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Abstract

Generative modeling techniques such as Diffu-
sion and Flow Matching have achieved significant
successes in generating designable and diverse
protein backbones. However, many current mod-
els are computationally expensive, requiring hun-
dreds or even thousands of function evaluations
(NFEs) to yield samples of acceptable quality,
which can become a bottleneck in practical de-
sign campaigns that often generate 10* — 10° de-
signs per target. In image generation, Rectified
Flows (ReFlow) can significantly reduce the re-
quired NFEs for a given target quality, but their
application in protein backbone generation has
been less studied. We apply ReFlow to improve
the low NFE performance of pretrained S E(3)™
flow matching models for protein backbone gen-
eration and systematically study ReFlow design
choices in the context of protein generation in
data curation, training and inference time settings.
In particular, we (1) show that ReFlow in the pro-
tein domain is particularly sensitive to the choice
of coupling generation and annealing, (2) demon-
strate how useful design choices for ReFlow in the
image domain do not directly translate to better
performance on proteins, and (3) make improve-
ments to ReFlow methodology for proteins.

1. Introduction

Generative modelling methods have become an important
part of protein design workflows (Watson et al., 2023; In-
graham et al., 2023; Bose et al., 2024) to produce new pro-
teins that satisfy prescribed structural and functional require-
ments. Increasingly, this setting of de novo protein design
is now seen as a promising direction for drug discovery and
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tackling major challenges in medicine.

However, during a practical protein design campaign, such
generative models are often used to generate 10* —10° back-
bone samples (depending on the difficulty of the objective)
(Lauko et al., 2025; Ahern et al., 2025), each sample often
requiring hundreds of function calls due to the sequential
nature of current approaches such as Flow Matching (Lip-
man et al., 2023) and Diffusion Models (Ho et al., 2020).
As a result, the high computational cost of sampling current
protein generative models restricts the number of designs
that can be explored for a given computational budget.

In computer vision, the problem of accelerating inference
in flow matching models has been tackled with significant
success using the Rectified Flow Algorithm (ReFlow) (Liu
et al., 2022). ReFlow provably leads to flow trajectories that
are straighter, and consequently amenable to integration by
relatively fewer steps. This reduction in integration steps
accelerates generation, and has been shown to reduce image
generation times by an order of magnitude while preserving
image quality and distributional metrics (Kim et al., 2024).

It is therefore natural to ask whether and how these tech-
niques can be brought to protein design to improve the re-
source efficiency of design campaigns. Our paper addresses
this topic. Our contributions are as follows:

1. We generalize ReFlow to manifold data and apply it to
pre-trained frame-based models for protein backbone
generation.

2. We study the design space for applying ReFlow to
protein backbone generation models by considering
coupling generation, training and inference separately
and give suggestions for design choices.

3. We find that several design choices such as choice of
inference setting (annealing, generation direction) in
coupling generation and structural losses not present
in other applications of ReFlow have large impacts
on the performance of the rectified model, and give
suggestions for these design choices. We also find that
many proposed improvements used in ReFlow in other
domains do not carry over to proteins and highlight
where the problems lie.

4. We give guidelines of when rectification is worthwhile
compared to simpler finetuning methods.
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ReFlow Design Component

Standard Practices in Computer Vision

Protein-Specific Adaptations

Data Curation
Coupling Strategy

Inference Annealing Not applicable

Training Configuration
Time Sampling

Loss Function Flow matching loss only

Inference Settings
Discretization Scheme

Inference Annealing Not applicable

Forward coupling, Inverted coupling

Uniform, Exponential, Cosh

Uniform, Sigmoid, Exponential

Forward coupling

Model-dependent optimization

Standard distributions

+ Structural losses , Axis-angle loss

Noise-focused discretization

Model-dependent optimization

Table 1. ReFlow design choices for protein generation reveal domain-specific requirements. Comparison of standard ReFlow practices

with protein-specific adaptations shows that protein-unique design choices significantly impact performance, while suboptimal

approaches should be avoided and beneficial modifications substantially improve results.

2. Background and related work

Generative models for protein backbone design are a central
element of the modern protein design workflow. Diffusion
and Flow based models in particular are the methods of
choice for backbone generation (Watson et al., 2023; Ahern
et al., 2025).

Riemannian Flow matching Flow matching (FM) (Lip-
man et al., 2023; Liu et al., 2022; Albergo et al., 2023) is a
method for learning continuous normalizing flows (CNFs)
for generative modelling, enabling samples from one dis-
tribution to be transported to another by integrating an or-
dinary differential equation (ODE) over a learned vector
field. It has been extended to general Riemannian manifolds
(Chen & Lipman, 2024), and is used as the theoretical basis
for many protein backbone generation models (Yim et al.,
2023a; Bose et al., 2024). On a manifold M, the CNF ¢, (-)
is defined by integrating along a time-dependent vector field
v(z,t) € TzM where T, M is the tangent space of the
manifold at z € M

% :v(¢t(x)7t)7 po(z) == (D
where we take 0 < ¢ < 1. The objective is to learn v such
that if X is sampled according to pg, then X; = ¢1(Xp),
obtained by integrating the flow is distributed according
to the target distribution p;. We define the distribution of
X: = ¢(Xo) to be p; and call (p;)o<i<1 the probability
path of the flow. The key insight of Flow Matching and
Riemannian Flow Matching is that v can be learned using a
simulation free loss

Lry = EfJor(z) — we(wla)|] )

where t ~ U[0,1], || - ||, is the norm induced by the Rie-
mannian metric, £ ~ p; is a sample from the target distri-

bution, x ~ p;(-|x1) and where p;(-|z1) and u(z|x) are
corresponding conditional probability path and vector fields
which the target flow decomposes into.

ReFlow algorithm Let pg, p; be two data distributions
on RY. Rectified Flow (RF) (Liu et al., 2022) is an algo-
rithm which learns ordinary differential equations (ODEs)
transporting pg to p; and iteratively refines the drift such
that the trajectories of the ODE become straight lines (and
such flows are called straight). ReFlow achieves this by
first training a CNF similar to flow matching with straight
line interpolant, and then repeatedly applies the rectification
procedure to it, by using the pre-trained model to gener-
ate a dataset of noise-data pairs (termed a coupling) and
then finetuning the model on this coupling to obtain a new
model. The rectification procedure, detailed in Algorithm 1
provably leads to straight flows in the infinite iteration limit.

Protein Backbone generative models Chemically, a pro-
tein is a chain of linked amino acids (also referred to as
residues) that folds under electrostatic forces into some 3D
structure. The aim of protein backbone generative mod-
els is to generate plausible backbone structures which can
be realized by some protein. A popular class of backbone
generative models which will be the focus of this paper
featurizes a protein structure as a sequence of rigid bodies,
one per amino acid. Rigid bodies are in turn represented as
frames, formally elements of SF(3), and as such the whole
protein is represented as an element of SE(3)". Models
belonging to this class include RFDiffusion 1 and 2 (Wat-
son et al., 2023; Ahern et al., 2025), FrameDiff (Yim et al.,
2023b), FrameFlow (Yim et al., 2023a) and FoldFlow (Bose
et al., 2024), and QFlow (Yue et al., 2025).
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Related Work: Concurrently to our work on ReFlow
for frame-based backbone generation models, ReQFlow
(Yue et al., 2025) implements ReFlow for a closely re-
lated quaternion-based formulation. In contrast to Yue et al.
(2025), our work focuses on studying the broader design
space of ReFlow as applied to proteins, with the goal of
understanding how the idiosyncrasies of protein structures
as a data modality interacts with ReFlow. In particular, we
systematically study how the common practice of inference-
time annealing influences the ReFlow coupling and by con-
sequence the rectified model, as well as show that small
changes in ReFlow training can significantly affect final
outcomes. We provide comparisons to ReQFlow throughout
the paper to demonstrate how our insights extend to their
work.

3. ReFlow on SE(3)V

A key observation is that the ReFlow algorithm as presented
in Algorithm 1 is almost directly applicable to manifold data.
By replacing the Euclidean norm in £ with the Riemannian
metric and the straight line interpolant with the geodesic
interpolant, we obtain a version of Rectified Flows for data
on manifolds. Whereas the Euclidean ReFlow Algorithm
was shown to preserve marginal distributions in Liu et al.
(2022), Theorem 2 of Wu et al. (2025) also shows that the
rectification procedure also preserves marginal distributions
of X; on data residing on a wide class of manifolds that
includes the SE(3)V case which we are interested in. More-
over, Proposition 3.1 shows that the property of ReFlow in
RY of reducing transport distances also carry over when
ReFlow is performed on manifold data, thereby suggesting
that ReFlow can also help improve flow matching couplings
on manifold data.

Proposition 3.1. Let (X, X1) be the coupling used to train
the rectified flow and (Zy, Z1) be the coupling induced by

the rectified model. Then under the assumptions of Theorem
2in Wu et al. (2025) we have

Eldy(Zo, Z1)] < Eldg(Xo, X1)] ()
where d is the geodesic distance induced by some Rieman-

nian metric on the manifold.

Proof. Same idea as Theorem D.5 of Liu et al. (2022). See
Appendix A O

These results highlight that ReFlow is an viable algorithm
in the frame-based protein model setting, and in subsequent
sections we will study how best to apply ReFlow to proteins.

4. Examining the design space of ReFlow

We consider the design space of applying ReFlow to protein
backbone generation. As shown in Table 1, the ReFlow pro-

Algorithm 1 Rectification Iteration (ReFlow Algorithm)

Input: A trained flow velocity model vg(-, t).
Output: The rectified flow vg: (-, t).

Step 1: Generate Coupling
Sample pairs (X, X1) following dX; = ve(X,t) dt
by starting from Xg ~ pg or X; ~ p;.

Step 2: Rectification
Minimize 6 in

E(G) = Et,Xo,Xl [HU@(Xt,t) - atI(X()aXht)”Q]

where I(x,y, t) is the geodesic (straight line) interpolant
between X and X to obtain vy the rectified flow.

cedure can be partitioned into 3 phases: Data Generation,
Training and Inference. In Section 4.1, we examine how the
performance of a rectified model changes as we vary the
method used to generate its training data. In Section 4.2 ,
we examine how the training methodology of the ReFlow al-
gorithm can impact model performance for proteins. Lastly,
we discuss Inference-time design choices in 4.3. We re-use
the evaluation protocol of Bose et al. (2024), reporting di-
versity, designability, self-consistency RMSD (scRMSD)
and novelty (to the FoldFlow-OT’s training set) as well as
the number of designable foldseek clusters c.f Geffner et al.
(2025) when relevant. We focus on the FoldFlow-OT model
(Bose et al., 2024) as well as the recent QFlow models (Yue
et al., 2025). We defer most experimental details, as well as
details of evaluation to Appendix B.

4.1. Data Curation
4.1.1. EXPERIMENTAL SETTING

Unlike for images, flow matching for proteins comes with a
variety of inference-time settings that enables trading-off the
diversity of the distribution (and its fidelity to the original
training set) for sample quality (Geffner et al., 2025). For in-
stance, a particularly important setting for frame-based mod-
els studied in this section is the use of choice of inference
annealing for the SO(3) velocity field (Bose et al., 2024),
where the rotational component of the predicted velocity
field is scaled up during inference time, resulting in the
rotational information of protein samples denoising faster
than the translational component. Similar train/inference
time mismatches also exist for non-frame based methods
(Geftner et al., 2025).

When curating the coupling used for ReFlow training,
choices must be made for these parameters. As such, we
study the effect that using different inference settings to
generate the coupling has on the designability, diversity and
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secondary structure of the resulting rectified model. For
FoldFlow, we generate a paired dataset of 25’100 protein
backbone (X;) - noise (Xg) samples, comprised of 100
examples each length between 50-300 amino acids. We
adopt a straightforward ReFlow setup based on FoldFlow’s
training code, substituting the PDB training dataset for the
generated coupling, with each training batch containing dif-
ferent proteins of the same length. For ReqFlow, we follow
the curation process of the paper, except that we do not
perform designability filtering on the data. When evaluating
the model, we use the uniform discretization on [O7 1] for
ReqFlow (Yue et al., 2025) as in the original paper, but for
FoldFlow we use a custom discretization in the 15 NFE
setting as we found it was essential for both FoldFlow-OT
and the rectified model to obtain reasonable designability
scores. In all cases, we apply rectification once as in Kim
et al. (2024). We discuss discretizations further in Section
4.3.

4.1.2. RESULTS

We present experimental results for FoldFlow-OT in Table
3 and Figure 2, with corresponding QFlow results in Table
4 and Figure 1. ReFlow consistently improves low-NFE
designability across all three data settings, consistent with
prior image generation studies (Kim et al., 2024; Liu et al.,
2022), though sometimes at the expense of high-NFE perfor-
mance. However, ReFlow exhibits strong sensitivity to the
fine-tuning dataset choice. Rectified models tend to adjust to
the statistical properties of their coupling datasets in terms
of designability, diversity, and secondary structure charac-
teristics, with higher inference annealing corresponding to
higher designability but worse diversity.

This pattern is evident in both model architectures: QFlow
models rectified on unannealed samples generate more di-
verse protein backbones with broader secondary structure
support but reduced designability, while those trained on
annealed samples show the opposite trend. Although dis-
tribution shifts could potentially result from memorization
(Kim et al., 2024; Zhu et al., 2025), our relatively small num-
ber of fine-tuning steps and the absence of overfitting (Table
2) suggest that these shifts represent inherent byproducts
of ReFlow in the protein domain rather than memorization
artifacts.

These findings underscore the importance of selecting
appropriate inference settings that achieve acceptable
designability-diversity tradeoffs before applying ReFlow,
because the coupling dataset choice directly influences the
rectified model’s distribution. This is exemplified by the
intermediate inference scaling parameter (c=3) yielding the
highest number of designable clusters in both base and rec-
tified models.
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Figure 1. Inference annealing settings affect secondary struc-
ture diversity through ReFlow coupling selection. Secondary
structure distributions for QFlow show that models rectified on
unannealed samples exhibit wider support and improved diversity
(Table 4), demonstrating how ReFlow coupling choice can shift
the modeled distribution.

Model Avg. Max-TM vs Finetune Set |
FoldFlow-OT 0.904+0.006
FoldFlow-OT-ReFlowed 0.900+0.005

Table 2. No signs of overfitting to the fine-tune dastaset: The
samples of FoldFlow-OT (FF-OT) and the rectified model (ReFF-
OT) are compared against the rectification dataset. In this case the
amount of fine-tuning iterations is insufficient to cause overfitting
to the ReFlow coupling.

4.1.3. THE USE OF INVERTED EXAMPLES

The results of Section 4.1.2 suggest choosing a coupling
whose samples are pareto optimal with respect to designabil-
ity and diversity. A natural idea used with success for images
(Zhu et al., 2025; Kim et al., 2024), is to invert groundtruth
PDB samples via integrating the base model’s flow match-
ing ODE backwards to obtain paired noise samples to the
groundtruth PDB. Because it is difficult to match the dis-
tribution of the PDB while retaining diversity, real PDB
samples represent a desirable trade-off between designabil-
ity and diversity (Geffner et al., 2025). We implement this
coupling for both ReQFlow (Yue et al., 2025) and FoldFlow
using 100 and 50 steps to invert the coupling respectively,
but found that training on the inverted coupling in both cases
destroyed model performance, with both models reduced
to sub-3% designability. We hypothesize that this perfor-
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Dataset Metric Data Generator (FoldFlow-OT) ReFlowed Model (ReFoldFlow-OT)
NFE=15, Yes NFE=50, Yes NFE=15, No NFE=15, Yes NFE=50, No NFE=50, Yes
Designability 1 0.58440.053 0.816-+0.041 0.564+0.048 0.66440.046 0.656+0.050 0.776+0.044
Avg. scRMSD (A) | 3.088+0.376 2.120+0.315 3.711+0.450 3.15640.381 3.099+0.374 2.313+0.364
Annealing=10  Diversity (Average-TM) | 0.425 0.397 0.425 0.442 0.411 0.430
# Designable Clusters T 51 926 60 62 77 76
Novelty (Max-TM) | 0.819 0.815 0.815 0.822 0.802 0.816
Designability 1 0.37240.054 0.47240.051 0.188+0.042 0.492-+0.049 0.20440.040 0.552+0.053
Avg. scRMSD (A) | 5.716+0.534 4.663+0.469 7.717+0.470 4.432+0.445 7.42940.504 3.763+0.439
Annealing=3 Diversity (Average-TM) | 0.362 0.345 0.210 0.379 0.205 0.376
# Designable Clusters 1 78 9 45 80 45 86
Novelty (Max-TM) | 0.769 0.769 0.749 0.770 0.759 0.772
Designability 1 0.032+40.021 0.044+0.024 0.028+0.019 0.284+0.047 0.036+40.021 0.320+0.046
Avg. scRMSD AL 10.97740.430 9.83240.453 11.31540.408 6.471+0.522 11.57040.433 5.838+0.497
No Annealing Diversity (Average-TM) | 0.067 0.171 0.067 0.298 0.066 0.264
# Designable Clusters 1 8 10 7 58 9 68
Novelty (Max-TM) | 0.750 0.727 0.694 0.756 0.703 0.745

Table 3. Comparison of Rectified models under varying annealing schedules, function evaluations (NFE) and choices of training
coupling for FoldFlow. “Yes/No” indicates whether inference-time annealing was used (if Yes, a value of 10 was used for annealing).
We also report the corresponding performance of the (model, inference setting) pair used to generate each training coupling to give a
reference. Several observations can be made: The use of inference annealing yields more designable proteins at the expense of reduced
diversity for both the base and rectified models, with intermediate values of the annealing parameter being optimal with regards to the total
number of unique designable clusters for the base model. The rectified model is strongly affected by the choice of training coupling, with
the diversity and designability of the rectified model correlating strongly with the method used to generate the fine-tuning coupling, again
with intermediate values of annealing being optimal for coupling generation. In line with prior works on ReFlow, rectification causes
degradation in high NFE performance but significantly increases low NFE performance compared to the base model. Any reduction in
resulting model designability can be offset by increased model throughput.
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Figure 2. Secondary structure distribution for FoldFlow-OT under different inference annealing settings (top) and that of models
rectified on the corresponding coupling (bottom). The Rectified models were sampled with Inference Annealing=10. The secondary
structure statistics of the rectified model is also strongly influenced by the fine-tuning coupling, with greater diversity in the fine-tuning
distribution also translating to greater diversity in the fine-tuned model, although there is still some bias towards helical structures from the
base model (FoldFlow-OT). This highlights the sensitivity of protein models to the fine-tuning distribution, simultaneously underlining
the need to exercise caution when choosing a coupling to apply ReFlow on that is representative of the desired protein distribution, as well
as potential opportunities in fine-tuning protein flow matching models on curated data.

mance collapse is due to the paired noise samples obtained training on non-Gaussian latents leads to poor performance.
by reverse integration being highly non-Gaussian, and that ~ Inspired by (Bodin et al., 2025), we run the Kolmogorov-
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Data Generator (QFlow)

ReFlowed Model (ReQFlow)

Dataset Metric NFE=20, Yes  NFE=100,Yes | NFE=20,No  NFE=20,Yes NFE=100,No  NFE=100, Yes
Designability 1 0.528+0.058 0.788-+0.049 0.404+0.058 0.78040.051 0.71640.054 0.896+0.038
Avg. scRMSD (A)] 3.72140.467 1.96340.288 3.594+40.378 1.737+0.136 1.97240.193 1.398+0.124
Annealing=10  Diversity (Average-TM) | 0.338 0.356 0.359 0.366 0.362 0.389
# Designable Clusters 1 109 123 68 120 97 91
Novelty (Max-TM) | 0.752 0.776 0.764 0.762 0.776 0.785
Designability 1 0.008+0.011 0.028+0.020 0.14440.042 0.624-+0.058 0.42440.056 0.800+0.048
Avg. scRMSD A) L 12.886+0.388 9.64340.473 5.767+0.437 2.508+0.273 3.306+0.349 1.698+0.163
No Annealing Diversity (Average-TM) | 0.049 0.071 0.291 0.357 0.376 0.368
# Designable Clusters 1 2 7 33 111 63 103
Novelty (Max-TM) | 0.767 0.690 0.738 0.748 0.753 0.777

Table 4. Comparison of Rectified models under varying annealing schedules, function evaluations (NFE) and choices of training
coupling for QFlow. ‘“Yes/No” indicates whether inference-time annealing was used. (if Yes, a value of 10 was used for annealing)
We also report the corresponding performance of the (model, inference setting) pair used to generate each training coupling to give a
reference. Many of the observations from studying FoldFlow also carry over, such as the tradeoff in diversity, novelty against designability
in whether to use inference scaling when generating the coupling or when generating samples with the rectified model.

Gaussianity Test p-values for Backward Integration Latents (FoldFlow-OT)
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Figure 3. FoldFlow backwards integration produces non-
Gaussian latents, violating model assumptions. Distribution
of p-values (log scale) from Kolmogorov-Smirnov tests shows that
96% of latents generated by backwards integration have p < 0.005,
while synthetic centered Gaussian latents achieve high p-values
(minimum 0.029 across 10,000 samples).

Smirnov test on the Gaussian latents (treating latents as
collections of Gaussian samples) and plot a histogram of
p-values in Figure 3, where the non-Gaussian nature of the
latents is apparent. We subsequently perform an ablation
study in Table 5 which shows that even relatively small per-
turbations of the fine-tuning latent distribution can lead to
severe degradations of performance. As such, the results of
both experiments support our hypothesis.

Varying the inference annealing coefficient, noise injection
during backward integration and normalizing the latents
did not remedy the issue of non-gaussian latents, with each
attempt being either unable to preserve fine-tuned model
performance, or to lead to straight flows. Our experiments
highlight that not all techniques and design choices for ap-
plying ReFlow to images carry over straightforwardly to
the protein domain. Nevertheless, we consider the use of
the inverted coupling to be a promising future direction for
ReFlow in proteins.

Finetuning Coupling Designability 1
None 0.816
Inverted samples 0.000
IID PDB samples to A/ (0, 1021) 0.632
IID PDB samples to A/ (0, 8%1) 0.432

Table 5. Inverted coupling causes performance collapse due to
latent distribution mismatch. Designability comparison across
FoldFlow-OT coupling variants shows inverted coupling train-
ing reduces performance to zero, while PDB resampling main-
tains comparable performance (0.632). Testing with 0.8-rescaled
noise confirms that deviation from the training noise distribution
N(0,10%I) drives this degradation.

4.2. Improving Training of ReFlow for Proteins

An aspect of ReFlow fine-tuning on protein models not
present in previous areas where ReFlow has been applied is
that of structural losses. Previous works on training protein
generative models (Yim et al., 2023b; Bose et al., 2024; Yue
et al., 2025) have consistently opted to include structural
losses during training to penalize physically unrealistic gen-
erations, despite deviating from ReFlow theory. While they
were found to be useful when training FoldFlow, we show
here by example that small details in these losses can have
significant effects on the performance of the rectified model:

For FoldFlow in particular, the groundtruth protein back-
bone is featurized in terms of the 4 heavy atoms in each
residue (the C,,, C, N, O atoms) with the O atom given a
rotational degree of freedom ¢ over idealized alanine coordi-
nates (Bose et al., 2024). FoldFlow trains a small MLP head
connected to the IPA Network to predict ¢, and in Section
4.1 these values are stored as part of the coupling and used
to fine-tune the model during rectification.

In this section we compare the effect of (1) discarding the
structural losses and (2) replacing FoldFlow generated val-
ues of ¢ in generated couplings with 0 vector. We follow the
experimental protocol of Section 4.1 except for this training
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Dataset Model Designability ©  scRMSD [N Diversity |  Novelty |
Basic ReFlow 0.664+0.046 3.156+0.381 0.442 0.822

Annealing=10  No Structural Loss 0.632+0.047 3.720+0.427 0.446 0.842
Zero-Phi 0.804+0.044 1.728+0.164 0.424 0.818
Basic ReFlow 0.492+0.049 4.43240.445 0.379 0.770

Annealing=3 No Structural Loss 0.544+0.047 4.57540.480 0.387 0.800
Zero-Phi 0.592+0.054 2.945+0.371 0.364 0.775

Table 6. Changing structure losses in ReFlow coupling signifi-
cantly improves designability without sacrificing diversity. Per-
formance comparison across structural loss configurations shows
that while removing structural loss degrades novelty among des-
ignable samples, the ¢ replacement strategy provides substantial
designability gains without sacrificing novelty or diversity.

detail, and work with both the annealed and semi-annealed
datasets, reporting results in Table 6.

While removing structural loss degrades novelty, a surpris-
ing result was that avoiding supplying useful ¢ informa-
tion during ReFlow significantly improved model perfor-
mance, matching or exceeding the performance of the origi-
nal model at 50 NFE. There are many possible explanations
for this observation, ranging from imperfections in model
training of the ¢ network affecting the rectification pro-
cedure, to difficulties in joint numerical optimization of
angles, coordinates and the complex and highly specialized
structural loss. This illustrates that many domain specific
considerations not present in other areas must be made when
applying ReFlow to proteins.

We also note that ReQFlow implements the structural loss
somewhat differently to FoldFlow and additionally avoids
the ¢-prediction head, opting to impute the oxygen position
using planar geometry. This highlights nuances in the design
choices of different models.

4.3. Inference Time Settings for ReFlow

Inference Parameter Selection. Tables 3 and 4 demon-
strate that model behavior changes significantly after recti-
fication for fixed inference parameters, indicating that rec-
tified models require different inference settings than their
base counterparts.

Discretization Schemes. While recent frame-based pro-
tein models (Bose et al., 2024; Yue et al., 2025) typically
employ uniform discretization on [0, 1] for ODE integration,
we find this approach suboptimal. We systematically evalu-
ate discretization families in Table 7, categorizing schemes
by their density distribution: Noise-Focused (finer near
t = 0), Data-Focused (finer near ¢ = 1), or Edge-Focused
(finer at both endpoints). Representative schemes include
the exponential schedule from Geffner et al. (2025) for
Data-Focused, the sigmoid scheme from Kim et al. (2024)
for Edge-Focused, and our proposed schedules for Noise-
Focused approaches (detailed in Appendix B).

Noise-Focused discretization achieves superior performance

for both QFlow and FoldFlow-OT, with particularly substan-
tial improvements for FoldFlow-OT. This advantage extends
to rectified models, where improved discretization schemes
enhance overall performance.

The success of Noise-Focused discretization aligns with
the inference dynamics of frame-based protein models. As
illustrated in Figure 4, FoldFlow-OT exhibits significant
trajectory curvature in the Euclidean component near ¢t = 0,
while the SO(3) velocity component shows high magnitude
at initialization due to inference annealing. These charac-
teristics complicate ODE dynamics near the noise regime,
making finer discretization in this region crucial for reducing
integration error.

These findings highlight domain-specific optimization re-
quirements, as Geffner et al. (2025) report optimal perfor-
mance with Data-Focused schedules for their protein model.
However, their approach does not employ rotation repre-
sentations or rotation inference annealing, suggesting that
differences in discretization preferences may stem from
these architectural choices.

Discretization Type FoldFlow-OT (15 NFE) QFlow (20 NFE)
Designability ©  scRMSD (A) | | Designability *  scRMSD (A) |
Uniform 0.076+0.031 7.757+0.496 0.528+0.058 3.721+0.467
Data-Focused 0.172+0.038 9.625+0.506 0.276+0.050 6.491+0.520
Noise-Focused 0.584+0.053 3.088+0.376 0.584+0.056 2.758+0.316
Edge-Focused 0.468+0.050 5.510+0.516 0.504+0.060 3.644+0.429

Table 7. Noise-Focused discretization outperforms other
schemes for frame-based protein models. Effect of discretiza-
tion types on designability and scRMSD for FoldFlow-OT and
QFlow shows superior performance of Noise-Focused approaches,
which are better tailored to the inference dynamics near t = 0
where trajectory curvature is most significant.

4.4. When to use ReFlow?

Given the computational overhead of ReFlow compared
to standard fine-tuning approaches, we investigate when
ReFlow provides meaningful advantages over simpler tech-
niques such as LoRA fine-tuning (Geffner et al., 2025). This
is as ReFlow requires both ODE integration for each training
sample and model fine-tuning on self-generated data, mak-
ing it considerably more expensive than direct fine-tuning
methods. We compare ReFlow against a control condition
using scrambled rectified coupling, where noise latents in
each noise-data pair are replaced with independent samples
from the prior distribution. This maintains identical training
conditions while removing the benefits of trajectory rectifi-
cation. We evaluate both FoldFlow-OT and QFlow models
using Annealing=10 datasets, with full experimental details
provided in Appendix B. Results in Table 8 reveal model-
dependent benefits: QFlow shows significant improvement
from ReFlow over continued training, while FoldFlow-OT
demonstrates no meaningful advantage. We hypothesize
that ReFlow’s effectiveness diminishes when modeling less
diverse data distributions. In the limiting case of flows to



Straight but not so fast: Challenges with Rectified Flows in Protein Design.

FoldFlow-OT Inference Dynamics
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Figure 4. FoldFlow-OT exhibits complex dynamics near ¢t = 0 with significant trajectory curvature and rapid frame changes.
Visualization of velocities and positions from 30 random Euclidean coordinates across 50 proteins of varying lengths (100-300 residues,
c = 10 inference annealing) shows substantial curvature in coordinate trajectories near the noise regime, while frame component velocity

magnitudes decay significantly after t ~ 0.3.

point masses, trajectories are already straight and require no
rectification.

This hypothesis is supported by the distributional analysis
in Figures 1 and 2, which shows that FoldFlow-OT’s cou-
pling is relatively unimodal and helix-dominated compared
to QFlow’s more diverse coupling. These findings suggest
that ReFlow is most beneficial for highly multimodal distri-
butions, though further investigation is needed to establish
definitive guidelines for its application.

Experiment Configuration Performance Metrics

Model NFEs Designability 1 Avg. scRMSD Al Diversity | Novelty |
FoldFlow-Scrambled 15 0.888+0.038 1.535+0.174 0.425 0.824
FoldFlow-ReFlow 15 0.844+0.043 1.748+0.210 0.404 0.811
QFlow-Scrambled 0.648+0.058 2.711+0.330 0.361 0.739

20‘

QFlow-ReFlow 20 0.780+0.051 1.737+0.136 0.366 0.762

Table 8. ReFlow provides greater benefits for multimodal distri-
butions. Comparison of model pairs finetuned on model samples
(scrambled coupling) versus ReFlow under identical settings shows
that while ReFlow training significantly increased QFlow des-
ignability at low NFE, no benefits were observed for FoldFlow-OT,
potentially due to differences in data distribution multimodality.

5. Discussion

Our research shows that ReFlow’s mathematics can readily
be extended to manifold data and thereby to frame-based
protein backbone design; however, the inference accelera-
tion without quality or diversity loss observed in computer
vision applications requires significant domain-specific op-
timization. Our experiments highlight two main challenges.
First, we observe that several common optimizations of
ReFlow for images, such as the use of inverted coupling

strategies and temporal discretization scheme, counterintu-
itively proved detrimental for ReFlow in frame-based back-
bone generation. Conversely, substantial performance im-
provements were achieved through careful optimization of
domain-specific design choices, such as inference annealing
schedules and protein-tailored components in the loss func-
tion. These findings underscore that successful adaptation
of generative models across domains requires considering
domain-specific constraints rather than direct transfer of ex-
isting techniques. A second significant challenge concerns
the evaluation of generated protein diversity. As discussed
in Sections 4.1 and 4.3, achieving appropriate balance be-
tween sample quality and diversity is critical for practical
protein design applications. However, standard diversity
metrics such as average pairwise TM-score suffer from lim-
ited interpretability, making it difficult to assess the practical
significance of differences between model performances. In
contrast, biologically-informed metrics such as secondary
structure distributions (Figure 2) provide more interpretable
insights into the functional diversity of generated protein
ensembles. These observations suggest two promising di-
rections for future research: systematic investigation of how
diffusion and flow acceleration techniques, including con-
sistency models (Song et al., 2023) and flow map matching
(Boffi et al., 2024), can be effectively adapted to protein
structure generation, and development of improved diversity
metrics that better capture biologically relevant aspects of
protein structural variation (Geffner et al., 2025).
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A. Proof of Prop 3.1

Define for convenience X; = I(Xy, X1,¢) and X, = 8,1 (Xo, X1,t) where 0; represents the derivative with respect to t.
Let u(z, t) denote the rectified velocity field from minimizing £ in Algorithm 1. We have:

1
E[dy(Xo, X1)] = E(x,,x,) [/ 0:1(Xo, X1,1)]| x, dt] (as I(Xo, X1, ) traces a geodesic)
o ,
1 .
= / E(x,,x1) |:||XtHXt:| dt (Fubini’s theorem)
0
1 . .
= / Ex, x, |:HXt||Xt:| dt (as X; at X; depends only on X;, X and t)
0
1 .
:/ Ex, [EXI[HXtHXJXt]} dt (tower property)
0
1 .
2/ Ex, [||IEX1 [Xt|XtH|Xt} dt (Jensen’s inequality)
0

1
= / Ex, [[lu(Xt, t)|lx,]dt  (the rectified velocity field, u(X;, ) = E {XJXJ c.f (Wuetal., 2025))
0
1
= / Ez, [|[w(Z, )] z,] dt (as Z; and X; have same marginals)
0

1
= E(Zt)ogtgl |:/0 ”u(Zta t)||tht:|

Z IE(ZO,Z1) [d9(207 Zl)]
1 @
where the last inequality follows from the fact that [, ||u(Z;,t)|| z,dt corresponds to the length of the ODE-induced path
from Z to Z; and thus is an upper bound on d,(Zy, Z1). O

B. Experimental Details
B.1. Evaluation Metrics

We follow exactly the evaluation protocol of (Bose et al., 2024), which was also used in (Yue et al., 2025; Geffner et al.,
2025). We generate 50 backbones each of sizes [100,150,200,250,300], and evaluate our metrics (Designability, sScRMSD,
Diversity, Novelty, Number of Clusters) on the generated backbones. We give a description of the metrics used:

Designability and scRMSD: We use this metric to evaluate whether a protein backbone can be formed by folding an
amino acid chain. For each backbone, we generate 8 sequences with ProteinMPNN (Dauparas et al., 2022) at temperature
0.1, and predict their corresponding structures using ESMFold (Lin et al., 2022). Then we compute the minimum RMSD
(known as scRMSD) between the predicted structures and the backbone sampled by the model. The designability score is the
fraction of samples satisfying scRMSD being less than 2. We use a corrected version of the aligned-RMSD implementation
in (Yim et al., 2023b), leading to slight deviations from previously reported values.

Diversity: This metric quantifies the diversity of the generated backbones. This involves calculating the average pairwise
structural similarity among designable samples, broken down by protein length. Specifically, for each length L under
consideration, let Sy, be the set of designable structures. We compute 7'M (b;, b;) for all distinct pairs (b;, b;) within Sy..
The mean of these TM-scores represents the diversity for length L. The final diversity score is the average of these means
across all tested lengths L. Since TM-scores closer to 1 indicate higher similarity, superior diversity is reflected by lower
values of this aggregated score.

Novelty: We evaluate the structural novelty by finding the maximum TM-score between a generated structure and any
structure in the training set for FoldFlow, reproduced following the instructions of Yim et al. (2023b) and containing 23474
entries, using Foldseek (Kempen et al., 2023). A lower resulting maximum TM-score signifies a more novel structure.
The Foldseek command used for novelty was taken from Geffner et al. (2025). Novelty was only evaluated on designable
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structures.

Number of Designable Clusters: We cluster the designable backbones based on a TM-score threshold of 0.5 using
Foldseek and report the number of different clusters. This metric balances designability and diversity, measuring the number
of "distinct” designable proteins that the model generates. The command used to perform the clustering was taken from
Geftner et al. (2025).

B.2. Training Details

Data Curation Experiments: We generate the FoldFlow-OT coupling using 50 integration steps and default hyperpa-
rameters from the repository with the exception of SO(3) inference scaling which was varied. We did not find additional
integration steps helpful for sample quality for FoldFlow. Based on the results of (Yue et al., 2025), we generate QFlow
samples with 100 integration steps. A single coupling dataset made for each of the No Annealing, Annealing=3,
Annealing=10 settings and reused for all experiments. We sample ¢ ~ U[0, 1].

We retain all hyperparameters from FoldFlow’s training codebase. We opt to use the Axis-Angle rotation loss which
FoldFlow also used for training, as we found it to be marginally beneficial compared to the L? loss. We perform rectification
training for 20, 000 batches for FoldFlow and 3 epochs for QFlow (approximately 24,000 batches). Note that a fair
comparison of QFlow and FoldFlow is beyond the scope of this work, and these parameters are only meant to serve as
reasonable values for each base model.

Improved Training Experiments: We use the same training parameters as FoldFlow-OT except for the structural losses.

Discretization: We supply the choices of discretization used here. We present the non-uniform discretizations used in
Table 9. We generated the Data and Edge Focused schedules using the formulas given in Geffner et al. (2025) and Kim et al.
(2024) respectively. For the Edge-Focused Sigmoid schedule, we pick x = 5 as a reasonable value with similar spacing
properties to our Noise-Focused schedules. Our Noise-Focused schedule for FoldFlow was handcrafted based on observed
inference dynamics in Fig. 4 and testing on a small number of examples. While it works well, there is likely still room for
improvement. The Noise-Focused schedule for QFlow was a time-reversal of the Data-Focused Schedule. We report the
designabilities averaged over 50 samples each of lengths [100,150,200,250,300].

Discretization Class

FoldFlow (15 NFE)

ReQFlow (20 NFE)

Data-Focused

[0.010, 0.040, 0.083, 0.129, 0.180,

0.235, 0.295, 0.360, 0.430,
0.507, 0.590, 0.680, 0.778,
0.885, 1.000]

[0.010, 0.121, 0.229, 0.325, 0.410,
0.486, 0.554, 0.615, 0.669,
0.717, 0.760, 0.798, 0.832,
0.862, 0.889, 0.914, 0.935,
0.954,0.971, 0.986, 1.000]

Edge-Focused

[0.010, 0.034, 0.080, 0.138, 0.211,

0.298, 0.396, 0.500, 0.604,
0.702, 0.789, 0.862, 0.920,
0.966, 1.000]

[0.010, 0.023, 0.051, 0.085, 0.126,
0.173, 0.228, 0.289, 0.356,
0.427, 0.500, 0.573, 0.644,
0.711, 0.772, 0.827, 0.874,
0.915, 0.949, 0.977, 1.000]

Noise-Focused

[0.010, 0.025, 0.050, 0.075, 0.100,

0.125, 0.150, 0.175, 0.200,
0.225, 0.250, 0.275, 0.460,
0.640, 0.820]

[0.010, 0.014, 0.029, 0.046, 0.065,
0.086, 0.111, 0.138, 0.168,
0.202, 0.240, 0.283, 0.331,
0.385, 0.446, 0.514, 0.590,
0.675,0.771, 0.879, 1.000]

Table 9. Discretization schedules used in FoldFlow and ReQFlow for different classes of time discretizations.

Scrambling Experiments: For the QFlow pair of models the training procedure is exactly the same as for the Data
Experiments. However, we used a fine-tuned rectification procedure for the FoldFlow pair of models that attained the highest
designability. In particular, we use improved structural losses practices from Section 4.2, and sample p(t)  0.1% instead
of p(t) oc 1 (i.e prioritizing noisy samples), and sample proteins with length [ with probability proportional to [?® in our
dataset.
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FoldFlow-OT-ReFlowed Inference Dynamics
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Figure 5. We repeat the visualization for Fig.4 for our rectified model. The position coordinate trajectories of our rectified model shows
significantly less curvature especially near ¢ = 0 and look almost indistinguishable from straight lines.

C. Straightness in Frame-based Flow models

As Frame-based Flow models have a significant Euclidean component, we found it helpful to track for diagnostic purposes
an analogous straightness metric for the Euclidean component of SFE(3)" as the one defined on RY in (Liu et al., 2022). In
particular, we monitor the straightness of the Euclidean part of SE(3)", defined as

1 1
STNgo = A / X — X§ =09 (X, t)||dt 3)
r JO

where the C' denotes the Coordinate part of the protein representation and V.. is the number of residues. Note that a lower
value of ST N indicates straighter paths, and a flow with geodesic trajectories in SE(3)" (under the Riemannian metric of
(Bose et al., 2024)) will have ST N¢ necessarily equal O (i.e the Euclidean component of the trajectory is a straight line).

We compute the average straightness for FoldFlow-OT and a rectified model in Table 10 on 50 samples each of lengths
[100,150,200,250,300], and found that applying ReFlow in SE(3)N did significantly reduce ST N¢, and that ST N¢
was not significantly affected by inference annealing. This is further confirmed qualitatively in Fig 5, where the rectified
FoldFlow-OT model exhibits qualitatively straighter trajectories compared to the base model in Fig 4.

Model Use Inference Annealing STN¢

FoldFlow-OT No 45.627+0.663
FoldFlow-OT Yes 34.913+0.535
FoldFlow-OT-Reflowed No 5.642+0.017
FoldFlow-OT-Reflowed Yes 6.23640.033

Table 10. Comparison of ST N¢ straightness metrics across models, with and without inference-time scaling. Results are reported
with confidence intervals and computed using 50 uniformly spaced integration steps. Rectification leads to straighter paths in the R®
components. Inference Scaling does not affect straightness in the Euclidean component.
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