
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOGIC OF HYPOTHESES: FROM ZERO TO FULL
KNOWLEDGE IN NEUROSYMBOLIC INTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neurosymbolic integration (NeSy) blends neural-network learning with symbolic
reasoning. The field can be split between methods injecting hand-crafted rules
into neural models, and methods inducing symbolic rules from data. We introduce
Logic of Hypotheses (LoH), a novel language that unifies these strands, enabling
the flexible integration of data-driven rule learning with symbolic priors and expert
knowledge. LoH extends propositional logic syntax with a choice operator, which
has learnable parameters and selects a subformula from a pool of options. Using
fuzzy logic, formulas in LoH can be directly compiled into a differentiable compu-
tational graph, so the optimal choices can be learned via backpropagation. This
framework subsumes some existing NeSy models, while adding the possibility of
arbitrary degrees of knowledge specification. Moreover, the use of Gödel fuzzy
logic and the recently developed Gödel trick yields models that can be discretized
to hard Boolean-valued functions without any loss in performance. We provide
experimental analysis on such models, showing strong results on tabular data and
on the Visual Tic-Tac-Toe NeSy task, while producing interpretable decision rules.

1 INTRODUCTION

Neurosymbolic integration (NeSy) tries to combine the symbolic and sub-symbolic paradigms. The
aim is to retain the clarity and deductive power of logic while leveraging the learning capabilities
of neural networks (Besold et al., 2021; Marra et al., 2024). In many NeSy approaches, such as
DeepProbLog (Manhaeve et al., 2018) and LTN (Badreddine et al., 2022), domain experts provide
prior knowledge in the form of logic formulas, which the neural model uses as a bias or as constraints.
While this strategy has proven effective, it presupposes that high-quality rules are readily available.
On the other hand, other NeSy methods have approached the learning of symbolic knowledge from
data in the field of rule mining (Qiao et al., 2021; Katzir et al., 2020; Wang et al., 2020). Further,
some advanced methods can simultaneously learn symbolic rules and perception-to-symbol mappings
(Wang et al., 2019; Daniele et al., 2022; Barbiero et al., 2023), thereby grounding symbols to raw
data while simultaneously discovering the logical structure.

These research threads occupy opposite ends of a spectrum: knowledge-injection versus
rule-induction. However, they typically lack the flexibility to handle intermediate scenarios in
which a partial logical structure is supplied and the missing parts must still be learned. Such sit-
uations arise, for example, when existing prior knowledge must be revised or completed, or when
learned rules are required to respect specific syntactic templates (e.g., CNF, DNF, Horn clauses,
fixed-length clauses) for which the model was never programmed. Addressing this flexible middle
ground remains an open challenge for NeSy methods.

In this paper, we propose the Logic of Hypotheses (LoH), a new logical formalism introducing the
choice operator, which learns to select a subformula from a set of candidates. Such language can be
used to produce neural networks with varying degree of symbolic bias, ranging from complete prior
knowledge to none. In this way, LoH offers a single, principled learning framework that can adapt to
the amount and form of prior knowledge available. Our main contributions are:

• A novel language (LoH) that extends propositional logic syntax with a choice operator,
making it possible to leave parts of a formula underspecified. This allows to represent a
hypothesis spaceH of formulas, in a flexible and compact way.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• A compilation procedure producing a differentiable computational graph from any LoH
formula Φ, allowing for the learning of a data-fitting logical formula among those in the
hypothesis space represented by Φ. We employ the Gödel trick (Daniele & van Krieken,
2025), a newly proposed stochastic variant of Gödel logic. Thanks to this choice, our
approach can directly learn discrete functions through backpropagation. Moreover, the
computational graph can be stacked on top of a neural network, allowing the end-to-end
learning of symbolic rules alongside perception-to-symbol mappings.

• A unifying viewpoint of NeSy paradigms. The general neural layers of rule-inducing NeSy
models like Wang et al. (2020); Payani & Fekri (2019) can be seen as the compilation of
particular LoH formulas using product fuzzy logic. On the other hand, the full injection of
prior knowledge can be obtained by simply avoiding the usage of the choice operator in a
LoH formula. However, LoH is not limited to those two extremes and allows to construct
models for many different intermediate situations (see Section 6).

2 RELATED WORKS

Logics on top of Neural Predicates. Approaches such as SBR (Diligenti et al., 2017), LTN
(Badreddine et al., 2022) and Semantic Loss (Xu et al., 2018) translate logical knowledge into
differentiable penalties added to the loss. In contrast, abductive methods (Dai et al., 2019; Tsamoura
et al., 2021; Huang et al., 2021) let a symbolic model find labels for the neural part consistent with
the provided knowledge. This enables logical reasoning also at inference time, yet the symbolic
program remains user-supplied rather than learned. Similarly, DeepProbLog (Manhaeve et al., 2018),
DeepStochLog (Winters et al., 2022), and NeurASP (Yang et al., 2020), enrich logical solvers with
neural predicates whose outputs are treated as probabilities. The Gödel Trick (Daniele & van Krieken,
2025) makes formulas differentiable via Gödel semantics, and add noise to avoid local minima.
Optimizing with backpropagation can then be interpreted as a (discrete) local search algorithm for
SAT solving. On the rule-inducing side, SATNet (Wang et al., 2019) embeds a smoothed MaxSAT
layer inside a neural network, jointly optimizing clause weights and perception. Subsequent work
exposed limitations with unsupervised grounding (Chang et al., 2020), partially alleviated in Topan
et al. (2021). DSL (Daniele et al., 2022) directly learn symbolic rules from data alongside the
perception-to-symbol mappings, but the symbolic part is only a lookup table.

Neural Networks with Soft Gates. Many recent NeSy learners devise neurons that perform a
continuous relaxation of the AND and OR operations, with learnable weights acting as soft gates.
These neurons are placed into layers alternating the two operations, while the NOT operation is
obtained by doubling the inputs—juxtaposing each input value with its negation. Models like these
are typically used to learn propositional rules on binarized tabular data (Qiao et al., 2021; Dierckx
et al., 2023; Katzir et al., 2020; Kusters et al., 2022). Among these, Multi-Layer Logical Perceptron
(MLLP) (Wang et al., 2020) is a state-of-the-art model, using product fuzzy logic operations. However,
like all the others, it does not guarantee that the extracted rules—which it calls Concept Rule Sets
(CRS)—have the same accuracy as the neural model. Instead, we propose to use Gödel fuzzy logic,
which allows a lossless extraction. Soft logical gates are also employed on binary/ternary neural
networks (Deng et al., 2018), which are typically used for the efficiency of the quantized networks
at inference, rather than the logical semantics. In particular, Differentiable Logic Networks (DLN)
(Petersen et al., 2022; 2024) keep a sparse fixed wiring with nodes having at most two parents, and
learn which binary Boolean operation each node should execute. Instead, LoH does the opposite: the
logical operations are fixed, and the learnable gates decide which branch is selected. This allows LoH
to yield more readable formulas (as DLNs rely on deeply nested structures employing 16 different
logical operators), and offers a more straightforward path for incorporating prior knowledge.

Inductive Logic Programming (ILP). Also modern NeSy methods in ILP, such as dILP (Evans
& Grefenstette, 2018), NTP (Campero et al., 2018) and NeurRL (Gao et al., 2025), use neurons
performing a soft version of the logical operations, thus learning first-order rules via gradient
descent. Of particular interest are Logical Neural Networks (LNNs) (Riegel et al., 2020), which
compile formulas into neural networks with weighted Łukasiewicz operators, but rely on constrained
optimization (e.g., Frank-Wolfe (Frank et al., 1956)), which hampers scalability. Moreover, assigning
“importances” to the subformulas, instead of choosing one among the candidates as in LoH, limits the
possibility to extract hard rules without loss in accuracy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Neuro-fuzzy networks (NFNs). NFNs (e.g., ANFIS (Jang, 1993), LazyPOP (Zhou & Quek, 1996)
and GSETSK (Nguyen et al., 2015)) are interpretable models where a neural network structure directly
coincides with a fuzzy rule base. Typically they concentrate on parametric identification under fixed
rules. Even when logic is induced (Shihabudheen & Pillai, 2018), their rule-based architecture is
suited for a DNF-like format, which contrast the expressivity and flexibility of LoH.

3 BACKGROUND

Classical propositional logic builds formulas from propositional variables using negation (¬), conjunc-
tion (∧) and disjunction (∨).1 An interpretation assigns to each variable the Boolean value true (1) or
false (0), and extends recursively: the interpretation of ¬ϕ flips the value of ϕ, the one of ϕ∧ψ returns
the conjunction (AND) of the two values, and ϕ∨ψ returns the disjunction (OR). Fuzzy logics relax the
interpretations’ truth values to the real unit interval [0, 1], interpreting connectives with t-norms (for
∧) and t-conorms (for ∨). This relaxation brings differentiable operations, allowing gradient-based
optimization. Common fuzzy logics include Łukasiewicz, Product, and Gödel. Product logic has
t(x, y) := xy as t-norm (i.e., conjunction), and s(x, y) := 1−(1−x)(1−y) = x+y−xy as t-conorm
(i.e., disjunction). On the other hand, Gödel logic uses min and max for conjunction and disjunction,
respectively. In both, the negation of x corresponds to 1−x.

Gödel logic stands out for its simplicity and its closer alignment to classical logic in terms of
idempotency and distributivity. Importantly, Gödel logic has the following property:
Theorem 1 (Theorem 4.1 in Daniele & van Krieken (2025)). For any Gödel interpretation G, let B be
the Boolean interpretation obtained rounding every fuzzy value in G with the thresholding function2

ρ : [0, 1] \ {0.5} → {0, 1}, x 7→
{
1 if x > 0.5

0 if x < 0.5
(1)

meaning that B(vi) = ρ(G(vi)) for every propositional variable vi. Then, B is always consistent
with G, i.e., B(ϕ) = ρ(G(ϕ)) for every formula ϕ.

We can think at any logical formula as our model, with the truth values of the variables as inputs and
the corresponding truth value of the formula as output. It is continuous if using fuzzy interpretations,
and discrete if using classical Boolean ones. The theorem means that discretizing the outputs of the
continuous model is the same as working with the discrete one, on the discretized inputs.

The main problem of using Gödel semantics is that its optimization can stall in shallow local minima.
The Gödel Trick (Daniele & van Krieken, 2025) counters this by adding noise to each parameter,
turning the optimization into a stochastic local search that escapes plateaus while remaining gradient-
based. In practice, it works by storing as parameters the logits of the fuzzy weights. Then, for every
step of training, random noise is sampled and added to the logits. This is done in the forward pass,
before applying the sigmoid function producing the fuzzy weights. For a more complete discussion,
see Appendix A or Daniele & van Krieken (2025).

4 LOGIC OF HYPOTHESES (LOH)

We introduce Logic of Hypotheses (LoH) first as a language for expressing hypothesis spaces (i.e.,
sets) of formulas in compact way. Syntactically, LoH extends propositional logic, adding a new
choice operator [·] that can take as input any finite number of formulas:

F ::= v
∣∣ ¬F1

∣∣ F1 ∨ F2

∣∣ F1 ∧ F2

∣∣ [F1, F2, . . . , Fn]

where v ∈ V represents the propositional variables and n can vary among the positive integers.
Semantically, a LoH formula Φ represents an entire set of classical propositional formulas H(Φ),
each obtained by selecting exactly one subformula per choice operator.

1For simplicity, we do not consider implication (→) and iff (↔). However, there is nothing preventing their
use, if associated with a consistent fuzzy semantics. For example, we may consider material implication, which
comes from substituting ϕ→ ψ with its Boolean equivalent ¬ϕ ∨ ψ.

2The exclusion of x = 0.5, where negation would break the homomorphism property, is mostly a technicality.
In practical settings, this exact value has measure zero in continuous-valued interpretations and does not affect
the general applicability of the result.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Example 1. The LoH formula Φ := [a, b] ∧ [c, d] ∧ ¬e has hypothesis space
H(Φ) := { a ∧ c ∧ ¬e, a ∧ d ∧ ¬e, b ∧ c ∧ ¬e, b ∧ d ∧ ¬e }

In general, the setH(Φ) is obtained by applying inductively the following substitutions to Φ:

R1: the set {v} substitutes the propositional variables v;
R2: the set {¬ϕ | ϕ ∈ F1} substitutes the subformulas ¬F1;
R3: the set {ϕ ∧ ψ | ϕ ∈ F1, ψ ∈ F2} substitutes the subformulas F1 ∧ F2;
R4: the set {ϕ ∨ ψ | ϕ ∈ F1, ψ ∈ F2} substitutes the subformulas F1 ∨ F2;
R5: the set

⋃n
i=1 Fi substitutes the subformulas [F1, . . . , Fn].

Example 2. Let’s unfold the step-by-step procedure for producingH([a, [b, c]] ∧ ¬[c, d]):

(R1) [{a}, [{b}, {c}] ∧ ¬[{c}, {d}]

(R5) [{a}, {b, c}] ∧ ¬{c, d}

(R5)+(R2) {a, b, c} ∧ {¬c,¬d}

(R3) {a ∧ ¬c, a ∧ ¬d, b ∧ ¬c, b ∧ ¬d, c ∧ ¬c, c ∧ ¬d}

In neural networks, the output of a hidden neuron is usually fed to multiple neurons of the subsequent
layer. Similarly, in LoH, we may want to use the same “choice” of a subformula in multiple places.
This can be solved by defining a placeholder for a sub-formula, and use it in multiple parts of the
main formula. The algorithm for producing the hypothesis space corresponding to an LoH formula
with such placeholders is reported in Appendix B.
Example 3. The LoH formula [a, b]∧[a, b] has hypothesis space {a∧a, a∧b, b∧a, b∧b} ≡ {a, a∧b, b}.
On the other hand, the LoH formula ϕ∧ϕ with ϕ := [a, b] has hypothesis space {a∧a, b∧b} ≡ {a, b}.

Notice that LoH is flexible enough to encode any finite set of propositional formulas {h1, . . . , hn}.
Indeed, [h1, . . . , hn] represents exactly that space, even if more compact representations—whose
compilations will require less parameters—may be possible. Even for a fixed hypothesis space, LoH
is flexible enough to provide formulas biasing the search process in different ways. For example,
both [a, [b, c]] and [a, a, b, c] are more biased towards choosing a than [a, b, c].

5 FROM LOH TO DIFFERENTIABLE COMPUTATIONAL GRAPHS

In the preceding section, we presented LoH as a language for expressing hypothesis spaces of logical
formulas. We now show how the same LoH formulas can be turned into supervised machine learning
models searching in those hypothesis spaces. The search will be done by gradient descent with
backpropagation, so we need to compile LoH formulas into differentiable computational graphs.

The first step is to introduce a weight wi ∈ [0, 1] for every candidate subformula Fi inside a
choose operator. These are learnable and act as gates. Each choice operator is then converted to a
propositional formula linking such weights to the respective subformulas. This can be done in two
dual, practically interchangeable ways, which we call disjunctive/conjunctive compilations:

Disjunctive Compilation [F1, . . . , Fn] ⇝
n∨

i=1

wi ∧ Fi

Conjunctive Compilation [F1, . . . , Fn] ⇝
n∧

i=1

¬wi ∨ Fi

Whichever of the two we use—more on this later—, we are left with a propositional formula with only
the operators ¬, ∧ and ∨. In order to have differentiable operations, we interpret them under a fuzzy
semantics. For example, with Gödel fuzzy logic,

∨n
i=1 wi ∧ Fi becomes maxi=1,...,n(min(wi, Fi))

and
∧n

i=1 ¬wi ∨ Fi becomes mini=1,...,n(max(1−wi, Fi)). The final piece is to design the weights
in such a way that they can take continuous values in the interval [0, 1], while allowing to extract the
discrete selection of a candidate subformula for every choice operator.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Design of the weights. Let us first consider the case in which the weights are binary, i.e., each wi

can only have value 0 or 1. Then, the formulas above can be simplified to equivalent ones, recalling
that 0 ∧ F ≡ 0, 1 ∧ F ≡ F , 0 ∨ F ≡ F and 1 ∨ F ≡ 1, for any formula F . It follows that the
disjunctive (resp. conjunctive) compilation is equivalent to the disjunction (resp. conjunction) of
the subformulas with weight 1. So if we impose that one weight wi is 1 and the remaining are 0,
then both the conjunctive and the disjunctive compilation become equivalent to the single “chosen”
subformula—the one with wi = 1. This is exactly the condition we want after discretizing the
weights. Indeed, we want the discrete selection of a single candidate from each choice operator.

The simplest way to discretize the weights is to use the thresholding function ρ defined in equation 1.
Hence, for any tuple of weights (w1, . . . , wn) ∈ [0, 1]n associated to a choice operator [F1, . . . , Fn],
we want to impose that wi > 0.5 for one and only one i. Instead of storing the weights wi directly,
let us associate to each of them the actual learnable parameter zi, which can take any real value. The
differentiable operations for deriving the weights wi from these parameters are the following:

1. To escape local minima in the optimization procedure, at each forward step of training, add
random noise to the parameters: z′i := zi + ni with ni ∼ Gumbel(0, β) and β being an
hyperparameter.

2. Let z̄′ be the mean of the two largest z′i values, and subtract it to each z′i. By construction,
all points z′i but the largest lie on the left of z̄′.3 Hence, one and only one among the shifted
values z′′i := z′i − z̄′ is positive.

3. Apply the sigmoid function: wi := σ(z′′i /T) =
exp(z′′

i /T)
1+exp(z′′

i /T) , with the temperature T being
an hyperparameter.

The application of the sigmoid function ensures that the weights are in the interval [0, 1]. Moreover,
because of the second step, one and only one logit z′′i is positive, so exactly one weight wi is greater
than 0.5. This procedure for producing weights wi from the zi’s is an adaptation of the Gödel trick
with categorical variables (Daniele & van Krieken, 2025), and is further discussed in Appendix A.

Disjunctive vs Conjunctive Compilation. Both have the same purpose of selecting one subformula
among the candidates, and in general both work well. We suggest using the former when the choice
operator is a term in a disjunction, and the latter when in a conjunction; the opposite if negated. For
example, for ¬[a, b] ∧ [b, c] ∧ ([c, d] ∨ ¬[d, e]), we suggest using disjunctive compilation for [a, b]
and [c, d], and conjunctive compilation for [b, c] and [d, e]. The theoretical and empirical motivations
for this are discussed in Appendix C.

Robustness to Binarization. By design, it is always possible to binarize the weights of a model
and extract the chosen subformula from each choice operator. The result is a propositional formula
in the hypothesis space denoted by the LoH formula. If using Gödel fuzzy logic, then Theorem 1
guarantees that the outputs of the resulting propositional formula coincide with the rounding of the
outputs of the continuous model on every possible input.4 Accuracy, confusion matrices, and any
higher-level deductive tasks are thus preserved from the continuous to the discrete model. In this
sense, Gödel logic offers lossless rule extraction. Notice that this is true also at any point in training.
So the entire training process—while being gradient-based—can be interpreted symbolically, through
discrete changes. To our knowledge, no other rule-learning NeSy model achieves this.

6 LOH AS A UNIFYING FRAMEWORK FOR NESY INTEGRATION

In this section, we demonstrate how LoH captures a wide range of existing NeSy methods—spanning
fully-provided prior knowledge, partially known templates, and purely data-driven rule induction.
Appendix E reports an ablation on synthetic data comparing most of these settings.

3The probability of the two largest values coinciding is negligible, especially after adding the continuous
Gumbel noise. Moreover, this happening would affect only the extraction of hard rules, not the optimization
procedure (which would continue to change the parameters, eventually breaking the tie).

4See Appendix D for a counterexample with product fuzzy logic.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Full Knowledge (No Choice Operators). If the choice operator [·] is never used, the logical part
has no learnable parameter, but the gradient can backpropagate from it to a neural part below. This
corresponds to many well-known NeSy approaches where knowledge is entirely specified a priori.

Selecting Reliable Rules. Suppose we have a knowledge set of n candidate rules r1, . . . , rn, but
we are unsure on whether they are correct. Then, we can use the following LoH formula to select a
reliable subset:

n∧
i=1

[ri,⊤] (2)

Indeed, the hypothesis space spans all possible subsets: by selecting ri over ⊤, the model effectively
picks such rule. When the rules are clauses (i.e., disjunctions of possibly negated propositions), this
setup parallels KENN (Daniele & Serafini, 2019), which also have a learnable weight for each rule
(even if it is never made discrete). In our framework, each ri in equation 2 can be any formula. For
example, we may have entire knowledge bases as ri’s, and use equation 2 to decide which to trust.

Selecting One Rule per Set. Given m sets {ri,1, . . . , ri,ni
} of candidate rules, we may want to

enforce the choice of exactly one rule per set. This may happen for example because the rules in each
set are mutually exclusive. For this purpose, we can use the following LoH formula:

m∧
i=1

[ri,1, ri,2, . . . , ri,ni] (3)

Respecting Syntactic Requirements. If the learned rules of a NeSy model are to be used also in a
symbolic program, this may require them to adhere to a specific format or template. If it is possible to
express the template in LoH—and LoH is flexible in this regard—, then the adherence is guaranteed.
As an example, here is a possible template for clauses of width 3:

[v1, . . . , vn,¬v1, . . . ,¬vn] ∨ [v1, . . . , vn,¬v1, . . . ,¬vn] ∨ [v1, . . . , vn,¬v1, . . . ,¬vn] (4)

And here is a template for definite clauses (i.e., clauses with exactly one positive variable):
n∨

i=1

[¬vi,⊥] ∨ [v1, . . . , vn] (5)

Zero Knowledge (Pure Rule Learning). For rule induction, we can combine neurons learning
disjunctions and neurons learning conjunctions. A simple and most efficient way is to arrange them
in layers and exploit parallel computation on tensors, like in standard Artificial Neural Networks.
The following are LoH formulas for neurons learning the disjunction of a subset of neurons of the
previous layer, with and without negations:

n
(l+1)
j :=

ml∨
i=1

[n
(l)
i ,¬n(l)i ,⊥] and n

(l+1)
j :=

ml∨
i=1

[n
(l)
i ,⊥] (6)

Analogously, conjunctive neurons simply replace disjunction with conjunction and False with True.
The layers adopted in NLNs (Payani & Fekri, 2019) and MLLPs (Wang et al., 2020) use neurons
analogous to those, with product fuzzy logic, instead of Gödel’s. In this correspondence, they would
use—as we suggested—conjunctive compilation for the choice operators in conjunctive neurons and
vice versa for disjunctive neurons. However, LoH is flexible and many alternative designs of neurons
are possible. For example,

n
(l+1)
j :=

k∨
i=1

[n
(l)
1 , . . . , n(l)

ml
,¬n(l)1 , . . . ,¬n(l)ml

] and n
(l+1)
j :=

k∨
i=1

[n
(l)
1 , . . . , n(l)

ml
] (7)

are neurons learning clauses of fixed width k (possibly with repetitions)—k being a hyperparameter.

Partial Knowledge. If we have a knowledge base K which is reliable but not complete, we can
couple it with a rule-learning LoH formula Φ, and use K ∧ Φ. Similarly, we may have a knowledge
base whose rules have some missing parts, and fill them with some rule-learning formulas.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

7 EXPERIMENTS

In this section, we evaluate the performance of our models, in their general form when no domain
knowledge is provided: i.e., models made alternating conjunctive and disjunctive layers, with neurons
of the form in equation 6 or in equation 7. We employ the Gödel trick and test the performance
on several benchmark classification datasets. All experiments were conducted on a cluster node
equipped with an Nvidia RTX A5000 with 60GB RAM.

7.1 CLASSIFICATION PERFORMANCE ON TABULAR DATASETS

Datasets. We use 12 classification benchmarks from the UCI Machine Learning Repository, avail-
able with CC-BY 4.0 license. They were previously employed in Wang et al. (2020) for evaluating
MLLP. As a preprocessing step, we adopt the same data discretization and binarization procedure as
in Wang et al. (2020): the recursive minimal entropy partitioning algorithm (Dougherty et al., 1997),
followed by one-hot-encoding. Datasets’ references and properties are available in Appendix G.

Models. In our model, we alternate conjunctive and disjunctive layers without negations. The
choice between using neurons of type (6) or neurons of type (7) is performed by the hyperparameters’
tuning, together with the rest of the architecture (number and size of layers, and whether to start with
a conjunctive or a disjunctive layer). We compare our model against Differentiable Logic Networks
(DLN) (Petersen et al., 2022), the aforementioned MLLP (Wang et al., 2020), and the rules extracted
from it, which are called CRS. Note that for DLN we report the performance of the continuous model,
which is generally higher than the discretized one. Instead, Gödel semantics ensures our model
behaves identically before and after binarization, and CRS corresponds to the post-hoc binarization of
MLLP. We also consider commonly used machine learning baselines: Decision Trees (DT), Random
Forests (RF), XGBoost and standard fully-connected Neural Networks (NN).

Five of the twelve datasets have more than two classes, and we want to treat multi-class predictions
as mutually exclusive output propositions. Therefore, in our model, we apply a reparameterization to
the final layer, to guarantee that exactly one output per example exceeds the threshold value 0.5—the
output of the predicted class. This is analogous to the procedure used before for designing the weights
of a choice operator, but does not require the addition of noise. Concretely, let zi be the logits of the
outputs oi produced by the outmost layer—each one corresponding to a different class. Each logit
gets shifted by subtracting the mean z̄ of the two largest zi’s. The resulting zi − z̄ values—of which,
by construction, one and only one is positive—are then outputted through a sigmoid activation.

Methodology. Each dataset is divided into 20% for testing and 80% for training and validation.
In particular, validation takes 12.5% of the second split, so 10% of the whole dataset. Since most
datasets are unbalanced, we use the F1 score (macro) as classification metric. As loss functions,
we use Binary Cross-Entropy for NN, DLN and our model, and Mean Squared Error for MLLP.
All of them are optimized using Adam (Kingma, 2014). For the selected hyperparameters, Table 1
provides the means and standard deviations of the test-set F1 scores, out of 10 different training runs
on the training plus validation sets. For each dataset, the hyperparameters of each model are tuned
using 80 trials of the TPE algorithm (Bergstra et al., 2011) from the Optuna library. Architectural
choices—such as the number and width of layers—are tuned alongside all other hyperparameters.
Appendix H lists every tuned variable (and their search ranges), while the values ultimately selected
are available in the code.

Discussion. Although vanilla neural networks attain the best summary score (.89) and rank (2.9),
they—together with RF and XGBoost—do not allow to extract symbolic knowledge. MLLP—which
come second—does support rule extraction, but with the loss in performance from it to CRS. In fact,
only DT, CRS, the discretization of DLN, and our model achieve all the benefits of symbolic discrete
rules, such as better interpretability, explainability, and efficiency of inference on CPUs. Moreover,
unlike DT, RF and XGBoost, our model is fully differentiable, so it could be placed downstream of
perception modules (CNNs, transformers, etc.) and be trained end-to-end.

Apart for the two datasets with the largest numbers of classes, namely chess (with 18) and letRecog
(with 26), our model have consistently better scores than CRS, and is almost always on par with, or
close to, the neural network baseline. This suggests that our handling of many-way classification

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Mean F1 scores on the test sets of tabular benchmarks, out of 10 runs.

Dataset DT RF XGBoost NN DLN MLLP CRS Ours

adult .80 ±.00 .81 ±.00 .82 ±.00 .81 ±.01 .80 ±.02 .80 ±.01 .75 ±.06 .81 ±.01

bank-m. .74 ±.00 .73 ±.00 .76 ±.00 .78 ±.01 76 ±.01 .69 ±.08 .75 ±.01 .76 ±.01

banknote .95 ±.00 .95 ±.01 .96 ±.00 .96 ±.00 .95 ±.01 .96 ±.00 .96 ±.00 .96 ±.00
blogger .64 ±.00 .53 ±.00 .69 ±.00 .82 ±.05 .72 ±.12 .84 ±.00 .78 ±.02 .83 ±.08

chess .81 ±.00 .58 ±.01 .85 ±.00 .82 ±.01 .41 ±.02 .83 ±.02 .74 ±.02 .69 ±.01

connect-4 .59 ±.00 .55 ±.00 .71 ±.00 .71 ±.04 .62 ±.01 .58 ±.01 .58 ±.01 .58 ±.01

letRecog .80 ±.00 .76 ±.00 .92 ±.00 .93 ±.00 .64 ±.02 .85 ±.01 .80 ±.01 .77 ±.01

magic04 .81 ±.00 .83 ±.00 .84 ±.00 .84 ±.00 .83 ±.00 .84 ±.00 .80 ±.00 .83 ±.00

mushroom 1. ±.00 1. ±.00 1. ±.00 1. ±.00 1. ±.00 1. ±.00 1. ±.01 1. ±.00
nursery .79 ±.00 .79 ±.00 .80 ±.00 1. ±.00 1. ±.00 1. ±.00 1. ±.00 1. ±.00
tic-tac-toe .89 ±.00 .98 ±.01 .97 ±.00 .99 ±.01 .99 ±.01 1. ±.00 1. ±.00 .99 ±.01

wine 1. ±.00 1. ±.01 .96 ±.00 .97 ±.05 .97 ±.02 1. ±.00 .96 ±.01 .98 ±.01

mean (↑) .82 .79 .86 .89 .81 .87 .84 .85
avg. rank (↓) 5.7 6.0 3.7 2.9 5.2 3.5 5.0 4.1

may not be optimal. Notably, DLN struggles even more on those two benchmarks, and in general
does not surpass our model even in its continuous (pre-discretization) form. Hence, when only a
few classes are present, our model reliably ranks among the top performers while simultaneously
providing symbolic rules and end-to-end differentiability.

7.2 VISUAL TIC-TAC-TOE

One of the previous classification benchmarks (Aha, 1991) is based on the game of tic-tac-toe. The
dataset provides all possible ending board configurations (for games in which X begins), and the
target is to predict whether X has won the game or not. So the target function can be expressed with
a simple formula in Disjunctive Normal Form (DNF), having 8 clauses.5

Let us introduce a more challenging variant of the dataset, which we refer to as Visual Tic-Tac-Toe.
In this version, instead of symbolic board encodings, each cell is represented by a MNIST image.
Specifically, we assign images of the digit 0 to represent X , images of the digit 1 to represent O, and
blank cells are represented by images of the digit 2. As a result, instead of a structured propositional
encoding, the inputs consist of 3 × 3 grids of grayscale images. This modification significantly
increases the difficulty of the task, as models must now learn to recognize digit representations from
the images before they can reason about tic-tac-toe board configurations, but with as little supervision
as before. Traditional symbolic models would struggle with such high-dimensional and noisy input,
making this an interesting benchmark for neuro-symbolic learning.

Models. To handle the image-based input, we extend all models with a standard CNN. This network
consists of two convolutional layers, each using a kernel size of 3 with padding 1, followed by ReLU
activations and max-pooling. The first convolutional layer has 32 output channels, while the second
has 64. After feature extraction, the CNN flattens the output and passes it through a fully connected
layer of size 128, a dropout layer with probability 0.5, and another fully connected layer of size 3.
The three outputs for each of the nine images composing a grid are then concatenated.

For DLN, MLLP/CRS and our models, the outputs of the CNN for the nine images are to be
considered as input “propositions”, so their values are clipped between 0 and 1. The learning process
is end-to-end, including the CNN component. The hyperparameters (and their tuning) are as before,
but we allow the CNN part to have a separate learning rate (in the range 10−5–10−3). Moreover, for
both MLLP/CRS and our model, we fix the number of layers to 2 and distinguish the two cases of
whether the last one is disjunctive (DNF) or conjunctive (CNF). This is not possible for DLN.

5Let the input data be encoded with propositions X1-X9, O1-O9 and B1-B9, meaning that Xi is true
if there is an X at position (⌊i/3⌋, i%3), and similarly for Os and Blank cells. Then, the target func-
tion is (X1 ∧X2 ∧X3) ∨ (X4 ∧X5 ∧X6) ∨ (X7 ∧X8 ∧X9) ∨ (X1 ∧X4 ∧X7) ∨ (X2 ∧X5 ∧X8) ∨
(X3 ∧X6 ∧X9) ∨ (X1 ∧X5 ∧X9) ∨ (X3 ∧X5 ∧X7).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We also implemented a neural baseline that follows a classical deep learning approach (NN). This
model uses a CNN module as the one described earlier, but its outputs are not clipped, and their
number is a hyperparameter in the range 3-32 (instead of being fixed to 3). This is because in this case
the outputs of this part of the network may be better seen as embeddings rather than symbols. The
concatenation of such vectors (for the nine images in a grid) is then fed to a multi-layer perceptron.

Methodology. The original symbolic tic-tac-toe dataset is split with the same proportions as before
(70%-10%-20%). The training and validation parts are given images from MNIST training set, while
the test part is given images from MNIST test set. No image is used more than once. Moreover, for
each board configuration in the training and validation sets, two different image grids are created,
effectively doubling the number of samples.

Table 1 provides the mean and standard deviations of the test-set F1 scores, based on training each
model 30 times on the combined training and validation sets. What changes between the runs is the
network initialization, the mini-batches, the added noise in our model and the random binarization
occurring in MLLP as a form of regularization. Beyond performance, a key advantage of NeSy
approaches lies in their better interpretability. Since they operate on structured logical representations,
we can analyze the learned decision rules after assigning semantic labels to the input units. The exact
procedure for such labeling is reported in Appendix I, together with an example of the decision rules
learned by each model. Table 1 also provides the average F1 scores of these extracted rules on the
purely symbolic tic-tac-toe dataset.

Table 2: Comparison of the models on the Visual Tic-Tac-Toe task.

MLLP CRS Ours

NN DLN DNF CNF DNF CNF DNF CNF

NeSy eval .91 ±.14 .96 ±.01 .80 ±.22 .94 ±.02 .76 ±.28 .92 ±.00 .97 ±.01 .95 ±.01

Symbolic eval - .37 ±.21 - - .80 ±.30 .97 ±.02 .99 ±.00 .99 ±.00

Discussion. On 2 out of its 30 training runs, the neural baseline remained stuck at always predicting
the most frequent class, with macro F1 score of .39. Instead, on the other runs, its performance was
comparable to that of our CNF model. Similarly, MLLP/CRS in the DNF setting remained stuck
on 4 runs, with the remaining 26 performing slightly worse than our CNF model. Finally, MLLP in
the CNF version, and DLN, have similar performance to our CNF model on all runs. However, the
symbolic evaluation reveals that DLN fails when discretized, and MLLP/CRS learned less accurate
symbolic rules than ours. Moreover, the DNF version of our model is consistently better than all
other models, and also found the 100%-correct formula reported above on 4 occasions. These results
highlight the ability of our models to recover symbolic decision rules with high fidelity, even when
the symbols must be learned from continuous high-dimensional perceptions.

8 CONCLUSION AND FUTURE WORK

We introduced a single, compact language for expressing hypothesis spaces of logical formulas
and compiling them into differentiable models whose discrete rule extraction is provably loss-free
under Gödel semantics. LoH unifies knowledge injection and rule induction within one propositional
paradigm, and yields strong results on both tabular and perceptual benchmarks, while retaining the
possibility to extract learned logical formulas following arbitrary templates.

Despite these encouraging results, the present work leaves two important avenues open. First, the
empirical validation should be broadened, targeting larger datasets, use of partial knowledge and
additional NeSy tasks with complex perceptions. Second, the formalism is so far propositional.
Extending LoH with first-order logic quantifiers would unlock relational reasoning and allow direct
comparison with first-order NeSy learners. Addressing these two limitations—with richer logic and
wider experimentation—constitutes our next research milestone.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Assumptions, design choices and claims are reported in the main text and further explained in
Appendices A and B. Theorem 1 is a generally known result, and a proof can be found in Daniele
& van Krieken (2025). We share the code in the supplementary materials, and will make it public
upon acceptance. Experimental setups—including dataset preprocessing, splits, metrics, protocol,
etc.—are described in Section 7. Appendix H reports complete hyperparameter ranges, and the values
taken for each benchmark are available within the code repository. Appendix G references the tabular
datasets, and the code provide a way to build the Visual Tic-Tac-Toe benchmark. Finally, Appendix I
explains the symbol-labeling procedure utilized in the Visual Tic-Tac-Toe experiment.

REFERENCES

BLOGGER. UCI Machine Learning Repository, 2012. DOI: https://doi.org/10.24432/C5HK6P.

David Aha. Tic-Tac-Toe Endgame. UCI Machine Learning Repository, 1991.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022.

Michael Bain and Arthur Hoff. Chess (King-Rook vs. King). UCI Machine Learning Repository,
1994. DOI: https://doi.org/10.24432/C57W2S.

Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo Espinosa Zarlenga, Lucie Charlotte
Magister, Alberto Tonda, Pietro Lio, Frederic Precioso, Mateja Jamnik, and Giuseppe Marra. Inter-
pretable neural-symbolic concept reasoning. In Proceedings of the 40th International Conference
on Machine Learning, volume 202, pp. 1801–1825, 2023.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In Advances in Neural Information Processing Systems, volume 24. Curran Asso-
ciates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/
2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Tarek R Besold, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe
Kühnberger, Luis C Lamb, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, et al.
Neural-symbolic learning and reasoning: A survey and interpretation. In Neuro-Symbolic Artificial
Intelligence: The State of the Art, pp. 1–51. IOS press, 2021.

R. Bock. MAGIC Gamma Telescope. UCI Machine Learning Repository, 2004. DOI:
https://doi.org/10.24432/C52C8B.

Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, and Sebastian Riedel. Logical rule
induction and theory learning using neural theorem proving. arXiv preprint arXiv:1809.02193,
2018.

Oscar Chang, Lampros Flokas, Hod Lipson, and Michael Spranger. Assessing satnet’s ability to
solve the symbol grounding problem. Advances in Neural Information Processing Systems, 33:
1428–1439, 2020.

Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine Quality. UCI Machine Learning
Repository, 2009. DOI: https://doi.org/10.24432/C56S3T.

Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and logical
reasoning by abductive learning. Advances in Neural Information Processing Systems, 32, 2019.

Alessandro Daniele and Luciano Serafini. Knowledge enhanced neural networks. In Proceedings of
the 16th Pacific Rim International Conference on Artificial Intelligence (PRICAI), Lecture Notes
in Computer Science, pp. 542–554. Springer, 2019.

10

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alessandro Daniele and Emile van Krieken. Noise to the rescue: Escaping local minima in neurosym-
bolic local search, 2025. URL https://arxiv.org/abs/2503.01817.

Alessandro Daniele, Tommaso Campari, Sagar Malhotra, and Luciano Serafini. Deep symbolic
learning: Discovering symbols and rules from perceptions. arXiv preprint arXiv:2208.11561,
2022.

Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-net: Training deep neural networks
with ternary weights and activations without full-precision memory under a unified discretization
framework. Neural Networks, 100:49–58, 2018.

Lucile Dierckx, Rosana Veroneze, and Siegfried Nijssen. Rl-net: Interpretable rule learning with
neural networks. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.
95–107. Springer, 2023.

Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based regularization for learning
and inference. Artificial Intelligence, 244:143–165, 2017.

James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of
continuous features. ICML, 1995, 09 1997. doi: 10.1016/B978-1-55860-377-6.50032-3.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64, 2018.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Kun Gao, Katsumi Inoue, Yongzhi Cao, Hanpin Wang, and Yang Feng. Differentiable rule induction
from raw sequence inputs. In The Thirteenth International Conference on Learning Representations,
2025.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series of
lectures, volume 33. US Government Printing Office, 1954.

Yu-Xuan Huang, Wang-Zhou Dai, Le-Wen Cai, Stephen H Muggleton, and Yuan Jiang. Fast abductive
learning by similarity-based consistency optimization. Advances in Neural Information Processing
Systems, 34:26574–26584, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

J-SR Jang. Anfis: adaptive-network-based fuzzy inference system. IEEE transactions on systems,
man, and cybernetics, 23(3):665–685, 1993.

Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net-dnf: Effective deep modeling of tabular data. In
International conference on learning representations, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Remy Kusters, Yusik Kim, Marine Collery, Christian de Sainte Marie, and Shubham Gupta. Dif-
ferentiable rule induction with learned relational features. arXiv preprint arXiv:2201.06515,
2022.

Volker Lohweg. Banknote Authentication. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C55P57.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. Advances in neural information processing
systems, 31, 2018.

Giuseppe Marra, Sebastijan Dumančić, Robin Manhaeve, and Luc De Raedt. From statistical
relational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence, 328:104062,
2024. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2023.104062.

11

https://arxiv.org/abs/2503.01817

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

S. Moro, P. Rita, and P. Cortez. Bank Marketing. UCI Machine Learning Repository, 2014. DOI:
https://doi.org/10.24432/C5K306.

Ngoc Nam Nguyen, Weigui Jair Zhou, and Chai Quek. Gsetsk: a generic self-evolving tsk fuzzy
neural network with a novel hebbian-based rule reduction approach. Applied Soft Computing, 35:
29–42, 2015. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2015.06.008.

Ali Payani and Faramarz Fekri. Inductive logic programming via differentiable deep neural logic
networks, 2019. URL https://arxiv.org/abs/1906.03523.

Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Deep differentiable logic gate
networks. Advances in Neural Information Processing Systems, 35:2006–2018, 2022.

Felix Petersen, Hilde Kuehne, Christian Borgelt, Julian Welzel, and Stefano Ermon. Convolutional
differentiable logic gate networks. Advances in Neural Information Processing Systems, 37:
121185–121203, 2024.

Litao Qiao, Weijia Wang, and Bill Lin. Learning accurate and interpretable decision rule sets from
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
4303–4311, 2021.

Vladislav Rajkovic. Nursery. UCI Machine Learning Repository, 1989. DOI:
https://doi.org/10.24432/C5P88W.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, et al. Logical neural
networks. CoRR, abs/2006.13155, 2020. URL https://arxiv.org/abs/2006.13155.

J. Schlimmer. Mushroom. UCI Machine Learning Repository, 1981. DOI:
https://doi.org/10.24432/C5959T.

K.V. Shihabudheen and G.N. Pillai. Recent advances in neuro-fuzzy system: A survey. Knowledge-
Based Systems, 152:136–162, 2018. ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.2018.
04.014.

David Slate. Letter Recognition. UCI Machine Learning Repository, 1991. DOI:
https://doi.org/10.24432/C5ZP40.

Sever Topan, David Rolnick, and Xujie Si. Techniques for symbol grounding with satnet. Advances
in Neural Information Processing Systems, 34:20733–20744, 2021.

John Tromp. Connect-4. UCI Machine Learning Repository, 1995. DOI:
https://doi.org/10.24432/C59P43.

Efthymia Tsamoura, Timothy Hospedales, and Loizos Michael. Neural-symbolic integration: A
compositional perspective. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 5051–5060, 2021.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. SATNet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pp. 6545–6554, 2019.

Zhuo Wang, Wei Zhang, Jianyong Wang, et al. Transparent classification with multilayer logical per-
ceptrons and random binarization. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 6331–6339, 2020.

Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. Deepstochlog: Neural
stochastic logic programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10090–10100, 2022.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function
for deep learning with symbolic knowledge. In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5502–5511.
PMLR, 07 2018.

12

https://arxiv.org/abs/1906.03523
https://arxiv.org/abs/2006.13155

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer set
programming. In 29th International Joint Conference on Artificial Intelligence, IJCAI 2020, pp.
1755–1762. International Joint Conferences on Artificial Intelligence, 2020.

R.W. Zhou and C. Quek. A pseudo outer-product based fuzzy neural network and its rule-identification
algorithm. In Proceedings of International Conference on Neural Networks (ICNN’96), pp. 1156–
1161 vol.2, 1996. doi: 10.1109/ICNN.1996.549061.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A GÖDEL TRICK

In this appendix, we provide a recap of the Gödel trick with categorical variables, adapting its original
presentation in Daniele & van Krieken (2025, Appendix C) to our setting with fuzzy truth values in
[0, 1] discretized to {0, 1} via a 0.5 threshold (instead of real values discretized to {−1, 1} via the
sign function). We also adapt the proof in Daniele & van Krieken (2025, Appendix D), showing that
the Gödel Trick is equivalent to the classical Gumbel-max trick (Gumbel, 1954), of which the widely
used Gumbel-softmax trick (Jang et al., 2017) is a smooth approximation.

Gödel Trick Recap. Direct gradient descent on Gödel logic is prone to stalling in local minima.
The Gödel Trick counteracts this by injecting noise. In our formulation, it takes a set of logits zi (one
per candidate branch of a choice operator), and applies the following three steps, depicted in Figure 1:

1. Noise addition (only during training): z′i := zi + ni, with ni
i.i.d.∼ Gumbel(0, β).

2. Re-centering: z′′i := z′i − z̄′, where z̄′ is the mean of the two largest perturbed logits.

3. Sigmoid application: wi := σ
(

z′′
i

T

)
, where T > 0 is a temperature hyperparameter.

At test time, we can binarize the weights wi at 0.5, ensuring that exactly one wi equals 1 and the rest
are 0. Thanks to Theorem 1, this discretization does not alter the final Boolean predictions of the
model.

zc 0 za zb

z′c z′a z̄′ z′b

z′′c z′′a z′′b

wc

wa

wb

z′i := zi + ni
ni ∼ G(0, β)

z′′i := z′i − z̄′

wi := σ(z′′i /T)

Figure 1: Given a choice operator [a, b, c], the figure illustrates the differentiable three-stage procedure
that turns the raw, real-valued logits zi attached to each candidate sub-formula into logical gates
wi ∈ [0, 1]. From the bottom up: (1) during training, i.i.d. Gumbel noise ni ∼ Gumbel(0, β) is
added to each logit; (2) the mean z̄′ of the two largest perturbed logits is subtracted from all values;
(3) temperature-scaled sigmoid function is applied.

Equivalence to the Gumbel-max Trick. The Gumbel-max trick is a reparameterization method for
sampling from a categorical distribution. Let the categorical distribution be defined by the probabilities
π := softmax(θ). Then, the probability that argmaxi (θi + gi) = j, where gi ∼ Gumbel(0, 1), is
precisely equal to πj . Hence,

onehot(argmax
i

(θi + gi))

produces an exact sample from the categorical distribution with probabilities π. This is how the
Gumbel-max trick works, and the Gumbel-softmax trick is a differentiable approximation which
substitutes onehot ◦ argmax with softmax.

Setting θi := zi/β and gi := ni/β, the perturbation step of the Gödel Trick becomes:
z′i = β (θi + gi)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The centering step subtracts the mean of the two largest perturbed logits, which does not affect the
argmax, since it simply shifts all values by the same constant. Similarly, also the multiplication by a
positive constant and the application of a monotonically increasing function such as the sigmoid do
not affect the argmax. Hence:

argmax
i
wi = argmax

i
z′′i = argmax

i
z′i = argmax

i
(θi + gi)

Since the maximum weight is by construction the only one surpassing the threshold value 0.5,
discretizing the weights wj yields precisely the same effect as onehot(argmaxi(wi)). Thus, we can
conclude that

ρ(wj) = onehot(argmax
i

(θi + gi))j

for every j. Moreover, because we are using Gödel semantics and Theorem 1 applies, the thresholding
of the weights is implicit when considering binarized output predictions of the entire model. Hence,
in our context, the Gödel trick is equivalent to the Gumbel-max trick, which is more precise than the
Gumbel-softmax one.

B LOH WITH PLACEHOLDERS: A FORMALIZATION

Placeholder Declarations. We allow the user to name any LoH subformula by writing a declaration
of the form p := ϕ, where ϕ is a LoH formula and p is a fresh identifier (i.e., a name different from any
propositional variable and any other identifier). A placeholder can itself mention other placeholders
that have been declared earlier. However, the directed graph of such references must be acyclic, to
avoid circular definitions.

Formally, let Pl be the finite set of placeholder names and let D = {p1 := ϕ1, . . . , pm := ϕm} be
the list of declarations. For every placeholder pi, we define its dependency set dep(pi) := {pj ∈ Pl |
pj occurs in ϕi}. The dependency graph is the directed graph G = (P, E) with edge (pi, pj) ∈ E
iff pj ∈ dep(pi). A declaration list is well-defined when G is a directed acyclic graph (DAG).

Hypothesis Space Computation. Let D = {p1 := ϕ1, . . . , pm := ϕm} be a well-defined list of
declarations. The following algorithm produces the hypothesis spaceH(Φ) for every LoH formula Φ
possibly containing the placeholders p1, . . . , pn.

Algorithm 1 Construction of the hypothesis spaceH(Φ)
Input: LoH formula Φ; well-defined declaration list D = {pi := ϕi}mi=1
Output: H(Φ), the hypothesis space of Φ

1: function HYPOTHESES(Φ, D)
2: Tagging. Traverse every choice node [F1, . . . , Fn] in both Φ and the bodies ϕi; assign a fresh

identifier c and record its arity nc
3: Indices space. IndicesSpace←

∏
c

{1, . . . , nc} (Cartesian product)

4: Evaluator. Define the total function EVAL(·, Indices) recursively:

EVAL(v, Indices) := v (R1’)
EVAL(¬F1, Indices) := ¬EVAL(F1, Indices) (R2’)

EVAL(F1 ∧ F2, Indices) := EVAL(F1, Indices) ∧ EVAL(F2, Indices) (R3’)
EVAL(F1 ∨ F2, Indices) := EVAL(F1, Indices) ∨ EVAL(F2, Indices) (R4’)

EVAL([F1, . . . , Fn]c, Indices) := EVAL(FIndices[c], Indices) (R5’)

EVAL(pi, Indices) := EVAL(ϕi, Indices) (Placeholders)

5: Enumeration. H(Φ) ←
{

EVAL(Φ, Indices)
∣∣ Indices ∈ IndicesSpace

}
6: returnH(Φ)
7: end function

Given Φ and D, the Cartesian product IndicesSpace (in line 3) is exactly the set of all possible
assignments of concrete choices to every choice operator. Indeed, for every Indices ∈ IndicesSpace,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the algorithm considers an index Indices[c] ∈ {1, . . . , nc} for every choice node c (of arity nc), and the
evaluator EVAL(·, Indices) is a function that (i) respects placeholder sharing and (ii) deterministically
replaces every choice node [F1, . . . , Fnc

]c by the branch FIndices[c]. Thus, EVAL(Φ, Indices) reflects
the discrete model obtained compiling Φ (as in Section 5), when Indices[c] is the index of the unique
weight greater than 0.5, for each compiled choice operator c. It follows thatH(Φ) coincides exactly
with the hypothesis space of the compiled and discretized model, as we wanted.

Remark on DAG constraint. Algorithm 1, as written in declarative pseudo-code, requires the
declaration list D = {pi := ϕi}mi=1 to be well-defined. In practice, however, our implementation
does not enumerate the hypothesis space, and is written in PyTorch following a standard imperative
framework. A placeholder’s value is created the moment the corresponding tensor is defined, so a
definition such as ψ ← [. . . , ϕ, . . .] must necessarily see ϕ already instantiated. And any subsequent
attempt to define ϕ in terms of ψ would simply create a new tensor rather than closing a cycle. Thus
the execution order enforced by the host language ensures acyclicity “for free”, making an explicit
compile-time DAG check redundant. Importantly, this does not preclude recurrent structures: one
can still build LoH-based recurrent networks exactly as one builds ordinary RNNs in PyTorch — by
passing the hidden state from one time step to the next. In this case, one may write an LoH formula
formally relating some placeholders to the ones at the previous time step, and acyclicity is in the
unrolled architecture.

C DISJUNCTIVE VS CONJUNCTIVE COMPILATIONS

Recall that a choice node [F1, . . . , Fn] can be compiled in two dual ways:

• Disjunctive compilation:
∨n

i=1(wi ∧ Fi)

• Conjunctive compilation:
∧n

i=1(¬wi ∨ Fi)

Duality comes from De Morgan’s laws: the negation of the disjunctive compilation is equivalent to
the conjunctive compilation on the negated subformulas, and vice versa. Indeed,

¬
n∨

i=1

wi ∧ Fi ≡
n∧

i=1

¬wi ∨ ¬Fi and ¬
n∧

i=1

¬wi ∨ Fi ≡
n∨

i=1

wi ∧ ¬Fi

Under Gödel semantics, conjunction and disjunction are interpreted as min and max respectively, so
the two translations become

Disj. : max
i

min(wi, Fi), Conj. : min
i

max(1− wi, Fi).

Case Study: Selecting Reliable Rules. Equation 2 proposes the following LoH model, which is
also used inside conjunctive neurons of the type in equation 6:

n∧
i=1

[ri, ⊤] (2)

Notice that the two weights in the compilation of a choice operator choosing only among two
subformulas must sum to one.6 Hence, we will write wi and 1− wi for the (respective) weights of ri
and ⊤ in [ri, ⊤].
With conjunctive compilation, equation 2 yields:

min
i
(min(max(1− wi, ri),max(wi,⊤))) = min

i
(max(1− wi, ri))

On the other hand, with disjunctive compilation, it becomes:

min
i
(max(min(wi, ri),min(1− wi,⊤))) = min

i
(max(min(wi, ri), 1− wi))

6Indeed, let z1 and z2 be the stored parameters. By design, the weights w1 and w2 are obtained applying the
sigmoid function to z1 − z1+z2

2
= z1−z2

2
and z2 − z1+z2

2
= z2−z1

2
(respectively). The two logit values are

opposite to each other, so the weights w1 = σ(z1−z2
2T

) and w2 = σ(z2−z1
2T

) must sum to 1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Thus, equation 2 simplifies more under conjunctive compilation. This simplification has an important
effect on the training dynamics. Indeed, when a rule ri is already (almost) satisfied for a specific
example (i.e., ri ≈ 1), also the inner max(1−wi, ri) becomes≈ 1. Hence, the outer mini ignores that
index and concentrates on a rule whose truth value is smaller (if any). Then, it is the weight associated
to that less-satisfied rule that will receive gradient signal for updating. Intuitively, when particular data
gives no evidence for preferring ri over ⊤ (because their truth values are the same), the network also
receives no signal to change the associated gate wi. By contrast, max(min(wi, ri), 1−wi) evaluates
to max(wi, 1− wi) when ri ≈ 1. Consequently, the loss may push wi upwards or downwards even
when the data provide no information for choosing between ri and ⊤. These unwanted updates can
slow convergence and may bias the learned subset of rules.

Empirical Evaluation. We conducted some experiments validating the previous findings and
extending to different LoH models. The experiments are conducted in the following way. We consider
10 propositional variables and randomly generate some ground-truth clauses and some additional
clauses, of width ranging from 2 to 5. For any of the 210 possible Boolean interpretations, a label is
produced using the ground-truth clauses as rules. Then the dataset is divided into 75% for training
and 25% for evaluation. An LoH model is trained to select some rules among the ground-truth +
additional rules. For any considered number of ground-truth clauses and additional clauses, the same
experiment is repeated 10 times. For each execution, the test-set F1 score is recorded, together with
the number of optimization steps to convergence. The criterion we use for deciding convergence is
the following: either 100% accuracy is achieved, or there is no change in accuracy for 64 consecutive
steps, or a limit of 64 epochs (384 steps) is reached. The values of the hyperparameters were fixed:
128 as batch size, 0.15 as learning rate, 1 as temperature, and Gumbel(0, 1) noise.

Figure 2 reports the plots with the experiments’ results for different models. Subfigure 2a refers
to simple rule selection, with LoH models as in equation 2. Subfigure 2b does the same, but in
the dual set-up: both ground-truth and additional clauses ci are conjunctive clauses, and the LoH
model

∨n
i=1[ci, ⊥] learns a disjunction of them. Finally, Subfigure 2c considers again rules made

of (disjunctive) clauses. However, each of the m ground-truth clauses is placed on a different set
{ri,1, ri,2, . . . , ri,k+1}, together with k additional clauses. Then, we use the model in equation 3,
selecting one rule per set. These plots corroborate our suggestion to use conjunctive compilation
inside conjunctions (Subfigures 2a and 2c), and disjunctive compilation inside disjunctions (Subfigure
2b). Indeed, such compilation choices achieved better results both in terms of final accuracy and of
convergence speed.

D COUNTEREXAMPLE FOR PRODUCT FUZZY LOGIC

Let us consider the disjunctive compilation of [a, b]:

(wa ∧ a) ∨ (wb ∧ b)

and interpret it with the following fuzzy values: I(wa) = 0.6, I(a) = 0.7, I(wb) = 0.4 and
I(b) = 0. Using product fuzzy logic,

I((wa ∧ a) ∨ (wb ∧ b)) = 0.6 ∗ 0.7 = 0.42 < 0.5

whose discretized Boolean value ρ0.5(0.42) = 0 (False). On the other hand, if B is the Boolean
discretization of I, so that B(wa) = 1, B(a) = 1, B(wb) = 0 and B(b) = 0, then

B((wa ∧ a) ∨ (wb ∧ b)) = 1

This means that the discretized explanation disagrees with the behavior of the network. Analo-
gous counterexamples can be built for Łukasiewicz logic. Instead, with Gödel logic, the Boolean
interpretation is always in accordance with the fuzzy truth values (Theorem 1):

I((wa ∧ a) ∨ (wb ∧ b)) = max(min(0.6, 0.7),min(0.4, 0)) = 0.6 > 0.5

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

15 20 25 30 35 40 45 50
Total number of clauses

0

50

100

150

200

250

300

St
ep

s
to

 c
on

ve
rg

en
ce

Disjunctive Compilation

15 20 25 30 35 40 45 50
Total number of clauses

Conjunctive Compilation

0.50

0.60

0.70

0.80

0.90

1.00

F1
 S

co
re

(a) With LoH model
∧n

i=1[ri, ⊤]

15 20 25 30 35 40 45 50
Total number of clauses

0

50

100

150

200

250

300

St
ep

s
to

 c
on

ve
rg

en
ce

Disjunctive Compilation

15 20 25 30 35 40 45 50
Total number of clauses

Conjunctive Compilation

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

F1
 S

co
re

(b) With LoH model
∨n

i=1[ci, ⊥]

20 40 60 80 100 120 140
Total number of clauses

0

50

100

150

200

250

300

350

400

St
ep

s
to

 c
on

ve
rg

en
ce

Disjunctive Compilation

20 40 60 80 100 120 140
Total number of clauses

Conjunctive Compilation

0.60

0.70

0.80

0.90

1.00

F1
 S

co
re

(c) With LoH model
∧m

i=1[ri,1, ri,2, . . . , ri,k+1]

Figure 2: Comparison of disjunctive and conjunctive compilations.

E COMPARISON OF DIFFERENT TEMPLATES

Let us consider the following ground-truth CNF formula ϕ made of 5 definite clauses of width 3:

(¬v3 ∨¬v8 ∨ v7)∧ (¬v10 ∨¬v3 ∨ v4)∧ (¬v1 ∨¬v9 ∨ v10)∧ (¬v2 ∨¬v6 ∨ v8)∧ (¬v4 ∨¬v3 ∨ v5)
For any of the 210 possible Boolean interpretations of the propositional variables v1, . . . , v10, a
ground-truth label is produced using ϕ. This dataset is divided into 75% for training and 25% for
evaluation, and each LoH model is trained to construct 5 clauses. The values of the hyperparameters
are fixed: 128 as batch size, 0.15 as learning rate, 1 as temperature, andGumbel(0, 1) noise. Figure 3
compares the average learning curves (over 20 runs) of LoH models adhering to different templates.
In particular,

• “5 clauses” uses the conjunction of five copies of
∨10

i=1[¬vi, vi,⊥]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• “5 definite clauses” uses the conjunction of five copies of formula equation 5 with n = 10,
i.e.,

∨10
i=1[¬vi,⊥] ∨ [v1, . . . , v10]

• “5 definite clauses of width 3” uses the conjunction of five copies of the following LoH
formula: [¬v1, . . . ,¬v10] ∨ [¬v1, . . . ,¬v10] ∨ [v1, . . . , v10]

• “5 definite clauses with heads given” uses (
∨10

i=1[¬vi,⊥] ∨ v7) ∧ (
∨10

i=1[¬vi,⊥] ∨ v4) ∧
(
∨10

i=1[¬vi,⊥] ∨ v10) ∧ (
∨10

i=1[¬vi,⊥] ∨ v8) ∧ (
∨10

i=1[¬vi,⊥] ∨ v5)
• “5 definite clauses with first given” uses the conjunction of (¬v3 ∨ ¬v8 ∨ v7) with four

copies of
∨10

i=1[¬vi,⊥] ∨ [v1, . . . , v10]

Figure 3: Average training curves — over 20 runs — of LoH formulas following different templates,
for learning the same ground-truth CNF formula made of 5 definite clauses of width 3.

We can notice that adding explicit knowledge—fixing either a clause or the clause heads—yield better
learning curves than the purely syntactic alternatives. Regarding such three purely syntactic templates,
we can notice that the model learning definite clauses slightly outperformed the most general one,
thanks to a reduced search space. However, despite having an even smaller hypothesis space, the
model learning definite clauses of width 3 is the one performing worse. This may be explained by
the fact that the other models can update the weights of the negative literals independently, whereas
updates in [¬v1, . . . ,¬v10] always involve more variables at the same time. Additionally, choosing
¬vi in the first choice operator and ¬vj in the second (with i ̸= j) is in a completely different region
of the search space from the equivalent choice of ¬vj in the first and ¬vi in the second. Anyway, one
may still employ this model because it guarantees formulas of a prescribed template, irrespective
of raw predictive performance. Moreover, among the 20 runs, each of the LoH models found the
100%-correct formula multiple times. This suggest that trying different runs and picking the best can
be a useful strategy.

F FURTHER EXPERIMENTS WITH ARTIFICIAL DATA

Figure 4 reprises the experiments of Appendix C. However, it considers only the best compilations
(disjunctive for 4b, and conjunctive for 4a and 4c), while highlighting the influence of different
experimental factors. In particular, the middle column shows how both F1 score and convergence
speed have a strong negative correlation with the number of ground-truth clauses. Clearly, the more
clauses in the ground truth, the more need to be selected for a perfect score, and the more difficult
the learning. However, since the ground-truth clauses are independently generated, their number is
also strongly correlated with data imbalance. As shown in the first column, learning a conjunction of
clauses suffers most when there are too few positive samples (i.e., samples in which the ground-truth
formula is satisfied). Conversely, a shortage of negative samples drives poorer performance when
learning a disjunction. In contrast, the number of additional, “misleading” clauses is not as impactful

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

as the ground-truth, as evidenced by the third column. This is true at least when the number of
additional clauses is comparable to that of the ground truth.7

0 20 40 60
Percentage of true labels

0

25

50

75

100

125

150
St

ep
s

to
 c

on
ve

rg
en

ce

w.r.t. percetage of true labels

5 10 15 20
Number of ground-truth clauses

w.r.t. number of correct clauses

10 17 24 31
Number of additional clauses

w.r.t. number of additional clauses

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

F1
 s

co
re

(a) With LoH model
∧n

i=1[ri, ⊤]

20 40 60 80 100
Percentage of true labels

0

20

40

60

80

100

120

140

St
ep

s
to

 c
on

ve
rg

en
ce

w.r.t. percetage of true labels

5 10 15 20
Number of ground-truth clauses

w.r.t. number of correct clauses

10 17 24 31
Number of additional clauses

w.r.t. number of additional clauses

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

F1
 s

co
re

(b) With LoH model
∨n

i=1[ci, ⊥]

20 40 60 80
Percentage of true labels

0

50

100

150

200

250

300

350

400

St
ep

s
to

 c
on

ve
rg

en
ce

w.r.t. percetage of true labels

3 5 7 9
Number of sets

w.r.t. number of sets

3 5 7 9 11 13 15
Number of clauses per set

w.r.t. number of clauses per set

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F1
 s

co
re

(c) With LoH model
∧m

i=1[ri,1, ri,2, . . . , ri,k+1]

Figure 4: Clauses selection performance w.r.t. percentage of true labels, number of ground-truth
clauses and number of additional clauses.

G DATASETS PROPERTIES

For each dataset, Table 3 summarizes the number of features before and after binarization, together
with references and size.

H HYPERPARAMETERS

The following outlines the hyperparameter search spaces for the models presented in Section 7. The
hyperparameter choices for each dataset are available in the code repository.

7Regarding Subfigure 4c, notice that the total number of added clauses is a multiple of the number of
additional clauses per set.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 3: Datasets properties.

Dataset # instances # classes # original
features

binary
features

adult (Becker & Kohavi, 1996) 32561 2 14 155
bank-marketing (Moro et al., 2014) 45211 2 16 88
banknote (Lohweg, 2012) 1372 2 4 17
blogger (blo, 2012) 100 2 5 15
chess (Bain & Hoff, 1994) 28056 18 6 40
connect-4 (Tromp, 1995) 67557 3 42 126
letRecog (Slate, 1991) 20000 26 16 155
magic04 (Bock, 2004) 19020 2 10 79
mushroom (Schlimmer, 1981) 8124 2 22 117
nursery (Rajkovic, 1989) 12960 5 8 27
tic-tac-toe (Aha, 1991) 958 2 9 27
wine (Cortez et al., 2009) 178 3 13 37

• Decision Tree: min_samples_split (2–50), max_depth (2–50), min_samples_leaf (1–50).

• Random Forest: n_estimators (50–500), min_samples_split (2–50), max_depth (2–50),
min_samples_leaf (1–50).

• XGBoost: max_depth (5–20), n_estimators (10–500), learning_rate (10−3–2 · 10−1).

• Neural Network: number of hidden layers (1–3), number of units per layer (4–128), learning
rate (10−4–10−1). Batch size fixed at 256, and ReLU activations.

• DLN: number of hidden layers (1–10), number of units per layer (16–512), grad_factor
(1.–2.), learning rate (10−3–10−1), τ (1–100). Batch size fixed at 128.

• MLLP/CRS: number of hidden layers (1,3), number of units per layer (16–256), weight
decay (10−8–10−2), learning rate (10−4–10−1), random binarization rate (0–0.99). Batch
size (128) and learning rate scheduler were set to the default value.

• Ours: learning rate (0.01–0.2), Gumbel noise scale β (0.4–1.2), temperature (0.4–1.2), and
temperature rescaling factor applied every 10 epochs (0.9925–1). Like NN and MLLP/CRS,
we also optimized the architecture, allowing the TPE algorithm to select the layer type
(any–clause vs fixed–size–clauses), the number of hidden layers (1–2), layer sizes (16–256),
and whether the output layer is conjunctive or disjunctive (with the other layers alternating).
In case of fixed–size–clauses layer type, also the hyperparameter k (2–8) was tuned for each
layer.

I DECISION RULES OF VISUAL TIC-TAC-TOE

Both CRS and LoH allow for the automatic extraction of logical formulas. In order to interpret
such decision rules, we need to assign proper names to the input propositions. In particular, for
visual tic-tac-toe, there are three input propositions for every image in the tic-tac-toe grid, each
corresponding to an output unit of the feature-extractor CNN. The assignment of labels (such as X ,
O or B) to such units is done by thresholding their average activations with respect to each image
class (0, 1, and 2), in the following way:

• if the average activation is never > 0.5, the label for the unit is ⊥, which can later be
simplified from the formulas;

• if the average activation is > 0.5 for one class and < 0.5 for the other two, the label for the
unit is the one corresponding to the activating class;

• if the average activation is > 0.5 for two classes and < 0.5 for the other, the label for the
unit is the logical negation of the non-activating class;

• if the average activation is always > 0.5, the label for the unit is ⊤, which can later be
simplified from the formulas.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

As an example, if an output unit of the CNN exhibits an average activation below 0.5 for images
of class 1 but above 0.5 for images of the other two classes, we assign it the label ¬O (recalling
that digit 1 was associated with O). In this way, we can assign names to the input propositions of
the logical models, by combining the labels of the CNN output units with the positions in the 3× 3
tic-tac-toe grid.

Table 4 reports the best decision rules learned by CRS and our base model on the Visual Tic-Tac-Toe
task. The formulas were simplified removing the appearances of ⊤ and ⊥, and also removing
redundant clauses. We do not provide the formulas learned by DLN because the implementation of
DLN we used did not have a function to write them in a human-readable way. Moreover, to boost
performance, DLN actually learns an ensemble with majority voting, not a single formula. The DLN
run with highest Symbolic eval achieved .885 F1-score.

Table 4: Best decision rules learned on the Visual Tic-Tac-Toe task. The labels Xi and ¬Oj were
assigned to each proposition in the way explained in this appendix.

Model Symb. eval Formula

CRS
DNF .991

(¬O1 ∧ ¬O5 ∧ ¬O9) ∨ (¬O3 ∧ ¬O5 ∧ ¬O7)
∨(¬O2 ∧ ¬O4 ∧ ¬O7 ∧ ¬O9) ∨ (¬O1 ∧ ¬O2 ∧ ¬O3 ∧ ¬O4 ∧ ¬O7)

∨(¬O1 ∧ ¬O2 ∧ ¬O3 ∧ ¬O4 ∧ ¬O8) ∨ (¬O1 ∧ ¬O2 ∧ ¬O3 ∧ ¬O4 ∧ ¬O9)
∨(¬O1 ∧ ¬O2 ∧ ¬O3 ∧ ¬O5 ∧ ¬O8) ∨ (¬O1 ∧ ¬O2 ∧ ¬O3 ∧ ¬O6 ∧ ¬O7)
∨(¬O1 ∧ ¬O2 ∧ ¬O3 ∧ ¬O6 ∧ ¬O8) ∨ (¬O1 ∧ ¬O2 ∧ ¬O4 ∧ ¬O6 ∧ ¬O7)
∨(¬O1 ∧ ¬O3 ∧ ¬O4 ∧ ¬O7 ∧ ¬O8) ∨ (¬O1 ∧ ¬O3 ∧ ¬O6 ∧ ¬O8 ∧ ¬O9)
∨(¬O1 ∧ ¬O4 ∧ ¬O5 ∧ ¬O6 ∧ ¬O7) ∨ (¬O1 ∧ ¬O4 ∧ ¬O5 ∧ ¬O6 ∧ ¬O8)
∨(¬O1 ∧ ¬O4 ∧ ¬O7 ∧ ¬O8 ∧ ¬O9) ∨ (¬O1 ∧ ¬O6 ∧ ¬O7 ∧ ¬O8 ∧ ¬O9)
∨(¬O2 ∧ ¬O3 ∧ ¬O4 ∧ ¬O5 ∧ ¬O8) ∨ (¬O2 ∧ ¬O3 ∧ ¬O4 ∧ ¬O6 ∧ ¬O9)
∨(¬O2 ∧ ¬O3 ∧ ¬O6 ∧ ¬O7 ∧ ¬O9) ∨ (¬O2 ∧ ¬O4 ∧ ¬O5 ∧ ¬O6 ∧ ¬O8)
∨(¬O2 ∧ ¬O4 ∧ ¬O5 ∧ ¬O6 ∧ ¬O9) ∨ (¬O2 ∧ ¬O4 ∧ ¬O5 ∧ ¬O8 ∧ ¬O9)
∨(¬O2 ∧ ¬O5 ∧ ¬O6 ∧ ¬O7 ∧ ¬O8) ∨ (¬O2 ∧ ¬O5 ∧ ¬O7 ∧ ¬O8 ∧ ¬O9)
∨(¬O3 ∧ ¬O4 ∧ ¬O5 ∧ ¬O6 ∧ ¬O8) ∨ (¬O3 ∧ ¬O4 ∧ ¬O5 ∧ ¬O6 ∧ ¬O9)
∨(¬O3 ∧ ¬O4 ∧ ¬O6 ∧ ¬O8 ∧ ¬O9) ∨ (¬O3 ∧ ¬O4 ∧ ¬O7 ∧ ¬O8 ∧ ¬O9)

∨(¬O3 ∧ ¬O6 ∧ ¬O7 ∧ ¬O8 ∧ ¬O9)

CNF .984

(¬O1 ∨ ¬O2 ∨ ¬O3) ∧ (¬O1 ∨ ¬O4 ∨ ¬O7)
∧(¬O1 ∨ ¬O5 ∨ ¬O9) ∧ (¬O2 ∨ ¬O5 ∨ ¬O8)
∧(¬O3 ∨ ¬O5 ∨ ¬O7) ∧ (¬O3 ∨ ¬O6 ∨ ¬O9)
∧(¬O4 ∨ ¬O5 ∨ ¬O6) ∧ (¬O7 ∨ ¬O8 ∨ ¬O9)

∧(¬O2 ∨ ¬O3 ∨ ¬O4 ∨ ¬O9) ∧ (¬O2 ∨ ¬O5 ∨ ¬O7 ∨ ¬O9)

Ours

DNF 1.00

(X1 ∧X2 ∧X3) ∨ (X4 ∧X5 ∧X6)
∨(X7 ∧X8 ∧X9) ∨ (X1 ∧X4 ∧X7)
∨(X2 ∧X5 ∧X8) ∨ (X3 ∧X6 ∧X9)
∨(X1 ∧X5 ∧X9) ∨ (X3 ∧X5 ∧X7)

CNF .999

(X1 ∨X5 ∨X9) ∧ (X3 ∨X5 ∨X7)
∧(X1 ∨X2 ∨X6 ∨X7) ∧ (X1 ∨X3 ∨X4 ∨X8)
∧(X1 ∨X3 ∨X5 ∨X8) ∧ (X1 ∨X3 ∨X6 ∨X8)
∧(X1 ∨X5 ∨X6 ∨X7) ∧ (X1 ∨X6 ∨X7 ∨X8)
∧(X2 ∨X3 ∨X4 ∨X9) ∧ (X2 ∨X4 ∨X5 ∨X9)
∧(X2 ∨X4 ∨X7 ∨X9) ∧ (X2 ∨X5 ∨X6 ∨X7)
∧(X2 ∨X5 ∨X7 ∨X9) ∧ (X2 ∨X6 ∨X7 ∨X9)
∧(X3 ∨X4 ∨X5 ∨X8) ∧ (X3 ∨X4 ∨X5 ∨X9)

∧(X3 ∨X4 ∨X8 ∨X9) ∧ (X1 ∨X2 ∨X3 ∨X4 ∨X7)
∧(X1 ∨X2 ∨X3 ∨X6 ∨X9) ∧ (X1 ∨X2 ∨X5 ∨X6 ∨X8)
∧(X1 ∨X4 ∨X5 ∨X6 ∨X8) ∧ (X1 ∨X4 ∨X7 ∨X8 ∨X9)
∧(X2 ∨X4 ∨X5 ∨X6 ∨X8) ∧ (X3 ∨X6 ∨X7 ∨X8 ∨X9)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

J RUNTIMES

Table 5 reports the approximated runtime of a single training plus evaluation run, for each benchmark
discussed in Section 7. The values are relative to the selected hyperparameters, and the table also
reports the corresponding models’ parameter count. All experiments were conducted on a cluster
node equipped with an Nvidia RTX A5000 with 60GB RAM.

Table 5: Average runtimes relative to a single training + evaluation run.

Dataset DLN MLLP Ours

Time (s) # Params Time (s) # Params Time (s) # Params

adult 520 57680 499 74260 287 17584
bank-marketing 615 38576 687 70556 452 81612
banknote 17 23728 14 4807 12 7790
blogger 4 36592 4 3485 6 6195
chess 956 53568 970 117774 546 29464
connect-4 1214 51344 650 25542 873 55212
letRecog 414 41280 511 126302 528 86518
magic04 467 50960 271 19440 364 31104
mushroom 110 31024 78 16422 67 82900
nursery 284 51840 302 48331 311 68186
tic-tac-toe 25 18288 38 4002 32 11310
wine 2 6960 5 6400 4 2640

LLM USAGE

We used LLMs solely as general-purpose assist tools for polishing prose, and for minor code
completions (reviewed and verified by the authors, who take full responsibility).

23

	Introduction
	Related Works
	Background
	Logic of Hypotheses (LoH)
	From LoH to Differentiable Computational Graphs
	LoH as a Unifying Framework for NeSy Integration
	Experiments
	Classification Performance on Tabular Datasets
	Visual Tic-Tac-Toe

	Conclusion and Future Work
	Gödel Trick
	LoH with Placeholders: a Formalization
	Disjunctive vs Conjunctive Compilations
	Counterexample for Product Fuzzy Logic
	Comparison of Different Templates
	Further Experiments with Artificial Data
	Datasets Properties
	Hyperparameters
	Decision Rules of Visual Tic-Tac-Toe
	Runtimes

