hamilton, 2020, Chap. 5).

However, training GNNs on a large-scale graph is challenging due to the well-known neighbor
explosion problem. Specifically, the embedding of a node at the l-th GNN layer depends on the
embeddings of its local neighborhood at the (l− 1)-th GNN layer. Thus, around the target mini-batch
nodes, these message passing iterations of an L-layer GNN form a tree structure by unfolding their
L-hop neighborhoods (Hamilton, 2020, Chap. 5), whose size exponentially increases with the GNN
depth L (see Figure 1(a)). The exploded source neighborhoods may contain most nodes in the
large-scale graph, leading to expensive computational costs.

To alleviate this problem, recent graph sampling techniques approximate the whole message passing
with the small size of the source neighborhoods (Ma & Tang, 2021, Chap. 7). For example, node-wise
(Hamilton et al., 2017; Chen et al., 2018a; Balin & Catalyurek, 2023) and layer-wise (Chen et al.,
2018b; Zou et al., 2019; Huang et al., 2018) sampling recursively sample a small set of local neighbors
over message passing layers. The expectation of the recursive sampling obtains the whole message
passing and thus the recursive sampling is accurate and provably convergent (Chen et al., 2018a).
Different from the recursive fashion, subgraph sampling (Chiang et al., 2019; Zeng et al., 2020; Fey
et al., 2021; Zeng et al., 2021) adopts a cheap and simple one-shot sampling fashion, i.e., sampling
the same subgraph induced by a mini-batch for different GNN layers. It preserves message passing
between in-batch nodes (MPIB) and eliminates message passing from out-of-batch neighbors to
in-batch nodes (MPOB), achieving a linear complexity with respect to the number of GNN layers.
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Figure 1: Mini-batch processing of original GNNs, subgraph sampling, and TOP. Given a
mini-batch, the computational costs of original GNNs exponentially increase with GNN depth (a). To
address this challenge, many subgraph sampling methods preserve message passing between the in-
batch nodes (MPIB) and eliminate message passing from out-of-batch neighbors to the in-batch nodes
(MPOB) to reduce the computational costs (b). However, the final embeddings of subgraph sampling
are usually different from the result of the original GNNs. By noticing the message invariance
h4 = 0 · h1 + 0 · h2 + 1 · h3, TOP converts MPOB v4 → v3 into MPIB v3 → v3 without approximation
errors in the example (c).

Nonetheless, accuracy and efficiency are two important but conflicting factors for existing graph
sampling techniques. Specifically, accurate recursive sampling maintains the whole message passing
at the expense of efficiency, while fast one-shot sampling eliminates MPOB at the expense of accuracy.
This motivates us to develop an accurate and fast mini-batch method for GNNs to approximate the
outputs of the whole message passing solely through MPIB with marginal errors.

In this paper, we first propose a novel concept of message invariance, which defines message-invariant
transformations to convert MPOB into MPIB, ensuring that the modified MPIB has the same output
as the whole message passing. Figure 1 shows a motivating example for message invariance, where
converting MPOB v4 → v3 to MPIB v3 → v3 (the red edge) does not affect the output of GNNs.
Although the resulting subgraphs are different from the original graph, the in-batch embeddings and
corresponding computation graphs are always the same. We conduct extensive experiments to show
the approximation of message invariance is effective in various real-world datasets (see Section 5.2)

Building on the message-invariant transformations, we propose a fast subgraph sampling method,
namely topological compensation (TOP), which is applicable to various real-world graphs. Specifi-
cally, TOP models the message invariance using the linear message-invariant transformations, which
assume the linear independence between embeddings of the in-batch nodes and their out-of-batch
neighbors. In Figure 1, the out-of-batch embedding of v4 is a linear combination of the in-batch
embeddings of (v1, v2, v3) with coefficients (0, 0, 1). We estimate the coefficients using a simple
and efficient linear regression on sampled basic embeddings (e.g. the embeddings in GNNs with
random initialization). We further show that TOP achieves the convergence rate of O(ε−4) to reach
an ε-approximate stationary point (see Theorem 5.1), which is significantly faster than O(ε−6) of
existing subgraph sampling methods (Shi et al., 2023). We conduct extensive experiments on graphs
with various sizes to demonstrate that TOP is significantly faster than existing mini-batch methods
with limited accuracy degradation (see Figures 3 and 5). Notably, the speedup of TOP is up to one
order of magnitude on vast graphs with millions of nodes and billions of edges (see Figures 4).
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2 RELATED WORK

In this section, we discuss some works related to our proposed method.

Node-wise sampling. Node-wise sampling (Hamilton et al., 2017; Chen et al., 2018a; Yu et al., 2022)
aggregates messages from a subset of uniformly sampled neighborhoods at each GNN layer, which
decreases the bases in the exponentially increasing dependencies. The idea is originally proposed in
GraphSAGE (Hamilton et al., 2017). VR-GCN (Chen et al., 2018a) further alleviates the bias and
variance by historical embeddings, and then shows that its convergence rate to reach an ε-approximate
stationary point is N = O(ε−4), where N denotes the number of iterations in Theorem 2 in (Chen
et al., 2018a). GraphFM-IB further alleviates the staleness of the historical embeddings based on the
idea of feature momentum. Although the node-wise sampling methods achieve the convergence rate
of O(ε−4), their computational complexity at each step is still exponentially increasing due to the
neighborhood explosion issue.

Layer-wise sampling. To avoid the exponentially growing computation of node-wise sampling,
layer-wise sampling (Chen et al., 2018b; Zou et al., 2019; Huang et al., 2018) samples a fixed number
of nodes for each GNN layer and then uses importance sampling (IS) to reduce variance. However,
the optimal distribution of IS depends on the up-to-date embeddings, which are expensive. To tackle
this problem, FastGCN (Chen et al., 2018b) proposes to approximate the optimal distribution of
IS by the normalized adjacency matrix. Adapt (Huang et al., 2018) proposes a learnable sampled
distribution to further alleviate the variance. Nevertheless, as the above-mentioned methods sample
nodes independently in each GNN layer, the sampled nodes from two consecutive layers may be
connected (Zou et al., 2019). Thus, LADIES (Zou et al., 2019) consider the dependency of sampled
nodes between layers by one step forward. By combining the advantages of node-wise and layer-wise
sampling approaches using Poisson sampling, LABOR (Balin & Catalyurek, 2023) significantly
accelerates convergence under the same node sampling budget constraints..

Subgraph sampling. Subgraph sampling methods sample a mini-batch and then construct the
subgraph based on the mini-batch (Ma & Tang, 2021, Chap. 7). Thus, we can directly run GNNs on
the subgraphs. One of the major challenges is to efficiently encode neighborhood information of the
subgraph. To tackle this problem, one line of subgraph sampling is to design subgraph samplers to
alleviate the inter-connectivity between subgraphs. For example, CLUSTER-GCN (Chiang et al.,
2019) propose subgraph samplers based on graph clustering methods (e.g., METIS (Karypis &
Kumar, 1998) and Graclus (Dhillon et al., 2007)) and GRAPHSAINT propose edge, node, or random-
walk based samplers. SHADOW (Zeng et al., 2021) proposes to extract the L-hop neighbors of a
mini-batch and then select an important subset from the L-hop neighbors. IBMB (Gasteiger et al.,
2022) proposes a novel subgraph sampler where the subgraphs are induced by the mini-batches with
high influence scores, such as personalized PageRank scores. Another line of subgraph sampling is
to design efficient compensation for the messages from the neighborhood based on existing subgraph
samplers. For example, GAS (Fey et al., 2021) proposes historical embeddings to compensate
for messages in forward passes and LMC (Shi et al., 2023) further proposes historical gradients
to compensate for messages in backward passes. GraphFM-OB (Yu et al., 2022) alleviates the
staleness of the historical embeddings based on the idea of feature momentum. Besides the traditional
optimization algorithm, SubMix (Abu-El-Haija et al., 2023) proposes a novel learning-to-optimize
method for subgraph sampling, which parameterizes subgraph sampling as a convex combination of
several heuristics and then learns to accelerate the training of subgraph sampling.

3 PRELIMINARIES

We first introduce notations in Section 3.1. Then, we introduce graph neural networks and the
neighbor explosion issue in Section 3.2.

3.1 NOTATIONS

A graph G = (V, E) is defined by a set of nodes V = {1, 2, . . . , n} and a set of edges E among these
nodes. Let (i, j) ∈ E denote an edge going from node i ∈ V to node j ∈ V . Let (B1 → B2) denote the
set of edges {(i, j)|i ∈ B1, j ∈ B2, (i, j) ∈ E} from B1 to B2. Let Ni = {j ∈ V|(i, j) ∈ E} denote the
neighborhood of node i. Let NB = (∪i∈BNi) ∪ B denote the neighborhoods of a mini-batch B with
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itself. Let N c
B = NB −B denote the out-of-batch neighbors of the mini-batch B. We recursively define

the set of k-hop neighborhoods as N k
B = NNk−1

B
with N 1

B = NB. The adjacency matrix is A ∈ Rn×n

with Aij = 1 if (j, i) and Aij = 0 otherwise. Given sets S1 = (ip)
|S1|
p=1,S2 = (jq)

|S2|
q=1, the submatrix

AS1,S2 satisfies [AS1,S2 ]p,q = Aip,jq . For a positive integer L, JLK denotes {1, . . . , L}.

Let the boldface character xi ∈ Rdx denote the feature of node i with dimension dx. Let hi ∈ Rd

be the d-dimensional embedding of the node i. Let X = (x1,x2, . . . ,xn)
⊤ ∈ Rn×dx and H =

(h1,h2, . . . ,hn)
⊤ ∈ Rn×d. We also denote the node features and embeddings of a mini-batch

B = (ik)
|B|
k=1 by XB = (xi1 ,xi2 , . . . ,xi|B|)

⊤ ∈ R|B|×dx and HB ∈ R|B|×d respectively.

3.2 GRAPH CONVOLUTIONAL NETWORKS

For simplicity of the derivation, we present our algorithm with graph convolutional networks (GCNs)
(Kipf & Welling, 2017). However, our algorithm is also applicable to arbitrary message passing-based
GNNs (see Appendix B.1).

A graph convolution layer is defined as

H(l+1) = f (l+1)(H(l), Ã) = σ(Z(l+1)W(l)) = σ(ÃH(l)W(l)), (l + 1) ∈ JLK, (1)

where Ã = (D+ I)−1/2(A+ I)(D+ I)−1/2 is the normalized adjacency matrix and D is the in-degree
matrix (Duu =

∑
v Auv). The initial node feature is H(0) = X, σ is an activation function, and W(l)

is a trainable weight matrix. For simplicity, we denote the GNN parameters {W(l)}L−1
l=0 by W. Thus,

GCNs take node features and the normalized adjacency matrix (X, Ã) as input

H(L) = GCN(X, Ã),

where GCN = f (L) ◦ f (L−1) · · · ◦ f (1).

The neighbor explosion issue is mainly due to feature propagation Z(l+1) = ÃH(l). Specifically, the
mini-batch embeddings at the (l + 1)-th layer

H
(l+1)
B = σ

(
Z

(l+1)
B W(l)

)
= σ

(
ÃB,NBH

(l)
NB

W(l)
)

(2)

recursively depend on H
(l)
NB

at the l-th layer. Thus, the dependencies of nodes (i.e., H(L)
B depends

on H
(0)

NL
B

1) are exponentially increasing with respect to the number of layers L due to O(|NL
B |) =

O(|B|degLmax) with the maximum degree degmax.

4 MESSAGE INVARIANCE

In this section, we elaborate on the details of the proposed message invariance. First, we present the
definition of message invariance in Section 4.1. Then, we provide a case study for message invariance
in Section 4.2.

4.1 MESSAGE INVARIANCE

We first separate the mini-batch feature propagation in Equation (2) into two parts, i.e.,

Z
(l+1)
B = ÃB,BH

(l)
B︸ ︷︷ ︸

MPIB

+ ÃB,N c
B
H

(l)
N c

B︸ ︷︷ ︸
MPOB

, (3)

where MPIB and MPOB denote message passing between the in-batch nodes and message passing
from their out-of-batch neighbors to the in-batch nodes respectively.

To avoid the recursive dependencies induced by MPOB, we first introduce a novel concept of (global)
message invariance, which bridges the gap between costly MPOB and fast MPIB.
Definition 4.1 (Message invariance). We say that a transformation g : R|B|×d → R|Nc

B|×d is message-
invariant if it satisfies

H
(l)
N c

B
= g(H

(l)
B ). (4)

for any GNN parameters W.
1NL

B = ∥[ÃL]B∥0.

4
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Given the message invariance, the composition of the original MPOB operator ÃB,Nc
B
: R|Nc

B|×d →
R|B|×d and the transformation g : R|B|×d → R|Nc

B|×d leads to a new MPIB operator (ÃB,Nc
B
g) :

R|B|×d → R|B|×d. Thus, the mini-batch feature propagation (3) becomes

Z
(l+1)
B = ÃB,BH

(l)
B︸ ︷︷ ︸

MPIB

+ ÃB,N c
B
g(H

(l)
B )︸ ︷︷ ︸

MPIB

, (5)

which is independent of the neighborhood embeddings H
(l)
Nc

B
. Therefore, the message-invariant

transformation g avoids the recursive dependencies and expensive costs of out-of-batch neighborhood
embeddings.

4.2 A CASE STUDY FOR MESSAGE INVARIANCE

Due to the arbitrariness of graph structures and the nonlinearity of GNNs, the formula of the message-
invariant transformation g is usually unknown. Here we provide a case study for a specific form of
g by simplifying the graph structures or the GNN architectures. The case study will motivate us to
estimate the message-invariant transformation g in Section 5.1.

4.2.1 MESSAGE INVARIANCE ON GRAPH WITH SYMMETRY

The first example is shown in Figure 1, where the node features are finite and the GNN architectures
are arbitrary. Due to the permutation equivariance of GNNs, the nodes in the graph are categorized
into two sets S1 = {v1, v2, v5, v6} and S2 = {v3, v4}, where the nodes in the same set are isomorphic
to each other. The embeddings of isomorphic nodes are always the same, regardless of the GNN
architectures. Therefore, the message-invariant transformation is

h
(l)
4 = g(h

(l)
1 ,h

(l)
2 ,h

(l)
3 ) = 0 · h(l)

1 + 0 · h(l)
2 + 1 · h(l)

3 .

Notably, the selection of mini-batches does not require considering the symmetry of the graph in
Figure 1. If the mini-batch B consists of two nodes v2 and v3 from S1 and S2 respectively, then finding
g is still easy by h

(l)
1 = 1 · h(l)

2 + 0 · h(l)
3 and h

(l)
4 = 0 · h(l)

2 + 1 · h(l)
3 . In the example, the condition for

the existence of the message-invariant transformation is that the mini-batch B contains at least one
node from each of S1 and S2.

The example discusses a small graph with six nodes, while many real-world large-scale graphs contain
millions of nodes. From a probabilistic perspective, the sets S1 and S2 represent two peaks of the data
distribution. Then, the condition becomes that the mini-batch B contains the most frequent node inputs
(the node features and their neighborhood structures). These frequent node inputs are also sampled
with a high probability under a large enough batch size. Thus, the message-invariant transformation
is easy to find in large-scale graphs. We provide the detailed formulation and theoretical results in
Appendix E.

4.2.2 MESSAGE INVARIANCE FOR LINEAR GNNS

We use linear GNNs (Xu et al., 2021; Wang & Zhang, 2022) as the second example, which simplifies
the GNN architectures without restricting the graph structures. Linear GNNs use an identity mapping
σ as the activation function. For linear GNNs H(l) = ÃlXW(0) . . .W(l−1), the linear dependence
between embeddings H(l) is equal to the linear dependence between the corresponding parameter-free
features ÃlX. Specifically, if the l-hop features X

(l)
B = (ÃlX)B is a full-column-rank matrix, then

there exists a coefficient matrix R such that X(l)
Nc

B
= RX

(l)
B . Then, the linear dependence between

embeddings is

H
(l)
N c

B
= X

(l)
N c

B
W(0) . . .W(l−1) = RX

(l)
B W(0) . . .W(l−1) = RH

(l)
B .

Thus, the message-invariant transformation g in Equation (4) is a linear transformation for the
coefficient matrix R.

For non-linear GNNs, the relation between embeddings of the in-batch nodes and their out-of-batch
neighbors may be non-linear and unknown. Nonetheless, on the real-world datasets, the linear
message-invariant transformation has achieved marginal approximation errors in practice as shown in
Section 5.2.
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5 TOPOLOGICAL COMPENSATION

In this section, we present the details of the proposed topological compensation framework (TOP).
First, we introduce the formulation of TOP inspired by the case study of message invariance in
Section 5.1. Then, based on the linear estimation of TOP, we conduct experiments to demonstrate that
the message invariance significantly reduces the discrepancy between MPIB and the whole message
passing in Section 5.2. Finally, we analyze the convergence of TOP in Section 5.3.

5.1 FORMULATION OF TOPOLOGICAL COMPENSATION

Formulation. Inspired by the linear message-invariant transformation in the case study in Section
4.2, we propose to model message invariance H

(l)
Nc

B
by H

(l)
Nc

B
≈ RH

(l)
B , where the coefficient matrix

R ∈ R|Nc
B|×|B| are the weights of linear combinations of the in-batch embeddings of H(l)

B . Combining
the approximation and the mini-batch feature propagation (3) leads to

Z
(l+1)
B ≈ ÃB,BH

(l)
B + ÃB,N c

B
RH

(l)
B = (ÃB,B + ∂AB,B)H

(l)
B︸ ︷︷ ︸

MPIB

, (6)

where we call ∂AB,B ≜ ÃB,Nc
B
R the topological compensation (TOP). The topological compensation

implements the message invariance by adding weighted edges to the induced subgraph ÃB,B. Then,
TOP directly runs a GCN on the modified subgraph as follows

H
(L)
B = GCN(XB, ÃB,B + ∂AB,B).

The formulation of TOP makes it easy to incorporate the existing subgraph sampling methods.

Estimation of topological compensation. To reduce the discrepancy between the modified MPIB
in Equation (6) and the whole message passing (3), we estimate R by

min
R

∥RHB −HN c
B
∥F ,

where H denotes the basic embeddings and ∥ · ∥F is the Frobenius norm. The basic embeddings
reflect the similarity between nodes.

Selection of basic embeddings. Before the training, we select the basic embeddings of a GNN
at random initialization by H(W(rand)) = (H(0,rand),H(1,rand), . . . ,H(T,rand)) ∈ Rn×(T+1)d, where
W(rand) are the randomly initialized parameters and H(j,rand) are the corresponding embeddings at
the j-th layer. The basic embeddings are the concatenation of all embeddings at different layers.

An appealing feature of H(W(rand)) is that they can identify the 1-WL indistinguishable node pairs
by Theorem E.3 in Appendix E. The property ensures that the learned g is message-invariant on
graphs with symmetry or large-scale graphs like the first motivating example in Section 4.2.1.

The linear message-invariant transformation with the basic embeddings H(W(rand)) is very accurate
on real-world datasets as shown in Section 5.2. Thus, we estimate TOP in the pre-processing phase
and then reuse it during the training phase for efficiency in our experiments. When TOP based
on H(W(rand)) suffers from high errors, a solution is to update g using the up-to-date embeddings
H(W(t)) at the t-th training step.

5.2 MEASURING MESSAGE INVARIANCE IN REAL-WORLD DATASETS.

In this section, we conduct experiments to demonstrate that the message invariance significantly
reduces the discrepancy between MPIB and the whole message passing in many real-world datasets.
To ensure the robustness and generalizability of TOP in practice, we provide more results in Tables
3, 7, and 8, including more experiments on heterophilous graphs and experiments under various
subgraph samplers. The whole experiments are conducted on five GNN models (GCN, GAT, SAGE,
GCNII, and PNA) and eight datasets (Ogbn-arxiv, Reddit, Yelp, Ogbn-products, amazon-ratings,
minesweeper, questions, and questions).

Measuring message invariance in real-world datasets. We first train GNNs by the full-batch
gradient descent for each dataset. Then, we measure the discrepancy between MPIB and the whole

6
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(b) Ogbn-arxiv & GAT
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(f) Yelp & GCNII

Figure 2: Measuring the message invariance in real-world datasets. The output of TOP is very
close to the whole message passing (denoted by Full-batch). Please refer to Table 3 in Appendix C.1
for more results.

message passing (denoted by Full-batch) by relative approximation errors and accuracy degradation.
The relative approximation errors and accuracy degradation are defined by√

(
∑b

i=1 ∥H
(L,∗)
Bi

−H
(L)
Bi

∥2F )
∥H(L,∗)∥F

and
1

b

b∑
i=1

acc(H(L,∗)
Bi

,YBi
)− acc(H(L)

Bi
,YBi

),

where we run the whole message passing (i.e., Full-batch) to obtain H
(L,∗)
Bi

and Y is the matrix consist-
ing of the node labels. We partition the graph into 200 clusters and then sample b in {20, 40, 60, 80, 100}
clusters to construct subgraphs. If we decrease the batch size b, then the ratio of messages in MPOB
increases and thus MPOB becomes important.

Our baselines include two subgraph sampling methods using MPIB (i.e., CLUSTER (Chiang et al.,
2019) and GAS (Fey et al., 2021)). We introduce these baselines in Appendix A. We report the test
accuracy vs. subgraph ratio in Figure 2. The relative approximation errors of TOP are less than 5%
and the test accuracy of TOP is very close to Full-batch under different batch sizes.
5.3 CONVERGENCE OF TOP

Based on message invariance (4), we develop the convergence analysis of TOP in this section. The
assumption of Theorem 5.1 is widely used in convergence analysis (Shi et al., 2023; Chen et al.,
2018a; Yu et al., 2022). All proofs are provided in Appendix D.

Theorem 5.1. Let L(W) =
∑

i∈V ℓ(h
(L)
i , yi)/|B| and dW = ∇W

∑
i∈B ℓ(h

(L,TOP )
i , yi)/|B| be the loss

of the full-batch method and the gradient of TOP respectively, where ℓ is the loss function and yi is the
label of node i. Assume that (1) the optimal value L∗ = inf L(W) is finite (2) at the k-th iteration, a
batch of nodes Vk

B is uniformly sampled from V (3) function ∇WL is γ-Lipschitz with γ > 1 (4) norms
∥∇WL∥2 and ∥dW∥2 are bounded by G > 1. With the learning rate η = O(ε2) and the training step
N = O(ε−4), TOP then finds an ε-stationary solution such that E[∥∇WL(W(R))∥2] ≤ ε after running
for N iterations, where R is uniformly selected from JNK.

The convergence rate N = O(ε−4) is the same as the standard SGD (Nesterov, 2013; Fang et al.,
2018). Notably, the convergence rate of TOP is faster than that of LMC (Shi et al., 2023) (i.e.,
N = O(ε−6)), as TOP avoids the staleness issue of the historical embeddings and gradients of LMC.
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Table 1: Statistics of the datasets in our experiments. “#" denotes the number and “Avg. degree"
denotes the average degree. The task is node classification, which is a standard task to evaluate the
scalability on the large-scale graph (Chiang et al., 2019; Zeng et al., 2020; Fey et al., 2021).

Dataset #Classes Total #Nodes Total #Edges Avg. degree Train/Val/Test
Reddit 41 232,965 11,606,919 49.8 0.660/0.100/0.240
Yelp 50 716,847 6,997,410 9.8 0.750/0.150/0.100

Ogbn-arxiv 40 169,343 1,157,799 6.9 0.537/0.176/0.287
Ogbn-products 47 2,449,029 61,859,076 25.3 0.100/0.020/0.880

Ogbn-papers100M 172 111,059,956 1,615,685,872 14.6 0.780/0.080/0.140

6 EXPERIMENTS

We first compare the convergence and efficiency of TOP with the state-of-the-art subgraph sampling
methods—which are the most related baselines—in Section 6.1. Then, we compare the convergence
and efficiency of TOP with the state-of-the-art node/layer-wise sampling methods in Section 6.2.
More experiments are provided in Appendix C.

6.1 COMPARISON WITH SUBGRAPH SAMPLING

Datasets. We evaluate TOP on five datasets with various sizes (i.e., Reddit (Hamilton et al.,
2017), Yelp (Zeng et al., 2020), Ogbn-arxiv, Ogbn-products, and Ogbn-papers (Hu et al., 2020)).
These datasets contain at least 100 thousand nodes and one million edges. Notably, Ogbn-papers
is very large, containing 100 million nodes and 1.6 billion edges. They have been widely used in
previous works (Fey et al., 2021; Zeng et al., 2020; Hamilton et al., 2017; Chiang et al., 2019; Chen
et al., 2018a;b). Table 1 summarizes the statistics of the datasets. We also conduct experiments on
heterophilous graphs in Appendix C.7.

Subgraph samplers. On the small and medium datasets (i.e., Ogbn-arxiv, Reddit, and Yelp), we
follow CLUSTER (Chiang et al., 2019) and GAS (Fey et al., 2021) to sample subgraphs based on
METIS (see Appendix A.1). Specifically, we first use METIS to partition the original graph into
many clusters and then sample a cluster of nodes to generate a subgraph. On the large datasets
(i.e., Ogbn-products and Ogbn-papers), as the METIS algorithm is too time-consuming (Zeng et al.,
2020), we uniformly sample nodes to construct subgraphs. More experiments under various subgraph
samplers are provided in Appendix C.8.

Baselines and implementation details. Our baselines include subgraph sampling (CLUSTER
(Chiang et al., 2019), SAINT (Zeng et al., 2020), and GAS (Fey et al., 2021)). We also compare TOP
with IBMB (Gasteiger et al., 2022) in Appendix C.3, a recent subgraph sampling method focused on
the design of subgraph samplers, which is orthogonal to TOP (see Section 2). We implement TOP,
CLUSTER, SAINT, and GAS based on the codes and toolkits of GAS (Fey et al., 2021) to ensure a
fair comparison. We introduce these baselines in Appendix A. We evaluate CLUSTER, GAS, SAINT,
and TOP based on the same GNN backbone, including the widely used GCN (Kipf & Welling, 2017)
and GCNII (Chen et al., 2020). We implement GCN and GCNII following (Fey et al., 2021) and
(Hamilton et al., 2017). Due to space limitation, we present the results with more GNN backbones
(e.g. SAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2018)) in Appendix C.3. We run all
experiments in this section on a single GeForce RTX 2080 Ti (11 GB), and Intel Xeon CPU E5-2640
v4. For other implementation details, please refer to Appendix B.

Figure 3 shows the convergence curves (test accuracy vs. runtime (s)) of TOP, CLUSTER, GAS,
SAINT, and Full-batch (i.e. full-batch gradient descent with the whole message passing). We provide
the convergence curves (test accuracy vs. epochs) in Appendix C. We use a sliding window to smooth
the curves in Figure 3 as the test accuracy is unstable. We ran each experiment five times. The solid
curves correspond to the mean, and the shaded regions correspond to values within plus or minus one
standard deviation of the mean. The convergence curves consider the runtime of pre-processing.

Results on small datasets. On the small datasets (i.e., Ogbn-arxiv and Reddit), the subgraph
ratio |B|/|V| is up to 50%, where |B| and |V| denote the sizes of subgraphs and the whole graph
respectively. The large ratio shows that the subgraph contains much information about the whole
graph. According to Figure 3(a), TOP is significantly faster than Full-batch, CLUSTER, GAS, and
SAINT without sacrificing accuracy. Further, TOP stably resembles the full-batch performance on
the Ogbn-arxiv and Reddit datasets, while CLUSTER, GAS, and SAINT are unstable. The standard
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Figure 3: Convergence curves (test accuracy vs. runtime (s)) of subgraph sampling. We use the
default |B| and |V|—which denote the sizes of subgraphs and the whole graph respectively—provided
in GAS Fey et al. (2021).
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Figure 4: Relative runtime per epoch and relative memory consumption. Please refer to Table 4
in Appendix C.4 for more results.

deviation of CLUSTER, GAS, and SAINT is large such that the mean test accuracy is lower than the
full-batch performance, as they are difficult to encode all available neighborhood information of the
subgraph. Specifically, CLUSTER and SAINT do not take MPOB into consideration and GAS uses
stale historical embeddings to approximate MPOB.

Results on medium datasets. On the medium datasets (i.e., Reddit, and Yelp), the subgraph ratio
|B|/|V| decreases from 50% to 12.5% due to GPU memory limitations. Thus, Full-batch runs out of
GPU memory on the Yelp dataset. Compared with GCN, the nonlinearity of GCNII becomes strong
due to the large model capacity of GCNII. Under the strong nonlinearity, TOP is still significantly
faster than CLUSTER, GAS, and SAINT on the Yelp dataset with a low subgraph ratio |B|/|V|
according to Figure 3(b). Moreover, TOP is significantly faster than GAS and Full-batch on the
Reddit dataset. Although the mean convergence curses of TOP and CLUSTER are similar on the
Reddit dataset, the low standard deviation demonstrates that TOP is more stable than CLUSTER.

Results on large datasets. On the large datasets (i.e., Ogbn-products, and Ogbn-papers), the
subgraph ratio |B|/|V| is very low due to GPU memory limitations. By noticing that the large number
of valid and test nodes in the large datasets is useless for TOP, we remove the valid and test nodes
from sampled subgraphs. For an ablation study, we report CLUSTER without valid and test nodes
in the sampled subgraphs. We do not remove the valid and test nodes for GAS, as GAS requires
updating the historical embeddings on the valid and test nodes to alleviate the staleness issue. Due to
a large number of historical embeddings, GAS runs out of CPU memory on the Ogbn-papers dataset.
According to Figure 3(c), TOP is significantly faster than CLUSTER and GAS by several orders of
magnitude. Moreover, the valid and test nodes in subgraphs are important for CLUSTER, as these
valid and test nodes are likely to be the neighbors of the training nodes. The valid and test nodes in
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Figure 5: Memory consumption and convergence curves of TOP and node/layer-wise sampling.

subgraphs increase the ratio of messages in MPIB for CLUSTER. TOP does not depend on the valid
and test nodes due to its effective topological compensation.

Memory and runtime. We report the GPU memory consumption and the runtime per epoch
in Figure 4. TOP is significantly faster and more memory-efficient than GAS on all datasets, as
TOP does not require pulling and pushing historical embeddings frequently. Especially, the speedup
of TOP against GAS is up to 11x on the Ogbn-product dataset, which is one order of magnitude.
We analyze the computational complexity of TOP in Appendix B.5 and give the detailed costs of
pre-processing and training in Appendix C.5.

6.2 COMPARISON WITH NODE/LAYER-WISE SAMPLING

Baselines and implementation details We compare TOP with node-wise and layer-wise sampling
methods including neighbor sampling (NS) (Hamilton et al., 2017) and LABOR (Balin & Catalyurek,
2023) in Figure 5, where LABOR combines the advantages of node-wise and layer-wise sampling to
accelerate convergence. Unlike subgraph sampling, node/layer-wise sampling mainly focuses on the
certain SAGE model (Hamilton et al., 2017). We run NS and LABOR by the official implementation
of LABOR (Balin & Catalyurek, 2023). The reported runtime includes the runtime of pre-processing.
We run experiments in this section on a single A800 card.

Hyperparameters. For TOP, we uniformly sample nodes to construct subgraphs. To ensure a fair
comparison, TOP follows the GNN architectures, data splits, training pipeline, learning rate, and
hyperparameters of LABOR (Balin & Catalyurek, 2023). We adjust the batch size of TOP such that
the memory consumption of TOP is similar to LABOR.

Memory. We first evaluate the GPU memory consumption in terms of the number of GNN layers in
Figure 5(a). We increase the number of GNN layers from two to seven. The GPU memory of NS
and LABOR increases exponentially with the number of GNN layers, and thus they are difficult to
apply to deep GNNs (e.g. GCNII with six layers in Figure 3). The GPU memory of both CLUSTER
(Chiang et al., 2019) and TOP increases linearly with the number of GNN layers, corresponding with
the computational complexity in Table 2. The GPU memory of CLUSTER is slightly larger than
TOP, as CLUSTER uses the layer-wise inference (like GAS, see Appendix A.3) in the evaluation
phase while TOP only uses the mini-batch information (see Equation (6)).

Convergence curves. We further report the convergence curves of TOP, NS, and LABOR in Figures
5(b), 5(c), and 5(d). We have included the pre-processing time of TOP in the figures. Although
NS and LABOR do not require pre-processing, TOP finally outperforms NS and LABOR due to its
powerful convergence. The speedup of TOP against NS and LABOR is more than 2x on all datasets.

7 CONCLUSION

In this paper, we propose an accurate and fast subgraph sampling method, namely topological
compensation (TOP), based on a novel concept of message invariance. Message invariance defines
message-invariant transformations that convert expensive message passing acted on out-of-batch
neighbors (MPOB) into efficient message passing acted on in-batch nodes (MPIB). Based on the
message invariance, the proposed TOP uses efficient MPIB without performance degradation. We
conduct extensive experiments to demonstrate that the message invariance hold in practice. Another
appealing feature is that TOP is easy to implement for various message passing-based GNNs.
Experiments demonstrate that TOP is significantly faster than existing mini-batch methods by
order of magnitude on vast graphs (millions of nodes and billions of edges) without performance
degradation. While our experiments focus on message-invariant transformation for some common
and simple GNNs, non-linear message-invariant transformation needs to be empirically evaluated for
more GNNs with more complex aggregation. In the future, we plan to generalize our ideas to more
GNNs or graph transformers with global communication.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide key information from the main text and Appendix as follows.

1. Algorithm. We provide the pseudocode of TOP in Algorithms 1 and 2. We also provide the
detailed implementation of TOP in Appendix B. See Appendix B.3 for the hyperparameters
of TOP.

2. Theoretical Proofs. We provide all proofs in Appendix D.

3. Source Code. To ensure a fair comparison, we implement TOP in Sections 6.1 and
6.2 following the codes of GAS (https://github.com/rusty1s/pyg_autoscale) and LABOR
(https://github.com/dmlc/dgl/tree/master/examples/pytorch/labor) respectively, which are the
state-of-the-art methods of subgraph sampling and node/layer-wise sampling respectively.
We are committed to providing the source code if accepted.

4. Experimental Details. We provide the detailed experimental settings in Section 6 and
Appendix B.
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A BACKGROUND OF SUBGRAPH SAMPLING

Subgraph sampling is a general mini-batch framework for a wide range of GNN architectures. For
example, subgraph sampling directly runs a GCN on the subgraph induced by a mini-batch B

H
(L)
B ≈ GCN(XB,Norm(AB,B)),

where Norm(·) normalizes the adjacency matrix of the subgraph AB,B. For example, CLUSTER-
GCN (Chiang et al., 2019) and GraphSAINT (Zeng et al., 2020) use Norm(AB,B) = ÃB,B and
Norm(AB,B) = D−1

B,BAB,B respectively.

Compared with the whole message passing in Equation (1), subgraph sampling drops the edges
N c

B → B from the original graph AB,NB , leading to significant approximation errors. Thus, the mini-
batch selection of subgraph sampling aims to minimize the graph cut from a topological similarity
perspective, i.e.,

min
B

∥(AB,B,O)−AB,NB∥0 = min
B

|N c
B|, (7)

where O ∈ R|B|×|Nc
B| is a zero matrix. Notably, as a connected graph cannot be divided into two

disjointed subgraphs without dropping edges, the optimal value of (7) is always positive in the
connected graph.

To minimize the graph cut |N c
B|, the cluster-based samplers (Chiang et al., 2019; Fey et al., 2021;

Shi et al., 2023; Yu et al., 2022) first adopt graph clustering (e.g., METIS (Karypis & Kumar, 1998)
and Graclus (Dhillon et al., 2007)) to partition the large-scale graph into {B1,B2, . . . ,Bn} with small
|N c

Bi
| and then sample a subgraph induced by Bi. Besides, the random-walk based sampler (Zeng

et al., 2020) first uniformly samples root nodes and then generates random walks B starting from the
root nodes, which decreases the graph cut (Ma & Tang, 2021, Chap. 7).

A.1 METIS

METIS is a widely used graph clustering technique (Chiang et al., 2019; Fey et al., 2021). Graph
clustering aims to construct partitions over the nodes in a graph such that intra-links within clusters
occur much more frequently than inter-links between different clusters (Karypis & Kumar, 1998).
Intuitively, this results that neighbors of a node are located in the same cluster with high probability.
METIS minimizes the graph cut from a topological similarity perspective, i.e. Equation (7), to main-
tain enough information in the original graph, thus reducing the accesses of inaccurate compensation
made by the subgraph sampling method, making the computation faster and more accurate.

However, METIS algorithm is too time-consuming (Zeng et al., 2020) on large datasets (e.g. Ogbn-
products and Ogbn-papers). Thus, we uniformly sample nodes to construct subgraphs of large
datasets.

A.2 HISTORICAL EMBEDDINGS

GAS (Fey et al., 2021) further compensates for the messages from the out-of-batch neighbors by
historical embeddings, which are defined by

Z
(l+1)
B ≈ ÃB,BH

(l)
B︸ ︷︷ ︸

MPIB

+ ÃB,N c
B
H

(l)

N c
B︸ ︷︷ ︸

Bias

, (8)

where H
(l) are historical embeedings. GAS pulls historical embeddings from RAM or hard drive

storage, making it significantly faster and more memory-efficient than the methods computing real
up-to-date embeddings.

However, the historical embeddings suffer from large approximation errors due to the staleness issue
(Fey et al., 2021; Yu et al., 2022; Shi et al., 2023). Specifically, GAS updates the historical embeddings
in each mini-batch average once per epoch and keeps their values between two consecutive updates
of the mini-batch historical embeddings. Thus, if the size of the sampled subgraphs is significantly
smaller than the whole graph, the update of historical embeddings is infrequent due to very low node
sampling probability, leading to large approximation errors of GAS. Moreover, as the number of
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the out-of-batch neighbors is more than that of the nodes in the mini-batch subgraph on large-scale
graphs (see Table 6 in (Fey et al., 2021)), pulling a large number of historical embeddings is still
expensive.

A.3 LAYER-WISE INFERENCE IN EVALUATION PHASE

To ensure the exact inference results on the large graphs, graph sampling usually adapts layer-
wise inference, which iteratively updates all node embeddings at each layer without dropping edges.
Specifically, the nodes are partitioned into n mini-batches with batch size |B|, denoted as B1,B2, ...,Bn.
At the l-th layer, layer-wise inference traverses all mini-baches by

H
(l+1)
Bi

= GCN(H
(l)
NBi

, ÃBi,NBi
), for i ∈ {1, 2, ..., n}.

Then, layer-wise inference iteratively updates H(l+1) on the entire graph based on the previous
embeddings H(l).

For each computation within a batch, the input H(l)
NBi

is exact, and the adjacency matrix ÃBi,NBi

aggregates all the neighbor information. Therefore, H(l+1)
NBi

is also exact. Since the model is computed
layer-wise, each layer’s H(l+1) is exact. As a result, the final output of the model is exact inference
results.

Due to the fact that this layer-wise inference requires the computation of a large amount of data
beyond the evolution dataset, it can lead to potential computational redundancy, resulting in signif-
icant computational overhead. TOP does not use this layer-wise inference in experiments, which
significantly saves computational costs.

B IMPLEMENTATION DETAILS

B.1 TOP FOR VARIANT GNNS

We also extend TOP to the message passing framework for variant message passing-based GNNs.
The l-th layer of GNNs is defined as

h
(l+1)
i = f (l+1)

(
h
(l)
i ,

{{
h
(l)
j

}}
j∈Ni

)
, (9)

where {{. . . }} denotes the multiset. We separate the neighborhood information in Equation (9) of the
multiset into two parts

h
(l+1)
i = f (l+1)

(
h
(l)
i ,

{{
h
(l)
j

}}
j∈Ni∩B

∪
{{

h
(l)
j

}}
j∈Ni−B

)
≈ f (l+1)

(
h
(l)
i ,

{{
h
(l)
j

}}
j∈Ni∩B

∪ {{rjHB}}j∈Ni−B

)
, (10)

where rj is the j-th row of the coefficient matrix R. Equation (10) does not depend on the out-of-batch
neighborhood information, achieving a linear computational complexity. We estimate the coefficient
matrix R by

min
R

∥HN c
B
−RHB∥F , (11)

We provide more details for the estimation of R in Appendix B.4.

B.2 IMPLEMENTATION OF GCNII

We follow the implementation2 of GAS (Fey et al., 2021), which introduces the jumping knowledge
connection (Xu et al., 2018) to accelerate the convergence (Xu et al., 2021) for some GNN models.

2https://github.com/rusty1s/pyg_autoscale
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Table 2: Time and space complexity per gradient update of full-batch gradient descent with
whole message passing (Full-batch), CLUSTER (Chiang et al., 2019), GAS (Fey et al., 2021),
LMC (Shi et al., 2023), and TOP.

Method Time complexity GPU Memory Neighborhood Compensation

Full-batch O(L(|E|d+ |V|d2)) O(L|V|d) ✓
CLUSTER O(L(degmax|B|d+ |B|d2)) O(L|B|d) ×
GAS and LMC O(L(degmax|B|d+ |B|d2)) O(degmaxL|B|d) ✓

TOP O(L(degmax|B|d+ |B|(d2 + k2))) O(L|B|d) ✓

We first run GCNII (Chen et al., 2020) to generate embeddings H
(l)
B for each GNN layer l. Then, we

compute the final embeddings by the jumping knowledge connection (Xu et al., 2018)

Hfinal
B = MLP output(

1

L+ 1

L∑
l=0

MLP (l)(H
(l)
B )),

where MLP is a multi-layer perceptron. We find the best hyperparameters α, λ of GCNII by grid
search on the Ogbn-products and Ogbn-papers dataset.

B.3 HYPERPARAMETERS

Comparison with subgraph sampling. To ensure a fair comparison, we follow the GNN architec-
tures, the data splits, training pipeline, and hyperparameters of GCN and PNA in (Fey et al., 2021).
We search the best hyperparameters of GCNII, GAT, and SAGE for TOP, CLUSTER, and GAS in the
same set.

Comparison with node/layer-wise sampling. We run NS and LABOR by the official implemen-
tation3 of LABOR (Balin & Catalyurek, 2023) and corresponding hyperparameters. For TOP, we
uniformly sample nodes to construct subgraphs. To ensure a fair comparison, TOP follows the data
splits, training pipeline, learning rate, and hyperparameters of LABOR (Balin & Catalyurek, 2023).
We adapt the batch size of TOP such that the memory consumption of TOP is similar to LABOR.

B.4 FAST ESTIMATION OF COEFFICIENT MATRIX

We compute the coefficient matrix R by solving Equation H
(l)
Nc

B
= RH

(l)
B . If the size of the subgraph

|B| is large, then solving the linear equation H
(l)
Nc

B
= RH

(l)
B is expensive. As the rank of HB is less

than the hidden dimension d << |B|, there exists a low-rank matrix decomposition such that

HB = QQ⊤HB,

where Q ∈ R|B|×k has orthogonal columns. k ≥ d is a hyperparameter. We use k = d in all
experiments. We use the proto-algorithm (Halko et al., 2011) to efficiently compute Q. By letting
R̂ = RQ ∈ R|Nc

B|×d, Equation (11) becomes

min
R̂

∥YB(H)− ÃB,N c
B
R̂(Q⊤HB)∥F . (12)

Further, we uniformly sample a small set S with |S| = k from B to reduce the costs by

min
R̂

∥YB(H)− ÃB,N c
B
R̂(Q⊤

SHS)∥F ,

which is equivalent to

min
R̂

∥ÃB,N c
B
(HN c

B
− R̂(Q⊤

SHS))∥F .

Since HS is usually the full-column-rank matrix, we can compute R̂ by R̂ = HNc
B
(Q⊤

SHS)
† and then

save ∂ÂB = ÃB,Nc
B
R̂ in the pre-processing phase, where (Q⊤

SHS)
† is the Moore-Penrose inverse of

3https://github.com/dmlc/dgl/tree/master/examples/pytorch/labor
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Q⊤
SHS . At the training phase, Equation (6) becomes

Z
(l+1)
B = ÃB,BH

(l)
B + ∂ÂB(Q

⊤
SH

(l)
S ), (13)

where ∂ÂB ∈ R|B|×k, Q̂S ∈ Rk×k, and H
(l)
S ∈ Rk×d. The time complexity of the second term in

Equation 13 is O(|B|k2 + k2d), which is significantly lower than that in Equation (6), i.e., O(|B|2d),
as |B| >> d.

The analysis for message passing-based GNNs is similar.

B.5 COMPLEXITY ANALYSIS

We summarize TOP in Algorithms 1 and 2. TOP first pre-processes the topological compensation by
Algorithm 1 and then reuses the topological compensation during the training phase.

Algorithm 1 Pre-processing phase of TOP
1: Input: Mini-batches {Bi}mi=1

2: Compute H(l) with a model at random initialization.
3: for i = 1, ...,m do
4: Compute QSi by the proto-algorithm.
5: Compute R̂ by solving Equation (12).
6: Compute ∂ÂBi

= ÃBi,N c
Bi
R̂

7: end for
8: Save {QSi

}mi=1 and {∂ÂBi
}mi=1

9: Output: {QSi
}mi=1 and {∂ÂBi

}mi=1

Algorithm 2 Training phase of TOP

1: Input: Mini-batches {Bi}mi=1, {QSi
}mi=1, and {∂ÂBi

}mi=1
2: for i = 1, . . . , N do
3: Randomly sample Bi from {Bi}mi=1

4: Initialize H
(0)
Bi

= XBi

5: for l = 0, . . . , L− 1 do
6: Compute H

(l+1)
Bi

= σ(ÃB,BH
(l)
Bi

+ (∂ÂBi
(QT

Si
H

(l)
Bi
))W(l))

7: end for
8: Compute the mini-batch loss
9: Update parameters by backward propagation

10: end for

As the costs of pre-processing are marginal, we compare the computational complexity of the training
phase in Table 2. TOP compensates for the neighborhood messages with the least time and memory
complexity among existing subgraph sampling methods.

C MORE EXPERIMENTS

C.1 MEASURING MESSAGE INVARIANCE IN REAL-WORLD DATASETS.

We conduct extensive experiments on four real-world datasets with five GNN backbones to demon-
strate that the message invariance holds in real-world datasets. Table 3 shows that the relative
approximation errors of TOP are less than 5% and the test accuracy of TOP is very close to the whole
message passing.

C.2 CONVERGENCE CURVES (TEST ACCURACY VS. EPOCHS)

We provide the convergence curves (test accuracy vs. epochs) in Figure 6. Notably, we report
the test accuracy of the full-batch gradient descent (GD) every two steps rather than per epoch, as
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Table 3: Message invariance in real-world datasets. TOP approximates the whole message passing
solely through MPIB with marginal approximation errors.

Dataset GNN Methods Relative approximation errors ↓ Test accuracy degradation ↓
10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Ogbn-arxiv

GCN
CLUSTER 23.8% 20.2% 18.0% 15.8% 12.1% 5.03% 3.67% 2.99% 2.66% 1.40%

GAS 17.1% 15.3% 14.1% 12.8% 9.9% 0.80% 0.78% 0.58% 0.61% 0.33%
TOP 3.5% 2.8% 2.4% 2.2% 1.6% 0.15% 0.10 % 0.15% 0.12% 0.13%

GCNII
CLUSTER 13.5% 11.5% 10.2% 9.0% 6.9% 4.72% 3.60% 2.99% 2.38% 1.90%

GAS 9.6% 8.8% 8.1% 7.3% 6.0% 2.37% 2.06% 1.88% 1.67% 1.46%
TOP 2.5% 2.3% 2.0% 1.8% 1.4 % 0.42% 0.28% 0.35% 0.17% 0.18%

SAGE
CLUSTER 15.58% 13.08% 11.08% 9.91% 7.06% 4.37% 3.69% 3.04% 2.80% 1.91%

GAS 24.77% 20.97% 16.80% 16.02% 10.47% 6.84% 4.83% 3.98% 3.75% 1.77%
TOP 4.38% 3.69% 3.21% 2.89% 2.03% 0.08% 0.11% 0.01% 0.10 % 0.00%

GAT
CLUSTER 23.37% 20.22% 18.00% 16.27% 12.67% 5.99% 4.34% 3.73% 3.09% 2.04%

GAS 14.96% 13.47% 12.51% 11.53% 9.08% 1.17% 0.97% 0.89% 0.80% 0.67%
TOP 3.41% 2.99% 2.56% 2.30 % 1.63% 0.15% 0.16% 0.10% 0.08% 0.08%

Reddit

GCN
CLUSTER 29.20% 22.10% 18.10% 16.02% 11.53% 3.85% 3.05% 2.34% 1.88% 1.14%

GAS 27.13% 23.87% 21.07% 18.69% 15.00% 1.27% 1.22% 0.82% 0.68% 0.49%
TOP 0.78% 0.65% 0.55% 0.53% 0.39% 0.09% 0.09% 0.08% 0.06% 0.03%

GCNII
CLUSTER 25.32% 19.62% 16.45% 14.94% 11.29% 4.79% 3.59% 2.45% 2.78% 1.46%

GAS 32.87% 30.74% 27.52% 26.00% 23.05% 7.76% 5.82% 4.41% 4.51% 2.77%
TOP 4.54% 4.75% 5.22% 3.62% 2.58% 0.33% 0.41% 0.54% 0.31% 0.30%

SAGE
CLUSTER 10.74% 7.58% 6.80% 5.35% 3.44% 3.84% 2.85% 2.60% 2.13% 1.37%

GAS 7.03% 5.95% 5.64% 3.43% 1.90% 0.94% 0.60% 0.79% 0.41% 0.43%
TOP 1.31% 1.10% 1.05% 0.85% 0.61% 0.31% 0.27% 0.21% 0.19% 0.11%

PNA
CLUSTER 24.13% 21.40% 18.60% 16.70% 13.60% 4.16% 3.20% 1.76% 1.43% 1.13%

GAS 22.39% 20.16% 18.77% 16.54% 13.38% 2.60% 2.49% 1.74% 1.64% 0.72%
TOP 13.01% 11.18% 10.48% 9.35% 7.42% 1.48% 1.28% 0.76% 0.97% 0.62%

Yelp

GCNII
CLUSTER 5.74% 4.48% 3.82% 3.25% 2.38% 0.89% 0.57% 0.45% 0.34% 0.21%

GAS 7.36% 6.52% 5.84% 5.15% 4.01% 1.08% 0.93% 0.77% 0.64% 0.50%
TOP 1.36% 1.24% 1.14% 1.05% 0.86% 0.13% 0.11% 0.09% 0.08% 0.05%

SAGE
CLUSTER 15.55% 12.53% 10.85% 9.35% 6.99% 1.13% 0.87% 0.66% 0.56% 0.35%

GAS 5.21% 4.65% 4.19% 3.85% 2.96% 0.77% 0.62% 0.59% 0.53% 0.40%
TOP 2.41% 2.18% 2.02% 1.84% 1.54% 0.07% 0.07% 0.05% 0.04% 0.04%

Ogbn-products SAGE
CLUSTER 9.55% 8.50% 7.43% 6.91% 5.34% 1.67% 1.67% 1.67% 1.67% 1.67%

GAS 2.44% 2.18% 1.91% 1.80% 1.37% 0.37% 0.34% 0.31% 0.27% 0.19%
TOP 0.86% 0.73% 0.63% 0.58% 0.44% 0.17% 0.14% 0.12% 0.11% 0.11%

Average
CLUSTER 17.86% 14.66% 12.67% 11.22% 8.48% 3.68% 2.83% 2.24% 1.97% 1.33%

GAS 15.54% 13.88% 12.40% 11.19% 8.83% 2.36% 1.88% 1.52% 1.41% 0.88%
TOP 3.46% 3.05% 2.85% 2.45% 1.86% 0.31% 0.27% 0.22% 0.20% 0.15%
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Figure 6: Convergence curves (test accuracy vs. epoch). |B| and |V| denote the sizes of subgraphs
and the whole graph respectively.

GD performs backward backpropagation once per epoch while other methods perform backward
backpropagation twice per epoch on the Ogbn-arxiv and Reddit datasets. The convergence curves
of TOP are close to GD on the Ogbn-arxiv and Reddit datasets, while other subgraph sampling
methods fail to resemble the full-batch performance on the Ogbn-arxiv dataset. Moreover, TOP
significantly accelerates the convergence on the medium and large datasets, e.g., Yelp, Ogbn-products,
and Ogbn-papers.

C.3 TOP ON ARCHITECTURE VARIANTS

We compare subgraph sampling methods (including TOP, CLUSTER (Chiang et al., 2019), GAS
(Fey et al., 2021), SAINT (Zeng et al., 2020), and IBMB (Gasteiger et al., 2022)) on more GNN
architectures (i.e., GAT (Veličković et al., 2018) and SAGE (Hamilton et al., 2017)) in Figure 7.
TOP is faster than the existing subgraph sampling methods on GAT and SAGE architectures due to
its powerful convergence and high efficiency. The experiments demonstrate that TOP is a general
framework for different GNN architectures.
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Figure 7: Convergence curves (test accuracy vs. runtime (s)) on more GNN architectures (i.e.,
GAT (Veličković et al., 2018) and SAGE (Hamilton et al., 2017)).

C.4 RELATIVE RUNTIME PER EPOCH AND RELATIVE MEMORY CONSUMPTION

We report the relative runtime per Epoch and relative Memory Consumption in Table 4. As the
graph size increases, the subgraph ratio |B|/|V| decreases. TOP enjoys the least runtime and memory
consumption among the baselines.
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Table 4: Efficiency of the full-batch gradient descent (Full-batch), GAS, TOP. R∗ and M∗
denote the runtime per epoch and memory consumption of the algorithm ∗ respectively.

Dataset Model |B|
|V| |B| Runtime (s)↓ RGAS

RTOP

Memory (MB)↓ MGAS

MTOPFull-batch GAS TOP Full-batch GAS TOP
Ogbn-arxiv GCN 50.0% 84672 0.63 0.35 0.33 1.07 2463.03 1566.89 1071.27 1.46

Reddit GCN 50.0% 116483 2.05 1.33 0.91 1.46 2796.30 2444.25 1334.78 1.83
Reddit GCNII 50.0% 116483 3.21 1.94 1.49 1.30 8240.29 5509.85 3837.94 1.44
Yelp GCNII 12.5% 89606 OOM 4.29 3.98 1.08 OOM 6752.89 2231.76 3.03

Ogbn-products GCNII+JK 4.0% 97961 OOM 70.68 6.04 11.70 OOM 6574.37 1406.60 4.67

C.5 COST OF PRE-PROCESSING AND TRAINING

We report the cost of pre-processing and training in experiments in Table 5. On the small and medium
datasets (i.e., Ogbn-arxiv, REDDIT, and YELP), the total time of different methods is similar and TOP
achieves the least GPU consumption in most experiments. On the large datasets (i.e. Ogbn-products),
TOP is significantly faster and more memory-efficient than existing subgraph sampling methods, as
it can remove the valid and test nodes from the sampled subgraph without significant performance
degradation. Specifically, Equation (6) compensates the neighborhood information from the valid and
test nodes based on the mini-batch training nodes. However, the valid and test nodes in subgraphs are
important for CLUSTER, as these valid and test nodes are likely to be the neighbors of the training
nodes. Directly removing these nodes without any compensation results in significant performance
degradation (see Figures 3 and 6). Besides, GAS needs to update the historical embeddings of valid
and test nodes many times, leading to expensive computational costs.

Table 5: The cost of pre-processing and training.
GNN & Dataset Methods Pre-processing time (s) Training time (s) Total Time (s) Memory (MB)

GCN & arxiv

GraphSAINT 0.0 122.0 122.0 1144.1
CLUSTER 1.7 92.8 94.5 1312.0
GAS 3.0 105.0 108.0 1566.9
TOP 5.0 99.0 104.0 1071.3

SAGE & arxiv

GraphSAINT 0.0 114.5 114.5 1716.2
CLUSTER 1.6 93.3 94.9 1450.1
GAS 3.0 107.8 110.7 1616.1
TOP 5.3 98.9 104.1 1110.2

GAT & arxiv

GraphSAINT 0.0 63.3 63.3 2060.9
CLUSTER 1.7 43.7 45.4 2253.6
GAS 3.0 52.8 55.7 3025.9
TOP 4.4 58.7 63.1 3177.9

GCN & REDDIT

GraphSAINT 0.0 387.6 387.6 1398.2
CLUSTER 14.9 351.7 366.7 1955.2
GAS 16.6 532.0 548.6 2444.3
TOP 20.1 364.0 384.1 1334.8

GCNII & REDDIT

GraphSAINT 0.0 672.0 672.0 3935.2
CLUSTER 14.7 595.0 609.7 4242.2
GAS 17.4 776.0 793.4 5509.9
TOP 21.2 596.0 617.2 3837.9

GCNII & YELP

GraphSAINT 0.0 1648.6 1648.6 6011.7
CLUSTER 12.6 1871.6 1884.2 5940.4
GAS 17.3 2145.0 2162.3 6752.9
TOP 25.3 1990.0 2015.3 2231.8

GCNII+JK & products
CLUSTER 35.5 3964.4 3999.9 2048.7
GAS 45.5 7068.0 7113.5 6574.4
TOP 35.8 604.0 639.8 1406.6

GCNII+JK & papers CLUSTER 0.00 1007.42 1007.42 1526.91
TOP 144.53 1094.01 1238.54 1560.34

C.6 PREDICTION PERFORMANCE ON VARIOUS GRAPHS

Datasets. We report the prediction performance of TOP on four datasets, i.e., Flickr (Zeng et al.,
2020), Ogbn-arxiv, Ogbn-products and Ogbn-papers (Hu et al., 2020), where the two challenging
large datasets (i.e., Ogbn-products and Ogbn-papers (Hu et al., 2020)) contain at least 100 thousand
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Table 6: Prediction Performance. Bold font indicates the best result and underline indicates the
second best result.

# nodes 169K 89K 2.4M 111M
# edges 1.2M 450K 61.9M 1.6B

Method Ogbn-arxiv Flickr Ogbn-products Ogbn-papers
acc↑ acc↑ acc↑ acc↑

NS-SAGE 71.49 50.10 78.70 67.06
CLUSTER-GCN — 48.10 78.97 —
GraphSAINT — 51.10 79.08 —
SHADOW-GAT 72.74 53.52 80.71 67.08
SGC — 48.20 — 63.29
SIGN — 51.40 80.52 66.06

GD-GCNII 72.83 55.28 OOM OOM
CLUSTER-GCNII 72.39 55.33 79.62 51.73
GAS-GCNII 72.50 55.42 79.99 OOM

TOP-GCNII 72.52 ± 0.34 55.21 ± 0.46 81.96 ± 0.24 67.21 ± 0.12

nodes and one million edges. As shown by Table 4, as the batch size is significantly lower than the
size of the whole graph, the convergence of mini-batch methods under small batch sizes becomes
very important.

Baselines and implementation details. Our baselines are from the OGB leaderboards (Hu et al.,
2020), including node-wise sampling methods (GraphSAGE (Hamilton et al., 2017), subgraph-wise
sampling methods (CLUSTER-GCN in the original paper (Chiang et al., 2019), GraphSAINT (Zeng
et al., 2020), SHADOW (Zeng et al., 2021) and GAS (Fey et al., 2021)), precomputing methods
(SGC (Wu et al., 2019) and SIGN (Rossi et al., 2020)). The GNN backbones of these baselines
are different, as more scalable methods usually use more advanced but more memory-consuming
GNN backbones. Due to the differences in GNN backbones, frameworks, weight initialization, and
optimizers in the baselines, we report CLUSTER-GCNII and GAS-GCNII for ablation studies. The
hyperparameter settings are the same as Section 6.1. The results of the baselines are taken from the
referred papers and the OGB leaderboards.

Prediction performance. We report the prediction performance of TOP in Table 6. On the small
datasets (i.e., the ogbn-arxiv and flickr datasets), which have fewer than 170k nodes, the prediction
performance of several subgraph sampling methods (CLUSTER, GAS, and TOP) is comparable
to gradient descent (GD), as they can use a large subgraph ratio |B|/|V| on the small dataset (e.g.
50% used in GAS), such that the sampled subgraphs are close to the whole graph. On the large
datasets (i.e., the ogbn-products and ogbn-papers datasets), as the large subgraph ratio may suffer
from the out-of-GPU memory issue, we use a small subgraph ratio (less than 4%). However, the
small subgraph ratio increases the ratio of missing messages in MPOB for CLUSTER and results in
the severe staleness issue for GAS (the update of historical embeddings in GAS is infrequent due
to very low node sampling probability). The accuracy of TOP is larger than other baselines, as it
compensates the messages in MPOB by the message-invarant trasformation g and relies solely on
up-to-date embeddings, thus avoiding the staleness issue of the historical embeddings.

C.7 EXPERIMENTS ON HETEROPHILOUS GRAPHS

The message invariance still holds on heterophilous graphs. To verify our claim, we conduct
experiments on five heterophilous graphs (i.e., roman-empire, amazon-ratings, minesweeper, tolokers,
and questions) provided by the recent heterophilous benchmark (Platonov et al., 2023), as shown
in Table 7. We set the subgraph ratio to be 50%, as the heterophilous graphs (10k-50k nodes)
are significantly smaller than the homophilic graphs (200k-112000k nodes) in Section 6. On the
heterophilous graphs, although a node may be very different from its neighbors, the neighbors may
be similar to other nodes in the subgraph. Notably, the message-invariant transformation in Equation
4 does not restrict that the embedding of an in-batch node should be similar to its neighborhood
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embeddings, and thus the message-invariant transformation is able to approximate the neighborhood
embeddings by other nodes in the subgraph.

Table 7: Approximation errors of TOP, CLUSTER, and TOP on heterophilous graphs.
Heterophilous Graph CLUSTER GAS TOP

amazon-ratings 4.14% 1.36% 1.02%
minesweeper 54.53% 19.68% 3.12%

questions 20.25% 9.54% 4.90%
roman-empire 5.42% 1.65% 0.88%

Figure 8 further reports the convergence curves of TOP, CLUSTER, and GAS on the homophily
datasets. From Table 7, the approximation errors of TOP are significantly lower than CLUSTER and
GAS on minesweeper, tolokers, and questions. Accordingly, TOP is also significantly faster than
CLUSTER and GAS on the three datasets.
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Figure 8: Convergence curves of TOP, CLUSTER, and GAS on real-world heterophilous graphs.

C.8 EXPERIMENTS UNDER VARIOUS SUBGRAPH SAMPLERS

We conduct experiments to demonstrate that TOP consistently brings performance improvement for
various subgraph samplers. We first evaluate the relative approximation errors of TOP, CLUSTER,
and GAS under METIS, Random, GraphSAINT (Zeng et al., 2020), and SHADOW (Zeng et al., 2021)
sampling in Table 8. The results demonstrate that TOP significantly alleviates approximation errors
by integrating different subgraph sampling techniques. Specifically, different subgraph sampling
techniques are designed to encourage the connections between the sampled nodes with a trade-off
for efficiency. METIS aims to directly achieve this goal, while it may be more time-consuming than
other sampling techniques. Random sampling is the fastest sampling baseline among them, while it
does not consider the connections between the sampled nodes. Thus, Random sampling significantly
amplifies the approximation errors of CLUSTER and GAS, while TOP is robust under Random,
GraphSAINT, and SHADOW sampling.

Table 8: Message invariance in real-world datasets with various subgraph samplers.

Dataset GNN Methods Relative Approximation Errors ↓
Random SAINT SHADOW METIS

Ogbn-arxiv GCN
CLUSTER 30.02% 15.79% 12.49% 12.10%

GAS 45.29% — — 9.89%
TOP 7.61% 5.94% 3.41% 1.58%

Reddit SAGE
CLUSTER 25.91% 22.22% 21.32% 3.44%

GAS 13.91% — — 1.90%
TOP 3.10% 1.45% 1.27% 0.61%

Yelp GCNII
CLUSTER 4.87% 1.13% 0.91% 2.38%

GAS 7.86% — — 4.01%
TOP 2.68% 0.74% 0.64% 0.86%

Figure 9 further shows the convergence curves of TOP, CLUSTER, and GAS under Random sampling.
Due to the accurate and fast message passing of TOP, TOP significantly outperforms CLUSTER and
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GAS in terms of accuracy and converge speeds. By integrating the results with Figures 3(a) and 3(b),
the performance improvement of TOP is consistent for various subgraph sampling methods.
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Figure 9: Convergence curves of TOP, CLUSTER, and GAS under the Random sampler.

D PROOF FOR CONVERGENCE

We first show that TOP based on Equation (5) provides unbiased gradients. We assume that subgraph
B is uniformly sampled from V. When the sampling is not uniform, we use the normalization
technique (Zeng et al., 2020) to enforce the assumption.
Theorem D.1. Suppose that the message invariant transformations (4) exist and the subgraph
B is uniformly sampled from V. The iterative message passing of Equations (5) and H

(l+1)
B =

σ(Z
(l+1)
B W(l)) leads to unbiased mini-batch gradients dW such that

E[dW ] = ∇WL.

Proof. Given any mini-batch B, the embeddings H
(l)
B of TOP are the same as that of SGD due to

H
(l)
Nc

B
= g(H

(l)
B ) for any GNN parameters W(l). Thus, their total objective functions of L = LTOP are

the same.

If TOP is biased, then the expected gradient ∇WLTOP ̸= ∇WL. Thus, there exists ϵ > 0 and W0 such
that LTOP (W0) = L(W0) while LTOP (W0 − ϵ∇W0L) ̸= L(W0 − ϵ∇W0L) due to different directional
derivatives ⟨∇W0L,∇W0LTOP ⟩ ≠ ∥∇W0L∥2F , which contradicts to L = LTOP . The unbiasedness
holds immediately.

D.1 PROOF OF THEOREM 5.1: CONVERGENCE GUARANTEES OF TOP

In this subsection, we give the convergence guarantees of TOP. The proof follows the proof of
Theorem 2 in Appendix C.4 of (Chen et al., 2018a).

Proof. As ∇L is γ-Lipschitz, we have
L(W(k+1))

= L(W(k)) +

∫ 1

0

⟨∇L(W(k) + t(W(k+1) −W(k))),W(k+1) −W(k)⟩ dt

= L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩

+

∫ 1

0

⟨∇L(W(k) + t(W(k+1) −W(k)))−∇L(W(k)),W(k+1) −W(k)⟩ dt

≤ L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩

+

∫ 1

0

∥∇L(W(k) + t(W(k+1) −W(k)))−∇L(W(k))∥2∥W(k+1) −W(k)∥2 dt

≤ L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩+
∫ 1

0

γt∥W(k+1) −W(k)∥22 dt

= L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩+ γ

2
∥W(k+1) −W(k)∥22.
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Notice that the update formula of W(k) is

W(k+1) = W(k) − ηd
(k)
W ,

where d
(k)
W is the gradient of TOP at the k-th iteration and we select η < 2

γ
. Let ∆(k) ≜ d

(k)
W −

∇L(W(k)), then

L(W(k+1))

≤ L(W(k)) + ⟨∇L(W(k)),W(k+1) −W(k)⟩+ γ

2
∥W(k+1) −W(k)∥22

= L(W(k))− η⟨∇L(W(k)),d
(k)
W ⟩+ η2γ

2
∥d(k)

W ∥22

= L(W(k))− η(1− ηγ)⟨∇L(W(k)),∆(k)⟩ − η(1− ηγ

2
)∥∇L(W(k))∥22 +

η2γ

2
∥∆(k)∥22.

By taking the expectations of both sides, we have

E[L(W(k+1))]

≤ E[L(W(k))]− η(1− ηγ)E[⟨∇L(W(k)),∆(k)⟩]− η(1− ηγ

2
)E[∥∇L(W(k))∥22] +

η2γ

2
E[∥∆(k)∥22].

By the properties of the expectations and Theorem D.1, we have

E[⟨∇L(W(k)),∆(k)⟩] = E[E[⟨∇L(W(k)),∆(k)⟩|∇L(W(k))]]

= E[⟨∇L(W(k)),E[∆(k)|∇L(W(k))]⟩]

= E[⟨∇L(W(k)),E[d(k)
W −∇L(W(k))|∇L(W(k))]⟩]

= E[⟨∇L(W(k)),E[d(k)
W |∇L(W(k))]−∇L(W(k))⟩]

= E[⟨∇L(W(k)),∇L(W(k))−∇L(W(k))⟩]
= 0,

which leads to

E[L(W(k+1))] ≤ E[L(W(k))]− η(1− ηγ

2
)E[∥∇L(W(k))∥22] +

η2γ

2
E[∥∆(k)∥22]

⇒η(1− ηγ

2
)E[∥∇L(W(k))∥22] ≤ E[L(W(k))]− E[L(W(k+1))] +

η2γ

2
E[∥∆(k)∥22].

By summing up the above inequalities for k ∈ JNK and dividing both sides by Nη(1− ηγ
2
), we have∑N

k=1 E[∥∇L(W(k))∥22]
N

≤ L(W(1))− E[L(W(N+1))]

Nη(1− ηγ
2 )

+
ηγ

2− ηγ

∑N
k=1 E[∥∆(k)∥22]

N

≤ L(W(1))− L∗

Nη(1− ηγ
2 )

+
ηγ

2− ηγ

∑N
k=1 E[∥∆(k)∥22]

N
.

By noticing that

E[∥∇L(W(R))∥22] = E[E[∥∇WL(W(R))∥22 | R]] =

∑N
k=1 E[∥∇L(W(k))∥22]

N

and

E[∥∆(k)∥22] = E[∥d(k)
W −∇L(W(k))∥22]

≤ 2(E[∥d(k)
W ∥22] + E[∥∇L(W(k))∥22])

≤ 4G2,

we have

E[∥∇L(W(R))∥22] ≤
L(W(1))− L∗

Nη(1− ηγ
2 )

+
4G2ηγ

2− ηγ
.
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If η < 1
γ
, η = O(N− 1

2 ), we have

E[∥∇L(W(R))∥22] ≤
2(L(W(1))− L∗)

Nη
+ 8G2ηγ = O(N− 1

2 ).

Therefore, by letting ε = ( 2(L(W(1))−L∗)
Nη

+ 8G2ηγ)
1
2 = O(N− 1

4 ), Theorem 5.1 follows immediately.

E ENCODING SYMMETRY IN GRAPHS VIA TOP

In this section, we show that the embeddings of GNNs at random initialization can encode the
symmetry in the original graph, which is a specific node similarity.

Notations For brevity, N i = Ni ∪ {i} denotes the neighborhood of node i with itself. We recursively
define the set of neighborhoods within k-hops as N k

i = NNk−1
i

with N 1
i = N i. For Theorem E.4, we

denote all the possible embeddings at the l-th layer by E(l) = {h(l)
1 , h

(l)
2 , . . . ,h

(l)

t(l)
}, where t(l) ≤ t is

the number of different embeddings at the l-th layer, l ∈ JLK.

Motivation for the symmetry. We first motivate the basic embeddings from the graph isomorphism
perspective. The 1-dimensional Weisfeiler-Lehman test (i.e., 1-WL test) (Weisfeiler & Leman, 1968)
is widely used to distinguish whether two nodes or graphs are isomorphic.

Given initial node feature/representation h
(0)
u , at the l-th iterations, 1-WL test for GCNs updates the

node representation h
(l−1)
i based on the local neighborhood by

h
(l)
i = Hash({{h(l−1)

u , u ∈ N i}}). (14)

Following (Xu et al., 2019), we show the connections between GNNs and 1-WL test in Lemma E.1.

Without loss of generality, we present the theories for the GCN version. Extending them to other
GNNs is easy.
Lemma E.1. Given a graph G = (V, E) and a GNN, if nodes i, j ∈ V are indistinguishable under l
iterations of the 1-WL test, then there holds

H
(l)
i = H

(l)
j ,

for all GNN parameters.

Proof. As i, j are indistinguishable under l iterations of 1-WL test, we have h
(l)
i = h

(l)
j . Notice that

the function Hash is injective, we have

{{h(l−1)
u , u ∈ N i}} = {{h(l−1)

v , v ∈ N j}} and |N i| = |N j |.
Then, we can know that

{{h(l−2)
p , p ∈ N u, u ∈ N i}} = {{h(l−2)

q , q ∈ N v, v ∈ N j}}
and {{|N u|, u ∈ N i}} = {{|N v|, v ∈ N j}}.

which is equivalent to

{{h(l−2)
p , p ∈ N 2

i }} = {{h(l−2)
q , q ∈ N 2

j}} and {{|N u|, u ∈ N i}} = {{|N v|, v ∈ N j}}.
Recursively, we have

{{h(l−3)
p , p ∈ N 3

i }} = {{h(l−3)
q , q ∈ N 3

j}} and {{|N u|, u ∈ N 2

i }} = {{|N v|, v ∈ N 2

j}}
...

{{h(0)
p , p ∈ N l

i}} = {{h(0)
q , q ∈ N l

j}} and {{|N u|, u ∈ N l−1

i }} = {{|N v|, v ∈ N l−1

j }}.

By xk = h
(0)
k and incorporating the equations above, we can know that

{{(xp, Ãup), u ∈ N l−1

i , p ∈ N l

i}} = {{(xq, Ãvq), v ∈ N l−1

j , q ∈ N l

j}}.
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Thus, we have

H
(1)

N l−1
i

= σ(ÃN l−1
i ,N l

i
XN l

i
W(0)) = σ(ÃN l−1

j ,N l
j
XN l

j
W(0)) = H

(1)

N l−1
j

...

H
(l−1)

N i
= σ(ÃN i,N

2
i
H

(l−2)

N 2
i

W(l−2)) = σ(ÃN j ,N
2
j
H

(l−2)

N 2
j

W(l−2)) = H
(l−1)

N j

H
(l)
i = σ(Ãi,N i

H
(l−1)

N i
W(l−1)) = σ(Ãj,N j

H
(l−1)

N j
W(l−1)) = H

(l)
j

for all GNN parameters.

However, as many GNNs are less expressive than the 1-WL test, it is difficult to find 1-WL isomorphic
node pairs by detecting the embeddings in GNNs. Fortunately, TOP does not require as strong
expressiveness as the 1-WL test. For two nodes, we do not need to identify whether they are 1-WL
isomorphic, but only need to identify whether they are indistinguishable by GNNs.
Definition E.2. (Isomorphism under GNNs). Given initial node feature/representation H(0), at the
l-th iteration, node pairs (i, j) are isomorphic if they are indistinguishable under l iterations of GNNs,
i.e. H(l)

i = H
(l)
j for all GNN parameters.

From the definition E.2, if two nodes are isomorphic under l iterations of GNNs, then their embeddings
at the l-th layer are the same for all GNN parameters. Therefore, given two indistinguishable nodes
under l iterations of GNNs, we can use one to extrapolate the other without any bias.

Finding isomorphic node pairs. We estimate the coefficient matrix R by solving Problem (12)
with H(Wrand) are the embeddings of GNNs at random initialization. Intuitively, a neural network at
random initialization is likely to be a hash function, as it maps different inputs to different vectors
in the high dimensional space. The hash function can detect isomorphic node pairs with the same
embeddings. We show this by the following theorem.
Theorem E.3. Assume that the activation function σ is the LeakyReLU function and GCNs are ran-
domly initialized. If node pairs (i, j) are not isomorphic, then H

(l,rand)
i ̸= H

(l,rand)
j with probability

one.

Proof. Suppose node pairs (i, j) are not isomorphic. For l = 1, we have

σ(ÃiXW(0)) = H
(1)
i ̸≡ H

(1)
j = σ(ÃjXW(0)).

Since the activation function σ = LeakyReLU is injective, we have

ÃiXW(0) ̸≡ ÃjXW(0),

leading to

ÃiX ̸= ÃjX.

Thus, we have

ÃiXW(0,rand) ̸= ÃjXW(0,rand)

H
(1,rand)
i = σ(ÃiXW(0,rand)) ̸= σ(ÃjXW(0,rand)) = H

(1,rand)
j

for all GCN parameters.

For l ≥ 2, similar to the case of l = 1, we have

Ãi σ(AH(l−2)W(l−2)) = ÃiH
(l−1) ̸≡ ÃjH

(l−1) = Ãj σ(AH(l−2)W(l−2)).

We only need to prove that {W(l−2) ∈ Rd×d | Ãi σ(AH(l−2)W(l−2)) = Ãj σ(AH(l−2)W(l−2))}
is a Null set in Rd×d. For simplicity, we denote α⊤ = Ãi, β⊤ = Ãj and B = AH(l−2). Thus,
Ãi σ(AH(l−2)W(l−2)) = Ãj σ(AH(l−2)W(l−2)) is equivalent to (α− β)⊤σ(BW(l−2)) = 0⊤.

Notice that

σ(x) = LeakyReLU(x) =

{
x, if x ≥ 0

kx, if x < 0
,
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where k ∈ R is the negative slope with the default value 1e-2.

Then we can know that

(σ(BW(l−2)))uv = σ(

d∑
s=1

BusW
(l−2)
sv ) =

d∑
s=1

σuvBusW
(l−2)
sv ,

where u ∈ JnK, v ∈ JdK, σuv = 1 or k.

Therefore,

((α− β)⊤σ(BW(l−2)))v =

n∑
u=1

(αu − βu)

d∑
s=1

σuvBusW
(l−2)
sv

=

d∑
s=1

W(l−2)
sv

n∑
u=1

σuvBus(αu − βu).

Let γsv =
∑n

u=1 σuvBus(αu − βu) ∈ R and γ = (γsv) ∈ Rd×d. Then

((α− β)⊤σ(BW(l−2))) = 0⊤

is equivalent to

d∑
s=1

W(l−2)
sv γsv = ((α− β)⊤σ(BW(l−2)))v = 0

for all v ∈ JdK.

However, γ ̸= 0 for all value of σuv since the isomorphism of node pairs (i, j). As a result, for σuv

fixed, the solution to
∑d

s=1 W
(l−2)
sv γsv = 0, v ∈ JdK forms a subspace in Rd×d with the dimension

d× d− 1 at most.

Thus, the set {W(l−2) ∈ Rd×d | Ãi σ(AH(l−2)W(l−2)) = Ãj σ(AH(l−2)W(l−2))} is contained by the
union of several subspaces in Rd×d with the dimension d× d− 1 at most, which means it is a Null
set in Rd×d.

Therefore, H(l,rand)
i ̸= H

(l,rand)
j with probability one.

From Theorem E.3, for an out-of-batch node j ∈ N c
B, if randomly initialized GCNs detect i ∈ B

such that H(l,rand)
i = H

(l,rand)
j , then node pairs (i, j) is probably isomorphic. Thus, we can estimate

the solution R to Problem (12) that Rj = e⊤
i . Moreover, the estimation probably leads to a zero

approximation error at node j since H
(l)
j = e⊤

i H
(l)
B = H

(l)
i holds for all GCN parameters.

In practice, the ratio of the indistinguishable node pairs increases as the batch size |B| increases. The
following theorem shows that the approximation error of TOP decreases to zero if the batch size |B|
is large enough.

Theorem E.4. Assume that B is uniformly selected from V , the initial features X are sampled from a
finite set, the number of different embeddings is bounded by t, and |B| ≥ B0 ≜ t log(Ltε−1). Then,
there exists the coefficient matrix R such that HNc

B
= RHB with probability 1−O(ε) for any GCN

parameters.

Proof. By Theorem E.3, if for any out-of-batch node j, there exists an isomorphic in-batch node
i ∈ B, then we can easily find the coefficient matrix R with Ri = ej such that HNc

B
= RHB.

As a result, we only need to estimate the probability of the existence of such an in-batch node i.
Notice that, if for all l ∈ JLK, {{H(l)

v , v ∈ B}} contains all the embeddings in E(l), then the existence
follows immediately. Thus, we estimate the probability of E(l) ⊂ {{H(l)

v , v ∈ B}}, ∀l ∈ JLK as a
lower bound.
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By considering the contrary, for |B| fixed, we have

p(E(l) ⊂ {{H(l)
v , v ∈ B}} | |B|) = 1− p(E(l) ̸⊂ {{H(l)

v , v ∈ B}} | |B|)
= 1− p(∃ h(l)

u /∈ {{H(l)
v , v ∈ B}} | |B|)

≥ 1−
t(l)∑
u=1

p(h(l)
u /∈ {{H(l)

v , v ∈ B}} | |B|).

Notice that t(l) ≤ t and p(h
(l)
u /∈ {{H(l)

v , v ∈ B}} | |B|) = (1− 1

t(l)
)|B| ≤ (1− 1

t
)|B|, we have

p(E(l) ⊂ {{H(l)
v , v ∈ B}} | |B|) ≥ 1−

t(l)∑
u=1

p(h(l)
u /∈ {{H(l)

v , v ∈ B}} | |B|)

≥ 1−
t(l)∑
u=1

(1− 1

t
)|B|

≥ 1− t(1− 1

t
)|B|,

which leads to

p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK | |B|) = 1− p(∃E(l) ̸⊂ {{H(l)

v , v ∈ B}} | |B|)

≥ 1−
L∑

l=1

p(E(l) ̸⊂ {{H(l)
v , v ∈ B}})

≥ 1− Lt(1− 1

t
)|B|.

By the condition of the batch size |B|, we know that

|B| ≥ t log(Ltε−1)

=
log(Ltε−1)

1
t

≥ log(Ltε−1)

− log(1− 1
t )

= − log1− 1
t
(Ltε−1),

leading to

p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK | |B|) ≥ 1− Lt(1− 1

t
)|B|

≥ 1− Lt(1− 1

t
)
− log

1− 1
t
(Ltε−1)

= 1− ε.

Thus, we have

p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK) =

|V|∑
|B|=B0

p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK | |B|)p(|B|)

≥
|V|∑

|B|=B0

(1− ε)p(|B|)

= 1− ε.

Therefore, the probability of the existence of the coefficient matrix R is

p ≥ p(E(l) ⊂ {{H(l)
v , v ∈ B}}, ∀l ∈ JLK) ≥ 1− ε,

which means p = 1−O(ε).
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Remark E.5. The assumption of discrete features in Theorem E.4 is widely used to analyze expres-
siveness (Xu et al., 2019; Murphy et al., 2019). In real-world graphs with continuous features, finding
the exactly indistinguishable node pairs is difficult. For example, the probability of sampling two
points with the same value from the Gaussian distribution is zero. Fortunately, Equation (12) still
achieves small approximation errors in practice. To verify this claim, we empirically demonstrate
that TOP compensates for neighborhood messages well in Figure 2 in Section 5.2.

F LIMITATIONS AND BROADER IMPACTS

In this paper, we propose a novel subgraph-wise sampling method to accelerate the training of
GNNs on large-scale graphs, i.e., TOP. The acceleration of TOP is due to the assumption of message
invariance. We have conducted extensive experiments to demonstrate that the message invariance
holds in various datasets. However, it is still possible that the message invariance assumption does
not hold in certain datasets and complex GNN models.

Moreover, this work is promising in many practical and important scenarios such as search engines,
recommendation systems, biological networks, and molecular property prediction. Nonetheless,
this work may have some potential risks. For example, using this work in search engine and
recommendation systems to over-mine the behavior of users may cause undesirable privacy disclosure.
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