
TCAF: a Multi-Agent Approach of Thought Chain for Retrieval
Augmented Generation

Jun Zhao
junzhao@ebay.com

eBay
Shanghai, China

Xiaojiang Liu
xiaojiliu@ebay.com

eBay
Shanghai, China

Abstract
The increasing popularity of Retrieval AugmentedGeneration (RAG)
with Large Language Models (LLMs) has highlighted the need for
enhanced responses to user queries by leveraging web content
knowledge. Despite its potential, the challenge of integrating noisy
external web information often results in hallucination, and the
issue of consistently providing correct answers remains unresolved.
To improve this research, Meta introduced a comprehensive dataset
CRAG and hosted the KDD Cup 2024 Challenge to advance RAG
system development.

This paper details our solution in the competition, which con-
sists of a three-component pipeline: Pre-processing, Retrieval, and
Multi-Agent Generation. Our strategy incorporates Query Rewrit-
ing, Reference Constraint, and Conditional False-premise Detection
to improve accuracy and reduce hallucinations. Moreover, we pro-
pose a novel “Thought-Chain-Agent-Flow” technique in the Multi-
Agent Generation, enhancing the LLM’s focus on critical facts and
reasoning capabilities. This approach demonstrated superior per-
formance, leading our team, bumblebee71, to won first place in the
multi-hop challenge of Task1 and maintain top positions in Task2
and Task3, competing against over 2000 participants.

Keywords
Retrieval Augmented Generation, Large Language Model, Multi-
Agents

1 Introduction
1.1 Background
Question Answering (QA) tasks[1, 4], such as those used in iPhone’s
Siri, are complex but vital for all information systems as they di-
rectly impact the user experience. These tasks demand precise
comprehension of user questions and instant delivery of accurate
answers. Recently, methodologies such as Large Language Models
(LLMs) and Retrieval-Augmented Generation (RAG)[5] have gained
popularity in managing QA tasks, but they do come with issues like
hallucination and inaccuracy. However, there are few benchmark
and study exploring these issues.
1All authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

To address this gap, Meta has released CRAG dataset[9] and
organized the KDD Cup 2024 challenge with 3 different tasks, aim-
ing to tackle the complex RAG problems with high-performance,
low-cost solutions.

A team from eBay (the authors of this paper), participated in
the competition and achieved a top position on the leaderboard,
specifically winning the multi-hop question in Task 1. This paper
outlines the team’s solutions across all three tasks.

1.2 Dataset
For the challenge, Meta created the “CRAG: Comprehensive RAG
Benchmark”, a QA dataset consisting of 4,409 pairs of question and
answer along with crawled web pages, all in English.

The dataset features eight question categories: simple, simple
with condition, post-processing heavy, set, comparison, aggrega-
tion, multi-hop, and false premise. Table 1 describes the definition
for each question category in detail.

Each crawled web page contains URL, web title, HTML content,
page snippet (abstract), last update time, etc.

1.3 The Competition Tasks
The challenge had 3 tasks, hosted on AIcrowd:

Task 1: Retrieval Summarization This task involves predict-
ing an answer given a question complemented by five web pages,
each page have up to millions of chars. The goal is to provide an
accurate response in short time while avoiding incorrect answers
and hallucinations, which is the fundamental goal that 3 tasks and
all typical RAG system shared.

Task 2: Knowledge Graph andWeb Augmentation This task
mirrors Task 1 but with the additional access to mock Knowledge
Graphs (KGs) via mock APIs.

Task 3: Knowledge Graph andWeb Augmentation This task
mirrors Task 2 but with the additional feature with up to 50 pages.
The goal is to further increase performance under excess data.

Our solution for the 3 tasks are very similar and can be described
jointly, except for some extra recall process specific to Task 3 (Sec-
tion 3.1).

2 Overall Framework
To facilitate the generation of accurate answers based on retrieved
content, we have developed a structured framework for our Retriever-
Augmented Generation (RAG) system, depicted in Figure. 1. This
framework is designed to optimize the performance of each inde-
pendent module, enhancing the overall effectiveness of the system.
The framework comprises three main components: Pre-processing,
Retrieval, and Multi-agent Generation.

https://orcid.org/1234-5678-9012


KDD ’24, August 25–29, 2024, Barcelona, Spain Jun and Xiaojiang

Table 1: Definition of Question Categories

Question Type Definition

Simple Questions asking for simple facts that are unlikely to change overtime, such as the birth date of a
person and the authors of a book.

Simple w. Condition Questions asking for simple facts with some given conditions, such as stock prices on a certain date
and a director’s recent movies in a certain genre.

Set Questions that expect a set of entities or objects as the answer (e.g., “what are the continents in the
southern hemisphere?”).

Comparison Questions that compare two entities (e.g., “who started performing earlier, Adele or Ed Sheeran?”).
Aggregation Questions that require aggregation of retrieval results to answer (e.g., “how many Oscar awards did

Meryl Streep win?”).
Multi-hop Questions that require chaining multiple pieces of information to compose the answer (e.g., “who acted

in Ang Lee’s latest movie?”).
Post-processing heavy Questions that need reasoning or processing of the retrieved information to obtain the answer (e.g.,

“how many days did Thurgood Marshall serve as a Supreme Court justice?”).
False Premise Questions that have a false preposition or assumption (e.g., “What’s the name of Taylor Swift’s rap

album before she transitioned to pop?” (Taylor Swift has not yet released any rap album)).

(1) Pre-processing: This initial component involves several
key processes including query rewriting, web page docu-
ment segmentation, and rule-based filtering. The primary
objective here is to refine the input raw data, ensuring it is
clean and well-processed, which is useful for optimizing the
accuracy of the subsequent modules.

(2) Retrieval: In this component, the system searches through a
batch of web pages to identify potential answer candidates. It
is imperative that this retrieval is comprehensive, capturing
all necessary information so that the LLM can effectively
deduce the correct answers from the relevant content.

(3) Multi-agent Generation: The final and most critical com-
ponent of our framework involves a novel approach to an-
swer generation, utilizing a multi-agent chain across several
rounds of LLM generation. This method, named as Thought-
Chain-Agent-Flow (TCAF), has proven particularly effective
in addressing challenges such as hallucination, handling
multi-hop questions, and producing coherent and contextu-
ally appropriate responses for users.

In order to enhance the readability and focus on the critical
aspects of our implementation, we have structured the following
system details into three key sections. We begin by discussing the
“Retrieval” approach in Section 3. This is followed by an in-depth
examination of our primary component, “Multi-Agents Generation”
presented in Section 4. This section is pivotal as it elaborates on the
novel approach and techniques employed in our research. Lastly,
in Section 5, we delve into the “Pre-processing” for ensuring the
reproducibility of our results.

3 Retrieval Approach
3.1 Recall
In our approach, we use an semantic-based recall that leverages
pre-trained models. For each query and text chunk, we employ a
text embedding model msmarco-MiniLM-L-12-v3 to compute the

embedding and return the N-th nearest text chunk, determined by
cosine distance in relation to the query embedding. In Task 3, an
additional recall step is implemented to reduce latency, which is
based on query and the web page titles to filter relevant web pages.

We have evaluated numerous embedding models from the MTEB
leaderboard2, which offers performance metrics including recall
and ranking tasks, as well as filters to assess model parameter
size. Our analysis reveals that, despite their larger size and greater
embedding dimensions, models like Sentence-BERT [7] and GTE
[6] do not significantly outperform their lightweight counterparts
in terms of performance.

We’ve also tried keyword-based and sentence-level embedding
recall. However, these modifications did not lead to performance
enhancement. The complexity of the questions within the CRAG
dataset could be a potential reason for this. Our observations sug-
gest that compared to other methods, a semantic-based recall ap-
proach might be the most effective.

3.2 Ranking
A typical ranking module utilizes complex models such as deep
neural networks along with query-doc cross-features, to select
optimal candidates from the recall output, while current research[3]
employs LLM models for ranking.

We’ve experimented with DeBERTa and LLM-Rank, but the im-
provements were marginal. One possible explanation for this lim-
ited enhancement is that we didn’t fine-tune the rank separately,
therefore, the impact of the open-source rank was limited.

4 Multi-Agents Generation
The Multi-Agents Generation is the core component of our system.
This section is structured to methodically introduce the elements
that constitute this system. Initially, in Section 4.1, we present the

2https://huggingface.co/spaces/mteb/leaderboard



TCAF: a Multi-Agent Approach of Thought Chain for Retrieval Augmented Generation KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 1: Our Retriever-Augmented Generation Framework in the KDD’25 Competition

novel algorithm “Thought-Chain-Agent-Flow”, which is fundamen-
tal to our agent generation process. Subsequently, in Section 4.2,
we explore “Reference Constraint”, a strategic prompt engineering
approach that enhances the accuracy. Finally we will illustrate the
pre-train model in Section 4.3. Together, these sections provide a
detailed insight into the Multi-Agents Generation, underscoring its
importance in our system.

4.1 The Core: Thought-Chain-Agent-Flow
In our work, we introduce a novel method for answer generation
based on a multi-agent flow approach. Our proposed method, re-
ferred to as the Thought-Chain-Agent-Flow, leverages the capa-
bilities of multiple agents to handle complex deductive reason-
ing problems, particularly those involving multi-hop scenarios.
Through comparative analysis with other agent-based approaches,
the Thought-Chain-Agent-Flow demonstrated superior performance
in the majority of test cases, showcasing its enhanced ability to
manage intricate problem-solving QA tasks.

The implementation of the thought-chain-agent-flow is struc-
tured into three distinct stages:

(1) Detector Agent: This initial agent is designed to identify
queries that may contain incorrect assumptions or premises,
such as the query ’What is the price of Apple stock when
they split the stock for the 10th time?’ given that Apple
has only split its stock five times. These erroneous queries
can compromise the accuracy and reliability of the LLM’s
responses. To address this, we have deployed a dedicated
detector agent tasked with identifying and validating any
assumptions within a query.

(2) Thought Agent: This agent is responsible for processing
and analyzing all retrieved content information. It synthe-
sizes this data to draw conclusions and generates a set of
detailed reasoning thoughts. These thoughts serve as an in-
termediate response, encapsulating the cognitive process
that leads to a better answer.

(3) Answer Agent: Building upon the thought agent, the an-
swer agent takes center stage in the third phase. It primarily
focuses on the reasoning thoughts provided by the thought
agent, using them as the main content for generating the
final answer. The answer from the previous stage is also
considered, but only as a weak reference, ensuring that the
answer agent’s output is predominantly influenced by the
newly derived logical reasoning.

In the Answer Agent Stage, it is crucial to highlight that retrieved
content information is intentionally omitted from subsequent read-
ings by the LLM agent. This approach has been adopted to enhance
the focus of the LLM on the most relevant information, thereby
streamlining the context it needs to process. By reducing the cogni-
tive load, this method not only augments the reasoning capabilities
of the LLM but also minimizes the likelihood of forgetting issue
during the generation process. For instance, the LLM may indepen-
dently generate an accurate clarification fact, but could potentially
overlook this detail in the presence of an extensive context. By
maintaining a concise context, the Answer Agent effectively sup-
ports the LLM in consistently recalling and integrating key facts
throughout the interaction, leading to more coherent and contextu-
ally appropriate responses.

It is also noteworthy that, our Thought-Chain-Agent-Flow (TCAF)
approach, although conceptually similar to the Chain-of-Thoughts[8]



KDD ’24, August 25–29, 2024, Barcelona, Spain Jun and Xiaojiang

method, exhibits significant differences in performance and stabil-
ity. The Chain-of-Thoughts method operates on the principle of
allowing the LLM to “think before reacting”. However, this method
often suffers from instability in the LLM’s inference process, which
can result in incomplete processing and, consequently, the absence
of a final response. In contrast, our TCAF approach adheres more
reliably to this principle, with each agent focusing on a specific
sub-task. This structured focus enables the LLM to consistently
produce high-quality and coherent responses.

Furthermore, empirical evidence from our experiments demon-
strate that TCAF not only outperforms the Chain-of-Thoughts
method in terms of stability but also provides a significant advance-
ment in handling RAG tasks.

To ensure this, in our multi-agent framework, we implemented
and evaluated several other agent roles to ensure a comprehensive
and fair comparison of different methods. Despite integrating vari-
ous roles into the framework, none matched the performance of
the Thought-Chain-Agent-Flow (TCAF) approach. Consequently,
these roles were not included in the final implementation. Notable
roles tested but later excluded due to their comparative underper-
formance, which included:

(1) Summarization Role: An agent tasked with summarizing
retrieved content without altering its meaning.

(2) Ranking Role: An agent responsible for ranking the most
critical content to aid in answer generation.

(3) Relevance Role: An agent designed to assess the relevance
of content to the posed question.

Among the tested solutions, the TCAF method consistently out-
performed others. This led to the decision to exclusively incorporate
the TCAF approach in our final system, eliminating other roles from
the multi-agent framework.

4.2 Prompt Engineering: Reference Constraint
Within the framework of the TCAF, prompt engineering is another
design that can significantly influences the RAG performance. Our
investigation involved testing various prompt templates in compe-
tition tasks, leading to the identification of a particularly effective
prompt, which we have termed the “Reference Constraint Prompt”.

The Reference Constraint Prompt is specifically designed to
instruct the LLM to base its responses on information explicitly
drawn from the retrieved content. This approach significantly miti-
gates the risk of the model generating unfounded or “hallucinated”
responses, thereby enhancing the reliability and accuracy of the
output. The structure of this prompt is crafted to ensure that the
LLM consistently seeks and references verifiable information from
the provided content, aligning its responses closely with the avail-
able data. The prompt template is designed like the following in
Figure. 2, which is divided into four distinct parts:

(1) Question Instruction: This segment involves a general ex-
planation of the task. Our findings indicate that any prompt
that effectively explains the task is suitable for this section.

(2) Input Context: This part includes segmented documents from
the retrieved content, each labeled with a prefix [ID]. The
IDs are incremental numbers ranging from 1 to K, where
K represents the total number of retrieved documents. This

labeling aids the LLM in identifying and referencing the most
relevant document more efficiently.

(3) Reference Constraint: This critical component explicitly in-
structs the LLM to base its answers on referenced support
from the retrieved content. By requiring the LLM to cite the
ID of the supporting document in its response, this design
significantly reduces the incidence of hallucination, ensuring
that the answers are well-founded and verifiable.

(4) Output Formatting Instruction: Guidelines for how the re-
sponse should be structured are provided in this section,
ensuring consistency and clarity in the output format.

It is important to note that the Reference Constraint Prompt
is specifically integrated into the thought agent within the TCAF
framework. The answer agent operates independently of the origi-
nal retrieval content, focusing solely on the processed inputs from
the previous stage.

Implementing this prompt structure has demonstrated a signifi-
cant improvement in the RAG system’s performance on the CRAG
dataset, with an absolute CRAG score increase of 3%+.

4.3 Pre-train Model
For our implementation, we consistently utilized the Llama-3-8B-
Instruct model[2] across all multi-agent roles within the system.
While alternative models, such as Llama2-70B and Llama-3-70B-
Instruct, were also evaluated, the Llama-3-8B-Instruct model con-
sistently demonstrated better performance for our TCAF method
in the dataset, making it the preferred choice for our system. There
are two possible reasons for this results:

(1) Decomposed Tasks: Our multi-agent TCAF method breaks
down the RAG task into simpler sub-tasks, reducing the
demand on the pre-trained LLM’s ability. Consequently, it
improves the performance of the Llama3-8B-Instruct model
to match that of larger models, possibly leaving no room for
further improvement merely by switching the pre-trained
model.

(2) Reduced Hallucination: Although Llama-3-70B-Instruct is
a more powerful model, it exhibited a tendency to generate
hallucinations, especially when uncertain about responses.
This issuewas particularly prevalent with real-time changing
questions in the dataset. Llama-3-70B-Instruct, having been
exposed to a vast array of questions during training, often
relied on its internal knowledge base, leading to answers
that did not account for recent changes and thus were prone
to inaccuracies.

Given these considerations, along with the distribution of ques-
tion types and the overarching design of the multi-agent system,
Llama-3-8B-Instruct was selected as the standard pre-trained model
for all tasks and agents in our latest system version.

5 Pre-processing
Data pre-processing, primarily involving query rewriting and docu-
ment processing, is noteworthy for a RAG system. These techniques
aid the system in understanding queries and restructuring informa-
tion in a more effective manner, consequently leading to enhanced
system performance. We share the detail of pre-processing in this
section for reproducibility.



TCAF: a Multi-Agent Approach of Thought Chain for Retrieval Augmented Generation KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 2: Reference Constraint Prompt Template

5.1 Query Rewrite
Query Rewriting is a commonly used practice in information re-
trieval systems to better understand a query’s intent.

In our work, we used query rewriting for enriching a query with
query_time information from our dataset. This tactic is designed
to overcome the variability in question dynamics, which can span
from days to years. For instance, a query like “what’s the stock
price of Apple last Monday” would be rewritten for time-specific
accuracy, such as “what’s the stock price of Apple on 20240805”.
However, a query like “who was the Oscar best actor winner in
2006?” would be left unchanged as it’s already specific.

After a series of test, this technique has been shown to notable
enhance the performance of RAG.

5.2 Document Pre-processing
To increase the performance of reference text chunk retrieval,
for web pages provided by dataset, we implement document pre-
processing. This step ensures the conversion of HTML pages into
pure text chunks, discarding meaningless information such as
HTML tags, CSS, and visual media elements like images. In our so-
lution, a proficient HTML parser and effective chunk segmentation
are details will be described in the following sections.

5.2.1 HTML Parser. We leveraged html2text3 to parse HTML into
ASCII text, configured to ignore hyperlinks, images, and decoding
errors while including tables and external links. The output text
formatting width is unlimited, and preference is given to inline links.
Google-style presets are used for list indents and HTML anchors
are ignored. In our configuration, html2text demonstrated greater
efficiency compared to Beautiful Soup4.

5.2.2 Chunk Segmentation. Once we have pure text from HTML
pages, HTMLHeaderTextSplitter from langchain is used to split
text into short chunks, which can be beneficial and increase perfor-
mance in later operations such as recall and ranking. Two hyper-
parameters are defined and tuned: chunk_size (e.g. 200 1000 tokens)
and chunk_overlap (e.g. 20 70 tokens), we find they would easily
affect the final performance. Chunk_size is the size of each chunk
3https://github.com/Alir3z4/html2text/tree/master
4https://beautiful-soup-4.readthedocs.io/en/latest

of the text after splitting, while chunk_overlap controls the overlap-
ping portions between consecutive chunks. This overlap concept
is useful in scenarios where context from a section of text may be
necessary to properly understand the subsequent text.

Following a comprehensive series of tests and empirical assess-
ments, we opted for the parser, chunk_size and and chunk_overlap
that showed exceptional performance. The optimal hyper parameter
for the chunk_size is 700, while the chunk_overlap is 20.

6 Experiments
We calculate CRAG score through auto-evaluation process to mea-
sure performance of RAG system. For each question, with score 1, -1
for each correct and incorrect (hallucination) answer, where halluci-
nated answers are penalized. Then we calculate the average score of
all samples as CRAG score. Additionally, we will consider accuracy
and hallucination metrics as reference, which is the percentage of
correct and incorrect answers.

6.1 Algorithm Comparison
In Tables 2 and Tables 3, we present a comparison of our method on
Task 1 and Task 2 against ablation settings. All methods are based
on RAG and the differences between each method are as follows:

Chain-of-Thoughts: This method serves as the baseline, utiliz-
ing the standard RAG approach by Chain-of-Thoughts prompt. It
will be referred to as “CoT” hereafter.

CoT with pre-processing: This enhanced version of the base-
line incorporates several key processes such as optimized query
rewriting, web page document segmentation, and rule-based filter-
ing. It will be denoted as “CoT(Prep)” in subsequent references.

CoT (pre-processing) + Reference Constraint: Building upon
the pre-processing method, this approach integrates our Reference
Constraint technique to further refine the process. It will be abbre-
viated as “CoT(Prep)+RC” in the following text.

TCAF + Reference Constraint (ours):: In this method, we re-
place the CoT method with our Thought-Chain-Agent-Flow (TCAF)
approach while continuing to utilize Reference Constraint. It will
be referred to as “TCAF+RC“ henceforth.

When we compare CoT(Prep) with CoT, we can infer that pre-
processing increases the accuracy (Task1 by +0.052, Task2 by +0.033)



KDD ’24, August 25–29, 2024, Barcelona, Spain Jun and Xiaojiang

but also increase hallucination for Task1 (-0.04), and consequently
slightly enhance the overall CRAG score (Task1 by +0.012, Task2
by +0.034).

When comparing CoT(Prep)+RC with CoT(Prep), we find that
the Reference Constraint are effective in reducing hallucinations,
as indicated by a decrease in Task1 (by -0.036) and Task2 (by -
0.018). Also, there’s an increase in accuracy for Task2 (by +0.015).
Consequently, these combined effects result in an improved CRAG
score (increase in Task1 by +0.036, and in Task2 by +0.033).

When comparing TCAF+RC with CoT(Prep)+RC, we observe a
further increase in accuracy (Task1 by +0.009, Task2 by +0.015) as
well as a reduction in hallucination (Task1 by -0.027). This successful
combination significantly boosts the CRAG score (an increase of
+0.036 in Task1 and +0.021 in Task2).

It is also worth mentioning that the Reference Constraint (RC)
prompt technique can be readily applied to any RAG methods, in-
cluding our TCAF, which consistently yields further improvements.
In our experiments, we did not encounter any drawbacks when
using RC, though further exploration of this aspect is left for fu-
ture work. Consequently, the TCAF+RC method demonstrated the
best performance in our experiments compared to all existing RAG
methods.

These comparisons indicate that our solution performs the best in
CRAG score while simultaneously tackling hallucination problems,
demonstrating its superiority in complex QA tasks.

Table 2: Task 1 Performance

Approach CRAG Score Accuracy Hall.
Chain-of-Thoughts 0.0236 0.134 0.110

CoT (Prep) 0.0360 0.186 0.150
CoT (Prep) + RC 0.0721 0.186 0.114

TCAF + RC 0.1081 0.195 0.087

Table 3: Task 2 Performance

Approach CRAG Score Accuracy Hall.
Chain-of-Thoughts 0.0079 0.126 0.118

CoT (Prep) 0.0420 0.159 0.117
CoT (Prep) + RC 0.0751 0.174 0.099

TCAF + RC 0.0961 0.189 0.093

6.2 Pre-trained Model Analysis
Given that Task 1 and Task 2 yielded similar results, here we will
use only Task 1 for further analysis.

We tested two different sizes of pre-trained models for our TCAF-
RC approach and obtained surprising results. While larger LLMs
typically improve outcomes, this trend does not always hold if a
multi-agent method has already significantly enhanced QA capabil-
ities. As indicated in Table 4, the Llamma3-70B version experienced
a 0.02 drop in CRAG score. This demonstrates that well-designed
roles in a multi-agent system can boost the performance of an 8B

LLM to match that of a 70B LLM in the RAG system. The perfor-
mance drop could be explained by Llamma3-70B’s higher tendency
to rely on its internal knowledge, leading to more hallucinations.

Table 4: Pre-trained model Test

Approach CRAG Score
TCAF-RC(Llamma3-8B-Instruct) 0.1081
TCAF-RC(Llamma3-70B-Instruct) 0.0883

6.3 Leaderboard Rank
There are over 2000+ participants from various countries, and over
5500 submissions, we won the Top 8 in the leaderboard5.

7 Final Winner Announcement
On 2024 July 27, the host announced the winners of the KDD Cup
2024 Meta CRAG Challenge. Different from evaluation method in
Section 6, the evaluation process6 combined assessments of GPT-4
auto-evaluation and human manual-evaluation, with weighting on
different questions to reflect real-world QA use case, followed by a
code validation.

We won the 1st of multi-hop challenge in Task1, with our score
detailed in Tables 5. Themulti-hop is questions that require chaining
multiple pieces of information to compose the answer, for example:
“Who is the American singer-songwriter who has won 13 Grammy
awards and is known for her unique blend of pop, R&B, and elec-
tronic music, as well as her energetic live performances?“ This
question requires to find specific person chaining several clues: 1)
American singer-songwriter 2) won 13 Grammy awards 3) known
for certain performance and music style.

Table 5: Winner of Multi-hop in Task1

Rank Question Type Team Score
1 multi_hop bumblebee7 17.9

8 More Implementation Details for TCAF
In this section, we provide additional implementation details for
the three-stage algorithms used in our multi-agent RAG system.
The pseudocode for our TCAF-RC is illustrated in Algorithm 1.

5Refers to the leaderboard in Phase2b evaluated by GPT-4. The human judgement
version for the leaderboard is not released yet.
6https://discourse.aicrowd.com/t/final-evaluation-process-team-scores/10785



TCAF: a Multi-Agent Approach of Thought Chain for Retrieval Augmented Generation KDD ’24, August 25–29, 2024, Barcelona, Spain

Algorithm 1 TCAF-RAG
Input: a user query q, a set of web pages denoted as Dpage, a
query time 𝑡 .
Output: The correct answer final_answer.
1: Pre-process: Segment the set of web pages Dpage into a set

of chunks Dchunk. Rewrite the query q to q′, by taking into
account the query time 𝑡 .

2:
3: Retrieval: Retrieve the top-k relevant chunks, denoted as

Rchunk, for the query q from the entire set of chunks Dchunk.
4:
5: Detector Agent: Try to extract the premise from the query q.
6: if The premise exists then
7: if The premise is determined to be false based on q then
8: return “Invalid Question”.
9: end if
10: end if
11:
12: Thought Agent: Incorporate q′ and Rchunk into the Reference

Constraint prompt template to create a complete prompt. Then,
generate the thoughts and answer based on this consolidated
prompt.

13:
14: Answer Agent: Generate the final_answer using a prompt

that takes into account the thoughts and answer provided by
the thought agent.

15:
16: return final_answer

It is important to note that for the majority of our implementa-
tion, we only utilized the zero-shot prompt template, which consis-
tently delivers significant and robust results across all our experi-
ments. In most instances, a zero-shot based prompt is sufficient for
this work.

9 Conclusion
The Meta KDD Cup’24 competition presented a unique opportunity
to tackle the challenges posed by the comprehensive CRAG dataset,
which featured a diverse range of real-world queries and question
types. Our approach involved constructing a robust RAG system
through a systematic pipeline that included Pre-processing, Re-
trieval, and Multi-Agent Generation. Furthermore, our innovative
“Thought-Chain-Agent-Flow” methodology significantly enhanced
the accuracy and stability of our system. These strategies were
instrumental in securing the 1st place in the multi-hop challenge of
Task1 and achieving top positions on the Leaderboard of the Meta
KDD Cup 2024 Challenge. Our success in this competition under-
scores the effectiveness of our methods and contributes valuable
insights to the field of information retrieval and question answering
systems.

References
[1] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading

Wikipedia to Answer Open-Domain Questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Vancouver, Canada, 1870–1879. https:
//doi.org/10.18653/v1/P17-1171

[2] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783 (2024).

[3] Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley,
and Wayne Xin Zhao. 2024. Large language models are zero-shot rankers for
recommender systems. In European Conference on Information Retrieval. Springer,
364–381.

[4] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob
Devlin, Kenton Lee, Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, An-
drew Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions:
a Benchmark for Question Answering Research. Transactions of the Association
of Computational Linguistics (2019). https://tomkwiat.users.x20web.corp.google.
com/papers/natural-questions/main-1455-kwiatkowski.pdf

[5] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al.
2020. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances
in Neural Information Processing Systems 33 (2020), 9459–9474.

[6] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan
Zhang. 2023. Towards General Text Embeddings with Multi-stage Contrastive
Learning. arXiv:2308.03281 [cs.CL] https://arxiv.org/abs/2308.03281

[7] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics.
http://arxiv.org/abs/1908.10084

[8] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[9] Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla, Xiangsen Chen, Sajal
Choudhary, Rongze Daniel Gui, Ziran Will Jiang, Ziyu Jiang, et al. 2024. CRAG–
Comprehensive RAG Benchmark. arXiv preprint arXiv:2406.04744 (2024).

https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://tomkwiat.users.x20web.corp.google.com/papers/natural-questions/main-1455-kwiatkowski.pdf
https://tomkwiat.users.x20web.corp.google.com/papers/natural-questions/main-1455-kwiatkowski.pdf
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
http://arxiv.org/abs/1908.10084

	Abstract
	1 Introduction
	1.1 Background
	1.2 Dataset
	1.3 The Competition Tasks

	2 Overall Framework
	3 Retrieval Approach
	3.1 Recall
	3.2 Ranking

	4 Multi-Agents Generation
	4.1 The Core: Thought-Chain-Agent-Flow
	4.2 Prompt Engineering: Reference Constraint
	4.3 Pre-train Model

	5 Pre-processing
	5.1 Query Rewrite
	5.2 Document Pre-processing

	6 Experiments
	6.1 Algorithm Comparison
	6.2 Pre-trained Model Analysis
	6.3 Leaderboard Rank

	7 Final Winner Announcement
	8 More Implementation Details for TCAF
	9 Conclusion
	References

