

000 001 002 003 004 005 LOGIC OF HYPOTHESES: FROM ZERO TO FULL 006 KNOWLEDGE IN NEUROSYMBOLIC INTEGRATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Neurosymbolic integration (NeSy) blends neural-network learning with symbolic
028 reasoning. The field can be split between methods injecting hand-crafted rules
029 into neural models, and methods inducing symbolic rules from data. We introduce
030 *Logic of Hypotheses* (LoH), a novel language that unifies these strands, enabling
031 the flexible integration of data-driven rule learning with symbolic priors and expert
032 knowledge. LoH extends propositional logic syntax with a *choice operator*, which
033 has learnable parameters and selects a subformula from a pool of options. Using
034 fuzzy logic, formulas in LoH can be directly compiled into a differentiable computa-
035 tional graph, so the optimal choices can be learned via backpropagation. This
036 framework subsumes some existing NeSy models, while adding the possibility of
037 arbitrary degrees of knowledge specification. Moreover, the use of Gödel fuzzy
038 logic and the recently developed Gödel trick yields models that can be discretized
039 to hard Boolean-valued functions without any loss in performance. We provide
040 experimental analysis on such models, showing strong results on tabular data and
041 on the Visual Tic-Tac-Toe NeSy task, while producing interpretable decision rules.
042
043
044
045

1 INTRODUCTION

046 Neurosymbolic integration (NeSy) tries to combine the symbolic and sub-symbolic paradigms. The
047 aim is to retain the clarity and deductive power of logic while leveraging the learning capabilities
048 of neural networks (Besold et al., 2021; Marra et al., 2024). In many NeSy approaches, such as
049 DeepProbLog (Manhaeve et al., 2018) and LTN (Badreddine et al., 2022), domain experts provide
050 prior knowledge in the form of logic formulas, which the neural model uses as a bias or as constraints.
051 While this strategy has proven effective, it presupposes that high-quality rules are readily available.
052 On the other hand, other NeSy methods have approached the learning of symbolic knowledge from
053 data in the field of rule mining (Qiao et al., 2021; Katzir et al., 2020; Wang et al., 2020). Further,
054 some advanced methods can simultaneously learn symbolic rules and perception-to-symbol mappings
055 (Wang et al., 2019; Daniele et al., 2022; Barbiero et al., 2023), thereby grounding symbols to raw
056 data while simultaneously discovering the logical structure.
057

058 These research threads occupy opposite ends of a spectrum: knowledge-*injection* versus
059 rule-*induction*. However, they typically lack the flexibility to handle intermediate scenarios in
060 which a *partial logical structure* is supplied and the missing parts must still be learned. Such sit-
061 uations arise, for example, when existing prior knowledge must be revised or completed, or when
062 learned rules are required to respect specific syntactic templates (e.g., CNF, DNF, Horn clauses,
063 fixed-length clauses) for which the model was never programmed. Addressing this flexible middle
064 ground remains an open challenge for NeSy methods.
065

066 In this paper, we propose the *Logic of Hypotheses* (LoH), a new logical formalism introducing the
067 *choice operator*, which learns to select a subformula from a set of candidates. Such language can be
068 used to produce neural networks with varying degree of symbolic bias, ranging from complete prior
069 knowledge to none. In this way, LoH offers a single, principled learning framework that can adapt to
070 the amount and form of prior knowledge available. Our main contributions are:

071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
134

- **A compilation procedure** producing a differentiable computational graph from any LoH formula Φ , allowing for the learning of a data-fitting logical formula among those in the hypothesis space represented by Φ . We employ the Gödel trick (Daniele & van Krieken, 2025), a newly proposed stochastic variant of Gödel logic. Thanks to this choice, our approach can directly learn discrete functions through backpropagation. Moreover, the computational graph can be stacked on top of a neural network, allowing the end-to-end learning of symbolic rules alongside perception-to-symbol mappings.
- **A unifying viewpoint** of NeSy paradigms. The general neural layers of rule-inducing NeSy models like Wang et al. (2020); Payani & Fekri (2019) can be seen as the compilation of particular LoH formulas using product fuzzy logic. On the other hand, the full injection of prior knowledge can be obtained by simply avoiding the usage of the choice operator in a LoH formula. However, LoH is not limited to those two extremes and allows to construct models for many different intermediate situations (see Section 6).

2 RELATED WORKS

Logics on top of Neural Predicates. Approaches such as *SBR* (Diligenti et al., 2017), *LTN* (Badreddine et al., 2022) and Semantic Loss (Xu et al., 2018) translate logical knowledge into differentiable penalties added to the loss. In contrast, abductive methods (Dai et al., 2019; Tsamoura et al., 2021; Huang et al., 2021) let a symbolic model find labels for the neural part consistent with the provided knowledge. This enables logical reasoning also at inference time, yet the symbolic program remains user-supplied rather than learned. Similarly, *DeepProbLog* (Manhaeve et al., 2018), *DeepStochLog* (Winters et al., 2022), and *NeurASP* (Yang et al., 2020), enrich logical solvers with neural predicates whose outputs are treated as probabilities. The *Gödel Trick* (Daniele & van Krieken, 2025) makes formulas differentiable via Gödel semantics, and add noise to avoid local minima. Optimizing with backpropagation can then be interpreted as a (discrete) local search algorithm for SAT solving. On the rule-inducing side, *SATNet* (Wang et al., 2019) embeds a smoothed MaxSAT layer inside a neural network, jointly optimizing clause weights and perception. Subsequent work exposed limitations with unsupervised grounding (Chang et al., 2020), partially alleviated in Topan et al. (2021). *DSL* (Daniele et al., 2022) directly learn symbolic rules from data alongside the perception-to-symbol mappings, but the symbolic part is only a lookup table.

Neural Networks with Soft Gates. Many recent NeSy learners devise neurons that perform a continuous relaxation of the AND and OR operations, with learnable weights acting as soft gates. These neurons are placed into layers alternating the two operations, while the NOT operation is obtained by doubling the inputs—juxtaposing each input value with its negation. Models like these are typically used to learn propositional rules on binarized tabular data (Qiao et al., 2021; Dierckx et al., 2023; Katzir et al., 2020; Kusters et al., 2022). Among these, *Multi-Layer Logical Perceptron* (MLLP) (Wang et al., 2020) is a state-of-the-art model, using product fuzzy logic operations. However, like all the others, it does not guarantee that the extracted rules—which it calls *Concept Rule Sets* (CRS)—have the same accuracy as the neural model. Instead, we propose to use Gödel fuzzy logic, which allows a lossless extraction. Soft logical gates are also employed on binary/ternary neural networks (Deng et al., 2018), which are typically used for the efficiency of the quantized networks at inference, rather than the logical semantics. In particular, *Differentiable Logic Networks* (DLN) (Petersen et al., 2022; 2024) keep a sparse fixed wiring with nodes having at most two parents, and learn which binary Boolean operation each node should execute. Instead, LoH does the opposite: the logical operations are fixed, and the learnable gates decide which branch is selected. This allows LoH to yield more readable formulas (as DLNs rely on deeply nested structures employing 16 different logical operators), and offers a more straightforward path for incorporating prior knowledge.

Inductive Logic Programming (ILP). Also modern NeSy methods in ILP, such as *dILP* (Evans & Grefenstette, 2018), *NTP* (Campero et al., 2018) and *NeurRL* (Gao et al., 2025), use neurons performing a soft version of the logical operations, thus learning first-order rules via gradient descent. Of particular interest are *Logical Neural Networks* (LNNs) (Riegel et al., 2020), which compile formulas into neural networks with weighted Łukasiewicz operators, but rely on constrained optimization (e.g., Frank-Wolfe (Frank et al., 1956)), which hampers scalability. Moreover, assigning “importances” to the subformulas, instead of choosing one among the candidates as in LoH, limits the possibility to extract hard rules without loss in accuracy.

108 **Neuro-fuzzy networks (NFNs).** NFNs (e.g., *ANFIS* (Jang, 1993), *LazyPOP* (Zhou & Quek, 1996)
 109 and *GSETSK* (Nguyen et al., 2015)) are interpretable models where a neural network structure directly
 110 coincides with a fuzzy rule base. Typically they concentrate on parametric identification under fixed
 111 rules. Even when logic is induced (Shihabudheen & Pillai, 2018), their rule-based architecture is
 112 suited for a DNF-like format, which contrast the expressivity and flexibility of LoH.
 113

114 3 BACKGROUND

116 Classical propositional logic builds formulas from propositional variables using negation (\neg), conjunction
 117 (\wedge) and disjunction (\vee).¹ An interpretation assigns to each variable the Boolean value true (1) or
 118 false (0), and extends recursively: the interpretation of $\neg\phi$ flips the value of ϕ , the one of $\phi \wedge \psi$ returns
 119 the conjunction (AND) of the two values, and $\phi \vee \psi$ returns the disjunction (OR). Fuzzy logics relax the
 120 interpretations' truth values to the real unit interval $[0, 1]$, interpreting connectives with *t-norms* (for
 121 \wedge) and *t-conorms* (for \vee). This relaxation brings differentiable operations, allowing gradient-based
 122 optimization. Common fuzzy logics include Łukasiewicz, Product, and Gödel. Product logic has
 123 $t(x, y) := xy$ as t-norm (i.e., conjunction), and $s(x, y) := 1 - (1 - x)(1 - y) = x + y - xy$ as t-conorm
 124 (i.e., disjunction). On the other hand, Gödel logic uses min and max for conjunction and disjunction,
 125 respectively. In both, the negation of x corresponds to $1 - x$.
 126

126 Gödel logic stands out for its simplicity and its closer alignment to classical logic in terms of
 127 idempotency and distributivity. Importantly, Gödel logic has the following property:

128 **Theorem 1** (Theorem 4.1 in Daniele & van Krieken (2025)). *For any Gödel interpretation \mathcal{G} , let \mathcal{B} be
 129 the Boolean interpretation obtained rounding every fuzzy value in \mathcal{G} with the thresholding function²*

$$130 \quad \rho: [0, 1] \setminus \{0.5\} \rightarrow \{0, 1\}, \quad x \mapsto \begin{cases} 1 & \text{if } x > 0.5 \\ 0 & \text{if } x < 0.5 \end{cases} \quad (1)$$

133 meaning that $\mathcal{B}(v_i) = \rho(\mathcal{G}(v_i))$ for every propositional variable v_i . Then, \mathcal{B} is always consistent
 134 with \mathcal{G} , i.e., $\mathcal{B}(\phi) = \rho(\mathcal{G}(\phi))$ for every formula ϕ .

135 We can think at any logical formula as our model, with the truth values of the variables as inputs and
 136 the corresponding truth value of the formula as output. It is continuous if using fuzzy interpretations,
 137 and discrete if using classical Boolean ones. The theorem means that discretizing the outputs of the
 138 continuous model is the same as working with the discrete one, on the discretized inputs.
 139

140 The main problem of using Gödel semantics is that its optimization can stall in shallow local minima.
 141 The Gödel Trick (Daniele & van Krieken, 2025) counters this by adding noise to each parameter,
 142 turning the optimization into a stochastic local search that escapes plateaus while remaining gradient-
 143 based. In practice, it works by storing as parameters the logits of the fuzzy weights. Then, for every
 144 step of training, random noise is sampled and added to the logits. This is done in the forward pass,
 145 before applying the sigmoid function producing the fuzzy weights. For a more complete discussion,
 146 see Appendix A or Daniele & van Krieken (2025).

147 4 LOGIC OF HYPOTHESES (LoH)

149 We introduce *Logic of Hypotheses* (LoH) first as a language for expressing hypothesis spaces (i.e.,
 150 sets) of formulas in compact way. Syntactically, LoH extends propositional logic, adding a new
 151 *choice operator* $[\cdot]$ that can take as input any finite number of formulas:
 152

$$153 \quad F ::= \top \mid \perp \mid v \mid \neg F_1 \mid F_1 \vee F_2 \mid F_1 \wedge F_2 \mid [F_1, F_2, \dots, F_n]$$

154 where n can vary among the positive integers and $v \in \mathcal{V}$ represents the propositional variables.
 155 Semantically, a LoH formula Φ represents an entire set of classical propositional formulas $\mathcal{H}(\Phi)$,
 156 each obtained by selecting exactly one subformula per choice operator.

157 ¹For simplicity, we do not consider implication (\rightarrow) and iff (\leftrightarrow). However, there is nothing preventing their
 158 use, if associated with a consistent fuzzy semantics. For example, we may consider *material implication*, which
 159 comes from substituting $\phi \rightarrow \psi$ with its Boolean equivalent $\neg\phi \vee \psi$.

160 ²The exclusion of $x = 0.5$, where negation would break the homomorphism property, is mostly a technicality.
 161 In practical settings, this exact value has measure zero in continuous-valued interpretations and does not affect
 the general applicability of the result.

162 **Example 1.** The LoH formula $\Phi := [a, b] \wedge [c, d] \wedge \neg e$ has hypothesis space
 163

$$164 \quad \mathcal{H}(\Phi) := \{ a \wedge c \wedge \neg e, a \wedge d \wedge \neg e, b \wedge c \wedge \neg e, b \wedge d \wedge \neg e \}$$

165 In general, the set $\mathcal{H}(\Phi)$ is obtained by applying inductively the following operations:
 166

167 R1: $\mathcal{H}(v) = \{v\}; \mathcal{H}(\top) = \{\top\}; \mathcal{H}(\perp) = \{\perp\};$
 168 R2: $\mathcal{H}(\neg F_1) = \{\neg \phi \mid \phi \in \mathcal{H}(F_1)\};$
 169 R3: $\mathcal{H}(F_1 \wedge F_2) = \{\phi \wedge \psi \mid \phi \in \mathcal{H}(F_1), \psi \in \mathcal{H}(F_2)\};$
 170 R4: $\mathcal{H}(F_1 \vee F_2) = \{\phi \vee \psi \mid \phi \in \mathcal{H}(F_1), \psi \in \mathcal{H}(F_2)\};$
 171 R5: $\mathcal{H}([F_1, \dots, F_n]) = \bigcup_{i=1}^n \mathcal{H}(F_i).$
 172

173 **Example 2.** Let's unfold the step-by-step procedure for producing $\mathcal{H}([a, [b, c]] \wedge \neg [c, d]).$
 174

175 (R1) $\mathcal{H}(a) = \{a\}; \mathcal{H}(b) = \{b\}; \mathcal{H}(c) = \{c\}; \mathcal{H}(d) = \{d\};$
 176 (R5) $\mathcal{H}([b, c]) = \{b, c\}; \mathcal{H}([c, d]) = \{c, d\};$
 177 (R5)+(R2) $\mathcal{H}([a, [b, c]]) = \{a, b, c\}; \mathcal{H}(\neg [c, d]) = \{\neg c, \neg d\};$
 178 (R3) $\mathcal{H}([a, [b, c]] \wedge \neg [c, d]) = \{a \wedge \neg c, a \wedge \neg d, b \wedge \neg c, b \wedge \neg d, c \wedge \neg c, c \wedge \neg d\}$
 179

180 In neural networks, the output of a hidden neuron is usually fed to multiple neurons of the subsequent
 181 layer. Similarly, in LoH, we may want to use the same “choice” of a subformula in multiple places.
 182 This can be solved by defining a placeholder for a sub-formula, and use it in multiple parts of the
 183 main formula. The algorithm for producing the hypothesis space corresponding to an LoH formula
 184 with such placeholders is reported in Appendix B.
 185

186 **Example 3.** The LoH formula $[a, b] \wedge [a, b]$ has hypothesis space $\{a \wedge a, a \wedge b, b \wedge a, b \wedge b\} \equiv \{a, a \wedge b, b\}.$
 187 On the other hand, the LoH formula $\phi \wedge \phi$ with $\phi := [a, b]$ has hypothesis space $\{a \wedge a, b \wedge b\} \equiv \{a, b\}.$
 188 In $[a, b] \wedge [a, b]$ the two choices are independent, whereas $\phi \wedge \phi$ introduces just one choice and reuses
 189 the selected subformula twice.
 190

191 Notice that LoH is flexible enough to encode *any* finite set of propositional formulas $\{h_1, \dots, h_n\}.$
 192 Indeed, $[h_1, \dots, h_n]$ represents exactly that space, even if more compact representations—whose
 193 compilations will require less parameters—may be possible. Even for a fixed hypothesis space, LoH
 194 is flexible enough to provide formulas biasing the search process in different ways. For example,
 195 both $[a, [b, c]]$ and $[a, a, b, c]$ are more biased towards choosing a than $[a, b, c].$
 196

197 5 FROM LOH TO DIFFERENTIABLE COMPUTATIONAL GRAPHS

198 In the preceding section, we presented LoH as a language for expressing hypothesis spaces of logical
 199 formulas. We now show how the same LoH formulas can be turned into supervised machine learning
 200 models searching in those hypothesis spaces. The search will be done by gradient descent with
 201 backpropagation, so we need to compile LoH formulas into differentiable computational graphs.
 202

203 The first step is to introduce a weight $w_i \in [0, 1]$ for every candidate subformula F_i inside a
 204 choose operator. These are learnable and act as gates. Each choice operator is then converted to a
 205 propositional formula linking such weights to the respective subformulas. This can be done in two
 206 dual, practically interchangeable ways, which we call *disjunctive/conjunctive compilations*:
 207

$$208 \quad \begin{array}{ll} \text{Disjunctive Compilation} & [F_1, \dots, F_n] \rightsquigarrow \bigvee_{i=1}^n w_i \wedge F_i \\ 209 & \\ 210 \text{Conjunctive Compilation} & [F_1, \dots, F_n] \rightsquigarrow \bigwedge_{i=1}^n \neg w_i \vee F_i \end{array}$$

211 Whichever of the two we use—more on this later—, we are left with a propositional formula with only
 212 the operators \neg, \wedge and \vee . In order to have differentiable operations, we interpret them under a fuzzy
 213

216 semantics. For example, with Gödel fuzzy logic, $\bigvee_{i=1}^n w_i \wedge F_i$ becomes $\max_{i=1,\dots,n}(\min(w_i, F_i))$
 217 and $\bigwedge_{i=1}^n \neg w_i \vee F_i$ becomes $\min_{i=1,\dots,n}(\max(1 - w_i, F_i))$. The final piece is to design the weights
 218 in such a way that they can take continuous values in the interval $[0, 1]$, while allowing to extract the
 219 discrete selection of a candidate subformula for every choice operator.
 220

221 **Design of the weights.** Let us first consider the case in which the weights are binary, i.e., each w_i
 222 can only have value 0 or 1. Then, the formulas above can be simplified to equivalent ones, recalling
 223 that $0 \wedge F \equiv 0$, $1 \wedge F \equiv F$, $0 \vee F \equiv F$ and $1 \vee F \equiv 1$, for any formula F . It follows that the
 224 disjunctive (resp. conjunctive) compilation is equivalent to the disjunction (resp. conjunction) of
 225 the subformulas with weight 1. So if we impose that one weight w_i is 1 and the remaining are 0,
 226 then both the conjunctive and the disjunctive compilation become equivalent to the single “chosen”
 227 subformula—the one with $w_i = 1$. This is exactly the condition we want after discretizing the
 228 weights. Indeed, we want the discrete selection of a *single* candidate from each choice operator.
 229

230 The simplest way to discretize the weights is to use the thresholding function ρ defined in equation 1.
 231 Hence, for any tuple of weights $(w_1, \dots, w_n) \in [0, 1]^n$ associated to a choice operator $[F_1, \dots, F_n]$,
 232 we want to impose that $w_i > 0.5$ for one and only one i . Instead of storing the weights w_i directly,
 233 let us associate to each of them the actual learnable parameter z_i , which can take any real value. The
 234 differentiable operations for deriving the weights w_i from these parameters are the following:
 235

- 236 1. To escape local minima in the optimization procedure, at each *forward step of training*, add
 237 random noise to the parameters: $z'_i := z_i + n_i$ with $n_i \sim Gumbel(0, \beta)$ and β being an
 238 hyperparameter.
- 239 2. Let \bar{z}' be the mean of the two largest z'_i values, and subtract it to each z'_i . By construction,
 240 all points z'_i but the largest lie on the left of \bar{z}' .³ Hence, one and only one among the shifted
 241 values $z''_i := z'_i - \bar{z}'$ is positive.
- 242 3. Apply the sigmoid function: $w_i := \sigma(z''_i/T) = \frac{\exp(z''_i/T)}{1+\exp(z''_i/T)}$, with the temperature T being
 243 an hyperparameter.
 244

245 The application of the sigmoid function ensures that the weights are in the interval $[0, 1]$. Moreover,
 246 because of the second step, one and only one logit z''_i is positive, so exactly one weight w_i is greater
 247 than 0.5. This procedure for producing weights w_i from the z_i ’s is an adaptation of the Gödel trick
 248 with categorical variables (Daniele & van Krieken, 2025), and is further discussed in Appendix A.
 249

250 **Disjunctive vs Conjunctive Compilation.** Both have the same purpose of selecting *one* subformula
 251 among the candidates, and in general both work well. We suggest using the former when the choice
 252 operator is a term in a disjunction, and the latter when in a conjunction; the opposite if negated. For
 253 example, for $\neg[a, b] \wedge [b, c] \wedge ([c, d] \vee \neg[d, e])$, we suggest using disjunctive compilation for $[a, b]$
 254 and $[c, d]$, and conjunctive compilation for $[b, c]$ and $[d, e]$. The theoretical and empirical motivations
 255 for this are discussed in Appendix C.
 256

257 **Robustness to Binarization.** By design, it is always possible to binarize the weights of a model
 258 and extract the chosen subformula from each choice operator. The result is a propositional formula
 259 in the hypothesis space denoted by the LoH formula. If using Gödel fuzzy logic, then Theorem 1
 260 guarantees that the outputs of the resulting propositional formula *coincide* with the rounding of the
 261 outputs of the continuous model on *every* possible input.⁴ Accuracy, confusion matrices, and any
 262 higher-level deductive tasks are thus preserved from the continuous to the discrete model. In this
 263 sense, Gödel logic offers lossless rule extraction. Notice that this is true also at any point in training.
 264 So the entire training process—while being gradient-based—can be interpreted symbolically, through
 265 discrete changes. To our knowledge, no other rule-learning NeSy model achieves this.
 266

267 ³The probability of the two largest values coinciding is negligible, especially after adding the continuous
 268 Gumbel noise. Moreover, this happening would affect only the extraction of hard rules, not the optimization
 269 procedure (which would continue to change the parameters, eventually breaking the tie).

270 ⁴See Appendix D for a counterexample with product fuzzy logic.

270 6 LOH AS A UNIFYING FRAMEWORK FOR NESY INTEGRATION
271272 In this section, we demonstrate how LoH captures a wide range of existing NeSy methods—spanning
273 fully-provided prior knowledge, partially known templates, and purely data-driven rule induction.
274 To illustrate these settings, we instantiate them on the same small synthetic task: a wildfire–risk
275 assessment problem.
276277 **Experimental Setup: Wildfire Risk.** We generated a dataset of 2048 samples, each consisting
278 of a simulated aerial image and a set of 7 Boolean environmental features (e.g., *StrongWind*,
279 *LowHumidity*). The task is to predict a binary *WildfireRisk* label. The model architecture
280 consists of a generic CNN h_θ that processes the image to predict two latent concepts, *DenseForest*
281 and *DryVegetation*, and a logical component that combines these visual concepts with the environ-
282 mental features to produce the final prediction. Crucially, the CNN is not pretrained. It must learn
283 to identify forests and vegetation solely via the gradients backpropagated through the logic. The
284 ground-truth label is generated by the conjunction of three rules:
285

286
$$\text{Fuel} := \text{DenseForest} \vee (\text{DryVegetation} \wedge \text{StrongWind}) \quad (2a)$$

287
$$\text{DryConditions} := \text{LowHumidity} \vee (\text{HighTemperature} \wedge \neg \text{RainedRecently}) \quad (2b)$$

288
$$\text{Trigger} := \text{LightningsFrequent} \vee \neg \text{LowHumanActivity} \vee \text{PowerLinesNearby} \quad (2c)$$

289
$$\text{WildfireRisk} := \text{Fuel} \wedge \text{DryConditions} \wedge \text{Trigger} \quad (2d)$$

290 We analyze how LoH handles this task under different knowledge assumptions. See Appendix E for
291 full implementation details.
292293 **Full Knowledge (No Choice Operators).** If the choice operator $[\cdot]$ is never used, the logical part
294 has no learnable parameter, but the gradient can backpropagate from it to a neural part below. This
295 corresponds to many well-known NeSy approaches where knowledge is entirely specified a priori.
296297 In the wildfire experiment, we set the LoH formula exactly to the ground-truth rule (2d). Since
298 the logic is fixed and correct, the learning focuses entirely on the perception module. The model
299 successfully solves this symbol grounding problem, learning to map images to *DenseForest*
300 and *DryVegetation* with high accuracy simply by minimizing the classification error of the
301 *WildfireRisk* label.
302302 **Selecting Reliable Rules.** Suppose we have a knowledge set of n candidate rules r_1, \dots, r_n , but
303 we are unsure on whether they are correct. Then, we can use the following LoH formula to select a
304 reliable subset:
305

306
$$\bigwedge_{i=1}^n [r_i, \top] \quad (3)$$

308 Indeed, the hypothesis space spans all possible subsets: by selecting r_i over \top , the model effectively
309 picks such rule. When the rules are clauses (i.e., disjunctions of possibly negated propositions), this
310 setup parallels *KENN* (Daniele & Serafini, 2019), which also have a learnable weight for each rule
311 (even if it is never made discrete). In our framework, each r_i in equation 3 can be any formula. For
312 example, we may have entire knowledge bases as r_i ’s, and use equation 3 to decide which to trust.
313313 On the wildfire task, we build such a pool by taking the three ground-truth rules *Fuel*,
314 *DryConditions*, and *Trigger* and augmenting them with plausible but incorrect variants. For-
315 mula 3 is then applied to this pool. The resulting learned subset is a sparse, data-driven refinement of
316 the original possibilities.
317318 **Selecting One Rule per Set.** Given m sets $\{r_{i,1}, \dots, r_{i,n_i}\}$ of candidate rules, we may want to
319 enforce the choice of *exactly one* rule per set. This may happen for example because the rules in each
320 set are mutually exclusive. For this purpose, we can use the following LoH formula:
321

322
$$\bigwedge_{i=1}^m [r_{i,1}, r_{i,2}, \dots, r_{i,n_i}] \quad (4)$$

324 For wildfire risk, suppose domain experts agree
 325 on the structure of the final rule as a conjunction
 326 of three components—fuel, dryness, trigger—
 327 but propose several alternative for each compo-
 328 nent. We group these into three sets and apply
 329 equation 4 with $m = 3$: one choice among fuel
 330 candidates, one among dryness candidates, and
 331 one among trigger candidates. This regime dif-
 332 fers from the previous one in that the model must
 333 commit to a single alternative within each group,
 334 instead of freely activating or deactivating rules.

335 **Partial Knowledge Base.** If we have a knowl-
 336 edge base K which is reliable but not complete,
 337 we can couple it with a rule-learning LoH for-
 338 mula Φ , and use $K \wedge \Phi$. Similarly, we may have
 339 a knowledge base whose rules have some miss-
 340 ing parts, and fill them with some rule-learning
 341 formulas.

342 As an example, we consider the *Fuel* rule as
 343 given, while the rest is unknown and must be selected from the same pool of rules used in the previous
 344 settings. For these candidates, we apply the subset-selection scheme of equation 3, so that LoH learns
 345 which dryness- and trigger-related rules best complement the known *Fuel* rule. Figure 1 compares
 346 this and the other knowledge regimes introduced so far.

347 **Zero Knowledge (Pure Rule Learning).** For rule induction, we can combine neurons learning
 348 disjunctions and neurons learning conjunctions. A simple and most efficient way is to arrange them
 349 in layers and exploit parallel computation on tensors, like in standard Artificial Neural Networks.
 350 The following are LoH formulas for neurons learning the disjunction of a subset of neurons of the
 351 previous layer, with and without negations:

$$353 \quad n_j^{(l+1)} := \bigvee_{i=1}^{m_l} [n_i^{(l)}, \neg n_i^{(l)}, \perp] \quad \text{and} \quad n_j^{(l+1)} := \bigvee_{i=1}^{m_l} [n_i^{(l)}, \perp] \quad (5)$$

355 Analogously, conjunctive neurons simply replace disjunction with conjunction and False with True.
 356 The layers adopted in NLNs (Payani & Fekri, 2019) and MLLPs (Wang et al., 2020) use neurons
 357 analogous to those, with product fuzzy logic, instead of Gödel’s. In this correspondence, they would
 358 use—as we suggested—conjunctive compilation for the choice operators in conjunctive neurons and
 359 vice versa for disjunctive neurons. However, LoH is flexible and many alternative designs of neurons
 360 are possible. For example,

$$362 \quad n_j^{(l+1)} := \bigvee_{i=1}^k [n_1^{(l)}, \dots, n_{m_l}^{(l)}, \neg n_1^{(l)}, \dots, \neg n_{m_l}^{(l)}] \quad \text{and} \quad n_j^{(l+1)} := \bigvee_{i=1}^k [n_1^{(l)}, \dots, n_{m_l}^{(l)}] \quad (6)$$

364 are neurons learning clauses of fixed width k (possibly with repetitions)— k being a hyperparameter.
 365 A detailed treatment of this zero-knowledge regime is deferred to the next section.

366 **Respecting Syntactic Requirements.** If the learned rules of a NeSy model are to be used also in a
 367 symbolic program, this may require them to adhere to a specific format or template. If it is possible to
 368 express the template in LoH—and LoH is flexible in this regard—, then the adherence is guaranteed.
 369 As an example, here is a possible template for clauses of width 3:

$$371 \quad [v_1, \dots, v_n, \neg v_1, \dots, \neg v_n] \vee [v_1, \dots, v_n, \neg v_1, \dots, \neg v_n] \vee [v_1, \dots, v_n, \neg v_1, \dots, \neg v_n] \quad (7)$$

372 And here is a template for definite clauses (i.e., clauses with exactly one positive variable):

$$374 \quad \bigvee_{i=1}^n [\neg v_i, \perp] \vee [v_1, \dots, v_n] \quad (8)$$

376 Experiments on enforcing these templates are provided in Appendix F. We employ a distinct,
 377 purely symbolic dataset to better highlight the model’s convergence properties for different syntactic
 378 requirements.

Figure 1: Average training curves, over 20 runs, of the LoH models based on different levels of knowledge, on the wildfire risk assessment task. Richer priors yield better performance.

378 **7 EXPERIMENTS**
 379

380 In this section, we evaluate the performance of our models, in their general form when no domain
 381 knowledge is provided: i.e., models made alternating conjunctive and disjunctive layers, with neurons
 382 of the form in equation 5 or in equation 6. We employ the Gödel trick and test the performance
 383 on several benchmark classification datasets. All experiments were conducted on a cluster node
 384 equipped with an Nvidia RTX A5000 with 60GB RAM.
 385

386 **7.1 CLASSIFICATION PERFORMANCE ON TABULAR DATASETS**
 387

388 **Datasets.** We use 12 classification benchmarks from the UCI Machine Learning Repository, available
 389 with CC-BY 4.0 license. They were previously employed in Wang et al. (2020) for evaluating
 390 MLLP. As a preprocessing step, we adopt the same data discretization and binarization procedure as
 391 in Wang et al. (2020): the recursive minimal entropy partitioning algorithm (Dougherty et al., 1997),
 392 followed by one-hot-encoding. Datasets’ references and properties are available in Appendix H.
 393

394 **Models.** In our model, we alternate conjunctive and disjunctive layers without negations. The
 395 choice between using neurons of type (5) or neurons of type (6) is performed by the hyperparameters’
 396 tuning, together with the rest of the architecture (number and size of layers, and whether to start with
 397 a conjunctive or a disjunctive layer). We compare our model against Differentiable Logic Networks
 398 (DLN) (Petersen et al., 2022), the aforementioned MLLP (Wang et al., 2020), and the rules extracted
 399 from it, which are called CRS. Note that for DLN we report the performance of the continuous model,
 400 which is generally higher than the discretized one. Instead, Gödel semantics ensures our model
 401 behaves identically before and after binarization, and CRS corresponds to the post-hoc binarization of
 402 MLLP. We also consider commonly used machine learning baselines: Decision Trees (DT), Random
 403 Forests (RF), XGBoost and standard fully-connected Neural Networks (NN).
 404

405 Five of the twelve datasets have more than two classes, and we want to treat multi-class predictions
 406 as mutually exclusive output propositions. Therefore, in our model, we apply a reparameterization to
 407 the final layer, to guarantee that exactly one output per example exceeds the threshold value 0.5—the
 408 output of the predicted class. This is analogous to the procedure used before for designing the weights
 409 of a choice operator, but does not require the addition of noise. Concretely, let z_i be the logits of the
 410 outputs o_i produced by the outmost layer—each one corresponding to a different class. Each logit
 411 gets shifted by subtracting the mean \bar{z} of the two largest z_i ’s. The resulting $z_i - \bar{z}$ values—of which,
 412 by construction, one and only one is positive—are then outputted through a sigmoid activation.
 413

414 **Methodology.** Each dataset is divided into 20% for testing and 80% for training and validation.
 415 In particular, validation takes 12.5% of the second split, so 10% of the whole dataset. Since most
 416 datasets are unbalanced, we use the F1 score (macro) as classification metric. As loss functions,
 417 we use Binary Cross-Entropy for NN, DLN and our model, and Mean Squared Error for MLLP.
 418 All of them are optimized using Adam (Kingma, 2014). For the selected hyperparameters, Table 1
 419 provides the means and standard deviations of the test-set F1 scores, out of 10 different training runs
 420 on the training plus validation sets. For each dataset, the hyperparameters of each model are tuned
 421 using 80 trials of the TPE algorithm (Bergstra et al., 2011) from the Optuna library. Architectural
 422 choices—such as the number and width of layers—are tuned alongside all other hyperparameters.
 423 Appendix I lists every tuned variable (and their search ranges), while the values ultimately selected
 424 are available in the code.
 425

426 **Discussion.** Although vanilla neural networks attain the best summary score (.89) and rank (2.9),
 427 they—together with RF and XGBoost—do not allow to extract symbolic knowledge. MLLP—which
 428 come second—does support rule extraction, but with the loss in performance from it to CRS. In fact,
 429 only DT, CRS, the discretization of DLN, and our model achieve all the benefits of symbolic discrete
 430 rules, such as better interpretability, explainability, and efficiency of inference on CPUs. Moreover,
 431 unlike DT, RF and XGBoost, our model is fully differentiable, so it could be placed downstream of
 432 perception modules (CNNs, transformers, etc.) and be trained end-to-end.
 433

434 Apart for the two datasets with the largest numbers of classes, namely *chess* (with 18) and *letRecog*
 435 (with 26), our model have consistently better scores than CRS, and is almost always on par with, or
 436 close to, the neural network baseline. This suggests that our handling of many-way classification
 437

Table 1: Mean F1 scores on the test sets of tabular benchmarks, out of 10 runs.

Dataset	DT	RF	XGBoost	NN	DLN	MLLP	CRS	Ours
adult	.80 ±.00	.81 ±.00	.82 ±.00	.81 ±.01	.80 ±.02	.80 ±.01	.75 ±.06	.81 ±.01
bank-m.	.74 ±.00	.73 ±.00	.76 ±.00	.78 ±.01	.76 ±.01	.69 ±.08	.75 ±.01	.76 ±.01
banknote	.95 ±.00	.95 ±.01	.96 ±.00	.96 ±.00	.95 ±.01	.96 ±.00	.96 ±.00	.96 ±.00
blogger	.64 ±.00	.53 ±.00	.69 ±.00	.82 ±.05	.72 ±.12	.84 ±.00	.78 ±.02	.83 ±.08
chess	.81 ±.00	.58 ±.01	.85 ±.00	.82 ±.01	.41 ±.02	.83 ±.02	.74 ±.02	.69 ±.01
connect-4	.59 ±.00	.55 ±.00	.71 ±.00	.71 ±.04	.62 ±.01	.58 ±.01	.58 ±.01	.58 ±.01
letRecog	.80 ±.00	.76 ±.00	.92 ±.00	.93 ±.00	.64 ±.02	.85 ±.01	.80 ±.01	.77 ±.01
magic04	.81 ±.00	.83 ±.00	.84 ±.00	.84 ±.00	.83 ±.00	.84 ±.00	.80 ±.00	.83 ±.00
mushroom	1. ±.00	1. ±.00	1. ±.00	1. ±.00	1. ±.00	1. ±.00	1. ±.01	1. ±.00
nursery	.79 ±.00	.79 ±.00	.80 ±.00	1. ±.00	1. ±.00	1. ±.00	1. ±.00	1. ±.00
tic-tac-toe	.89 ±.00	.98 ±.01	.97 ±.00	.99 ±.01	.99 ±.01	1. ±.00	1. ±.00	.99 ±.01
wine	1. ±.00	1. ±.01	.96 ±.00	.97 ±.05	.97 ±.02	1. ±.00	.96 ±.01	.98 ±.01
mean (↑)	.82	.79	.86	.89	.81	.87	.84	.85
avg. rank (↓)	5.7	6.0	3.7	2.9	5.2	3.5	5.0	4.1

may not be optimal. Notably, DLN struggles even more on those two benchmarks, and in general does not surpass our model even in its continuous (pre-discretization) form. Hence, when only a few classes are present, our model reliably ranks among the top performers while simultaneously providing symbolic rules and end-to-end differentiability.

7.2 VISUAL TIC-TAC-TOE

One of the previous classification benchmarks (Aha, 1991) is based on the game of tic-tac-toe. The dataset provides all possible ending board configurations (for games in which X begins), and the target is to predict whether X has won the game or not. So the target function can be expressed with a simple formula in Disjunctive Normal Form (DNF), having 8 clauses.⁵

Let us introduce a more challenging variant of the dataset, which we refer to as *Visual Tic-Tac-Toe*. In this version, instead of symbolic board encodings, each cell is represented by a MNIST image. Specifically, we assign images of the digit 0 to represent X , images of the digit 1 to represent O , and blank cells are represented by images of the digit 2. As a result, instead of a structured propositional encoding, the inputs consist of 3×3 grids of grayscale images. This modification significantly increases the difficulty of the task, as models must now learn to recognize digit representations from the images before they can reason about tic-tac-toe board configurations, but with as little supervision as before. Traditional symbolic models would struggle with such high-dimensional and noisy input, making this an interesting benchmark for neuro-symbolic learning.

Models. To handle the image-based input, we extend all models with a standard CNN. This network consists of two convolutional layers, each using a kernel size of 3 with padding 1, followed by ReLU activations and max-pooling. The first convolutional layer has 32 output channels, while the second has 64. After feature extraction, the CNN flattens the output and passes it through a fully connected layer of size 128, a dropout layer with probability 0.5, and another fully connected layer of size 3. The three outputs for each of the nine images composing a grid are then concatenated.

For DLN, MLLP/CRS and our models, the outputs of the CNN for the nine images are to be considered as input “propositions”, so their values are clipped between 0 and 1. The learning process is end-to-end, including the CNN component. The hyperparameters (and their tuning) are as before, but we allow the CNN part to have a separate learning rate (in the range 10^{-5} – 10^{-3}). Moreover, for both MLLP/CRS and our model, we fix the number of layers to 2 and distinguish the two cases of whether the last one is disjunctive (DNF) or conjunctive (CNF). This is not possible for DLN.

⁵Let the input data be encoded with propositions X_1 – X_9 , O_1 – O_9 and B_1 – B_9 , meaning that X_i is true if there is an X at position $(\lfloor i/3 \rfloor, i \% 3)$, and similarly for O s and Blank cells. Then, the target function is $(X_1 \wedge X_2 \wedge X_3) \vee (X_4 \wedge X_5 \wedge X_6) \vee (X_7 \wedge X_8 \wedge X_9) \vee (X_1 \wedge X_4 \wedge X_7) \vee (X_2 \wedge X_5 \wedge X_8) \vee (X_3 \wedge X_6 \wedge X_9) \vee (X_1 \wedge X_5 \wedge X_9) \vee (X_3 \wedge X_5 \wedge X_7)$.

486 We also implemented a neural baseline that follows a classical deep learning approach (NN). This
 487 model uses a CNN module as the one described earlier, but its outputs are not clipped, and their
 488 number is a hyperparameter in the range 3-32 (instead of being fixed to 3). This is because in this case
 489 the outputs of this part of the network may be better seen as embeddings rather than symbols. The
 490 concatenation of such vectors (for the nine images in a grid) is then fed to a multi-layer perceptron.
 491
 492

493 **Methodology.** The original symbolic tic-tac-toe dataset is split with the same proportions as before
 494 (70%-10%-20%). The training and validation parts are given images from MNIST training set, while
 495 the test part is given images from MNIST test set. No image is used more than once. Moreover, for
 496 each board configuration in the training and validation sets, two different image grids are created,
 497 effectively doubling the number of samples.

498 Table 1 provides the mean and standard deviations of the test-set F1 scores, based on training each
 499 model 30 times on the combined training and validation sets. What changes between the runs is the
 500 network initialization, the mini-batches, the added noise in our model and the random binarization
 501 occurring in MLLP as a form of regularization. Beyond performance, a key advantage of NeSy
 502 approaches lies in their better interpretability. Since they operate on structured logical representations,
 503 we can analyze the learned decision rules after assigning semantic labels to the input units. The exact
 504 procedure for such labeling is reported in Appendix I, together with an example of the decision rules
 505 learned by each model. Table 1 also provides the average F1 scores of these extracted rules on the
 506 purely symbolic tic-tac-toe dataset.

507 Table 2: Comparison of the models on the Visual Tic-Tac-Toe task.

	MLLP				CRS		Ours	
	NN	DLN	DNF	CNF	DNF	CNF	DNF	CNF
NeSy eval	.91 ±.14	.96 ±.01	.80 ±.22	.94 ±.02	.76 ±.28	.92 ±.00	.97 ±.01	.95 ±.01
Symbolic eval	-	.37 ±.21	-	-	.80 ±.30	.97 ±.02	.99 ±.00	.99 ±.00

514
 515 **Discussion.** On 2 out of its 30 training runs, the neural baseline remained stuck at always predicting
 516 the most frequent class, with macro F1 score of .39. Instead, on the other runs, its performance was
 517 comparable to that of our CNF model. Similarly, MLLP/CRS in the DNF setting remained stuck
 518 on 4 runs, with the remaining 26 performing slightly worse than our CNF model. Finally, MLLP in
 519 the CNF version, and DLN, have similar performance to our CNF model on all runs. However, the
 520 symbolic evaluation reveals that DLN fails when discretized, and MLLP/CRS learned less accurate
 521 symbolic rules than ours. Moreover, the DNF version of our model is consistently better than all
 522 other models, and also found the 100%-correct formula reported above on 4 occasions. These results
 523 highlight the ability of our models to recover symbolic decision rules with high fidelity, even when
 524 the symbols must be learned from continuous high-dimensional perceptions.

527 8 CONCLUSION AND FUTURE WORK

528
 529 We introduced a single, compact language for expressing hypothesis spaces of logical formulas
 530 and compiling them into differentiable models whose discrete rule extraction is provably loss-free
 531 under Gödel semantics. LoH unifies knowledge injection and rule induction within one propositional
 532 paradigm, and yields strong results on both tabular and perceptual benchmarks, while retaining the
 533 possibility to extract learned logical formulas following arbitrary templates.

534
 535 Despite these encouraging results, the present work leaves two important avenues open. First, the
 536 empirical validation should be broadened, targeting larger datasets, use of partial knowledge and
 537 additional NeSy tasks with complex perceptions. Second, the formalism is so far propositional.
 538 Extending LoH with first-order logic quantifiers would unlock relational reasoning and allow direct
 539 comparison with first-order NeSy learners. Addressing these two limitations—with richer logic and
 wider experimentation—constitutes our next research milestone.

540 REPRODUCIBILITY STATEMENT
541

542 Assumptions, design choices and claims are reported in the main text and further explained in
543 Appendices A and B. Theorem 1 is a generally known result, and a proof can be found in Daniele
544 & van Krieken (2025). We share the code in the supplementary materials, and will make it public
545 upon acceptance. Experimental setups—including dataset preprocessing, splits, metrics, protocol,
546 etc.—are described in Section 7. Appendix I reports complete hyperparameter ranges, and the values
547 taken for each benchmark are available within the code repository. Appendix H references the tabular
548 datasets, and the code provide a way to build the Visual Tic-Tac-Toe benchmark. Finally, Appendix J
549 explains the symbol-labeling procedure utilized in the Visual Tic-Tac-Toe experiment.

550
551 REFERENCES
552

553 BLOGGER. UCI Machine Learning Repository, 2012. DOI: <https://doi.org/10.24432/C5HK6P>.

554 David Aha. Tic-Tac-Toe Endgame. UCI Machine Learning Repository, 1991.

555 Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
556 networks. *Artificial Intelligence*, 303:103649, 2022.

557 Michael Bain and Arthur Hoff. Chess (King-Rook vs. King). UCI Machine Learning Repository,
558 1994. DOI: <https://doi.org/10.24432/C57W2S>.

559 Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo Espinosa Zarlenga, Lucie Charlotte
560 Magister, Alberto Tonda, Pietro Lio, Frederic Precioso, Mateja Jamnik, and Giuseppe Marra. Inter-
561 pretive neural-symbolic concept reasoning. In *Proceedings of the 40th International Conference
562 on Machine Learning*, volume 202, pp. 1801–1825, 2023.

563 Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
564 <https://doi.org/10.24432/C5XW20>.

565 James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
566 optimization. In *Advances in Neural Information Processing Systems*, volume 24. Curran Asso-
567 ciates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cf12577bc2619bc635690-Paper.pdf.

568 Tarek R Besold, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe
569 Kühnberger, Luis C Lamb, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, et al.
570 Neural-symbolic learning and reasoning: A survey and interpretation. In *Neuro-Symbolic Artificial
571 Intelligence: The State of the Art*, pp. 1–51. IOS press, 2021.

572 R. Bock. MAGIC Gamma Telescope. UCI Machine Learning Repository, 2004. DOI:
573 <https://doi.org/10.24432/C52C8B>.

574 Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, and Sebastian Riedel. Logical rule
575 induction and theory learning using neural theorem proving. *arXiv preprint arXiv:1809.02193*,
576 2018.

577 Oscar Chang, Lampros Flokas, Hod Lipson, and Michael Spranger. Assessing satnet’s ability to
578 solve the symbol grounding problem. *Advances in Neural Information Processing Systems*, 33:
579 1428–1439, 2020.

580 Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine Quality. UCI Machine Learning
581 Repository, 2009. DOI: <https://doi.org/10.24432/C56S3T>.

582 Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and logical
583 reasoning by abductive learning. *Advances in Neural Information Processing Systems*, 32, 2019.

584 Alessandro Daniele and Luciano Serafini. Knowledge enhanced neural networks. In *Proceedings of
585 the 16th Pacific Rim International Conference on Artificial Intelligence (PRICAI)*, Lecture Notes
586 in Computer Science, pp. 542–554. Springer, 2019.

594 Alessandro Daniele and Emile van Krieken. Noise to the rescue: Escaping local minima in neurosymbolic local search, 2025. URL <https://arxiv.org/abs/2503.01817>.
 595
 596

597 Alessandro Daniele, Tommaso Campari, Sagar Malhotra, and Luciano Serafini. Deep symbolic
 598 learning: Discovering symbols and rules from perceptions. *arXiv preprint arXiv:2208.11561*,
 599 2022.

600 Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-net: Training deep neural networks
 601 with ternary weights and activations without full-precision memory under a unified discretization
 602 framework. *Neural Networks*, 100:49–58, 2018.

603
 604 Lucile Dierckx, Rosana Veroneze, and Siegfried Nijssen. RL-net: Interpretable rule learning with
 605 neural networks. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining*, pp.
 606 95–107. Springer, 2023.

607 Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based regularization for learning
 608 and inference. *Artificial Intelligence*, 244:143–165, 2017.

609
 610 James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of
 611 continuous features. *ICML*, 1995, 09 1997. doi: 10.1016/B978-1-55860-377-6.50032-3.

612 Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. *Journal of
 613 Artificial Intelligence Research*, 61:1–64, 2018.

614
 615 Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. *Naval research
 616 logistics quarterly*, 3(1-2):95–110, 1956.

617 Kun Gao, Katsumi Inoue, Yongzhi Cao, Hanpin Wang, and Yang Feng. Differentiable rule induction
 618 from raw sequence inputs. In *The Thirteenth International Conference on Learning Representations*,
 619 2025.

620
 621 Emil Julius Gumbel. *Statistical theory of extreme values and some practical applications: a series of
 622 lectures*, volume 33. US Government Printing Office, 1954.

623 Yu-Xuan Huang, Wang-Zhou Dai, Le-Wen Cai, Stephen H Muggleton, and Yuan Jiang. Fast abductive
 624 learning by similarity-based consistency optimization. *Advances in Neural Information Processing
 625 Systems*, 34:26574–26584, 2021.

626 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
 627 *International Conference on Learning Representations*, 2017.

628
 629 J-SR Jang. Anfis: adaptive-network-based fuzzy inference system. *IEEE transactions on systems,
 630 man, and cybernetics*, 23(3):665–685, 1993.

631 Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net-dnf: Effective deep modeling of tabular data. In
 632 *International conference on learning representations*, 2020.

633
 634 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 635 2014.

636
 637 Remy Kusters, Yusik Kim, Marine Collery, Christian de Sainte Marie, and Shubham Gupta. Differentiable rule induction with learned relational features. *arXiv preprint arXiv:2201.06515*,
 638 2022.

639
 640 Volker Lohweg. Banknote Authentication. UCI Machine Learning Repository, 2012. DOI:
 641 <https://doi.org/10.24432/C55P57>.

642
 643 Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
 644 Deepprobabilog: Neural probabilistic logic programming. *Advances in neural information processing
 645 systems*, 31, 2018.

646 Giuseppe Marra, Sebastijan Dumančić, Robin Manhaeve, and Luc De Raedt. From statistical
 647 relational to neurosymbolic artificial intelligence: A survey. *Artificial Intelligence*, 328:104062,
 2024. ISSN 0004-3702. doi: <https://doi.org/10.1016/j.artint.2023.104062>.

648 S. Moro, P. Rita, and P. Cortez. Bank Marketing. UCI Machine Learning Repository, 2014. DOI:
 649 <https://doi.org/10.24432/C5K306>.

650

651 Ngoc Nam Nguyen, Weigui Jair Zhou, and Chai Quek. Gsetsk: a generic self-evolving tsk fuzzy
 652 neural network with a novel hebbian-based rule reduction approach. *Applied Soft Computing*, 35:
 653 29–42, 2015. ISSN 1568-4946. doi: <https://doi.org/10.1016/j.asoc.2015.06.008>.

654

655 Ali Payani and Faramarz Fekri. Inductive logic programming via differentiable deep neural logic
 656 networks, 2019. URL <https://arxiv.org/abs/1906.03523>.

657

658 Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Deep differentiable logic gate
 659 networks. *Advances in Neural Information Processing Systems*, 35:2006–2018, 2022.

660

661 Felix Petersen, Hilde Kuehne, Christian Borgelt, Julian Welzel, and Stefano Ermon. Convolutional
 662 differentiable logic gate networks. *Advances in Neural Information Processing Systems*, 37:
 663 121185–121203, 2024.

664

665 Litao Qiao, Weijia Wang, and Bill Lin. Learning accurate and interpretable decision rule sets from
 666 neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp.
 667 4303–4311, 2021.

668

669 Vladislav Rajkovic. Nursery. UCI Machine Learning Repository, 1989. DOI:
 670 <https://doi.org/10.24432/C5P88W>.

671

672 Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
 673 Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, et al. Logical neural
 674 networks. *CoRR*, abs/2006.13155, 2020. URL <https://arxiv.org/abs/2006.13155>.

675

676 J. Schlimmer. Mushroom. UCI Machine Learning Repository, 1981. DOI:
 677 <https://doi.org/10.24432/C5959T>.

678

679 K.V. Shihabudheen and G.N. Pillai. Recent advances in neuro-fuzzy system: A survey. *Knowledge-
 680 Based Systems*, 152:136–162, 2018. ISSN 0950-7051. doi: <https://doi.org/10.1016/j.knosys.2018.04.014>.

681

682 David Slate. Letter Recognition. UCI Machine Learning Repository, 1991. DOI:
 683 <https://doi.org/10.24432/C5ZP40>.

684

685 Sever Topan, David Rolnick, and Xujie Si. Techniques for symbol grounding with satnet. *Advances
 686 in Neural Information Processing Systems*, 34:20733–20744, 2021.

687

688 John Tromp. Connect-4. UCI Machine Learning Repository, 1995. DOI:
 689 <https://doi.org/10.24432/C59P43>.

690

691 Efthymia Tsamoura, Timothy Hospedales, and Loizos Michael. Neural-symbolic integration: A
 692 compositional perspective. In *Proceedings of the AAAI conference on artificial intelligence*,
 693 volume 35, pp. 5051–5060, 2021.

694

695 Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. SATNet: Bridging deep learning and
 696 logical reasoning using a differentiable satisfiability solver. In *Proceedings of the 36th International
 697 Conference on Machine Learning*, volume 97, pp. 6545–6554, 2019.

698

699 Zhuo Wang, Wei Zhang, Jianyong Wang, et al. Transparent classification with multilayer logical per-
 700 ceptrons and random binarization. In *Proceedings of the AAAI conference on artificial intelligence*,
 701 volume 34, pp. 6331–6339, 2020.

702

703 Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. Deepstochlog: Neural
 704 stochastic logic programming. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 705 volume 36, pp. 10090–10100, 2022.

706

707 Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function
 708 for deep learning with symbolic knowledge. In *Proceedings of the 35th International Conference
 709 on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 5502–5511.
 710 PMLR, 07 2018.

702 Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer set
703 programming. In *29th International Joint Conference on Artificial Intelligence, IJCAI 2020*, pp.
704 1755–1762. International Joint Conferences on Artificial Intelligence, 2020.

705
706 R.W. Zhou and C. Quek. A pseudo outer-product based fuzzy neural network and its rule-identification
707 algorithm. In *Proceedings of International Conference on Neural Networks (ICNN'96)*, pp. 1156–
708 1161 vol.2, 1996. doi: 10.1109/ICNN.1996.549061.

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A GÖDEL TRICK
757

758 In this appendix, we provide a recap of the *Gödel trick with categorical variables*, adapting its original
759 presentation in Daniele & van Krieken (2025, Appendix C) to our setting with fuzzy truth values in
760 $[0, 1]$ discretized to $\{0, 1\}$ via a 0.5 threshold (instead of real values discretized to $\{-1, 1\}$ via the
761 sign function). We also adapt the proof in Daniele & van Krieken (2025, Appendix D), showing that
762 the Gödel Trick is equivalent to the classical *Gumbel-max trick* (Gumbel, 1954), of which the widely
763 used *Gumbel-softmax trick* (Jang et al., 2017) is a smooth approximation.

764 **Gödel Trick Recap.** Direct gradient descent on Gödel logic is prone to stalling in local minima.
765 The Gödel Trick counteracts this by injecting noise. In our formulation, it takes a set of logits z_i (one
766 per candidate branch of a choice operator), and applies the following three steps, depicted in Figure 2:
767

- 769 **1. Noise addition (only during training):** $z'_i := z_i + n_i$, with $n_i \stackrel{\text{i.i.d.}}{\sim} \text{Gumbel}(0, \beta)$.
- 770 **2. Re-centering:** $z''_i := z'_i - \bar{z}'$, where \bar{z}' is the mean of the two largest perturbed logits.
- 771 **3. Sigmoid application:** $w_i := \sigma\left(\frac{z''_i}{T}\right)$, where $T > 0$ is a temperature hyperparameter.

774 At test time, we can binarize the weights w_i at 0.5, ensuring that exactly one w_i equals 1 and the rest
775 are 0. Thanks to Theorem 1, this discretization does not alter the final Boolean predictions of the
776 model.

794 Figure 2: Given a choice operator $[a, b, c]$, the figure illustrates the differentiable three-stage procedure
795 that turns the raw, real-valued logits z_i attached to each candidate sub-formula into logical gates
796 $w_i \in [0, 1]$. From the bottom up: (1) during training, i.i.d. Gumbel noise $n_i \sim \text{Gumbel}(0, \beta)$ is
797 added to each logit; (2) the mean \bar{z}' of the two largest perturbed logits is subtracted from all values;
798 (3) temperature-scaled sigmoid function is applied.

799 **Equivalence to the Gumbel-max Trick.** The *Gumbel-max trick* is a reparameterization method for
800 sampling from a categorical distribution. Let the categorical distribution be defined by the probabilities
801 $\pi := \text{softmax}(\theta)$. Then, the probability that $\arg \max_i (\theta_i + g_i) = j$, where $g_i \sim \text{Gumbel}(0, 1)$, is
802 precisely equal to π_j . Hence,

$$803 \text{onehot}(\arg \max_i (\theta_i + g_i))$$

805 produces an exact sample from the categorical distribution with probabilities π . This is how the
806 Gumbel-max trick works, and the Gumbel-softmax trick is a differentiable approximation which
807 substitutes $\text{onehot} \circ \arg \max$ with softmax .

808 Setting $\theta_i := z_i/\beta$ and $g_i := n_i/\beta$, the perturbation step of the Gödel Trick becomes:
809

$$z'_i = \beta (\theta_i + g_i)$$

810 The centering step subtracts the mean of the two largest perturbed logits, which does not affect the
 811 arg max, since it simply shifts all values by the same constant. Similarly, also the multiplication by a
 812 positive constant and the application of a monotonically increasing function such as the sigmoid do
 813 not affect the arg max. Hence:

$$814 \arg \max_i w_i = \arg \max_i z''_i = \arg \max_i z'_i = \arg \max_i (\theta_i + g_i)$$

816 Since the maximum weight is by construction the only one surpassing the threshold value 0.5,
 817 discretizing the weights w_j yields precisely the same effect as $\text{onehot}(\arg \max_i (w_i))$. Thus, we can
 818 conclude that

$$819 \rho(w_j) = \text{onehot}(\arg \max_i (\theta_i + g_i))_j$$

821 for every j . Moreover, because we are using Gödel semantics and Theorem 1 applies, the thresholding
 822 of the weights is implicit when considering binarized output predictions of the entire model. Hence,
 823 in our context, the Gödel trick is equivalent to the Gumbel-max trick, which is more precise than the
 824 Gumbel-softmax one.

826 B LOH WITH PLACEHOLDERS: A FORMALIZATION

828 **Placeholder Declarations.** We allow the user to *name* any LoH subformula by writing a declaration
 829 of the form $p := \phi$, where ϕ is a LoH formula and p is a fresh identifier (i.e., a name different from any
 830 propositional variable and any other identifier). A placeholder can itself mention other placeholders
 831 that have been declared earlier. However, the directed graph of such references must be acyclic, to
 832 avoid *circular* definitions.

833 Formally, let $\mathcal{P}l$ be the finite set of placeholder names and let $\mathcal{D} = \{p_1 := \phi_1, \dots, p_m := \phi_m\}$ be
 834 the list of declarations. For every placeholder p_i , we define its *dependency set* $\text{dep}(p_i) := \{p_j \in \mathcal{P}l \mid$
 835 p_j occurs in $\phi_i\}$. The *dependency graph* is the directed graph $G = (\mathcal{P}, E)$ with edge $(p_i, p_j) \in E$
 836 iff $p_j \in \text{dep}(p_i)$. A declaration list is *well-defined* when G is a directed acyclic graph (DAG).

838 **Hypothesis Space Computation.** Let $\mathcal{D} = \{p_1 := \phi_1, \dots, p_m := \phi_m\}$ be a well-defined list of
 839 declarations. The following algorithm produces the hypothesis space $\mathcal{H}(\Phi)$ for every LoH formula Φ
 840 possibly containing the placeholders p_1, \dots, p_n .

841 Algorithm 1 Construction of the hypothesis space $\mathcal{H}(\Phi)$

843 **Input:** LoH formula Φ ; well-defined declaration list $\mathcal{D} = \{p_i := \phi_i\}_{i=1}^m$
 844 **Output:** $\mathcal{H}(\Phi)$, the hypothesis space of Φ

845 1: **function** HYPOTHESES(Φ, D)
 846 2: **Tagging.** Traverse every choice node $[F_1, \dots, F_n]$ in both Φ and the bodies ϕ_i ; assign a fresh
 847 identifier c and record its arity n_c
 848 3: **Indices space.** $\text{IndicesSpace} \leftarrow \prod_c \{1, \dots, n_c\}$ (Cartesian product)
 849 4: **Evaluator.** Define the total function $\text{EVAL}(\cdot, \text{Indices})$ recursively:
 850 $\text{EVAL}(v, \text{Indices}) := v$ (R1')
 851 $\text{EVAL}(\neg F_1, \text{Indices}) := \neg \text{EVAL}(F_1, \text{Indices})$ (R2')
 852 $\text{EVAL}(F_1 \wedge F_2, \text{Indices}) := \text{EVAL}(F_1, \text{Indices}) \wedge \text{EVAL}(F_2, \text{Indices})$ (R3')
 853 $\text{EVAL}(F_1 \vee F_2, \text{Indices}) := \text{EVAL}(F_1, \text{Indices}) \vee \text{EVAL}(F_2, \text{Indices})$ (R4')
 854 $\text{EVAL}([F_1, \dots, F_n]_c, \text{Indices}) := \text{EVAL}(F_{\text{Indices}[c]}, \text{Indices})$ (R5')
 855 $\text{EVAL}(p_i, \text{Indices}) := \text{EVAL}(\phi_i, \text{Indices})$ (Placeholders)
 856 5: **Enumeration.** $\mathcal{H}(\Phi) \leftarrow \{\text{EVAL}(\Phi, \text{Indices}) \mid \text{Indices} \in \text{IndicesSpace}\}$
 857 6: **return** $\mathcal{H}(\Phi)$
 858 7: **end function**

863 Given Φ and \mathcal{D} , the Cartesian product IndicesSpace (in line 3) is exactly the set of all possible
 assignments of concrete choices to every choice operator. Indeed, for every $\text{Indices} \in \text{IndicesSpace}$,

864 the algorithm considers an index $\text{Indices}[c] \in \{1, \dots, n_c\}$ for every choice node c (of arity n_c), and the
 865 evaluator $\text{EVAL}(\cdot, \text{Indices})$ is a function that (i) respects placeholder sharing and (ii) deterministically
 866 replaces every choice node $[F_1, \dots, F_{n_c}]_c$ by the branch $F_{\text{Indices}[c]}$. Thus, $\text{EVAL}(\Phi, \text{Indices})$ reflects
 867 the discrete model obtained compiling Φ (as in Section 5), when $\text{Indices}[c]$ is the index of the unique
 868 weight greater than 0.5, for each compiled choice operator c . It follows that $\mathcal{H}(\Phi)$ coincides exactly
 869 with the hypothesis space of the compiled and discretized model, as we wanted.
 870

871 **Remark on DAG constraint.** Algorithm 1, as written in declarative pseudo-code, requires the
 872 declaration list $\mathcal{D} = \{p_i := \phi_i\}_{i=1}^m$ to be well-defined. In practice, however, our implementation
 873 does not enumerate the hypothesis space, and is written in PyTorch following a standard imperative
 874 framework. A placeholder’s value is created the moment the corresponding tensor is defined, so a
 875 definition such as $\psi \leftarrow [\dots, \phi, \dots]$ must necessarily see ϕ already instantiated. And any subsequent
 876 attempt to define ϕ in terms of ψ would simply create a new tensor rather than closing a cycle. Thus
 877 the execution order enforced by the host language ensures acyclicity “for free”, making an explicit
 878 compile-time DAG check redundant. Importantly, this does not preclude recurrent structures: one
 879 can still build LoH-based recurrent networks exactly as one builds ordinary RNNs in PyTorch — by
 880 passing the hidden state from one time step to the next. In this case, one may write an LoH formula
 881 formally relating some placeholders to the ones at the previous time step, and acyclicity is in the
 882 unrolled architecture.
 883

C DISJUNCTIVE VS CONJUNCTIVE COMPIILATIONS

884 Recall that a choice node $[F_1, \dots, F_n]$ can be compiled in two dual ways:
 885

- 887 • Disjunctive compilation: $\bigvee_{i=1}^n (w_i \wedge F_i)$
- 888 • Conjunctive compilation: $\bigwedge_{i=1}^n (\neg w_i \vee F_i)$

890 Duality comes from De Morgan’s laws: the negation of the disjunctive compilation is equivalent to
 891 the conjunctive compilation on the negated subformulas, and vice versa. Indeed,
 892

$$893 \neg \bigvee_{i=1}^n w_i \wedge F_i \equiv \bigwedge_{i=1}^n \neg w_i \vee \neg F_i \quad \text{and} \quad \neg \bigwedge_{i=1}^n \neg w_i \vee F_i \equiv \bigvee_{i=1}^n w_i \wedge \neg F_i$$

896 Under Gödel semantics, conjunction and disjunction are interpreted as min and max respectively, so
 897 the two translations become
 898

$$\text{Disj. : } \max_i \min(w_i, F_i), \quad \text{Conj. : } \min_i \max(1 - w_i, F_i).$$

900 **Case Study: Selecting Reliable Rules.** Equation 3 proposes the following LoH model, which is
 901 also used inside conjunctive neurons of the type in equation 5:
 902

$$903 \bigwedge_{i=1}^n [r_i, \top] \tag{2}$$

906 Notice that the two weights in the compilation of a choice operator choosing only among two
 907 subformulas must sum to one.⁶ Hence, we will write w_i and $1 - w_i$ for the (respective) weights of r_i
 908 and \top in $[r_i, \top]$.
 909

With conjunctive compilation, equation 3 yields:
 910

$$911 \min_i (\min(\max(1 - w_i, r_i), \max(w_i, \top))) = \min_i (\max(1 - w_i, r_i))$$

912 On the other hand, with disjunctive compilation, it becomes:
 913

$$914 \min_i (\max(\min(w_i, r_i), \min(1 - w_i, \top))) = \min_i (\max(\min(w_i, r_i), 1 - w_i))$$

916 ⁶Indeed, let z_1 and z_2 be the stored parameters. By design, the weights w_1 and w_2 are obtained applying the
 917 sigmoid function to $z_1 - \frac{z_1 + z_2}{2} = \frac{z_1 - z_2}{2}$ and $z_2 - \frac{z_1 + z_2}{2} = \frac{z_2 - z_1}{2}$ (respectively). The two logit values are
 918 opposite to each other, so the weights $w_1 = \sigma(\frac{z_1 - z_2}{2T})$ and $w_2 = \sigma(\frac{z_2 - z_1}{2T})$ must sum to 1.

918 Thus, equation 3 simplifies more under conjunctive compilation. This simplification has an important
 919 effect on the training dynamics. Indeed, when a rule r_i is already (almost) satisfied for a specific
 920 example (i.e., $r_i \approx 1$), also the inner $\max(1 - w_i, r_i)$ becomes ≈ 1 . Hence, the outer \min_i ignores that
 921 index and concentrates on a rule whose truth value is *smaller* (if any). Then, it is the weight associated
 922 to that less-satisfied rule that will receive gradient signal for updating. Intuitively, when particular data
 923 gives no evidence for preferring r_i over \top (because their truth values are the same), the network also
 924 receives no signal to change the associated gate w_i . By contrast, $\max(\min(w_i, r_i), 1 - w_i)$ evaluates
 925 to $\max(w_i, 1 - w_i)$ when $r_i \approx 1$. Consequently, the loss may push w_i upwards or downwards even
 926 when the data provide no information for choosing between r_i and \top . These unwanted updates can
 927 slow convergence and may bias the learned subset of rules.
 928

929 **Empirical Evaluation.** We conducted some experiments validating the previous findings and
 930 extending to different LoH models. The experiments are conducted in the following way. We consider
 931 10 propositional variables and randomly generate some ground-truth clauses and some additional
 932 clauses, of width ranging from 2 to 5. For any of the 2^{10} possible Boolean interpretations, a label is
 933 produced using the ground-truth clauses as rules. Then the dataset is divided into 75% for training
 934 and 25% for evaluation. An LoH model is trained to select some rules among the ground-truth +
 935 additional rules. For any considered number of ground-truth clauses and additional clauses, the same
 936 experiment is repeated 10 times. For each execution, the test-set F1 score is recorded, together with
 937 the number of optimization steps to convergence. The criterion we use for deciding convergence is
 938 the following: either 100% accuracy is achieved, or there is no change in accuracy for 64 consecutive
 939 steps, or a limit of 64 epochs (384 steps) is reached. The values of the hyperparameters were fixed:
 940 128 as batch size, 0.15 as learning rate, 1 as temperature, and $Gumbel(0, 1)$ noise.
 941

942 Figure 3 reports the plots with the experiments’ results for different models. Subfigure 3a refers
 943 to simple rule selection, with LoH models as in equation 3. Subfigure 3b does the same, but in
 944 the dual set-up: both ground-truth and additional clauses c_i are *conjunctive* clauses, and the LoH
 945 model $\bigvee_{i=1}^n [c_i, \perp]$ learns a disjunction of them. Finally, Subfigure 3c considers again rules made
 946 of (disjunctive) clauses. However, each of the m ground-truth clauses is placed on a different set
 947 $\{r_{i,1}, r_{i,2}, \dots, r_{i,k+1}\}$, together with k additional clauses. Then, we use the model in equation 4,
 948 selecting one rule per set. These plots corroborate our suggestion to use conjunctive compilation
 949 inside conjunctions (Subfigures 3a and 3c), and disjunctive compilation inside disjunctions (Subfigure
 950 3b). Indeed, such compilation choices achieved better results both in terms of final accuracy and of
 951 convergence speed.
 952

950 D COUNTEREXAMPLE FOR PRODUCT FUZZY LOGIC

951 Let us consider the disjunctive compilation of $[a, b]$:

$$952 \quad (w_a \wedge a) \vee (w_b \wedge b)$$

953 and interpret it with the following fuzzy values: $\mathcal{I}(w_a) = 0.6$, $\mathcal{I}(a) = 0.7$, $\mathcal{I}(w_b) = 0.4$ and
 954 $\mathcal{I}(b) = 0$. Using product fuzzy logic,
 955

$$956 \quad \mathcal{I}((w_a \wedge a) \vee (w_b \wedge b)) = 0.6 * 0.7 = 0.42 < 0.5$$

957 whose discretized Boolean value $\rho_{0.5}(0.42) = 0$ (False). On the other hand, if \mathcal{B} is the Boolean
 958 discretization of \mathcal{I} , so that $\mathcal{B}(w_a) = 1$, $\mathcal{B}(a) = 1$, $\mathcal{B}(w_b) = 0$ and $\mathcal{B}(b) = 0$, then
 959

$$960 \quad \mathcal{B}((w_a \wedge a) \vee (w_b \wedge b)) = 1$$

961 This means that the discretized explanation disagrees with the behavior of the network. Analogous
 962 counterexamples can be built for Łukasiewicz logic. Instead, with Gödel logic, the Boolean
 963 interpretation is always in accordance with the fuzzy truth values (Theorem 1):
 964

$$965 \quad \mathcal{I}((w_a \wedge a) \vee (w_b \wedge b)) = \max(\min(0.6, 0.7), \min(0.4, 0)) = 0.6 > 0.5$$

966 E DETAILS ON THE WILDFIRE RISK ASSESSMENT TASK

967 **Variables and ground-truth.** The task is defined over nine propositional variables. Two
 968 of them are *visual* concepts, to be formed by a CNN from the images: *DenseForest* and
 969

Figure 3: Comparison of disjunctive and conjunctive compilations.

DryVegetation. The remaining seven are *non-visual* features provided in tabular form: *LowHumidity*, *HighTemperature*, *RainedRecently*, *StrongWind*, *LightningsFrequent*, *LowHumanActivity* and *PowerLinesNearby*. The ground-truth label *WildfireRisk* is obtained by combining three interpretable intermediate rules: see equations 2.

Dataset generation. The dataset contains 2048 synthetic RGB images of size 256×256 . For each image, we first sample Boolean assignments to the visual concepts (*DenseForest* and *DryVegetation*), deciding whether the scene should contain dense forest and whether the vegetation should be dry. A simple drawing routine then renders forest-like patches, and the color scheme distinguish greener from dry vegetation. The image generation process may also produce additional elements, such as houses or rivers, that are random artifact not correlated with the wildfire risk. Examples of the generated images are available in figure 4.

Figure 4: Examples of synthetic wildfire scenes for the four possible combinations of *DenseForest* and *DryVegetation*.

Independently, we sample Boolean values for the seven non-visual features (e.g. humidity, wind, human activity), as iid $Bernoulli(0.5)$ random variables. The ground-truth wildfire-risk label for each sample is obtained by evaluating the rule above on the full 9-dimensional Boolean vector. The images, the non-visual features and the risk labels are stored in a PyTorch dataset and split into training and test sets (75%/25%).

Candidate rules. Section 6 compares several ways of exploiting symbolic knowledge. In all of them, the starting point is a small pool of candidate rules:

- **Fuel Candidates:**
 - Ground Truth: $DenseForest \vee (DryVegetation \wedge StrongWind)$
 - Distractors:
 - * $DenseForest$
 - * $DenseForest \wedge DryVegetation$
 - * $DryVegetation \wedge (StrongWind \vee LowHumidity)$
- **Dryness Candidates:**
 - Ground Truth: $LowHumidity \vee (HighTemperature \wedge \neg RainedRecently)$
 - Distractors:
 - * $LowHumidity \wedge HighTemperature \wedge \neg RainedRecently$
 - * $HighTemperature \vee (LowHumidity \wedge \neg RainedRecently)$
 - * $\neg RainedRecently \vee (LowHumidity \wedge StrongWind)$
 - * $\neg RainedRecently \vee (LowHumidity \wedge HighTemperature)$
 - * $DryVegetation \wedge \neg RainedRecently$
- **Trigger Candidates:**
 - Ground Truth: $LightningsFrequent \vee \neg LowHumanActivity \vee PowerLinesNearby$
 - Distractors:
 - * $LightningsFrequent \wedge LowHumanActivity$
 - * $PowerLinesNearby \wedge StrongWind$
 - * $RainedRecently \wedge LightningsFrequent$
 - * $\neg LowHumanActivity$

Here we separate the candidate rules into Fuel, Dryness, and Triggers only for the “Selecting One Rule per Set” knowledge regime. In the “Selecting Reliable Rules” and “Partial Knowledge Base” regimes, all formulas share a single undivided candidate set with no such subdivision.

Model Architectures and training. The neurosymbolic models integrate a perception and a reasoning module, which are trained end-to-end:

- **Perception Module (CNN):** A three-layer Convolutional Neural Network processes $3 \times 256 \times 256$ RGB images to extract the visual predicates *DenseForest* and *DryVegetation*.

1080
 1081 Each block consists of a convolution (channels: $3 \rightarrow 16 \rightarrow 16 \rightarrow 16$), ReLU activation,
 1082 MaxPool (2×2), and Dropout ($p = 0.15$). A final classification head outputs fuzzy values
 1083 for the two visual concepts, through a *sigmoid* activation.

- 1084 • **Reasoning Module (LoH):** This layer accepts the visual predictions alongside the non-
 1085 visual boolean features. It comes in the four different knowledge regimes discussed in
 1086 Section 6.

1087 Training uses standard binary cross-entropy on the wildfire label, with Adam optimizers for both the
 1088 logical and perceptual parts. The CNN learning rate is $8 \cdot 10^{-4}$ and the LoH learning rate is $8 \cdot 10^{-2}$.
 1089 For each knowledge regime, the training is performed 20 times with different random seeds.

1090

1091 F COMPARISON OF DIFFERENT TEMPLATES

1092

1093 Let us consider the following ground-truth CNF formula ϕ made of 5 definite clauses of width 3:

1094

$$1095 (\neg v_3 \vee \neg v_8 \vee v_7) \wedge (\neg v_{10} \vee \neg v_3 \vee v_4) \wedge (\neg v_1 \vee \neg v_9 \vee v_{10}) \wedge (\neg v_2 \vee \neg v_6 \vee v_8) \wedge (\neg v_4 \vee \neg v_3 \vee v_5)$$

1096

1097 For any of the 2^{10} possible Boolean interpretations of the propositional variables v_1, \dots, v_{10} , a
 1098 ground-truth label is produced using ϕ . This dataset is divided into 75% for training and 25% for
 1099 evaluation, and each LoH model is trained to construct 5 clauses. The values of the hyperparameters
 1100 are fixed: 128 as batch size, 0.15 as learning rate, 1 as temperature, and $Gumbel(0, 1)$ noise. Figure 5
 1101 compares the average learning curves (over 20 runs) of LoH models adhering to different templates.
 In particular,

1102

- 1103 • “5 clauses” uses the conjunction of five copies of $\bigvee_{i=1}^{10} [\neg v_i, v_i, \perp]$
- 1104 • “5 definite clauses” uses the conjunction of five copies of formula equation 8 with $n = 10$,
 1105 i.e., $\bigvee_{i=1}^{10} [\neg v_i, \perp] \vee [v_1, \dots, v_{10}]$
- 1106 • “5 definite clauses of width 3” uses the conjunction of five copies of the following LoH
 1107 formula: $[\neg v_1, \dots, \neg v_{10}] \vee [\neg v_1, \dots, \neg v_{10}] \vee [v_1, \dots, v_{10}]$
- 1108 • “5 definite clauses with heads given” uses $(\bigvee_{i=1}^{10} [\neg v_i, \perp] \vee v_7) \wedge (\bigvee_{i=1}^{10} [\neg v_i, \perp] \vee v_4) \wedge$
 1109 $(\bigvee_{i=1}^{10} [\neg v_i, \perp] \vee v_{10}) \wedge (\bigvee_{i=1}^{10} [\neg v_i, \perp] \vee v_8) \wedge (\bigvee_{i=1}^{10} [\neg v_i, \perp] \vee v_5)$
- 1110 • “5 definite clauses with first given” uses the conjunction of $(\neg v_3 \vee \neg v_8 \vee v_7)$ with four
 1111 copies of $\bigvee_{i=1}^{10} [\neg v_i, \perp] \vee [v_1, \dots, v_{10}]$

1112

1113

1114 Figure 5: Average training curves — over 20 runs — of LoH formulas following different templates,
 1115 for learning the same ground-truth CNF formula made of 5 definite clauses of width 3.

1116

1117 We can notice that adding explicit knowledge—fixing either a clause or the clause heads—yield better
 1118 learning curves than the purely syntactic alternatives. Regarding such three purely syntactic templates,
 1119 we can notice that the model learning definite clauses slightly outperformed the most general one,
 1120 thanks to a reduced search space. However, despite having an even smaller hypothesis space, the

1134 model learning definite clauses of width 3 is the one performing worse. This may be explained by
 1135 the fact that the other models can update the weights of the negative literals independently, whereas
 1136 updates in $[\neg v_1, \dots, \neg v_{10}]$ always involve more variables at the same time. Additionally, choosing
 1137 $\neg v_i$ in the first choice operator and $\neg v_j$ in the second (with $i \neq j$) is in a completely different region
 1138 of the search space from the equivalent choice of $\neg v_j$ in the first and $\neg v_i$ in the second. Anyway, one
 1139 may still employ this model because it guarantees formulas of a prescribed template, irrespective
 1140 of raw predictive performance. Moreover, among the 20 runs, each of the LoH models found the
 1141 100%-correct formula multiple times. This suggest that trying different runs and picking the best can
 1142 be a useful strategy.

1143

1144 G FURTHER EXPERIMENTS WITH ARTIFICIAL DATA

1145

1146 Figure 6 reprises the experiments of Appendix C. However, it considers only the best compilations
 1147 (disjunctive for 6b, and conjunctive for 6a and 6c), while highlighting the influence of different
 1148 experimental factors. In particular, the middle column shows how both F1 score and convergence
 1149 speed have a strong negative correlation with the number of ground-truth clauses. Clearly, the more
 1150 clauses in the ground truth, the more need to be selected for a perfect score, and the more difficult
 1151 the learning. However, since the ground-truth clauses are independently generated, their number is
 1152 also strongly correlated with data imbalance. As shown in the first column, learning a conjunction of
 1153 clauses suffers most when there are too few positive samples (i.e., samples in which the ground-truth
 1154 formula is satisfied). Conversely, a shortage of negative samples drives poorer performance when
 1155 learning a disjunction. In contrast, the number of additional, “misleading” clauses is not as impactful
 1156 as the ground-truth, as evidenced by the third column. This is true at least when the number of
 1157 additional clauses is comparable to that of the ground truth.⁷

1158

1159 H DATASETS PROPERTIES

1160

1161 For each dataset, Table 3 summarizes the number of features before and after binarization, together
 1162 with references and size.

Table 3: Datasets properties.

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

Dataset	# instances	# classes	# original features	# binary features
adult (Becker & Kohavi, 1996)	32561	2	14	155
bank-marketing (Moro et al., 2014)	45211	2	16	88
banknote (Lohweg, 2012)	1372	2	4	17
blogger (blo, 2012)	100	2	5	15
chess (Bain & Hoff, 1994)	28056	18	6	40
connect-4 (Tromp, 1995)	67557	3	42	126
letRecog (Slate, 1991)	20000	26	16	155
magic04 (Bock, 2004)	19020	2	10	79
mushroom (Schlimmer, 1981)	8124	2	22	117
nursery (Rajkovic, 1989)	12960	5	8	27
tic-tac-toe (Aha, 1991)	958	2	9	27
wine (Cortez et al., 2009)	178	3	13	37

1178

1179

1180

1181

1182

I HYPERPARAMETERS

The following outlines the hyperparameter search spaces for the models presented in Section 7. The hyperparameter choices for each dataset are available in the code repository.

1183

1184

1185

1186

- Decision Tree: `min_samples_split` (2–50), `max_depth` (2–50), `min_samples_leaf` (1–50).
- Random Forest: `n_estimators` (50–500), `min_samples_split` (2–50), `max_depth` (2–50), `min_samples_leaf` (1–50).

1187

⁷Regarding Subfigure 6c, notice that the *total* number of added clauses is a *multiple* of the number of additional clauses *per set*.

1224 Figure 6: Clauses selection performance w.r.t. percentage of true labels, number of ground-truth
1225 clauses and number of additional clauses.

- XGBoost: max_depth (5–20), n_estimators (10–500), learning_rate (10^{-3} – $2 \cdot 10^{-1}$).
- Neural Network: number of hidden layers (1–3), number of units per layer (4–128), learning rate (10^{-4} – 10^{-1}). Batch size fixed at 256, and ReLU activations.
- DLN: number of hidden layers (1–10), number of units per layer (16–512), grad_factor (1.–2.), learning rate (10^{-3} – 10^{-1}), τ (1–100). Batch size fixed at 128.
- MLLP/CRS: number of hidden layers (1,3), number of units per layer (16–256), weight decay (10^{-8} – 10^{-2}), learning rate (10^{-4} – 10^{-1}), random binarization rate (0–0.99). Batch size (128) and learning rate scheduler were set to the default value.
- Ours: learning rate (0.01–0.2), Gumbel noise scale β (0.4–1.2), temperature (0.4–1.2), and temperature rescaling factor applied every 10 epochs (0.9925–1). Like NN and MLLP/CRS, we also optimized the architecture, allowing the TPE algorithm to select the layer type (any-clause vs fixed-size-clauses), the number of hidden layers (1–2), layer sizes (16–256), and whether the output layer is conjunctive or disjunctive (with the other layers alternating). In case of fixed-size-clauses layer type, also the hyperparameter k (2–8) was tuned for each layer.

1242 **J DECISION RULES OF VISUAL TIC-TAC-TOE**
12431244 Both CRS and LoH allow for the automatic extraction of logical formulas. In order to interpret
1245 such decision rules, we need to assign proper names to the input propositions. In particular, for
1246 visual tic-tac-toe, there are three input propositions for every image in the tic-tac-toe grid, each
1247 corresponding to an output unit of the feature-extractor CNN. The assignment of labels (such as X ,
1248 O or B) to such units is done by thresholding their average activations with respect to each image
1249 class (0, 1, and 2), in the following way:
12501251

- 1252 • if the average activation is never > 0.5 , the label for the unit is \perp , which can later be
simplified from the formulas;
- 1253 • if the average activation is > 0.5 for one class and < 0.5 for the other two, the label for the
unit is the one corresponding to the activating class;
- 1254 • if the average activation is > 0.5 for two classes and < 0.5 for the other, the label for the
unit is the logical negation of the non-activating class;
- 1255 • if the average activation is always > 0.5 , the label for the unit is \top , which can later be
1256 simplified from the formulas.

1257 As an example, if an output unit of the CNN exhibits an average activation below 0.5 for images
1258 of class 1 but above 0.5 for images of the other two classes, we assign it the label $\neg O$ (recalling
1259 that digit 1 was associated with O). In this way, we can assign names to the input propositions of
1260 the logical models, by combining the labels of the CNN output units with the positions in the 3×3
1261 tic-tac-toe grid.
12621263 Table 4 reports the *best* decision rules learned by CRS and our base model on the Visual Tic-Tac-Toe
1264 task. The formulas were simplified removing the appearances of \top and \perp , and also removing
1265 redundant clauses. We do not provide the formulas learned by DLN because the implementation of
1266 DLN we used did not have a function to write them in a human-readable way. Moreover, to boost
1267 performance, DLN actually learns an ensemble with majority voting, not a single formula. The DLN
1268 run with highest Symbolic eval achieved .885 F1-score.
12691270 **K RUNTIMES**
12711272 Table 5 reports the approximated runtime of a single training plus evaluation run, for each benchmark
1273 discussed in Section 7. The values are relative to the selected hyperparameters, and the table also
1274 reports the corresponding models’ parameter count. All experiments were conducted on a cluster
1275 node equipped with an Nvidia RTX A5000 with 60GB RAM.
12761277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296
1297
1298
1299
1300
1301
1302
1303

1304 Table 4: Best decision rules learned on the Visual Tic-Tac-Toe task. The labels X_i and $\neg O_j$ were
1305 assigned to each proposition in the way explained in this appendix.
1306

1307	Model	Symb. eval	Formula
1308	CRS	DNF .991	$(\neg O_1 \wedge \neg O_5 \wedge \neg O_9) \vee (\neg O_3 \wedge \neg O_5 \wedge \neg O_7)$ $\vee (\neg O_2 \wedge \neg O_4 \wedge \neg O_7 \wedge \neg O_9) \vee (\neg O_1 \wedge \neg O_2 \wedge \neg O_3 \wedge \neg O_4 \wedge \neg O_7)$ $\vee (\neg O_1 \wedge \neg O_2 \wedge \neg O_3 \wedge \neg O_4 \wedge \neg O_8) \vee (\neg O_1 \wedge \neg O_2 \wedge \neg O_3 \wedge \neg O_4 \wedge \neg O_9)$ $\vee (\neg O_1 \wedge \neg O_2 \wedge \neg O_3 \wedge \neg O_5 \wedge \neg O_8) \vee (\neg O_1 \wedge \neg O_2 \wedge \neg O_3 \wedge \neg O_6 \wedge \neg O_7)$ $\vee (\neg O_1 \wedge \neg O_2 \wedge \neg O_3 \wedge \neg O_6 \wedge \neg O_8) \vee (\neg O_1 \wedge \neg O_2 \wedge \neg O_4 \wedge \neg O_6 \wedge \neg O_7)$ $\vee (\neg O_1 \wedge \neg O_3 \wedge \neg O_4 \wedge \neg O_7 \wedge \neg O_8) \vee (\neg O_1 \wedge \neg O_3 \wedge \neg O_6 \wedge \neg O_8 \wedge \neg O_9)$ $\vee (\neg O_1 \wedge \neg O_4 \wedge \neg O_5 \wedge \neg O_6 \wedge \neg O_7) \vee (\neg O_1 \wedge \neg O_4 \wedge \neg O_5 \wedge \neg O_6 \wedge \neg O_8)$ $\vee (\neg O_1 \wedge \neg O_4 \wedge \neg O_7 \wedge \neg O_8 \wedge \neg O_9) \vee (\neg O_1 \wedge \neg O_6 \wedge \neg O_7 \wedge \neg O_8 \wedge \neg O_9)$ $\vee (\neg O_2 \wedge \neg O_3 \wedge \neg O_4 \wedge \neg O_5 \wedge \neg O_8) \vee (\neg O_2 \wedge \neg O_3 \wedge \neg O_4 \wedge \neg O_6 \wedge \neg O_9)$ $\vee (\neg O_2 \wedge \neg O_3 \wedge \neg O_6 \wedge \neg O_7 \wedge \neg O_9) \vee (\neg O_2 \wedge \neg O_4 \wedge \neg O_5 \wedge \neg O_6 \wedge \neg O_8)$ $\vee (\neg O_2 \wedge \neg O_4 \wedge \neg O_5 \wedge \neg O_6 \wedge \neg O_9) \vee (\neg O_2 \wedge \neg O_4 \wedge \neg O_5 \wedge \neg O_8 \wedge \neg O_9)$ $\vee (\neg O_2 \wedge \neg O_5 \wedge \neg O_6 \wedge \neg O_7 \wedge \neg O_8) \vee (\neg O_2 \wedge \neg O_5 \wedge \neg O_7 \wedge \neg O_8 \wedge \neg O_9)$ $\vee (\neg O_3 \wedge \neg O_4 \wedge \neg O_5 \wedge \neg O_6 \wedge \neg O_8) \vee (\neg O_3 \wedge \neg O_4 \wedge \neg O_5 \wedge \neg O_6 \wedge \neg O_9)$ $\vee (\neg O_3 \wedge \neg O_4 \wedge \neg O_6 \wedge \neg O_8 \wedge \neg O_9) \vee (\neg O_3 \wedge \neg O_4 \wedge \neg O_7 \wedge \neg O_8 \wedge \neg O_9)$ $\vee (\neg O_3 \wedge \neg O_6 \wedge \neg O_7 \wedge \neg O_8 \wedge \neg O_9)$
1309			
1310			
1311			
1312			
1313			
1314			
1315			
1316			
1317			
1318			
1319			
1320			
1321			
1322	CNF .984		$(\neg O_1 \vee \neg O_2 \vee \neg O_3) \wedge (\neg O_1 \vee \neg O_4 \vee \neg O_7)$ $\wedge (\neg O_1 \vee \neg O_5 \vee \neg O_9) \wedge (\neg O_2 \vee \neg O_5 \vee \neg O_8)$ $\wedge (\neg O_3 \vee \neg O_5 \vee \neg O_7) \wedge (\neg O_3 \vee \neg O_6 \vee \neg O_9)$ $\wedge (\neg O_4 \vee \neg O_5 \vee \neg O_6) \wedge (\neg O_7 \vee \neg O_8 \vee \neg O_9)$ $\wedge (\neg O_2 \vee \neg O_3 \vee \neg O_4 \vee \neg O_9) \wedge (\neg O_2 \vee \neg O_5 \vee \neg O_7 \vee \neg O_9)$
1323			
1324			
1325			
1326			
1327	DNF 1.00		$(X_1 \wedge X_2 \wedge X_3) \vee (X_4 \wedge X_5 \wedge X_6)$ $\vee (X_7 \wedge X_8 \wedge X_9) \vee (X_1 \wedge X_4 \wedge X_7)$ $\vee (X_2 \wedge X_5 \wedge X_8) \vee (X_3 \wedge X_6 \wedge X_9)$ $\vee (X_1 \wedge X_5 \wedge X_9) \vee (X_3 \wedge X_5 \wedge X_7)$
1328			
1329			
1330			
1331	Ours		$(X_1 \vee X_5 \vee X_9) \wedge (X_3 \vee X_5 \vee X_7)$ $\wedge (X_1 \vee X_2 \vee X_6 \vee X_7) \wedge (X_1 \vee X_3 \vee X_4 \vee X_8)$ $\wedge (X_1 \vee X_3 \vee X_5 \vee X_8) \wedge (X_1 \vee X_3 \vee X_6 \vee X_8)$ $\wedge (X_1 \vee X_5 \vee X_6 \vee X_7) \wedge (X_1 \vee X_6 \vee X_7 \vee X_8)$ $\wedge (X_2 \vee X_3 \vee X_4 \vee X_9) \wedge (X_2 \vee X_4 \vee X_5 \vee X_9)$ $\wedge (X_2 \vee X_4 \vee X_7 \vee X_9) \wedge (X_2 \vee X_5 \vee X_6 \vee X_7)$ $\wedge (X_2 \vee X_5 \vee X_7 \vee X_9) \wedge (X_2 \vee X_6 \vee X_7 \vee X_9)$ $\wedge (X_3 \vee X_4 \vee X_5 \vee X_8) \wedge (X_3 \vee X_4 \vee X_5 \vee X_9)$ $\wedge (X_3 \vee X_4 \vee X_8 \vee X_9) \wedge (X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_7)$ $\wedge (X_1 \vee X_2 \vee X_3 \vee X_6 \vee X_9) \wedge (X_1 \vee X_2 \vee X_5 \vee X_6 \vee X_8)$ $\wedge (X_1 \vee X_4 \vee X_5 \vee X_6 \vee X_8) \wedge (X_1 \vee X_4 \vee X_7 \vee X_8 \vee X_9)$ $\wedge (X_2 \vee X_4 \vee X_5 \vee X_6 \vee X_8) \wedge (X_3 \vee X_6 \vee X_7 \vee X_8 \vee X_9)$
1332			
1333			
1334			
1335			
1336			
1337			
1338			
1339			
1340			
1341			
1342			
1343			
1344			
1345			
1346			
1347			
1348			
1349			

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369

Table 5: Average runtimes relative to a single training + evaluation run.

Dataset	DLN		MLLP		Ours	
	Time (s)	# Params	Time (s)	# Params	Time (s)	# Params
adult	520	57680	499	74260	287	17584
bank-marketing	615	38576	687	70556	452	81612
banknote	17	23728	14	4807	12	7790
blogger	4	36592	4	3485	6	6195
chess	956	53568	970	117774	546	29464
connect-4	1214	51344	650	25542	873	55212
letRecog	414	41280	511	126302	528	86518
magic04	467	50960	271	19440	364	31104
mushroom	110	31024	78	16422	67	82900
nursery	284	51840	302	48331	311	68186
tic-tac-toe	25	18288	38	4002	32	11310
wine	2	6960	5	6400	4	2640

1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403