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1 Abstract

2 Script event prediction aims to predict
3 subsequent events given contextual events,
4 which requires inferring correlations
5 between contexts and candidate events.
6 Current research focuses on improving
7 script event prediction using external
8 knowledge and pre-trained language
9 models, but faces the problems of sparse

event-level correlation knowledge and
separation of word-level correlation
knowledge. In this paper, we propose a
novel model CoGen-Predictor based on
hybrid generative and commonsense
knowledge that combines explicit event-
level and implicit word-level correlation
knowledge for prediction. CoGen-Predictor
constructs event-level correlations through
a commonsense knowledge base and
updates the event representations using
graph neural networks, then learns word-
level contextual event correlations through
a generative approach. Experimental results
on the multi-choice narrative cloze (MCNC)
task demonstrate the effectiveness of the
model.
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»» 1 Introduction

2s Scripts (Schank & Abelson, 2013) refer to a type of
structured knowledge that consists of a structured
o sequence of events. Figure 1 shows a restaurant
1 dining script that involves a sequence of events that
> occur when a customer enters the restaurant. The
s script event prediction task (Granroth-Wilding &
. Clark, 2016) aims to select the correct subsequent
s events from the candidate events. Studying this
s task can gain event knowledge from the event
7 chain and benefit many downstream tasks such as
s story generation (Chaturvedi et al., 2017), dialogue
30 generation (Danescu-Niculescu-Mizil & Lee,
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Context event
GE]] customer felt hungry \

[E2] customer entered restaurant
[E3] customer found a seat

[E4] customer read the menu
[E5] customer talked to the wait
[E6] customer ordered some food
[E7] customer ate food

[E8] customer was full

K Which is the next ? /

Candidate event

customer was still hungry
customer sat down
customer paid the bill
customer woke up
customer left home

mOOw»

Figure 1: A simplified example of script event
prediction.

2011), and is also useful for studying reasoning in
Large Language Models (LLMs).

Understanding events and inferring correlations
between events is essential for acquiring
knowledge of events and reasoning about
subsequent events. In Figure 1, it is necessary to
understand the contextual events and use the
common knowledge that "need to pay for the meal”
to infer that "customer paid the bill". Therefore,
knowledge of explicit correlations between events
and implicit correlations between words is essential:
explicit correlations represent correlations between
different contextual events, and implicit
correlations represent correlations between words
in the chain of events.

Recent work incorporates external knowledge to
enhance models to understand event relevance, and
while these approaches have yielded promising
results, however, some challenges remain. First,
current work suffers from sparsity when



incorporating external knowledge. Specifically,
relationship construction mainly relies on find-and-
s> match, and such approaches often suffer from the
problem that event knowledge cannot be fully
adapted to the knowledge in the event knowledge
es base when injecting external knowledge bases, and
ss the commonly used ASER (Zhang et al., 2020)
7 knowledge base is actually a knowledge base of
probabilistic event relationships, but in real
reasoning it requires common sense knowledge
that includes both discourse and correlation
relations including a commonsense knowledge
base. Secondly, current work modelling relevance
uses a single approach of pre-trained language
72 models, ignoring the complementarity of
representation learning and generative paradigms
in modelling relevance.

In order to better modelling the correlation
s between events and to introduce correlation
70 knowledge into script event prediction tasks, this
paper proposes CoGen-Predictor (Commonsense
and Generative Predictor), a novel prediction
2 model based on hybrid generative and
commonsense knowledge. At the event-level
explicit correlation knowledge level, CoGen-
Predictor consists of a relation builder component
and a representation learning component, which
introduces explicit correlations by constructing
event relations and updates event representations.
a0 At the word-level implicit correlation knowledge
level, a pre-trained generative language model is
used for fine-tuning and modelling implicit
correlation between words. It simultaneously
o3 utilises event-level representation learning and
oo word-level generative paradigm's correlation
o5 knowledge for subsequent event judgments. The
9 main contributions of this paper are as follows:
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e We introduce a commonsense knowledge
base and train an event-relationship builder
to model explicit correlations between
events to solve the problem of sparse event-
level relationships.

97
98
99

100

We propose CoGen-Predictor, a novel model
based on  hybrid generative and
commonsense knowledge, for scripted event
prediction using event-level explicit
correlation  knowledge from  builder
modelling and textual implicit correlation
knowledge from generative modelling.
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e The experimental results of multi-choice
narrative cloze (MCNC) show that the
method in this paper can effectively utilise
the two types of correlation knowledge and
reduce the dependence on the original text to

114 obtain state-of-the-art results.

us 2 Related Work

116 Script event prediction was first proposed by
117 Chambers and Jurafsky (2008), who defined an
1s event as a verb and its dependency and proposed
119 the basic structure of a narrative event chain and a
120 narrative completion task. Subsequently, Granroth-
121 Wilding and Clark (2016) extended the event
122 definition to the verb and three theses (subject;
123 objecti; indirect object) , and proposed the
124 currently widely used multi-choice narrative cloze
125 (MCNC) task: selecting subsequent events from
126 candidate events based on contextual narrative
127 event chains.

Earlier work (Granroth-Wilding & Clark, 2016)
120 obtained event representations via Word2Vec, and
120 then aggregated pointwise mutual information
131 (PMI) between contextual script events and
132 candidate events to infer the probability that a
133 candidate event is a subsequent event of the script.
134 Earlier studies ignored the narrative order of
135 scripted events, and subsequent works (Lv et al.,
136 2019; Wang et al., 2017) introduced LSTM to
137 integrate temporal information between events.

ss  Many works have been conducted to model the
120 relationship between events, including the use of
110 graph structure (Zhongyang et al., 2018) and
11 external knowledge (Ding et al., 2019) to improve
142 event representations. Recent studies include Gao
143 et al. (2022) who proposed a method for learning
144 event representations with both weakly supervised
15 contrast learning and clustering. Du et al. (2022)
116 introduced a pre-trained model, BERT (Devlin et
w17 al., 2018), and replaced the model middle layer
1us With a graph neural network to embed the
19 eventgraph information. Lee, Pacheco, and
150 Goldwasser (2020) mined discourse relations from
151 the original text by template matching, Bai et al.
12 (2021) enriched event representations using the
153 original text, Lv et al. (2020); Zhou et al. (2021)
152 introduces event knowledge graph ASER (Zhang et
iss al.,, 2020) to augment the pre-trained model
155 ROBERTa (Liu et al., 2019); and Wang et al. (2023)
157 uses R-GCN to learn the correlation information
155 between events.
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Recent researchers (Zhou, Geng, et al., 2022;
10 Zhou, Shen, et al., 2022) perform event-centred
161 pre-training on an external corpus and employ an
event-level masking strategy (Zhu et al., 2023) to
fine-tune the generative model to generate
164 predicted subsequent events.

The above methods can be divided into two
166 Main categories: inter-event relationship modelling
and candidate event generation. Inter-event
relationship modelling faces the problem of sparse
relationship construction, and candidate event
generation faces the problem of using pre-trained
171 models in a single way. The CoGen-Predictor
172 proposed in this paper overcomes these challenges
173 by effectively introducing a wide range of
discourse and event relations through an event
relation builder, avoiding the sparsity problem that
arises in relation modelling, combining event-level
explicit correlation knowledge and word-level
implicit correlation knowledge from generative
179 modelling, and performs well in the task of scripted
event prediction.
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3 Preparations

181

122 Problem Statement. As shown in Figure 1, script
event prediction is defined as predicting the most
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185 given a script X = {x, x5, ..., X, } and a candidate
event Y ={y;,5, ...} , where x; and y;
represent the events, this task aims at selecting the
correct subsequent event y, from Y. Each event
e = (e, e €,,€;) consists of a predicate e, and
100 three arguments (subject e, object e, and indirect
object e; ). The model needs to compute the
192 Televance score P(y]-|x) for each candidate event
13 y;(j € 1,...,m) given a script X, and then take the
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1.2 most likely event as the subsequent event.
Commonsense Knowledge Graph. CKGs are
large-scale knowledge bases that store knowledge
in a graph structure, focusing on the association of
105 things or objects. in this paper, we introduce the
190 DISCOS (Fang et al, 2021) commonsense
200 knowledge base, which converts discourse
knowledge about events from the large-scale
discourse knowledge graph ASER (Zhang et al.,
2020) to ATOMIC (Sap et al., 2019) to if-then
commonsense knowledge defined in ATOMIC
(Sap et al.,, 2019), which provides 3.4 million
inference commonsense knowledge and event
207 knowledge, providing more effective support for
constructing event relations in SEP.
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Figure 2: The training process of the event
relationship builder.

20 4 The CoGen-Predictor Model

210 In this section, the CoGen-Predictor model of this
211 paper is described. As shown in Fig. 2, it has four
212 main components: (1) event relationship builder, (2)
213 event-level explicit correlation representation
212 modelling, (3) word-level implicit correlation
215 generative modelling and (4) fusion prediction
216 SCOTING.

217 4.1 Event Relationship Builder

215 For the nodes in the DISCOS commonsense
210 knowledge base G, all its nodes are encoded using

likely subsequent event for a given script. Formally, 220 the pre-trained language representation model

»1 BERT. For nodes v = [wy,ws,...,w,] with n-
22> length tokens, a [CLS] token is added at the
223 beginning of each sentence as wy, and a [SEP]
224 token is added at its end as w,,,,. Represent the
225 output of the input BERT as [ewo,ewl,---, ewn+1],
226 @y, € R%, where d is the embedding dimension of
227 the BERT. For the tuple (u,v) € GF for making a
228 relational judgement, the semantic representation
229 [ey, e,] is obtained using the BERT layer, and the
20 final correlation score is obtained using the
231 Softmax layer:

fru,v) = Softmax([eu, e,,]W’T + b), (1D
Here W' € R?*4_ b € R?, and after obtaining
221 the predicted value of f,.(u, v), the correlation is
235 judged to be constructed or not according to the
236 Score, where p = argmax(fr (u, v)).

Each node in DISCOS is an event, and in order
233 t0 better match the commonsense knowledge in
23 DISCOS, contextual events in the Script Event
240 Prediction (SEP) task is first formalised into a
221 matching form.
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Figure 3: Structure of the CoGen-Predictor model.

22 Given the head and tail events e and e?, each
event consists of four elements e = (e, e, €,, €;),
so adjust the order of discourse to represent the
event as "ege,e,e; " to make it match the
commonsense knowledge format. The natural
language text w® for each event e is linked with
special tags:
we = ([CLS],w®, [SEP]),Ve € {e",et}, (2)
The textual representations we" and we" of the
head and tail events e” and e’ are then imported
into the Event Relationship Builder to obtain the
253 result of the relationship construction R.
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4.2

254

Event-level representation modelling

Based on the relationship R, CoGen-Predictor uses
BART for semantic representation and
incorporates GAT to fuse event-level explicit
correlation knowledge for modelling event and
event chain information.
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4.2.1 Event Representation

260

261 Using the pre-trained model BART (Lewis et al.,
2020) as the underlying semantic representation
model, for the input context events X = {xy,, x,}
and candidate events Y = {y;,,y,} , each
consisting of e = (e, e5,€,,€;),e € X,Y, denote
the events as "eg e, e, e;" to adjust the semantic
order to input BART, the context event sequence S
is denoted as < s > x; < SEP > x, < SEP ><
200 SEP > x, </s >, and each candidate event is
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270 denoted as < s >y, </s >, with the candidate
271 events being placed into the list C. The sequence of
contextual events S and the list of candidate events
273 C,are input into the BART model for text encoding:
P,,P. = BART(S, (), 3)
25 P, P, € R% and d is the embedding dimension
276 of BART.

272

274

4.2.2 Related Information Update

277

2 Based on the relation R , CoGen-Predictor
270 introduces the graph attention neural network
220 (GAT) for node updating of context event nodes.
2s1 The first step is to partition the events in the context

22 event  sequence into  independent  event
283 TEpresentations:
284 {x1, x5, x,} = segmentation(P,), (4)

Linear transformation is performed on each
285 input node feature to obtain the mapped feature and
the attention coefficient e;; is calculated for each
2ss pair of neighbouring nodes i and j:
h' i = W - Xi, (5)
eij = LeakyReLU(aT[W - x;||W -x;])  (6)
where W is the weight matrix, || denotes the
connection operation, « is the weight vector, and
203 LeakyReLU is the activation function.
The steps for event node update using GAT
205 (Velickovic et al., 2017) are as follows:
Attention coefficients of all neighbours of node
i are normalised using softmax function:
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116 used here as a score calculation for candidate

s In the event-centred pre-training phase, the script

exp(e; j) sa1 into an event sequence S = {xq, x5, X, y; }. Mask
= Zrene) expleg)’ (7) ... K events in S, where K € (1,2,3), and the masked
where N(i) denotes the set of i's neighbours, *° €vents are denoted as the event sequence E. Denote

Weighted summation of neighbouring node ** the contextual event sequence S as < s > x1.x;. <

features using normalised attention coefficients to ¢ MASK >.+-. < MASK >.--.y; </s >, where the
update node features: a6 masking event is replaced with the token <

a7 MASK >, and the event sequence E is represented
(8) in a similar way. Using the generative model BART
a0 as the backbone, the conditional probability
sso distribution P(E|S) is formulated as follows:

no__ .
hi =0 Z ai]-W Xj )
JEN()
where ¢ is a nonlinear activation function (e.g.,

N

ReLU). Here the contextual event node 1 . n L1

information is updated by GAT: = P(EIS) _N_EzzlogPLM (E"]S, B, (13)
n=

1 " n

B a2} = GAT (B, 20, 2 d), - (9) s> where Ng is the token number of the event
4.2.3 Candidate Event Scoring ss2 sequence E in natural language format, E™ is the
=54 nth token, and EY¥™~1 is the first to n-1th token of
355 E.
s In the event pre-training phase, the CoGen-
ss7 Predictor generative paradigm part is trained to
35z maximise P(E|S).

In order to apply both event information and event
chain information, we include the obtained event
chain text representation P, when constructing the
context node representation, so the final context
representation is:

H={x"q,x"3x" . }|Ps, (10) = 4.3.2 Contrast fine-tuning

The widel d tive Euclidean dist i . .
© widely used negative Buctidean diStnce IS "oy o odified sequence is represented as X, by

ss1 first adding a marker [MASK] at the end of the

se2 script X. X,,, and each event candidate X,,, are then

Si =~ ||hi — | **2, (11) ... converted to a natural language format using the

Here h; comes from H after updating the node . average of the log probabilities of the descriptive

and h; comes from P, which has been encoded by s markers for each event as the score o; for the event

BART. 366 Y.
Different contextual events and event chains

events:

Nyi

; contribute differently to predicting the correct o7 0; = Niz logPy M Xm, vi¥™ D),  (14)

candidate event, we use scaled dot product Yin=
attention (Vaswani et al., 2017) to aggregate the ss ~ where N, is the length of event y;. Then, the
distance scores of different nodes: as0 Softmax function is used to calculate the final score
s a0 s; for each candidate event y;:
f= Za's': (12) exp(o;
L io0 - s; = #’ (15)
£=0 : : Dk=1xp(0r)
After the above representation modelling the . .
. . s> Finally, define the loss function as follows:
score of each candidate event relative to the event o
. . Lcot - —log(st) +
» node and event chain is obtained. M
373 1 Sl SI'
4.3  Word-level generative modelling M — 12 (1 — St) log (1 — St)' (16)
i=1

it
s72 where t is the subscript of the right event
a5 candidate y, and M is the number of event
+76 candidates.

Referring to the approach of Zhu et al. (Zhu et al.,
2023), CoGen-Predictor employs a generative
model to model the knowledge of implicit
correlations between textual words, which is
divided into two main phases: event pre-training .., 44  |ntegration predictions

and comparison fine-tuning. _ )
P 8 s7s Both event-level explicit correlation knowledge

4.3.1 Event pre-training s7o and word-level implicit correlation knowledge are
ss0 used for subsequent event judgements. To integrate

. 381 the knowl from the t t -
and the correct candidate event y, are concatenated ¢ the knowledge from the two components, CoGen
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Public Dataset Number
Train set 140,331
Dev set 10,000
Test set 10,000

Table 1: Dataset.

Predictor uses a gating module that sums the
elements weighted by association confidence. The
previous explicit knowledge scoring result f; and
the implicit knowledge scoring result s; are
obtained, where i € (0,m — 1):
Fi=si+p-fi (17)
For the obtained final score F;, we selects the
most likely event with the highest score as the
predicted subsequent event y, , where p =

argmax(F;).

5 Experiments

; In this section, CoGen-Predictor is compared to

some baselines to validate its effectiveness. In
addition, an ablation study is performed to

105 understand the impact of key components of the

model on performance. Finally, a case study is
performed to demonstrate how the model in this

o paper predicts subsequent events.

5.1 Dataset

In the task of script event prediction, most of the
existing work selects the public dataset published
by Li, Ding, and Liu (2018). Therefore, this public
dataset is also used in this paper. We follows the
common practice of dataset segmentation used for
training, validation and testing in Table 1. For the
public dataset, each instance has five candidate
events, of which only one choice is correct.

5.2 Experimental setup

The CoGen-Predictor model proposed in this paper

includes both explicit correlation knowledge and
implicit correlation knowledge construction. To
compare with the baseline, experiments are
conducted on BART,qs. and BART, 44, . The

s models were optimised by Adam (Kingma & Ba,

2015). The learning rate and weight decay are 1e-5
and le-6, respectively. the model in this paper uses
an early stopping strategy to select the best epoch,
and the patience is set to 5. For BARTy4s., the
Batch Size is set to 32, and for BART 4rg4c, the
Batch Size is set to 24. all the experiments are
carried out on the RTX 4090D. The GPU training
time for event relationship builder module, event-
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Method Acc.(%)
Random 20.00
Event-Comp 49.57
Pair-LSTM 50.83
SGNN 52.45
SAM-Net 55.60
GraphBERT 60.72
SGNN + Int&Senti 56.03
RoBERTay, s + Rep. Fusion 58.66
RoBERTay,se + Know.Model 59.99
BART}qse + Contrastive Approcah 62.22
CoGen-Predictor (BART},5e) 63.54

Table 2: Base model comparison experiment.

Method Acc.(%)
BART large + Contrastive 63.40
EventBERT 63.50
RoBERTajsge + Know.Model 64.62
ClarET 64.61
MCPredictor-s 59.24
MCPredictor 67.14
CoGen-Predictor (BART grge) 65.01

Table 3: Large model comparison experiment.

level explicit association representation modelling
and text-level implicit association generative
modelling are about 8, 10 and 6.5. We select the
model with the best results on the validation set and

; report the results on the test set, using accuracy as
s the evaluation metric.

5.3

For the preliminaries, they can be divided into three
categories. Event representation method: 1)Event-
Comp (Granroth-Wilding & Clark, 2016) uses
training objectives such as Word2 Vec to learn event
embeddings and compute pairwise similarities
between scripted events and candidate events.
2)Pair-LSTM (Wang et al., 2017) uses LSTM to
model the narrative order of script events. 3)SAM-
Net (Lv et al., 2019) uses LSTM and self-attention
mechanisms to capture different event fragments.
4)MCPredictor (Bai et al., 2021) obtains event
representations from pre-trained Word2Vec and
augments them with raw sentence representations
obtained from pre-trained BERT, and uses multiple
similar event chains to aggregate script-level
information. 5)MCPredictor-s is an ablation of
MCPredictor that removes additional raw sentence
information.

Baselines



a0 Structured information enhancement:
20 )ROBERTa + Rep. Fusion (Lv et al., 2020)
51 integrates  external knowledge from episodic
252 knowledge graphs, ASER (Zhang et al., 2020), and
sz predicts  using RoBERTa. 2)RoBERTa +
252 Know.Model (Zhou et al., 2021) learns knowledge
255 models from ASER to predict event relationships.
156 3)SGNN (Zhongyang et al., 2018) constructs
457 narrative event evolution graphs through verb co-
occurrence frequencies for more effective event
representation.
incorporates

=

458
459

external intent and affective

460

61 knowledge from ATOMIC (Sap et al., 2019) into

a2 event representations. 5)GraphBERT (Du et al.,
a63 2022) constructs an event graph similar to SGNN
and enhances BERT with the event graph.

Event-centred pre-training:

464
465
466
a8 supervised comparative learning  objectives:

469

47

o

472 BART on BOOKCORPUS with three additional

473
474 comparative event-related coding, and cue-based
event localisation. 3)BART + Contrastive
276 Approcah (Zhu et al., 2023) uses both an event-
centred pre-training phase and a task-specific

contrastive fine-tuning phase for training.

475

477

47

®©

5.4 Results and analyses

In this paper, the BARTqse and BART,4rge
21 models are used as the backbone for training and
testing in Tables 2 and 3, respectively, in order to

479

480

482
483
230 models remain relatively consistent, and the
following observations are made from the results
of the two models:

48

@

486

e CoGen-Predictor shows a 3.55% and 1.32%
improvement over the best baseline
RoBERTa + Know.Model for combining
external knowledge and the best baseline
BART + Contrastive Approcah for
generative modelling of event relationships,
respectively. CoGen-Predictor combines the
GAT model's modelling of external
commonsense correlational information for
GAT model modelling and word-level
correlational information for generative
paradigm modelling, using external
correlational knowledge in combination with

487

488
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490

491

492

493

494

495

496

497

498

499

4)SGNN + Int & Senti:

1)EventBERT
(Zhou, Geng, et al., 2022) pre-trains RoBERTa in
267 BOOKCORPUS (Zhu et al., 2015) with three self-

self-supervised goals: overall event recovery, .

ensure that the parameters of the comparison °

Method Acc.(%)
CoGen-Predictor 63.54
w/o GAT & Know 62.61
w/o Representing learning 62.20
w/o Generation method 59.36

Table 4: ablation experiment.

knowledge of correlations within the event
chain to enhance the ability to model
correlational relationships between events.

The accuracy performance of CoGen-
Predictor outperforms strong baselines after
performing extensive event-centred pre-
training, such as ClarET (Zhou, Shen, et al.,
2022) and EventBERT (Zhou et al., 2021).
Moreover, CoGen-Predictor is more
advantageous in terms of training time and
complexity compared to the previous two
methods.

correlation-based event ranking, contradictory
event labelling, and discourse relation ranking. .
a71 2)ClarET (Zhou, Shen, et al., 2022) pre-trains ,

CoGen-Predictor performs better in terms of
accuracy relative to MCPredictor-s without
using the original sentence text, and slightly
inferior to MCPredictor. For MCPredictor
extracting the original sentence of the event
is crucial in the training process, and the

518 accuracy of SCPredictor-s relative to
519 MCPredictor with a 7.9% decrease in
520 accuracy after removing the original

text.CoGen-Predictor improves the model's
effectiveness on the SEP task without using

523 the original content through a more
524 generalised DISCOS commonsense
525 knowledge base with more generalisation
526 capabilities.

s27 5.5 Ablation experiment

s2s Table 4 shows the results of the ablation
s20 experiments for the CoGen-Predictor model.
s20 Firstly, the effect of external knowledge base and
ss1 GAT node updates is verified (row 1), and it is
s3> found that the performance decreases by 0.93%
s33 when the external correlation knowledge of GAT is
s2a missing. This is because the external commonsense
s35 correlation knowledge and GAT node updates
sss provide explicit correlation knowledge that is not
s37 available in the event representation. Secondly,
sss removing  the event-level explicit association
s20 modelling component (line 2) resulted in a 1.34%
ss0 decrease in performance because the lack of the
sa1 event representation learning module made the



P Acc.(%)
0.9 62.41
0.8 62.65
0.7 63.02
0.6 63.42
0.5 63.51
04 63.54
0.3 63.36
0.2 63.06
0.1 62.94

Table 5: Parametric studies.

event similarity understanding insufficient. Finally,
the removal of the word-level implicit correlation

generation modelling component (line 3) proves to °
be crucial for the SEP task as it comprehensively °

models inter-word implicit correlation.

5.6 Parametric studies

The aim of this section is to investigate how the

parameter p of the fusion prediction layer affects

the predictive performance of the model. The -

parameter p represents the fusion ratio between
event-level explicit correlation information and
word-level implicit correlation information. The
prediction results under different parameters are
shown in Table 5. From the results, it can be found
that text-level implicit associative generative
modelling contributes more in the final score
compared to external commonsense correlation
knowledge modelling. This may be due to the fact
that word-level implicit correlations are more
suitable for the SEP task compared to those
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564

565

566

567

568

569

s demonstrating

generated based on the external commonsense
knowledge base of correlations, but the external
commonsense correlation knowledge injected in
the model in this paper is also essential.

5.7

The case study demonstrates the properties of
CoGen-Predictor and its predictive ability. The G-
Score, I-Score, and F-Score in Table 6 represent the
scores for generative models, external knowledge
representation learning, and gated aggregation,

Case Studies

> respectively. In Case 1, the correct option "simpson
s73 attack deaths" does not have the highest score in the

G-Score because the generative model can only
handle word-level associations and lacks external
knowledge support. In Case 2, the correct option
"johnson share Monday gold" does not score well
in the I-Score because the external knowledge
alone does not allow for effective differentiation of
textually relevant options. Combining event-level
explicit and word-level implicit associations, F-
Score correctly identifies subsequent events,
the effectiveness of CoGen-
Predictor.

6 Conclusion

In this paper, we propose a novel hybrid generative
and commonsense knowledge model, CoGen-
Predictor, for script event prediction, which

s combines event-level explicit knowledge and

word-level implicit knowledge and outperforms
other state-of-the-art baseline models in the MCNC
task. Future research will aim to incorporate

s external knowledge to better exploit the potential

of generative models.

Events Case 1 G-Score I-Score F-Score Contextual event

simpson come up rule 0.092 0.0267 0.1009 'friends know simpson', 'simpson
simpson invent defens 0.3479 0.1656 0.4142 P;;;Tjn kf;imf(;ill;;y', ::25:22 wrriet'e;
simpson circulate 0.3240 0.0987 0.3634 press', 'simpson use room', 'convict
simpson attack deaths 0.1886 0.6448 0.4465 simpson', 'law apply simpson’
simpson pitch 0.0494 0.0642 0.0751

Events Case 2 G-Score I-Score F-Score Contextual event

accord johnson '0.1194 0.0098 0.1233 'johnson finish end', 'johnson break
oo [000 oo {00 |t e e
johnson share monday gold 0.4826 0.2672 0.5895 lament', 'johnson contract food',
johnson be weak 0.3500 0.4908 0.5464 g(;}ll;son advance', 'johnson claim
johnson recruit 0.0171 0.1379 0.0722

Table 6: Case Studies.
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Limitations
Although our proposed method performs well on v

publicly available SEP datasets, it still suffers from
several major limitations. Firstly, our method has
requirements on the version format of the input
data, which needs to have the verbs and their
dependencies, and there may be a decrease in
accuracy for problems with missing some
parameters. Second, the dataset used in this paper
is the standard dataset proposed in 2018, which ®°
may have poor portability due to the fact that only s/
one dataset was used for the experiments. Third, ess
our model uses BART as the backbone and may ©5¢
suffer from insufficient ability to generalise when °*°
dealing with specific linguistic contexts, which *
requires more cross-linguistic validation and EEZ
adaptation tests. In addition, our experimental
setup assumes the stability of data distribution, bu
changes in data distribution in real applications
may affect the performance of the model. Finally, :Zj
although our method performs well on the script
event prediction task, its effectiveness in handling
unstructured data needs to be further explored and
improved.
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