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Abstract: Diffusion models have emerged as a powerful class of generative mod-
els with wide-spread adoption in many areas. They have shown surprising effec-
tiveness, as a conditional policy representation in the context of robotic learning.
This performance has led to the popularity of various frameworks, that use dif-
fusion models to predict trajectories, action sequences or videos. Despite their
prowess, existing methodologies do not adequately address learning from mul-
timodal goal specifications, a frequent occurrence in Learning from Play (LfP)
with sparse language labels. Addressing this gap, we present Multimodal Diffu-
sion Transformer (MDT), a novel diffusion policy framework. MDT integrates
multimodal transformers, pretrained foundation models, and latent token align-
ment to master long-horizon manipulation based on multimodal goal specifica-
tions. Tested on the challenging CALVIN benchmark, MDT not only sets a new
performance benchmark for end-to-end policies but also achieves this with less
than 10% of the training time of preceding approaches. Our experiments and ab-
lations further validate the effectiveness and strategic choices behind MDT.

1 Introduction

Achieving generalizable robot agents is a core challenge in robotics. Such agents must not only
exhibit versatility across diverse tasks and environments but also provide an intuitive interface for
non-expert users. They should understand and act on user commands by using natural language as
an intuitive abstraction, whereas they currently rely on task-specific models with manually specified
rewards or impractical goal designations.

Despite its potential, training robots using language instructions remains a significant challenge.
Multi-Task Imitation Learning has emerged as a promising methodology, teaching robots a wide
range of skills via learning from recorded human demonstrations [1, 2]. However, the effort and cost
associated with curating demonstrations for every task are prohibitive. One way to circumvent these
challenges is Learning from Play (LfP) [3], that leverages large uncurated datasets to teach robots in
a self-supervised manner to reach arbitrary future states. As shown in prior work, robot agents can
effectively learn language conditioned behavior, if as little as 1% of the collected play data contains
language labels [1, 4]. However, multimodality, sub-optimal behavior and variance from various
non-experts are still major challenges for learning from play. Effective policy representations need
to address these challenges while being able to scale efficiently with large play datasets.

Recently, Diffusion Generative Models have gained traction as an effective robot learning policy
representations [5, 6]. Diffusion Policies are able to learn expressive, versatile behavior conditioned
on language-goals [7, 8]. However, none of these methods deal with the problem of learning from
multimodal goal specifications, commonly used in LfP, where language labels are sparse. Lever-
aging large datasets with limited language labels requires policy representations to learn efficiently
from these task specifications of different sensor modalities e.g. vision and language. To this end,
we introduce a novel continuous-time diffusion policy framework, that can learn language-guided
behavior from uncurated play data with different goal definitions. Our novel framework, Multi-
modal Diffusion Transformer (MDT), combines the strengths of multimodal transformers and pre-
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Figure 1: Overview of the proposed multimodal Transformer-Encoder-Decoder Diffusion Policy
Framework. MDT learns a joint latent sequence of our noise level, goal, and observations and itera-
tively denoises an action sequence of 10 steps with a Transformer Decoder with causal Attention. In
addition, we align latent goal tokens of images and goals using self-supervised contrastive learning.

trained foundation models with latent token alignment to perform long-horizon manipulation from
goal specifications in vision and language. We test MDT in the CALVIN challenge, an established
benchmark for language-guided learning from pure play data collected by human demonstrations.
Our framework establishes a new state-of-the-art on two CALVIN challenges D→D and ABCD→D,
while requiring less than 10% of the training time than the prior best methods. Notably, MDT
achieves a 23.5% absolute performance increase on the ABCD→D over prior state-of-the-art. Sev-
eral experiments and ablations demonstrate the effectiveness of the proposed method and design
choices.

2 Related Work

Language Conditioned Robot Learning Language is an intuitive and understandable interface
for human-robot interactions, hence there has been a growing interest for language-guided learning
methods in the robotics community. The recent advancement of available foundation models, in-
cluding large-language models (LLMs) [9, 10] and vision-and-language models (VLAs) [11, 12, 13]
have further accelerated the progress of language-guided robot learning. Several recent approaches
use frozen foundation models to encode images and language abstractions for down-stream policy
learning [14, 15, 16] and improved language expression-grounding [17, 18]. Another body of re-
search focuses on end-to-end learning methods that try to learn manipulation directly from pixel
observations and text instructions [4, 19]. Hierarchical skill learning methods for language-guided
manipulation are commonly used in LfP [20, 3, 15, 21, 22]. By disentangling low-level control from
high-level plans, these policies are able to deal with the multimodality in human demonstrations. In
addition, the low-level policy can focus on executing the proposed plan for precise low-level manip-
ulation. This hierarchical setup enables policies to learn high-level plans from human videos and
low-level control from robot demonstrations [23]. Other approaches focus on using transformer-
based methods without any hierarchy [24, 6].

Diffusion Policies in Robotics Denoising Diffusion Generative Models (DDPM) [25, 26] are used
in the context of imitation learning and offline reinforcement learning. Trajecory-Diffusion policies
are commonly used to denoise a state-based trajectory [27, 28, 29], latent-trajectories [29] or videos
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[30] in the context of offline Reinforcement Learning. Other approaches leverage diffusion models
as a conditional policies in imitation learning to denoising actions directly [6, 5, 31]. Most related to
our work is Play-Fusion [19], Distill-Down [8] and ChainedDiffuser [7], that also use a Diffusion-
based Policy for Language-guided Robot learning. However, these methods are limited to language-
conditioning only and do not consider the challenge of learning from multimodal goals with few
language labels. MDT can effectively learn language-guided behavior with a dataset of little as 1%
of language annotations and we show improved performance over the U-net baselines. LAD [29]
uses the learned latent skill embedding of HULC [4], as a planning abstraction for its diffusion
planning model combined with HULC as the low-level policy. UniPy [30] directly plans in the
image space using a two stage hierarchical video diffusion model and executes the plan with an
inverse dynamics model.

3 Method

In this section, we detail our MDT framework designed for learning language-guided manipulation
from Play using Score-based Diffusion Policies. We start with the problem definition to provide
context. Next, we discuss the continuous-time diffusion formulation, essential for understanding ac-
tion sequence learning. This is followed by an overview of our proposed transformer architecture of
MDT. We conclude the section by introducing the latent token alignment, which aids in optimizing
learning from play.

3.1 Problem Formulation

A goal-conditioned policy πθ(āi|si, gi) predicts a sequence of actions āi = (ai, . . . ,ai+k−1)
of length k, conditioned on both the current state embedding si and a latent goal gi. The la-
tent goal gi encapsulates either an encoded free-form language instruction lg or a goal-image og ,
which illustrates the terminal state of a completed task. MDT learns such policies from a set of
task-agnostic play trajectories T . Each individual trajectory τ ∈ T represents a series of triplets
(si,ai, gi)i=1:Nτ , with observation si, action ai, and goal gi. Several subsequent steps i, i + 1
of the trajectory can have the same goal, e.g gi = gi+1. The final play dataset is now defined as
D = {(si, āi, gi)|āi = (ai, . . . ,ai+k−1), (si,ai, gi) ∈ τ, τ ∈ T }, where āi is the action chunk
starting at step i of trajectory τ . The methodology for sampling these goals is outlined in Sec-
tion 4.5, elucidating MDT to handle the label-less multi-task nature of play data. MDT maximizes
the log-likelihood across the play dataset,

Lplay = E

 ∑
(si,āi,gi)∈D

log πθ (āi|si, gi)

 . (1)

Given the diversity in human behavior evident in the demonstrations, with multiple trajectories pos-
sibly converging towards an identical goal state, a successful realization of this objective mandates
a policy adept at encoding such diverse behavior [32].

3.2 Score-based Diffusion Policy

In this section, we introduce our Language-guided Diffusion Policy for Learning Long-Horizon
Manipulation form Play with limited language annotation. MDT leverages the continuous time
diffusion model [33, 26]. Diffusion models are a type of generative models that learn to generate
new data by iteratively adding data to noise via Gaussian perturbations. After training, they generate
new samples via sequential denoising steps starting with random Gaussian noise. This forward and
inverse process can be described as a continuous diffusion process with a stochastic-differential
equation (SDE) [26]. MDT leverages the EDM SDE formulation

da =
(
βtσt − σ̇t

)
σt∇a log pt(āi|si, gi)dt+

√
2βtσtdωt, (2)

commonly used in image generation [33, 34]. The score-function∇āi log pt(āi|si, gi) is parameter-
ized by the continuous diffusion variable t ∈ [0, T ], with constant horizon T > 0. This formulation
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reduces the stochasticity to the Wiener process ωt, which can be interpreted as infinitesimal Gaus-
sian noise that is added to the action sample. The term σt is the noise scheduler that defines the rate
of added Gaussian noise depending on the current time t of the diffusion process. Following best
practices of prior work [33, 6, 34], MDT uses σt = t for the policy. The range of noise perturbations
is set to σt ∈ [0.001, 80] and the action range is rescaled to [−1, 1]. The function βt describes the
replacement of existing through injected new noise [33]. This SDE is notable for having an associ-
ated ordinary differential equation (ODE), termed the Probability Flow (PF) ODE [26], which can
be recovered from the SDE. When action chunks of this ODE are sampled at time t of the diffusion,
they align with the distribution pt(āi|si, gi),

dāi = −σ̇tσt∇āi
log pt(āi|si, gi)dt. (3)

The diffusion model learns the score-model∇āi
log pt(āi|si, gi) via Score matching (SM) [35]

LSM = Eσ,āi,ϵ

[
α(σt)∥Dθ(āi + ϵ, si, gi, σt)− āi∥22

]
, (4)

where Dθ(āi + ϵ, si, gi, σt) is our learned neural network. During training, we randomly sample
noise levels from our noise distribution and predict the denoised action sequence. During inference,
we then substitute our learned score-model into the reverse SDE and iteratively denoise our actions.
By setting βt = 0, we are able to recover the deterministic inverse process that allows for fast sam-
pling in a few denoising steps without injecting additional noise into the forward process [26]. The
modular continuous time diffusion perspective enables the use of any specialized sampler during
inference, e.g., DDIM [36] or different time step discretizations [37, 6]. Detailed training and infer-
ence description can be found in the Section A of the Appendix. For our experiments, we use the
Euler&Ancestral sampler [26] with 10 denoising steps [36] and exponential time steps.

3.3 Model Architecture

MDT uses a multi-modal transformer encoder-decoder architecture to learn the conditional score of
the action sequence. An overview of the architecture is given in Figure 1. We encode the current im-
age observation of the static camera and the wrist-camera with two pre-trained Voltron models [11].
Voltron is a vision-language foundation model, consisting of a vision-transformer with additional
language tokens, trained on masked reconstruction to learn good visiual features. The sampled goal
images or language annotations are encoded with a frozen CLIP model [12]. The current noise level
σt is further embedded using a Sinusoidal Embedding with an additional Multi-Layer Perceptron
(MLP). All inputs are then processed in 4 encoder layers with self-attention to predict a set of latent
embedded tokens. The additional transformer-encoder is key to aligning goal-images with language
ones. The decoder part of the model takes the sequence of noisy action tokens and predicts the
denoised ones with causal masking. The conditioning information is fused into the denoising pre-
diction via cross-attention in every decoder layer with all latent tokens of the encoder. MDT predicts
10 actions in all our experiments.

3.4 Latent Alignment of Goal Tokens

In order to effectively learn from multimodal goal specifications, MDT must align visual goals with
their linguistic counterparts. To this end, MDT employs a pre-trained CLIP model, which has been
trained on paired language and text samples from a substantial internet dataset [12]. However,
as highlighted in various studies [38, 13, 4], CLIP exhibits a tendency toward static images and
struggles to interpret spatial relationships. Furthermore, goal specifications in robotics are inherently
linked to the contextual dynamics between the current state si and the desired goal gi. Due to its
inherent design, CLIP embeds singular images or sentences and cannot deal with dynamic scenes.
To improve the multimodal alignment, while keeping all input models frozen, MDT leverages a
contrastive loss on the transformer encoded latent goal token. Thanks to this shift in focus MDT can
efficiently use CLIP without the need to fine-tune the 149 million weights of the model. Instead, we
solely optimize the relatively small transformer-encoder, which is notably more resource-efficient.
Crucially, our latent goal token zg incorporated additional information from the current context by
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Train→Test Method No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. Len.

D→D

MCIL 48.9% 12.9% 2.6% 0.5% 0.08% 0.64
HULC 82.5% 66.8% 52% 39.34% 27.5% 2.68
Diffuser-2D 37.4% 9.3% 1.3% 0.2% 0.07% 0.48
LAD 88.7% 69.9% 54.5% 42.7% 32.2% 2.88
Distill-D 85.0% 67.5% 54.4% 42.1% 33.3% 2.81
MT-ACT 89.1% 74.8% 61.0% 48.8% 38.7% 3.12
MDT (ours) 91.1% 78.5% 67.0% 56.3% 47.4% 3.40

ABCD→D MCIL 37.3% 2.7% 0.2% 0% 0% 0.40
HULC 88.9% 73.3% 58.7% 47.5% 38.3% 3.06
MDT (ours) 93.0% 84.7% 75.9% 66.7% 58.2% 3.78

Table 1: Performance comparison of various policies learned end-to-end on the CALVIN D envi-
ronment within the CALVIN benchmark. We show the average rollout length to solve 5 instructions
in a row (Avg. Len.) of 1000 chains. MDT outperforms all reported baselines on this task averaged
over 3 seeds.

using attention with the image embeddings of the current state si, offering a context-rich latent goal
embedding. We combine our Score Matching loss from Eq. (4) with the contrastive self-supervised
loss:

LCLIP = − 1

2N

N∑
i=1

(
log

(
exp

(
Vi·Ti

τ

)∑N
k=1 exp

(
Vi·Tk

τ

))+ log

(
exp

(
Ti·Vi

τ

)∑N
k=1 exp

(
Ti·Vk

τ

))) , (5)

where V =
og

∥og∥2
refers to the normalized image goal embedding, T =

lg
∥lg∥2

is the normalized
language goal embedding, τ is a tunable temperature parameter and N the batch size. The full loss
of MDT is defined as

LMDT = LSM + λLCLIP, (6)

where we chose λ = 1 for MDT.

4 Evaluation

In our experiments we try to answer the following questions: (I) Is MDT able to learn long-
horizon language guided manipulation from play data with little language annotation? (II) How
time-effective is MDT training compared to other state-of-the-art methods on CALVIN? (III) Which
key-components of MDT enable the effective language understanding with limited annotations?

4.1 Baselines

We compare our proposed policy against the following state-of-the-art language-conditioned multi-
task policies:

• MCIL: A hierarchical play policy, that learns an abstract latent skill space using a varia-
tional autoencoder (VAE) combined with a low-level action policy [3]

• HULC: Another hierarchical play policy, that uses discrete VAE skill space with an im-
proved low-level action policy and additional allignment losses [4].

• Diffuser-2D Inspired by the Diffuser [28, 27], we use a baseline that plans in a image-based
latent space from Stable Diffusion [39]. We use the results reported in Zhang et al. [29].

• LAD: A hierarchical diffusion policy, that extends the HULC policy by substituting the
high-level planner with a U-Net Diffusion model [29].
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MDT: default no LCLIP Random Key States ResNet Lang-only Vision-only

Avg. Len. 3.40 3.22 3.30 0.48 3.13 2.95 0.21

Table 2: MDT Ablation studies on different goal sampling strategies and language annotations. We
compare the performance all ablations on the CALVIN benchmark to solve 5 free-form language
instructions in a row across 1000 chains. The ”LCLIP” configuration indicates MDT trained without
the inclusion of the latent alignment loss. In the ”Random” setting, random sampling is employed for
goal index selection as opposed to conventional random sampling. The ”Key States” configuration
makes use of key-states as goals, detected using Alg. 3. ”ResNet” denotes MDT with ResNets
trained from scratch instead of pre-trained Voltron. The ”Lang-only” setup denotes an MDT model
trained solely on the 1% of the dataset that contains language labels, while ”Vision-only” represents
MDT trained entirely without any language labels.

• Distill-D A language-guided Diffusion policy from [8], that extends the initial U-Net dif-
fusion policy from [5] with additional Clip Encoder for language-prompts. We use our
continuous time diffusion variant instead of the discrete one for a direct comparison.

• MT-ACT A multitask transformer policy [16, 40], that uses a VAE encoder for action
sequences and also predicts action chunks instead of single actions.

We adopt the recommend hyperparameters for all baselines to guarantee a fair comparison. Further,
we directly report the results for HULC, LAD and Diffuser-2D from their paper [29, 4]. We focus
our comparison of MDT with policies that are predict actions at each timestep. Consequently, we
exclude HULC++ [15], which combines motion planning with a trained HULC policy.

4.2 Simulation Environment

We conduct our experiments on the CALVIN Benchmark [20], that has been designed to assess the
performance of robot manipulation policies that are conditioned on language, particularly for tasks
requiring extended planning and execution horizons. The benchmark consists of four different envi-
ronments A,B,C,D in a similar setting. The four setups vary in desk shades and the layout of items
as visualized in Figure 3. Our main experiments are conducted on the sub-environment D, where
we train and test all policies on D→D. This setting contains 6 hours of uncurated teleoperated play
data with multiple sensor modalities and 34 different tasks. Further, only 1% of data is annotated by
language. All methods are evaluated on the long-horizon benchmark, that consists of 1000 unique
sequences consisting of 5 tasks described natural language. During the rollouts, the agent gets a
reward of 1 for solving a pre-defined task with a maximum of 5 for every rollout. However, the
agents only receives the next task, if the prior one has been successfully completed. We additionally
perform experiments on the full benchmark ABCD→D consisting of 24 hours of play data in all
four environments to investigate the scaling efficiency of MDT. To be successful on the CALVIN
environment, policies require long-term planning, vision-language goal grounding, and expressive
learning of multi-modal behavior.

4.3 Evaluation Results

The results of our experiments are summarized in Table 1. Our proposed MDT policy sets a new
state-of-the-art performance on the CALVIN challenge with an absolute performance increase of
18% over the prior SOTA LAD. Further, the results show that MDT improves upon the U-net based
Distill-D policy, indicating that our proposed architecture is key to success. We also test MDT on
the full CALVIN dataset and test its performance on the split ABCD→D. The results are shown in
Table 1. MDT outperforms the prior state-of-the-art method HULC with an absolute performance
boost of 23.5%, while training over ten time faster. Thus, we can answer Question (I) in the affir-
mative.
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4.4 Average Training and Inference Time
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Figure 2: The average Training time
of MDT compared to the two state-
of-the-art methods on CALVIN on our
SLURM Cluster in hours.

Next, we investigate Question (II) by comparing the
training efficiency of various methods by measuring
the average training time of MDT against LAD and
HULC. We train all methods on a SLURM Cluster
with 4 RTX 3090 GPUs. The average training time
of all tested models of this experiment are summa-
rized in Figure 2. Comparing the training time shows
that MDT outperforms both baselines with consider-
ably less training time, demonstrating the efficiency of
our method.

Diffusion Policies require numerous denoising steps to predict a single action or action chunks.
Thus, they commonly have significantly slower inference compared the other methods. MDT only
requires 10 denoising steps every 10 rollout steps to create an action chunk. On average MDT
requires the same number of forward passes compared to other methods such as HULC, that predict
a single action every time-step.

4.5 Ablation Studies

We further analyse the importance of various design choices for our proposed framework to learn
effectively with limited language annotation to answer question (III).

Goal-State Sampling Strategies. During training we need to chose a random future state for learn-
ing goal-conditioned behavior in a self-supervised manner. This is required, since the play data
contains trajectories of flexible length, where the start and end-states of individual tasks are un-
known. Hence, we require a specific strategy to sample goal-images during training. We asses three
sampling strategies: geometric distribution with p = 0.1, random sampling in goal-window range,
and key-states based sampling inspired by an algorithm commonly used in RLBench [41] and sum-
marized in Alg. 3 in the Appendix. We train MDT with all these sampling strategies to determine the
best one and report the results in Table 2. The key-state strategy performs by far the worst and low-
ers the performance, while the geometric strategy and the random sampling perform similarly. We
hypothesise that the human play demonstrations make it harder to detect key states. The CALVIN
dataset was collected by various humans that can act and control the arm differently, while the RL-
Bench data consists of non-human demonstrations. The results demonstrate the importance of the
goal-sampling strategy for MDT to succeed on CALVIN. On average, the geometric strategy works
best and random sampling being second. Thus, we adopt the geometric sampling strategy as our
default method for MDT.

Multimodal Token Alignment. Next, we evaluate the significance of our latent token alignment
technique. We train MDT without the additional contrastive loss and compare the performance on
CALVIN. The findings, detailed in Table 2, reveal that in the absence of latent alignment, MDT’s
average rollout length reduces to 3.22. Introducing the contrastive loss not only enhances over-
all performance but also empowers MDT to more effectively utilize play data devoid of language
annotations.

The Importance of Goal-Image Data. Further, we test if having additional training data without
the language-annotations helps the model to improve its performance and generalization. We train
MDT with only the 1% language-annotated data of the CALVIN benchmark and compare the results
against the performance reported in Table 1. The results of the language-only model are summarized
in Table 2. Without the additional data, the performance of MDT drops from 3.40 to 2.95. The
performance decrease compared to the model trained on image-data demonstrates that the additional
data helps the model to generalize better.

The Impact of Language Annotations. We examined how including a small amount of language
annotations—just 1% of the dataset—affected the performance of MDT on the CALVIN Bench-
mark. Therefore, we train MDT with language labels and without on the CALVIN Benchmark and
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report the respective performance on the Long Horizon Benchmark. Without the 1% language an-
notation, the model performance drops from 3.4 to 0.2. This highlights the crucial role even a small
number of language labels can play in improving model performance and points to the limited ability
of the pretrained CLIP model to generalize, a finding supported by previous research [38, 42].

Pre-trained Visual Embeddings vs End-to-End Visual Embeddings Finally, we examine the per-
formance of MDT combined with visual embeddings trained from scratch. Therefore, we train MDT
with the standard ResNet-18 used in Diffusion Policy [5]. The peformance of this variant achieves
3.13 underlining the effectiveness of Voltron Embeddings. Intriguingly, MDT is the only model,
that benefits from pre-trained Voltron Embeddings. We also evaluated Distill-D and MT-ACT with
Voltron, but noticed significant performance drops compared to standard ResNet-18 in both model
variants.

5 Conclusion

In this work we present MDT, a novel language-guided continuous-time diffusion policy, that learns
long-horizon manipulation form play with as little as 1% language labels. We show that our ap-
proach outperforms current state-of-the-art methods on the challenging CALVIN Benchmark, while
training 10 times faster. For future work, we will explore fine-tuned CLIP embeddings, as they have
shown to improve performance [42, 13] and efficient methods for fine-tuning MDT after training
[43] to further increase its performance. MDT presents a promising foundation for further investiga-
tions into Diffusion Policies tailored for long-horizon manipulation with sparse language annotation.
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A Score Model Training and Inference

The training process of MDT is summarized in Alg. 1 and the reverse diffusion process used for
generating action chunks during the sequence is summarized in Alg. 2. Further, an overview for the
used hyperparameters is given in Table 3. To increase the performance, we deploy the precondition-
ing of Karras et al. [33]. This includes additional skip-connections and two pre-conditioning layers,
which are conditioned on the current noise level σt for effective balancing of the high range of noise
levels from 0.001 to 80

Dθ(āi|si, gi, σt) = cskip(σt)āi + cout(σt)Fθ(cin(σt)āi, si, gi, cnoise(σt)). (7)

The utilized reconditioning functions are defined as:

• cskip = σ2
data/(σ

2
data + σ2

t )

• cout = σtσdata/
√

σ2
data + σ2

t

• cin = 1/
√
σ2

data + σ2
t

• cnoise = 0.25 ln(σt)

They allow the model to decide, if it wants to predict the current noise, the denoised action sequence
or something inbetweeen, depending on the current noise level [33].

Algorithm 1 MDT Training

1: Require: Play Dataset Lplay
2: Require: Score Model

Dθ(āi, si, gi, σt)
3: Require: Noise Distribution:

LogLogistic(α, β)
4: for i ∈ {0, ..., Ntrain steps} do
5: Sample (o, gi) ∼ Lplay
6: Sample σt ∼ LogLogistic(α, β)
7: Sample ϵ ∼ N (0, σt)
8: LDθ

← Eσ,āi,ϵ

[
α(σt)

∥Dθ(āi + ϵ, si, gi, σt)− āi∥22
]

9: end for

Algorithm 2 MDT Action Generation using
Deterministic 1st Order Euler Sampler [33]

1: Require: Current state si, goal gi
2: Require: Score Model:

Dθ(a, si, gi, σ)
3: Require: Noise scheduler σt = σ(ti)
4: Require: Discrete time steps ti∈{0,..,N}
5: Draw sample a1:k,0 ∼ N (0, σ2

0I)
6: for i ∈ {0, ..., N − 1} do
7: di ←

(
a1:k,i −Dθ(ai, si,g, σi)

)
/σi

8: a1:k,i+1 ← a1:k,i + (ti+1 − ti)di

9: end for
10: return a1:k,N

Figure 3: Different CALVIN benchmark environments, each with unique positions and textures for
slider, drawer, LED, and lightbulb.
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Algorithm 3 Key-Point Detection Algorithm adapted from RLBench [41]
1: function KEYPOINT DISCOVERY(actions, stopping delta)
2: max keypoints← length of actions ▷ or some other upper bound
3: keypoints← empty array of size max keypoints with data type int
4: k ← 0 ▷ Counter for actual number of keypoints
5: prev gripper open← actions[0,−1]
6: stopped buffer ← 0
7: for i = 0→ length of actions− 1 do
8: stopped← IS STOPPED(actions, i, stopped buffer, stopping delta)
9: if stopped then

10: stopped buffer ← 4
11: else
12: stopped buffer ← stopped buffer − 1
13: end if
14: if i ̸= 0 and (actions[i,−1] ̸= prev gripper open or stopped) then
15: keypoints[k]← i
16: k ← k + 1
17: end if
18: prev gripper open← actions[i,−1]
19: end for
20: return keypoints[: k] ▷ Slice to the actual size
21: end function

MDT
Hyperparameter D→D ABCD→D
Number of Encoder Layers 4 4
Number of Decoder Layers 6 7
Attention Heads 4 12
Action Chunk Size 10 10
Goal Window Sampling Size 49 49
Hidden Dimension 768 768
Attention Dropout 0.3 0.3
Residual Dropout 0.1 0.1
MLP Dropout 0.05 0.05
Input Dropout 0.0 0.0
Optimizer AdamW AdamW
Betas [0.9, 0.9] [0.9, 0.9]
Transformer Weight Decay 1e-3 1e-3
Other weight decay 1e-6 1e-6
Batch Size per GPU 128 128
Train Epochs 15 20
Trainable Parameters 86.2 million 98.0 million
σmax 80 80
σmin 0.001 0.001
σt 0.5 0.5
Time steps Exponential Exponential
Sampler DDIM DDIM

Table 3: Summary of all the Hyperparameters for the MDT policy used in the CALVIN experiments
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