
Multi-Mission Tool Bench: Assessing the Robustness of LLM based Agents
through Related and Dynamic Missions

Anonymous ACL submission

Abstract001

Large language models (LLMs) demonstrate002
strong potential as agents for tool invocation003
due to their advanced comprehension and plan-004
ning capabilities. Users increasingly rely on005
LLM-based agents to solve complex missions006
through iterative interactions. However, exist-007
ing benchmarks predominantly access agents008
in single-mission scenarios, failing to capture009
real-world complexity. To bridge this gap, we010
propose the Multi-Mission Tool Bench. In011
the benchmark, each test case comprises multi-012
ple interrelated missions. This design requires013
agents to dynamically adapt to evolving de-014
mands. Moreover, the proposed benchmark ex-015
plores all possible mission-switching patterns016
within a fixed mission number. Specifically, we017
propose a multi-agent data generation frame-018
work to construct the benchmark. We also pro-019
pose a novel method to evaluate the accuracy020
and efficiency of agent decisions with dynamic021
decision trees. Experiments on diverse open-022
source and closed-source LLMs reveal critical023
factors influencing agent robustness and pro-024
vide actionable insights to the tool invocation025
society. This benchmark is available in XXX.026

1 Introduction027

In recent years, large language models (LLMs)028

have achieved significant progress in natural lan-029

guage processing. These models demonstrate030

strong capabilities to understand contextual infor-031

mation and user instructions, making them effective032

agents for mission completion.033

Real-world applications require agents to handle034

dynamic user demands. As users frequently ad-035

just their requests during conversations (Figure 1),036

agents must complete sequential missions with037

evolving requirements. This situation challenges038

the robustness of an agent’s decision-making. How-039

ever, existing benchmarks focus primarily on040

single-mission scenarios.041

This paper presents the Multi-Mission Tool 042

Bench. This benchmark evaluates agent robustness 043

in related and dynamic multi-mission scenarios. 044

The benchmark addresses three core challenges: 045

1) it contains more mission-types than others, i.e. 046

four major categories and six subcategories; 2) it 047

includes all mission-type transition patterns in pre- 048

fixed mission number; 3) all successive missions 049

have strong relations with prior dialogues, agents 050

are forced to extract information from previous mis- 051

sions. Therefore, it closely mirrors the complexity 052

of real-world. 053

To simulate all mission-type switching patterns, 054

we first define the mission-types by their corre- 055

sponding agent action-types. Agent actions are 056

divided into four main types: using a single tool, 057

using multiple tools, chatting with users, and us- 058

ing tools after clarifying parameters. An agent 059

accomplishes a single mission by performing one 060

of these actions. Therefore, we define four types 061

of missions. For sequential missions, agents com- 062

bine multiple action-types to reach the objectives. 063

Figure 2 a) displays that the agent employs the com- 064

bination of four action-types to complete the four 065

sequential missions in Figure 1. Thus, we introduce 066

the mission switching space to describe the trans- 067

formations of mission types. Figure 2 b) shows that 068

our benchmark thoroughly explores the proposed 069

space with a prefixed mission number. This indi- 070

cates that our benchmark includes all mission-type 071

transition patterns. In contrast, other benchmarks 072

have a more limited range of action diversity. 073

To construct the multi-mission benchmark, we 074

propose a controllable data generation framework 075

with multiple characters. The framework simulates 076

the mission execution process through dialogic in- 077

teractions among five agents: user, planner, tool, 078

AI, and checker. In each generation process, we 079

assign the desirable mission type and mission rela- 080

tionship to guide the framework. Ultimately, our 081

benchmark encompasses all potential combinations 082

1

Figure 1: A multi-mission example. It contains four related missions, and the mission types are changing
dynamically. This figure presents the conversation between a user and an AI. The inter-dialogues are hided.

in the mission switching space for a set number of083

missions. Notably, a complete mission involves084

multiple rounds of dialogues.085

To evaluate the proposed benchmark, we intro-086

duce a novel evaluation method. It assesses the087

accuracy and efficiency of agents decisions, by em-088

ploying dynamic decision trees.089

Eventually, we evaluate a range of open-source090

and closed-source LLMs, encompassing both spe-091

cific and general LLMs. Our comprehensive exper-092

iments reveal numerous factors influencing the ro-093

bustness of agent decision-making. These findings094

offer valuable insights for guiding future research095

on the development of LLM-agents.096

The main contributions of this paper are:097

• To the best of our knowledge, this is the first098

benchmark that assesses agent robustness in099

related and dynamic multi-mission scenarios.100

• We introduce a controllable multi-role data101

generation framework to explore the action-102

type space in multi-mission contexts.103

• A novel testing method is proposed to evaluate104

the accuracy and efficiency of dynamic path105

planning.106

• Comprehensive testing of open-source and107

closed-source LLMs is conducted, revealing108

various factors that affect the robustness of109

agent decision making.110

Section 4 explains how we build the benchmark.111

It covers how to create related missions, predefine112

mission-types, and explore the mission switching 113

space. Section 5 describes the evaluation methods 114

we use for this benchmark. Section 6 shows the 115

test results of LLMs and presents our analysis of 116

these findings. 117

2 Related Work 118

2.1 Evaluation of LLMs 119

Recent benchmarks evaluate the capabilities of 120

LLM-based agents from various point of views. 121

Some research evaluates the generalizability of 122

agents in various scenarios (Li et al., 2024; Trivedi 123

et al., 2024; Liu et al., 2024c). Others(Du et al., 124

2024; Qin et al., 2024; Ye et al., 2024; Li et al., 125

2023) collected massive tools to investigate the 126

impact of tool diversity on agent performance. Cer- 127

tain research (Zhuang et al., 2023; Guo et al., 2024; 128

Xie et al., 2024) examines agents within specific 129

domains. While some works (Shen et al., 2024b; 130

Chen et al., 2024; Huang et al., 2024a) provide a 131

comprehensive assessment of multiple agent abili- 132

ties, others (Huang et al., 2024b; Tang et al., 2023; 133

Qiao et al., 2024a) address specific issues like the 134

illusion problem (Patil et al., 2023) and multistep 135

execution capabilities (Shen et al., 2024a; Yao et al., 136

2024). 137

Our benchmark assesses agents’ overall capa- 138

bilities, emphasizing challenges of related and dy- 139

namic multi-missions. Importantly, the multistep 140

tasks discussed in previous studies align with our 141

approach of employing multiple tools to complete 142

a single mission. 143

2

Figure 2: Visualization of mission switching space. a) Four distinct colors represents four different action-types. The
green dot indicates the agent sequentially selects four type of actions to execute four missions. b) The distribution
of the proposed benchmark within the mission switching space. Each row corresponds to a different number of
missions. Each dot indicates a specific combination of the current and preceding action-types. Colored dots indicate
combinations included in the benchmark, while gray dots indicate their absence. c) Distribution of four other agent
benchmarks in the space.

The work most similar to ours is BFCL V3 (Char-144

lie Cheng-Jie Ji, a). It also involves four types145

of agent actions and various user missions in one146

test case. However, BFCL V3 only covers a small147

part of the mission switching space. In contrast,148

our work simulates all possible mission transitions149

within a predefined set of missions. In most test150

data of BFCL V3, missions have no information151

dependencies. Agents can complete any given mis-152

sion autonomously without relying on information153

from previous dialogues. In our case, all data con-154

tain related missions.155

Other studies, WorfBench and TaskBench (Qiao156

et al., 2024a; Shen et al., 2024b), also introduce a157

graph-based evaluation method for multi-tool invo-158

cation. However, they only compute the similarity159

between the agent’s planned path and the annota-160

tion through graph matching, unable to explicitly161

determine its correctness or calculate the optimal162

probability of the agent’s plan, as our work does.163

Table 1 compares the mentioned benchmarks164

with our proposed one in various aspects.165

2.2 LLM-as-Agent166

User mission automation is a significant research167

area for large LLMs. General (Achiam et al., 2023;168

Sun et al., 2024; Yang et al., 2024; Team et al.,169

2024; GLM et al., 2024; Srivastava and Dames, 170

2024) LLMs with larger scale primarily integrate it 171

within multi-task learning process. While there are 172

also many smaller specialized LLMs based agents. 173

We categorize agent research into various ap- 174

proaches. Some studies (Xu et al., 2024; Qiao 175

et al., 2024b; Zhang et al., 2024b) equip agents 176

with self-reflection and self-correction capabilities 177

to improve their understanding of environmental 178

feedback. Others (Zhang et al., 2024a; Han et al., 179

2024; Islam et al., 2024) introduce heuristic deci- 180

sion frameworks to solve complex problems. Fur- 181

ther research (Shi et al., 2024; Schick et al., 2023; 182

Liu et al., 2024b) focuses on strengthening agents’ 183

core skills. Concurrently, some work (meetkai; 184

Lin et al., 2024; Liu et al., 2024b) generate more 185

diverse training data with proposed frameworks. 186

Our study also introduces a novel data generation 187

framework. Unlike previous works, our framework 188

uniquely specifies desired agent action-types. 189

The proposed benchmark simulates real-world 190

application scenarios, and evaluates the core abili- 191

ties of agents and tests various general LLMs and 192

specialized agent LLMs. 193

3

Benchmark MutMiss∗ Rate of
RelMiss† MSSS‡

4

Mission-Types
Asingle Achat Aclarity AS

multi AP
multi AS+P

multi

Ours ! 100 100 ! ! ! ! ! !

BFCL v3(Charlie Cheng-Jie Ji, a) ! 15.7 39.7 ! ! ! % ! %

BFCL v1(Patil et al., 2023) % 0.0 0.9 ! ! % % ! %

BFCL v2(Charlie Cheng-Jie Ji, b) % 0.0 0.9 ! ! % % ! %

ToolBench(Qin et al., 2024) % 0.0 0.0 ! % % ! % %

AnyToolBench(Du et al., 2024) % 0.0 0.0 ! % % ! % %

τ -bench(Yao et al., 2024) % 0.0 0.0 ! % % ! % %

T-EVAL(Chen et al., 2024) % 0.0 0.0 ! % % ! % %

UltraTool(Huang et al., 2024a) % 0.0 0.0 ! % % ! % %

Table 1: Comparative Analysis of the Multi-Mission Tool Bench against other benchmarks in the field. The symbol
’*’ indicates Multi-Mission, while ’†’ denotes Related Missions. Moreover, in the four-mission action-type space,
the Mission Switching Space Scale (MSSS4) represents the proportion of combination coverage for each dataset
relative to all possible combinations.

Figure 3: The multi-agent framework.

3 Terminologies194

We use agent action-type to describe the mission-195

type switching patterns. In this section, we intro-196

duce the concepts of agent action-type and mission197

switching space.198

As stated above, agents use four types of action199

to accomplish user missions: invoking a single tool,200

invoking multiple tools, chatting with the user, and201

invoking tools after clarifying their parameters. We202

denote these action-types as Asingle, Amulti, Achat,203

and Aclarify respectively. As inter-tool dependen-204

cies cause diverse execution sequences, we further205

divide Amulti into the following categories: serial206

execution, parallel execution, and a combination of207

both, represented as AS
multi, A

P
multi, and AS+P

multi.208

Furthermore, we define the concept of mission209

switching space to describe the combination of210

action-types corresponding to serially related mis-211

sions, labeled AN = {A0, A1, . . . , AN}. Here,212

N is the total number of missions and Ai is the213

action-type corresponding to the i-th mission.214

4 Benchmark Construction215

To construct multi-mission test data, and thor-216

oughly explore the mission switching space, we217

proposed a novel data generation framework. In 218

this section, we explain the proposed framework 219

and how to construct the benchmark. Subsection 220

4.1 presents the five roles in the framework and 221

their interaction mechanism. Subsection 4.2 de- 222

scribes how these roles complete a mission. It 223

includes specifying mission-types and setting up 224

dependencies with earlier missions for later ones. 225

Subsection 4.3 we expand the scope from gener- 226

ating a single mission to creating a test data with 227

multiple related missions. Subsequently, we thor- 228

oughly explore the mission switching space to con- 229

struct the entire benchmark. Furthermore, Ap- 230

pendixes A and B present the method for collecting 231

tools and the distribution of the test set. 232

4.1 Data Generation Framework 233

We employ five agents to generate multi-mission 234

test data. We simulate this process with a sin- 235

gle LLM. For each dialogue, we assign different 236

roles and specific tasks to the LLM, denoted R. 237

We define five roles: User, Planner, AI, Checker, 238

and Tool, represented as Ruser, Rplanner, RAI , 239

Rchecker, and Rtool respectively. The Planner is 240

the key to analyzing the mission, planning tool in- 241

vocation paths, and deciding action-types. Figure 242

3 shows the interaction among these five roles. 243

In this framework, only RAI communicates 244

with Ruser, and Rplanner gets instructions from 245

Ruser. When Rplanner starts Asingle or Amulti, 246

Rtool simulates tool feedback. For Aclarify or 247

Achat, RAI asks about tool parameters or summa- 248

rizes responses. Rchecker checks the format and 249

sequence of Rplanner’s plans, ensuring accurate 250

planning. Note that Rchecker is only involved in 251

data generation. Moreover, Ruser has different 252

tasks at different stages. RQ
user responses to gener- 253

ate a new mission, while RA
user responses to answer 254

4

Figure 4: The dependencies among tools.

the questions of RAI .255

We provide the prompts for the roles mentioned256

above in Appendix E.257

4.2 Generate Single Mission258

We first introduce how to construct a single mission259

using the proposed multi-agent framework.260

In the generation process, we first generate user261

missions. When generating user missions, we first262

sample a tool list for the missions.263

To achieve a desirable mission type, we insert264

the predefine action-type Ai into the role prompt265

RQ
user.266

To generate related missions, we generate sev-267

eral candidate missions, then employ expert refine-268

ment to get the final successive mission. We catego-269

rize mission relationships into three types: implicit270

understanding, ellipsis, and long-term memory, and271

insert the relationship types into RQ
user to generate272

three candidate missions. The RQ
user also contains273

the previous user-AI dialogues. Finally, we man-274

ually select and refine the candidate missions to275

achieve the final one.276

With the user missions, we use the five roles277

mentioned above to complete the entire execution.278

4.3 Construct the Whole Benchmark279

In Subsection 4.2, we obtain the ability to gener-280

ate a specific type of mission and create related281

missions. Subsequently, we apply this ability to282

construct the benchmark. This benchmark aims to283

fully demonstrate the diversity of mission switch-284

ing in the test data. To achieve this goal, we employ285

the proposed method to explore the entire mission286

switching space in prefixed mission number.287

First, we identify all combinations of action-288

types for the given number of missions, represented289

as A = A1
1,A

2
1, ...,A

4N

N . Here, Aj
i indicates the290

j-th combination for i missions. For i missions,291

there exist 4i combinations.292

Subsequently, we generate test data indepen-293

dently for each action-type combination. If the294

action-type combination contains N elements, we295

use the aforementioned generation framework N296

times to construct the test data. It is important to 297

note that the generation results from both Rtool and 298

RAI are crucial information provided to the agents 299

during our testing process. 300

5 Dynamic Evaluation Method 301

The dependencies among tools lead to multiple 302

possible execution sequences. This challenge be- 303

comes more pronounced in multi-mission scenar- 304

ios. To address this, we propose a novel evaluation 305

framework. This framework accurately verifies the 306

correctness and optimality of agent actions. The 307

method follows three steps: dependency analysis, 308

decision tree construction, and path validation. 309

First, we manually identify tool dependencies. 310

We then implement a topological sorting algorithm 311

with depth-first search to generate all possible exe- 312

cution paths. Unlike previous methods (Qiao et al., 313

2024a; Shen et al., 2024b) that produce limited sub- 314

optimal paths, our algorithm constructs complete 315

optimal and suboptimal sequences. 316

During agent testing, we perform incremental 317

path matching against the decision tree. Each agent 318

action triggers either: 1) Path termination for mis- 319

matched actions. 2) Subtree pruning for valid ac- 320

tions, narrowing subsequent options. 321

To illustrate the process clearly, take a simplified 322

toy example. Consider a user aiming to create a 323

PowerPoint presentation about the year’s most pop- 324

ular movie. This task requires four tools: Tool 0 325

for creating the presentation, Tool 1 for retrieving 326

the popular movie ranking, Tool 2 for gathering 327

detailed movie information, and Tool 3 for trans- 328

forming this information into slides, labeled as [0], 329

[1], [2], and [3] respectively. 330

Analysis shows [2] needs parameters from [1], 331

and [3] depends on parameters from [0] and [2]. 332

Figure 4 shows this dependency.Figure 5 a) shows 333

the initial decision tree based on tool dependencies. 334

Here, [0, 1] means tools [0] and [1] are called in 335

parallel. This tree reveals five candidate paths to 336

complete the task with three to four tool calls. 337

When the agent calls Tool [1] in the first step, 338

check if this action is among the first-step candi- 339

date actions. Then, prune the sub-decision trees 340

related to operations [0] and [0,1], getting an up- 341

dated decision tree as in Figure 5 b). In the second 342

step, when the agent calls Tool [0], confirm the ac- 343

tion’s correctness and prune the sub-decision trees 344

for candidate actions [0] and [0,2] in the second 345

layer, as in Figure 5 c). At this point, only one 346

5

Figure 5: Visualization of the dynamic decision tree during evaluation.

candidate path remains, and verify its correctness347

by sequential path matching.348

Additionally, we calculate two metrics. Success349

rate: percentage of valid paths completed. Optimal-350

ity rate: percentage of paths that match minimal351

tool invocations. Appendix C provides formal al-352

gorithm specifications.353

6 Experiments354

The Multi-Mission Tool Bench consists of 1,024355

test entries, each containing one to four missions.356

We divide the test set into four subsets based on the357

number of missions, with each subset containing358

256 entries.359

We evaluated 24 state-of-the-art models on the360

test set, including closed-source general mod-361

els, open-source general models, and special-362

ized models. Specifically, the closed-source gen-363

eral models are: o1-2024-12-17(OpenAI), GPT-364

4o-2024-11-20(Achiam et al., 2023), Gemini-365

1.5-Pro-002(Team et al., 2024), Mistral-Large-366

2411(Mistral), and doubao-1.5-pro-32k(Doubao).367

The open-source general models include: Qwen2.5-368

Instruction-Series(Yang et al., 2024), GLM-4-369

9B-Chat(GLM et al., 2024), DeepSeek-R1(Guo370

et al., 2025), DeepSeek-V3(Liu et al., 2024a),371

and Llama-3.3-70B-Instruct(Dubey et al., 2024).372

The specialized models are: Toolace (Liu373

et al., 2024b), Hammer2.1-Series(Lin et al.,374

2024), watt-tool-8b(Shi et al., 2024), xLAM-7b-fc-375

r(Zhang et al., 2024a), and gorilla-openfunctions-376

v2(Charlie Cheng-Jie Ji, a). Model sizes range377

from several hundred billions to 70b, 30b, and the378

smallest at 0.5b.379

This section details the test results and analy-380

sis. Subsection 6.1 shows the overall performances.381

Subsection 6.2 analyzes effects of the number of382

missions, mission action-types, and mission switch-383

ing. Subsection 6.3 explores the impact of inter-384

mission relationship types. Further error analysis 385

is detailed in Appendix D. 386

6.1 Overview 387

This subsection analyzes the accuracy of models 388

on the whole dataset, with Figure 6 showing the 389

accuracy of 15 models. The models are arranged 390

from low to high accuracy, with different colored 391

dots indicating model types and varying dot sizes 392

representing model sizes. 393

From the analysis of Figure 6, we draw the fol- 394

lowing conclusions. The o1 model, with strong 395

reasoning capabilities, shows a significant accuracy 396

advantage. Open-source models, such as Qwen- 397

72b, are narrowing the gap with the top close- 398

source models. General models like DeepSeek- 399

V3 and doubao-1.5-pro perform well in other mis- 400

sions but have a clear weakness in tool utilization. 401

Notably, small specialized models like ToolACE 402

achieve comparable performance to large-scale gen- 403

eral models. 404

Figure 7 illustrates the performance of different 405

scale models in the Qwen2.5-Instruction-Series and 406

Hammer2.1-Series. As shown, there is a positive 407

correlation between model scale and accuracy. In- 408

terestingly, specialized models experience a faster 409

decline in accuracy. To explain this phenomenon, 410

more research is needed. 411

6.2 Impact of Mission Switching 412

This study examines the impact of mission quan- 413

tity, mission-type, and mission transition on agent 414

robustness. 415

Seven models with better overall performance 416

were selected for detailed analysis, including four 417

general models and three specialized models. Fig- 418

ure 8 presents the performance of these models in 419

various subsets of mission quantities. The results 420

indicate that specialized models perform compa- 421

rably to stronger general models on single mis- 422

6

Figure 6: Overall accuracy of agents on the whole benchmark.

Figure 7: The performance of two series agents.

Figure 8: The impact of various mission number on the
agents.

sions but experience a rapid decline in accuracy423

in multi-mission scenarios. This confirms our hy-424

pothesis that current research overlooks the influ-425

ence of multi-mission. Furthermore, even the most426

advanced o1 model demonstrates a noticeable de-427

crease in capability when handling multiple mis-428

sions.429

We further analyze the performance of the seven430

models across different action-type combinations.431

Following the structure of Figure 2 b), in Figure 9, 432

we visualize the models’ performance in the action- 433

type space with heatmaps. Each heatmap pyramid 434

represents a model’s performance, with each layer 435

corresponding to a sub-testset and its action-type 436

combinations. Deeper colors signify higher accu- 437

racy. Greater color contrast within the same layer, 438

with a larger proportion of lighter areas, indicates 439

poorer robustness of the model. The findings reveal 440

that the best performing o1 model also exhibits the 441

highest robustness. In contrast, the three special- 442

ized models show less stability than the general 443

models. 444

6.3 Impact of Mission Types 445

Moreover, we divide the test set by mission action- 446

type and analyze the performance of all models, 447

as shown in Table 2. The heatmap reveals several 448

observations: models exhibit varying strengths and 449

weaknesses across different action-types. For in- 450

stance, most models struggle to determine whether 451

the necessary parameters are missing(Aclarity). Al- 452

though many models have the ability to handle 453

Amulti missions, they still face challenges in han- 454

dling complex scenarios such as tackling AS
multi 455

and AS+P
multi missions. 456

For multi-tool invocation, we introduce two new 457

metrics, with results displayed on the far right of 458

Table 2. The first is the optimal path rate, where the 459

general models perform notably well. Additionally, 460

instead of using hard labels to indicate mission 461

success, we propose accomplished progress metric 462

to assess model capability. 463

7

Figure 9: Visualization of the robustness of agents in the mission switching space.

Agent Asingle Achat Aclarity AP
multi AS

multi AS+P
multi

Optimal
Path Rate

Accomplished
Progress

o1-2024-12-17† 63.28 91.41 45.70 50.32 12.50 19.05 30.15 39.42
GPT-4o-2024-11-20 † 54.69 74.61 35.94 51.59 18.75 23.81 45.56 41.08
Gemini-1.5-Pro-002† 49.61 77.73 35.94 37.58 6.25 8.33 16.58 26.14
Qwen2.5-72b-Instruct‡ 56.25 74.61 27.34 45.22 18.75 7.14 19.43 30.29
ToolACE-8B⋆ 43.75 87.11 22.66 35.67 0.00 3.57 9.55 24.07
Mistral-Large-2411† 57.03 55.86 31.64 41.40 12.50 16.67 37.69 29.88
Hammer2.1-7b⋆ 28.13 91.27 31.25 28.03 6.25 3.57 9.72 19.67
watt-tool-8b⋆ 40.63 91.80 23.05 29.94 0.00 0.00 8.38 19.50
GLM-4-9B-Chat‡ 30.08 89.84 10.16 12.10 12.50 0.00 12.23 0.00
DeepSeek-R1‡ 27.50 68.27 13.39 44.19 33.33 6.06 39.17 33.61
doubao-1.5-pro-32k† 60.16 25.78 5.86 36.94 18.75 9.52 38.53 5.39
xLAM-7b-fc-r⋆ 14.45 86.33 5.08 7.64 0.00 1.19 9.55 4.56
gorilla-openfunctions-v2⋆ 2.34 90.63 4.30 5.73 0.00 0.00 4.86 3.73
DeepSeek-V3‡ 22.09 41.58 7.51 4.81 0.00 4.55 24.13 4.05
Llama-3.3-70B-Instruct‡ 29.30 19.92 0.00 0.64 0.00 0.00 12.40 0.00

Table 2: The performance of agents in various type of missions, and the quantitative evaluation results on Amulti

missions. Here, † and ‡ represent close-source and open-source general model, ⋆ represents specific model.

6.4 Impact of Related Mission464

This subsection examines how mission relation-465

ship types affect agent performance. As men-466

tioned, all subsequent missions in our benchmark467

are closely relate to preceding missions, and we468

have abstracted three types of mission relation-469

ships.470

Table 3 presents the accuracy of all models in471

the three types of mission relationship. Long-term472

memory has the most significant impact on model473

performance, followed by the absence of core com-474

ponents in the problem(ellipsis).475

7 Conclusion476

This paper introduces a novel multi-mission bench-477

mark to evaluate the robustness of LLM-based478

agents. Evaluations reveal that current agents ex-479

hibit varying degrees of limitations when address-480

ing multi-mission scenarios. Notably, while spe-481

cialized agents achieve comparable overall accu-482

racy and single-mission performance to general483

Agent Implicit Ellipsis Long-Term
o1-2024-12-17† 57.31 54.17 43.58
GPT-4o-2024-11-20† 42.69 52.92 34.64
Gemini-1.5-Pro-002† 46.99 42.08 31.84
Qwen2.5-72b-Instruct‡ 40.11 47.08 28.49
ToolACE-8B⋆ 38.68 35.83 27.93
Mistral-Large-2411† 35.24 39.17 30.17
Hammer2.1-7b⋆ 43.55 34.58 27.93
watt-tool-8b⋆ 40.97 32.92 26.26
GLM-4-9B-Chat‡ 35.82 26.25 21.23
DeepSeek-R1‡ 30.06 32.28 18.67
doubao-1.5-pro-32k† 25.79 28.33 22.91
xLAM-7b-fc-r⋆ 30.37 22.92 19.55
gorilla-openfunctions-v2⋆ 29.80 21.67 16.20
DeepSeek-V3‡ 17.28 18.07 13.39
Llama-3.3-70B-Instruct‡ 9.17 13.33 11.17

Table 3: The impact of mission relation types on agent
performance.

agents, a significant robustness gap emerges in 484

multi-mission contexts. Moreover, all agents strug- 485

gle with complex multi-tool invocation missions 486

and have shortcomings in related mission handling. 487

We believe that these findings offer valuable in- 488

sights for guiding future research on the develop- 489

ment of LLM-agents. 490

8

Limitations491

In evaluating LLM-based agents from a multi-492

mission perspective, we identify specific limita-493

tions in both mission duration and the data genera-494

tion framework.495

Firstly, our study aims to enhance the diversity496

of test data in terms of mission variation, yet the497

diversity in the number of missions remains lim-498

ited. Specifically, our test data comprises up to four499

missions. This limitation arises because the mis-500

sion switching space expands exponentially with501

an increase in the number of missions, leading to a502

rapid enlargement of the test set size and additional503

workload. Moreover, we observe a swift decline in504

the precision of the model’s output as the number505

of missions increases, indicating that there is no im-506

mediate need to explore the model’s performance507

across a larger number of missions.508

Secondly, the proposed data generation frame-509

work employs multiple iterations and human inter-510

vention to ensure the quality of multi-turn dialogue511

production. This approach suffers the limitations512

of LLMs in accurately following instructions.513

In summary, these limitations emphasize the514

need for ongoing development in the field of LLM515

based evaluations.516

References517

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama518
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,519
Diogo Almeida, Janko Altenschmidt, Sam Altman,520
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.521
arXiv preprint.522

Fanjia Yan Shishir G. Patil Tianjun Zhang Ion Sto-523
ica Joseph E. Gonzalez Charlie Cheng-Jie Ji,524
Huanzhi Mao. a. Gorilla bfvl v3. https://gorilla.525
cs.berkeley.edu/leaderboard.html. Accessed:526
2025-01-17.527

Fanjia Yan Shishir G. Patil Tianjun Zhang Ion528
Stoica Joseph E. Gonzalez Charlie Cheng-Jie Ji,529
Huanzhi Mao. b. Gorilla openfunctions v2.530
https://gorilla.cs.berkeley.edu//blogs/7_531
open_functions_v2.html. Accessed: 2025-01-17.532

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun533
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,534
Songyang Zhang, Dahua Lin, Kai Chen, et al. 2024.535
t-eval: Evaluating the tool utilization capability of536
large language models step by step. Annual Meet-537
ing of the Association for Computational Linguistics,538
pages 9510–9529.539

Doubao. Doubao 1.5pro. https://team.doubao.540
com/zh/special/doubao_1_5_pro. Accessed:541
2025-02-14.542

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. Any- 543
tool: Self-reflective, hierarchical agents for large- 544
scale api calls. International Conference on Machine 545
Learning. 546

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 547
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 548
Akhil Mathur, Alan Schelten, Amy Yang, Angela 549
Fan, et al. 2024. The llama 3 herd of models. arXiv 550
preprint arXiv:2407.21783. 551

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 552
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu 553
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family 554
of large language models from glm-130b to glm-4 all 555
tools. arXiv preprint. 556

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 557
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 558
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 559
centivizing reasoning capability in llms via reinforce- 560
ment learning. arXiv preprint arXiv:2501.12948. 561

Zishan Guo, Yufei Huang, and Deyi Xiong. 2024. Ctool- 562
eval: A chinese benchmark for llm-powered agent 563
evaluation in real-world api interactions. Annual 564
Meeting of the Association for Computational Lin- 565
guistics, pages 15711–15724. 566

Senyu Han, Lu Chen, Li-Min Lin, Zhengshan Xu, and 567
Kai Yu. 2024. Ibsen: Director-actor agent collabo- 568
ration for controllable and interactive drama script 569
generation. Annual Meeting of the Association for 570
Computational Linguistics. 571

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji- 572
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng, 573
Yasheng Wang, Lifeng Shang, et al. 2024a. Planning, 574
creation, usage: Benchmarking llms for comprehen- 575
sive tool utilization in real-world complex scenarios. 576
arXiv preprint. 577

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 578
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 579
Neil Zhenqiang Gong, et al. 2024b. Metatool bench- 580
mark for large language models: Deciding whether to 581
use tools and which to use. International Conference 582
on Learning Representations. 583

Md Ashraful Islam, Mohammed Eunus Ali, and 584
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent 585
code generation for competitive problem solving. An- 586
nual Meeting of the Association for Computational 587
Linguistics. 588

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, 589
Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony 590
Lee, Li Erran Li, Ruohan Zhang, et al. 2024. Embod- 591
ied agent interface: Benchmarking llms for embodied 592
decision making. Conference on Neural Information 593
Processing Systems. 594

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 595
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 596
and Yongbin Li. 2023. Api-bank: A comprehensive 597
benchmark for tool-augmented llms. Proceedings 598

9

https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://team.doubao.com/zh/special/doubao_1_5_pro
https://team.doubao.com/zh/special/doubao_1_5_pro
https://team.doubao.com/zh/special/doubao_1_5_pro

of the 2023 Conference on Empirical Methods in599
Natural Language Processing, pages 3102–3116.600

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie,601
Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu Zhou,602
Cheng Cheng, Yin Zhao, et al. 2024. Hammer: Ro-603
bust function-calling for on-device language models604
via function masking. arXiv preprint.605

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,606
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi607
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.608
Deepseek-v3 technical report. arXiv preprint609
arXiv:2412.19437.610

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,611
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,612
Zhengying Liu, Yuanqing Yu, et al. 2024b. Toolace:613
Winning the points of llm function calling. arXiv614
preprint.615

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu616
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen617
Men, Kejuan Yang, et al. 2024c. Agentbench: Eval-618
uating llms as agents. International Conference on619
Learning Representations.620

meetkai. functionary-meetkai. https:621
//functionary.meetkai.com/. Accessed:622
2025-01-17.623

Mistral. Au large. https://mistral.ai/en/news/624
mistral-large. Accessed: 2025-02-14.625

OpenAI. o1 and o1-mini. https://platform.626
openai.com/docs/models#o1. Accessed: 2025-02-627
14.628

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E629
Gonzalez. 2023. Gorilla: Large language model630
connected with massive apis. arXiv preprint.631

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin632
Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie, Fei633
Huang, and Huajun Chen. 2024a. Benchmarking634
agentic workflow generation. arXiv preprint.635

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,636
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei637
Lv, and Huajun Chen. 2024b. Autoact: Automatic638
agent learning from scratch via self-planning. An-639
nual Meeting of the Association for Computational640
Linguistics.641

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan642
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,643
Bill Qian, et al. 2024. Toolllm: Facilitating large644
language models to master 16000+ real-world apis.645
International Conference on Learning Representa-646
tions.647

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta648
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-649
moyer, Nicola Cancedda, and Thomas Scialom. 2023.650
Toolformer: Language models can teach themselves651
to use tools. Advances in Neural Information Pro-652
cessing Systems, 36:68539–68551.653

Haiyang Shen, Yue Li, Desong Meng, Dongqi Cai, 654
Sheng Qi, Li Zhang, Mengwei Xu, and Yun Ma. 655
2024a. Shortcutsbench: A large-scale real-world 656
benchmark for api-based agents. arXiv preprint. 657

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, 658
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li, 659
and Yueting Zhuang. 2024b. Taskbench: Benchmark- 660
ing large language models for task automation. In- 661
ternational Conference on Learning Representations 662
Workshop on Large Language Model (LLM) Agents. 663

Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang, 664
and Fuli Feng. 2024. Direct multi-turn preference 665
optimization for language agents. Proceedings of the 666
2024 Conference on Empirical Methods in Natural 667
Language Processing, pages 2312–2324. 668

Alkesh K Srivastava and Philip Dames. 2024. Speech- 669
guided sequential planning for autonomous naviga- 670
tion using large language model meta ai 3 (llama3). 671
arXiv preprint. 672

Xingwu Sun, Yanfeng Chen, Yiqing Huang, Ruobing 673
Xie, Jiaqi Zhu, Kai Zhang, Shuaipeng Li, Zhen Yang, 674
Jonny Han, Xiaobo Shu, et al. 2024. Hunyuan-large: 675
An open-source moe model with 52 billion activated 676
parameters by tencent. arXiv preprint. 677

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, 678
Qiao Liang, Boxi Cao, and Le Sun. 2023. Toolalpaca: 679
Generalized tool learning for language models with 680
3000 simulated cases. arXiv preprint. 681

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan 682
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, 683
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. 684
2024. Gemini 1.5: Unlocking multimodal under- 685
standing across millions of tokens of context. arXiv 686
preprint. 687

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin 688
Manku, Vinty Dong, Edward Li, Shashank Gupta, 689
Ashish Sabharwal, and Niranjan Balasubramanian. 690
2024. Appworld: A controllable world of apps and 691
people for benchmarking interactive coding agents. 692
Annual Meeting of the Association for Computational 693
Linguistics, pages 16022–16076. 694

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze 695
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024. 696
Travelplanner: A benchmark for real-world planning 697
with language agents. International Conference on 698
Machine Learning. 699

Heng-Da Xu, Xian-Ling Mao, Puhai Yang, Fanshu Sun, 700
and He-Yan Huang. 2024. Rethinking task-oriented 701
dialogue systems: From complex modularity to zero- 702
shot autonomous agent. Annual Meeting of the Asso- 703
ciation for Computational Linguistics, pages 2748– 704
2763. 705

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 706
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 707
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 708
nical report. arXiv preprint. 709

10

https://functionary.meetkai.com/
https://functionary.meetkai.com/
https://functionary.meetkai.com/
https://mistral.ai/en/news/mistral-large
https://mistral.ai/en/news/mistral-large
https://mistral.ai/en/news/mistral-large
https://platform.openai.com/docs/models#o1
https://platform.openai.com/docs/models#o1
https://platform.openai.com/docs/models#o1

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik710
Narasimhan. 2024. t-bench: A benchmark for tool-711
agent-user interaction in real-world domains. arXiv712
preprint.713

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,714
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,715
Qi Zhang, Tao Gui, et al. 2024. Tooleyes: Fine-716
grained evaluation for tool learning capabilities of717
large language models in real-world scenarios. arXiv718
preprint.719

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai720
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,721
Akshara Prabhakar, Haolin Chen, et al. 2024a. xlam:722
A family of large action models to empower ai agent723
systems. arXiv preprint.724

Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang,725
Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,726
Yueting Zhuang, and Weiming Lu. 2024b. Agent-727
pro: Learning to evolve via policy-level reflection728
and optimization. Annual Meeting of the Association729
for Computational Linguistics.730

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and731
Chao Zhang. 2023. Toolqa: A dataset for llm ques-732
tion answering with external tools. Conference on733
Neural Information Processing Systems, 36:50117–734
50143.735

A Diverse Toolset Construction736

We generate the toolset based on tool descriptions737

from public-apis, following the ToolAlpaca ap-738

proch. This API repository contains 400 tool lists,739

corresponding to 1600 tools in 50 categories.740

In contrast to ToolAlpaca, our approach includes741

three strategies to enhance tool accuracy and pa-742

rameter variety. Initially, we utilize LLMs like GPT743

to refine tool descriptions, addressing the common744

issue of the absence of constraint parameters in745

generated tools. For instance, a tool description for746

querying Spanish weather does not mention Spain747

in any of its three specific functions, leading to748

the generated tool cannot validate the query loca-749

tion. Second, we expand parameter types to include750

complex data structures such as enumerations, ar-751

rays, and objects, aligning better with real-world752

scenarios. Finally, five LLM agent experts review753

the generated tools. These steps ensure the tools’754

accuracy and parameter diversity.755

B Analysis of the Test Data756

Figure 10, 11 and 12 present the proposed dataset757

from the following three perspectives.758

Figure 10: Category distribution of tools.

Figure 11: Distribution of action-types.

B.1 Data Examples 759

We present two more examples of mission execu- 760

tion corresponding to the examples in Section 5. 761

Figure 13 illustrates the execution of the optimal 762

path, while Figure 14 shows a non-optimal path 763

execution. 764

C Details of Proposed Evaluation Method 765

1. Initialize graph G, indegree table, visitation table, 766

current path, and all paths. 767

2. Perform topological sorting and depth-first 768

traversal based on parallel combination and permu- 769

tation. 770

2.1 For each search, find all nodes with an in- 771

degree of 0 and arrange all possible combinations 772

based on the number of nodes. Specifically, since 773

nodes with an indegree of 0 are independent, they 774

can be combined arbitrarily. When the number of 775

nodes in a combination is greater than 1, it indi- 776

cates that these nodes can be called in parallel. It 777

is this method that allows our algorithm to enu- 778

merate all possible paths, including parallel and 779

serial-parallel calls, as opposed to being limited 780

to serial calls only, compared to naive topological 781

sorting. 782

2.2 Traverse each combination, add the combi- 783

nation to the current path, and update the indegree 784

and visitation tables. 785

2.3 Continue with depth-first traversal until the 786

number of nodes in the path matches the number 787

11

Figure 12: Distribution of three mission relationship
types.

of nodes in the annotated answer, completing the788

generation of one path, and add it to all paths.789

2.4 Repeat the above steps until the traversal is790

complete.791

3. Based on the path length, divide into the792

optimal path and the suboptimal path.793

D Further Analysis of Agent Performance794

In addition to the analytical perspectives mentioned795

in the main text, we analyze the error types of the796

agents.797

We categorize errors into tool errors and parame-798

ter errors. Specifically, we further divide parameter799

errors into parameter name hallucinations, parame-800

ter value hallucinations, and parameter value errors.801

Table 4 lists these error classifications. Stronger802

agents show a relatively lower proportion of tool803

errors. Although parameter name hallucinations oc-804

cur less frequently, they are serious and widespread.805

The most common parameter error occurs when the806

agent extracts parameter values.807

Table 4: The distribution of agent errors. Here, ‘Hallu.’
is short for hallucination.

Agent Tool
Errors

Parameter Errors
Name
Hallu.

Value
Hallu.

Value
Err

o1-2024-12-17 83.33 0.24 5.07 11.36
GPT-4o-2024-11-20 75.87 0.20 8.05 15.49
Gemini-1.5-Pro-002 85.15 0.19 3.34 11.32
Qwen2.5-72b-Instruct 80.90 0.37 6.31 12.43
ToolACE-8B 90.56 0.17 1.75 7.52
Mistral-Large-2411 78.19 0.35 6.46 15.01
watt-tool-8b 90.68 0.17 3.63 5.53
GLM-4-9B-Chat 92.99 0.15 2.99 3.88
DeepSeek-R1 95.77 0.00 2.11 2.11
doubao-1.5-pro-32k 82.35 0.28 10.69 6.67
xLAM-7b-fc-r 96.36 0.27 1.35 1.89
gorilla-openfunctions-v2 98.83 0.00 0.26 0.90
DeepSeek-V3 96.57 0.00 0.90 2.53
Llama-3.3-70B-Instruct 90.53 0.33 2.45 6.69

E Part Roles Prompt of Agents 808

E.1 Role Prompt of Mission Generation 809

We show the role prompt of single mission genera- 810

tion in Figure 15. 811

E.2 Role Prompt of Planner 812

We show the role prompt of Planner in Figures 16, 813

17, 18, 19, 20, 21 and 22. 814

E.3 Role Prompt of Tool 815

We show the role prompt of Tool in Figures 23. 816

E.4 Role Prompt of AI 817

We show the role prompt of AI in Figures 24. 818

12

Figure 13: An Optimal Path Example.

Figure 14: A Suboptimal Path Example.

13

Single Tool Invocation Mission Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to solve
the missions you propose.

Next, please propose 5 missions that you need the super intelligent agent to solve based on the

All 5 missions must require the use of {{{tool}}} from the [Tool List] to be completed, and each
mission should only require a single call to {{{tool}}}.

The missions should be specific and diverse.

Finally, please output the final result according to the [Format] without generating any extra text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional parame-
ters are: {{{tool_no_required}}}.

[Requirements]="""
1. The description of the user’s mission must include information on all the required parameters
needed to call {{{tool}}}. For other optional parameters, please add them as you see fit, using
natural language.
2. The user’s missions should use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. The user’s missions should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s missions varies, gradually increasing from short to long.
5. Ensure that the user’s missions involve different themes/instances, different scenarios, and
different roles.
6. Extract common entities that appear in all descriptions from the [Tool List] and ensure that these
entities appear in the user’s missions.
7. Do not explicitly specify the tool {{{tool}}} in the user’s missions.
"""

[Tool List]="""
{{{tool}}}
"""

[Format]="""
{

"mission 1": "xxx",
"mission 2": "xxx",
"mission 3": "xxx",
"mission 4": "xxx",
"mission 5": "xxx",

}
"""

Figure 15: Single Tool Invocation Mission Generation Prompt.

14

Planner Decision Generation Prompt Part-1.

Please act as a Planner within a super intelligent agent.

You have access to a series of external tools, and you can solve user missions by invoking these
external tools, as detailed in the [Tool List].

You are responsible for assessing the completion status of the current user mission and providing
thoughts, plans, and actions to be executed.

If the Checker_Planner indicates ‘no’ for correct, it means there is an issue with the decision you
made in the previous round. In this case, you should regenerate your decision based on the analysis
provided by the Checker_Planner.

However, please be mindful not to include explanations of previously generated incorrect results in
your Thoughts!

In your Plan, be sure not to mention the use of the prepare_to_answer tool and the
ask_user_for_required_parameters tool. Instead, describe these actions in natural language, as the
prepare_to_answer and ask_user_for_required_parameters tools are not to be exposed.

Refer to the [Planner Output Format] for the output format.

[Environmental Information]="""
{{{env_info}}}
"""

Figure 16: Planner Decision Generation Prompt Part-1.

15

Planner Decision Generation Prompt Part-2.

[Planner Output Format]="""
Planner:
{

"Mission_Finish": "Whether the user mission is completed, fill in ‘yes’ if completed, ‘no’ if
not completed",

"Thought": "Based on the [Requirements] and [Environmental Information], follow the steps
below to give the internal thought process when solving the user mission. You must provide an
analysis of the required and optional parameters for each tool that needs to be called.

First step, decompose the mission, first analyze whether a tool needs to be called to complete
it, and whether there is a suitable tool in the [Tool List].

If a tool needs to be called, which tool(s) should be used to complete the user mission, whether
one or multiple tools should be called.

If multiple tools are involved, please provide an analysis of the serial and parallel nature of
multiple tools.

Second step, provide an analysis of the required and optional parameters for the first tool that
needs to be called (now), in the following order.

1. First, list the required and optional parameters for each tool that needs to be called.
2. Based on the context and user mission, analyze the required parameters, check which

information for each tool’s required parameters is provided, and explain which are provided and
which are missing to ask the user.

3. Finally, analyze the optional parameters. If the user has provided information for optional
parameters, briefly explain the situation; otherwise, there is no need to explain.

Note:
1. The analysis process should not be too lengthy; it needs to be concise and clear.
2. Do not have too much redundant content that is repetitive of the Plan.",
"Plan": "Based on the [Requirements], [Environmental Information], Thought, context, and

user mission, provide a planning scheme.
Note:
1. When involving multiple tool calls, provide the overall plan and the plan for the first action

during the first Plan, and provide the plan for the current step in subsequent dialogues.
2. The Plan is a general explanation of the Thought. The Plan does not need to set the values

of the tool parameters; it only needs to explain which tools should be called to complete what
missions, only the purpose of calling the tools.

3. The format of the Plan needs to be consistent with the example given in the [Requirements].
4. Do not have too much redundant content that is repetitive of the Thought.",
"Action_List": [

{
"name": "Based on the [Requirements], provide the action to be taken, i.e., the

selected tool name",
"arguments": "Based on the [Requirements], [Environmental Information], and

[Tool List], provide the input parameters for the action to be taken, i.e., the tool’s input parameters.
Note: 1. Optional parameters not specified by the user do not need to be provided. 2. Use the
JSON format in terms of format, use a dictionary object, do not use strings, and there is no need to
provide comments for the parameters",

"tool_call_purpose": "The purpose of the tool call"
}

]
}
"""

Figure 17: Planner Decision Generation Prompt Part-2.
16

Planner Decision Generation Prompt Part-3.

[Requirements]="""
*** Special Attention ***
1. When making a decision, please ensure that the tool you invoke from the [Tool List] is suitable
for solving the user’s mission based on the definition of the tools in the list. Do not force the use of
inappropriate tools to solve the user’s mission; instead, call the appropriate tool from the [Tool
List] according to the user’s mission.

2. Ensure that the Action_List you provide does not contradict the Plan you have set out. The
order of tools in the given Action_List should be consistent with the sequence planned in the Plan.

3. For optional parameters, you only need to fill them in if the user has provided a value that is
different from the default or if there is no default value. Otherwise, there is no need to include
them in the arguments.

*** The prepare_to_answer tool needs to be called in the following two scenarios: ***
1. If you believe that the user’s mission can be completed, then call the prepare_to_answer tool to
provide a summary response, with the answer_type parameter set to ‘tool’.

2. If you believe that the user’s mission does not require the use of any tools from the [Tool List]
or that there is no suitable tool to solve the user’s mission and it can be answered directly, then call
the prepare_to_answer tool, with the answer_type parameter set to ‘chat’.

Note:
1) The absence of a suitable tool in the [Tool List] to solve the user’s mission does not mean
that you lack the ability to answer. Please respond based on the context information and the
knowledge you possess. Do not excessively refuse to answer, nor imagine knowledge you do not
have. Only refuse to answer when you cannot respond based on the context information and your
own knowledge.

2) The absence of a suitable tool in the [Tool List] to solve the user’s mission also includes the
following situation:

First, analyze the common entities that appear in each tool. For example, some tools can only
query data related to a certain entity A. If the user asks about entity B, it also means that there is
no suitable tool.

For instance:
- If the tools in the [Tool List] can only query and analyze population data for Denmark, and the
user asks for population data for Sweden, then you should also call the prepare_to_answer tool.

- If the tools in the [Tool List] can only query weather data for China, including current and
historical weather, and the user asks for weather data for the United States, then you should also
call the prepare_to_answer tool.

Figure 18: Planner Decision Generation Prompt Part-3.

17

Planner Decision Generation Prompt Part-4.

*** There are four scenarios in which the ask_user_for_required_parameters tool needs to be
invoked: ***
1. If you believe that a user’s mission requires the use of a tool from the [Tool List], but the user’s
mission is missing some required parameters from the tool, and the user needs to provide the
necessary information, then invoke the ask_user_for_required_parameters tool. Please do not
hallucinate parameters.

2. Please note that you are unable to deduce the values of some tool parameters on your own
and will need to invoke the ask_user_for_required_parameters tool to ask the user. Please do not
hallucinate parameters.

For example:
1) For the timestamp parameter, you do not have the ability to deduce the timestamp based
on time. However, you can deduce other time-related parameters (start_time, end_time,
etc.) on your own based on [Environmental Information], without needing to invoke the
ask_user_for_required_parameters tool.
2) For ID-type parameters (station_id, product_id, etc.), you do not have the ability to deduce the
corresponding ID based on the name.

3. Based on the context of the conversation, if you have already asked the user once to provide the
necessary information but the user still has not provided all the required parameters, then please
continue to invoke the ask_user_for_required_parameters tool.

4. If the user provides incomplete parameter values, such as the tool parameter being an IP address
(ip_address), but the user provides an incomplete IP address (e.g., 192.22), please continue to use
the ask_user_for_required_parameters tool to ask the user for the complete IP address.

Finally, if you confirm the need to invoke the ask_user_for_required_parameters tool, provide the
inquiry plan in the format: "Ask the user to provide xxx, in order to invoke the xxx tool to xxx" in
the Plan.

Figure 19: Planner Decision Generation Prompt Part-4.

18

Planner Decision Generation Prompt Part-5.

*** There are eight scenarios in which multiple tools need to be invoked: ***
If a user mission involves invoking multiple tools, please first analyze the dependency relation-
ships between the multiple invocation tools. For tools that do not have invocation dependencies,
perform concurrent invocations, and for tools that do have invocation dependencies, perform serial
invocations. Specifically, you can handle each of the following eight scenarios separately:

Concurrent invocation scenarios:

1. If you determine that the user mission requires multiple invocations of the same tool A, but
with different parameters for each invocation of tool A, then please invoke tool A concurrently and
provide the concurrent invocation plan in the Plan in the format: "Concurrently invoke tool A N
times for xxx."

2. If you determine that the user mission requires the invocation of different tools, such as tools
A and B, and there is no dependency between tool A and B, then please invoke tools A and B
concurrently, and provide the concurrent invocation plan in the Plan in the format: "Concurrently
invoke tool A for xxx, while invoking tool B for xxx."

Serial invocation scenarios:

3. If you determine that the user mission requires the invocation of different tools, such as tools A,
B, and C, and there are dependencies between these tools, then please invoke tools A, B, and C
serially, and provide the serial invocation plan in the Plan in the format: "First, invoke tool A for
xxx. Then, invoke tool B for xxx. Next, invoke tool C for xxx. Now, I will invoke tool A for xxx."

Serial invocation has the following two dependency scenarios:

3.1. Parameter dependency: For example, before invoking tool C, it is necessary to first invoke
tool B to obtain the result as an input parameter, and before invoking tool B, it is necessary to first
invoke tool A to obtain the result as an input parameter. Therefore, you need to first complete the
invocation of tool A to obtain the result, use it as the input parameter for invoking tool B, and
after obtaining the result from tool B, use it as the input parameter for invoking tool C, i.e., please
invoke tools A, B, and C serially.

3.2. Logical dependency: Even if there is no parameter dependency between the invocation of
tools A, B, and C, but there is a logical dependency, such as logically needing to invoke tool B
before tool C, and tool A before tool B, then please also invoke tools A, B, and C serially.

Figure 20: Planner Decision Prompt Generation Part-5.

19

Planner Decision Generation Prompt Part-6.

Combined serial and concurrent invocation scenarios:

4. If you determine that the user mission requires the invocation of different tools, such as tools
A, B, and C, and tool C depends on the invocation of tools A and B, but there is no dependency
between tools A and B, then please invoke tools A and B concurrently, followed by the serial
invocation of tool C, and provide the combined serial and concurrent invocation plan in the Plan in
the format: "Concurrently invoke tools A and B for xxx and xxx, respectively. Then, invoke tool C
for xxx. Now, I will concurrently invoke tools A and B for xxx and xxx."

5. If you determine that the user mission requires the invocation of different tools, such as tools A,
B, and C, and tools B and C depend on the invocation of tool A, but there is no dependency between
tools B and C, then please first invoke tool A serially, followed by the concurrent invocation of
tools B and C, and provide the combined serial and concurrent invocation plan in the Plan in the
format: "First, invoke tool A for xxx. Then, concurrently invoke tools B and C for xxx and xxx,
respectively. Now, I will invoke tool A for xxx."

6. If you determine that the user mission requires the invocation of different tools, such as tools A
and B, and there is a dependency between tools A and B, and tool A needs to be invoked multiple
times, then please first invoke tool A concurrently multiple times, followed by the serial invocation
of tool B, and provide the combined serial and concurrent invocation plan in the Plan in the format:
"First, concurrently invoke tool A N times for xxx. Then, invoke tool B for xxx. Now, I will
concurrently invoke tool A N times for xxx."

7. If you determine that the user mission requires the invocation of different tools, such as tools A
and B, and there is a dependency between tools A and B, and tool B needs to be invoked multiple
times, then please first invoke tool A serially, followed by the concurrent invocation of tool B
multiple times, and provide the combined serial and concurrent invocation plan in the Plan in the
format: "First, invoke tool A for xxx. Then, concurrently invoke tool B N times for xxx. Now, I
will invoke tool A for xxx."

Special scenarios:

8. The tools prepare_to_answer and ask_user_for_required_parameters cannot be invoked concur-
rently with other tools and need to be invoked serially.

Figure 21: Planner Decision Generation Prompt Part-6.

20

Planner Decision Generation Prompt Part-7.

Please also note:

1. The dependency relationship between tool invocations refers to the necessity of completing the
call to Tool A before running the call to Tool B.

2. For multiple invocations of the same tool, it is necessary to carefully analyze the dependency
relationship of each call, noting that even two calls to the same tool may be interdependent.

3. If you state in your Thought and Plan that tools need to be called in sequence, then the number
of tools to be called in your given Action_List cannot exceed one, otherwise, there will be a logical
contradiction!

4. If you cannot ensure that parallel calls to multiple tools A, B, C will not have parameter
dependencies and logical dependencies, then please call multiple tools A, B, C in sequence!

*** Special Circumstances ***

In the following three cases, there is no need to call the ask_user_for_required_parameters tool:

1. If a tool’s parameter is a country’s ISO code, and the user’s mission mentions a specific country,
such as China, you can directly deduce China’s ISO code and fill it in.

2. If a tool’s parameter is a longitude or latitude value, and the user’s mission mentions a specific
location, such as Beijing, you can directly deduce the approximate longitude and latitude values
for Beijing and fill them in.

3. If a tool’s parameter is a time-related parameter (such as start_time, end_time, or other
parameters that include year, month, and day) and not a timestamp type, you can deduce it based
on the current time in the [Environmental Information] and fill it in. At the same time, you need to
explain in your Thought how you deduced the value of the time-related parameter based on the
current time.

*** Other Notes: ***

1. Be sure not to provide comments for parameters, as providing parameter comments will cause
JSON to fail to parse.
"""

{{{all_tool_required_info}}}

[Tool List]="""
{{{tools}}}
"""

Figure 22: Planner Decision Generation Prompt Part-7.

21

Tool Feedback Generation Prompt.

Please act as an external tool, Tool, within a super intelligent agent. These external tools can be
used to solve user missions, as detailed in the [Tool List].

Based on the tool name and input parameters output by the super intelligent agent’s Planner,
simulate the execution results of the tool.

If there are multiple tools in the Action_List provided by the Planner, please simulate each one sep-
arately, ensuring the number matches the Action_List, and store the results in the Observation_List.
Refer to the [Tool Output Format] for the output format.

[Environmental Information]="""
{{{env_info}}}
"""

[Tool Invocation Result Requirements]="""
1. Validate the HTTP method and parameters in the request according to the OpenAPI specification.
2. Generate a response that strictly follows the format specified in the OpenAPI specification and
ensure it is in JSON format.
3. The response should contain real data, avoiding the use of placeholders.
4. Handle edge cases by providing appropriate error responses.
5. For requests without length limitations, such as the GET method, ensure the response returns
3 to 5 samples, and be careful not to use ellipses like // xxx, ... to omit sample information, as it
must conform to JSON format, otherwise it will cause JSON parsing errors!
6. Try to simulate responses in English.
"""

[Tool List]="""
{{{tools}}}
"""

[Tool Output Format]="""
Tool:
{

"Observation_List": [
{

"status_code": "Refer to [Tool Invocation Result Requirements] for the HTTP
response status code",

"response": "Refer to [Tool Invocation Result Requirements] to simulate the result
of the action execution. Ensure your response is in JSON format, contains real data, and complies
with the OpenAPI specification format."

}
]

}
"""

Figure 23: Tool Feedback Generation Prompt.

22

AI Feedback Generation Prompt.

Please act as an Agent assistant within a super intelligent agent, which has a series of external
tools. The Planner within the super intelligent agent can solve user missions by calling external
tools, as detailed in the [Tool List].

You are responsible for interacting with the user. Based on the results returned by the Planner and
Tool, combined with the user mission and the context of the conversation, you provide answers,
and only your answers will be displayed to the user.

Refer to the [Agent Assistant Output Format] for the output format.

[Environmental Information]="""
{{{env_info}}}
"""

[Agent Assistant Output Format]="""
Agent Assistant: According to the [Requirements], reply to the most recent round of content
starting with "User:" in the context conversation information (do not repeat this sentence).
"""

[Requirements]="""
1. The reply must start with "Agent Assistant:".
2. Summarize the user mission from the most recent round starting with "User:" based on the
context conversation information.
3. Use markdown format, and be sure to pay attention to the layout to make it look neat, with two
line breaks between paragraphs.
4. Pay special attention! If the Observation given by the Tool is a list, and each item in the list has
its own ID, such as xxx_id or xxxId, then when summarizing the reply, please retain these IDs for
each item and inform the user!
5. Reply in English.
"""

{{{all_tool_required_info}}}

[Tool List]="""
{{{tools}}}
"""

Figure 24: AI Feedback Generation Prompt.

23

	Introduction
	Related Work
	Evaluation of LLMs
	LLM-as-Agent

	Terminologies
	Benchmark Construction
	Data Generation Framework
	Generate Single Mission
	Construct the Whole Benchmark

	Dynamic Evaluation Method
	Experiments
	Overview
	Impact of Mission Switching
	Impact of Mission Types
	Impact of Related Mission

	Conclusion
	Diverse Toolset Construction
	Analysis of the Test Data
	Data Examples

	Details of Proposed Evaluation Method
	Further Analysis of Agent Performance
	Part Roles Prompt of Agents
	Role Prompt of Mission Generation
	Role Prompt of Planner
	Role Prompt of Tool
	Role Prompt of AI

