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Abstract 1 

Script event prediction aims to predict 2 

subsequent events given contextual events, 3 

which requires inferring correlations 4 

between contexts and candidate events. 5 

Current research focuses on improving 6 

script event prediction using external 7 

knowledge and pre-trained language 8 

models, but faces the problems of sparse 9 

event-level correlation knowledge and 10 

separation of word-level correlation 11 

knowledge. In this paper, we propose a 12 

novel model CoGen-Predictor based on 13 

hybrid generative and commonsense 14 

knowledge that combines explicit event-15 

level and implicit word-level correlation 16 

knowledge for prediction. CoGen-Predictor 17 

constructs event-level correlations through 18 

a commonsense knowledge base and 19 

updates the event representations using 20 

graph neural networks, then learns word-21 

level contextual event correlations through 22 

a generative approach. Experimental results 23 

on the multi-choice narrative cloze (MCNC) 24 

task demonstrate the effectiveness of the 25 

model. 26 

1 Introduction 27 

Scripts (Schank & Abelson, 2013) refer to a type of 28 

structured knowledge that consists of a structured 29 

sequence of events. Figure 1 shows a restaurant 30 

dining script that involves a sequence of events that 31 

occur when a customer enters the restaurant. The 32 

script event prediction task (Granroth-Wilding & 33 

Clark, 2016) aims to select the correct subsequent 34 

events from the candidate events. Studying this 35 

task can gain event knowledge from the event 36 

chain and benefit many downstream tasks such as 37 

story generation (Chaturvedi et al., 2017), dialogue 38 

generation (Danescu-Niculescu-Mizil & Lee, 39 

2011), and is also useful for studying reasoning in 40 

Large Language Models (LLMs). 41 

Understanding events and inferring correlations 42 

between events is essential for acquiring 43 

knowledge of events and reasoning about 44 

subsequent events. In Figure 1, it is necessary to 45 

understand the contextual events and use the 46 

common knowledge that "need to pay for the meal" 47 

to infer that "customer paid the bill". Therefore, 48 

knowledge of explicit correlations between events 49 

and implicit correlations between words is essential: 50 

explicit correlations represent correlations between 51 

different contextual events, and implicit 52 

correlations represent correlations between words 53 

in the chain of events. 54 

Recent work incorporates external knowledge to 55 

enhance models to understand event relevance, and 56 

while these approaches have yielded promising 57 

results, however, some challenges remain. First, 58 

current work suffers from sparsity when 59 
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Figure 1:  A simplified example of script event 

prediction. 
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incorporating external knowledge. Specifically, 60 

relationship construction mainly relies on find-and-61 

match, and such approaches often suffer from the 62 

problem that event knowledge cannot be fully 63 

adapted to the knowledge in the event knowledge 64 

base when injecting external knowledge bases, and 65 

the commonly used ASER (Zhang et al., 2020) 66 

knowledge base is actually a knowledge base of 67 

probabilistic event relationships, but in real 68 

reasoning it requires common sense knowledge 69 

that includes both discourse and correlation 70 

relations including a commonsense knowledge 71 

base. Secondly, current work modelling relevance 72 

uses a single approach of pre-trained language 73 

models, ignoring the complementarity of 74 

representation learning and generative paradigms 75 

in modelling relevance. 76 

In order to better modelling the correlation 77 

between events and to introduce correlation 78 

knowledge into script event prediction tasks, this 79 

paper proposes CoGen-Predictor (Commonsense 80 

and Generative Predictor), a novel prediction 81 

model based on hybrid generative and 82 

commonsense knowledge. At the event-level 83 

explicit correlation knowledge level, CoGen-84 

Predictor consists of a relation builder component 85 

and a representation learning component, which 86 

introduces explicit correlations by constructing 87 

event relations and updates event representations. 88 

At the word-level implicit correlation knowledge 89 

level, a pre-trained generative language model is 90 

used for fine-tuning and modelling implicit 91 

correlation between words. It simultaneously 92 

utilises event-level representation learning and 93 

word-level generative paradigm's correlation 94 

knowledge for subsequent event judgments. The 95 

main contributions of this paper are as follows: 96 

• We introduce a commonsense knowledge 97 

base and train an event-relationship builder 98 

to model explicit correlations between 99 

events to solve the problem of sparse event-100 

level relationships. 101 

• We propose CoGen-Predictor, a novel model 102 

based on hybrid generative and 103 

commonsense knowledge, for scripted event 104 

prediction using event-level explicit 105 

correlation knowledge from builder 106 

modelling and textual implicit correlation 107 

knowledge from generative modelling. 108 

• The experimental results of multi-choice 109 

narrative cloze (MCNC) show that the 110 

method in this paper can effectively utilise 111 

the two types of correlation knowledge and 112 

reduce the dependence on the original text to 113 

obtain state-of-the-art results.  114 

2 Related Work 115 

Script event prediction was first proposed by 116 

Chambers and Jurafsky (2008), who defined an 117 

event as a verb and its dependency and proposed 118 

the basic structure of a narrative event chain and a 119 

narrative completion task. Subsequently, Granroth-120 

Wilding and Clark (2016) extended the event 121 

definition to the verb and three theses〈subject; 122 

objecti; indirect object〉, and proposed the 123 

currently widely used multi-choice narrative cloze 124 

(MCNC) task: selecting subsequent events from 125 

candidate events based on contextual narrative 126 

event chains. 127 

Earlier work (Granroth-Wilding & Clark, 2016) 128 

obtained event representations via Word2Vec, and 129 

then aggregated pointwise mutual information 130 

(PMI) between contextual script events and 131 

candidate events to infer the probability that a 132 

candidate event is a subsequent event of the script. 133 

Earlier studies ignored the narrative order of 134 

scripted events, and subsequent works (Lv et al., 135 

2019; Wang et al., 2017) introduced LSTM to 136 

integrate temporal information between events. 137 

Many works have been conducted to model the 138 

relationship between events, including the use of 139 

graph structure (Zhongyang et al., 2018) and 140 

external knowledge (Ding et al., 2019) to improve 141 

event representations. Recent studies include Gao 142 

et al. (2022) who proposed a method for learning 143 

event representations with both weakly supervised 144 

contrast learning and clustering. Du et al. (2022) 145 

introduced a pre-trained model, BERT (Devlin et 146 

al., 2018), and replaced the model middle layer 147 

with a graph neural network to embed the 148 

eventgraph information. Lee, Pacheco, and 149 

Goldwasser (2020) mined discourse relations from 150 

the original text by template matching, Bai et al. 151 

(2021) enriched event representations using the 152 

original text, Lv et al. (2020); Zhou et al. (2021) 153 

introduces event knowledge graph ASER (Zhang et 154 

al., 2020) to augment the pre-trained model 155 

RoBERTa (Liu et al., 2019); and Wang et al. (2023) 156 

uses R-GCN to learn the correlation information 157 

between events. 158 
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Recent researchers (Zhou, Geng, et al., 2022; 159 

Zhou, Shen, et al., 2022) perform event-centred 160 

pre-training on an external corpus and employ an 161 

event-level masking strategy (Zhu et al., 2023) to 162 

fine-tune the generative model to generate 163 

predicted subsequent events. 164 

The above methods can be divided into two 165 

main categories: inter-event relationship modelling 166 

and candidate event generation. Inter-event 167 

relationship modelling faces the problem of sparse 168 

relationship construction, and candidate event 169 

generation faces the problem of using pre-trained 170 

models in a single way. The CoGen-Predictor 171 

proposed in this paper overcomes these challenges 172 

by effectively introducing a wide range of 173 

discourse and event relations through an event 174 

relation builder, avoiding the sparsity problem that 175 

arises in relation modelling, combining event-level 176 

explicit correlation knowledge and word-level 177 

implicit correlation knowledge from generative 178 

modelling, and performs well in the task of scripted 179 

event prediction. 180 

3 Preparations  181 

Problem Statement. As shown in Figure 1, script 182 

event prediction is defined as predicting the most 183 

likely subsequent event for a given script. Formally, 184 

given a script 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}  and a candidate 185 

event 𝑌 = {𝑦1, 𝑦2, … 𝑦𝑚} , where 𝑥𝑖  and 𝑦𝑗 186 

represent the events, this task aims at selecting the 187 

correct subsequent event 𝑦𝑡  from 𝑌 . Each event 188 

𝑒 = (𝑒𝑣, 𝑒𝑠, 𝑒𝑜, 𝑒𝑖)  consists of a predicate 𝑒𝑣  and 189 

three arguments (subject 𝑒𝑠, object 𝑒𝑜 and indirect 190 

object 𝑒𝑖 ). The model needs to compute the 191 

relevance score 𝑃(𝑦𝑗|𝑥)  for each candidate event 192 

𝑦𝑗(𝑗 ∈ 1, … , 𝑚) given a script 𝑋, and then take the 193 

most likely event as the subsequent event. 194 

Commonsense Knowledge Graph. CKGs are 195 

large-scale knowledge bases that store knowledge 196 

in a graph structure, focusing on the association of 197 

things or objects. in this paper, we introduce the 198 

DISCOS (Fang et al., 2021) commonsense 199 

knowledge base, which converts discourse 200 

knowledge about events from the large-scale 201 

discourse knowledge graph ASER (Zhang et al., 202 

2020) to ATOMIC (Sap et al., 2019) to if-then 203 

commonsense knowledge defined in ATOMIC 204 

(Sap et al., 2019), which provides 3.4 million 205 

inference commonsense knowledge and event 206 

knowledge, providing more effective support for 207 

constructing event relations in SEP. 208 

4 The CoGen-Predictor Model 209 

In this section, the CoGen-Predictor model of this 210 

paper is described. As shown in Fig. 2, it has four 211 

main components: (1) event relationship builder, (2) 212 

event-level explicit correlation representation 213 

modelling, (3) word-level implicit correlation 214 

generative modelling and (4) fusion prediction 215 

scoring. 216 

4.1 Event Relationship Builder 217 

For the nodes in the DISCOS commonsense 218 

knowledge base 𝐺𝑟
𝑐, all its nodes are encoded using 219 

the pre-trained language representation model 220 

BERT. For nodes 𝑣 = [𝑤1, 𝑤2, … , 𝑤𝑛]  with n-221 

length tokens, a [CLS] token is added at the 222 

beginning of each sentence as 𝑤0 , and a [SEP] 223 

token is added at its end as 𝑤𝑛+1 . Represent the 224 

output of the input BERT as [𝑒𝑤0
, 𝑒𝑤1

,···, 𝑒𝑤𝑛+1
],225 

𝑒𝑤𝑖
∈ ℝ𝑑, where 𝑑 is the embedding dimension of 226 

the BERT. For the tuple (𝑢, 𝑣) ∈ 𝐺𝑟
𝑐 for making a 227 

relational judgement, the semantic representation 228 

[𝑒𝑢, e𝑣] is obtained using the BERT layer, and the 229 

final correlation score is obtained using the 230 

Softmax layer: 231 

𝑓𝑟(𝑢, 𝑣) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥([𝑒𝑢, 𝑒𝑣]𝑊′𝑇
+ 𝑏), (1) 232 

Here 𝑊′ ∈ ℝ2×𝑑 , 𝑏 ∈ ℝ2 , and after obtaining 233 

the predicted value of 𝑓𝑟(𝑢, 𝑣) , the correlation is 234 

judged to be constructed or not according to the 235 

score, where  𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑟(𝑢, 𝑣)). 236 

Each node in DISCOS is an event, and in order 237 

to better match the commonsense knowledge in 238 

DISCOS, contextual events in the Script Event 239 

Prediction (SEP) task is first formalised into a 240 

matching form. 241 

 

Figure 2:   The training process of the event 

relationship builder. 
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Given the head and tail events 𝑒ℎ and 𝑒𝑡, each 242 

event consists of four elements 𝑒 = (𝑒𝑣, 𝑒𝑠, 𝑒𝑜, 𝑒𝑖), 243 

so adjust the order of discourse to represent the 244 

event as " 𝑒𝑠 𝑒𝑣 𝑒𝑜 𝑒𝑖 " to make it match the 245 

commonsense knowledge format. The natural 246 

language text 𝑤𝑒  for each event 𝑒  is linked with 247 

special tags: 248 

�̃�ⅇ = ([𝐶𝐿𝑆], 𝑤𝑒, [𝑆𝐸𝑃]), ∀e ∈ {𝑒ℎ, 𝑒𝑡}, (2) 249 

The textual representations �̃�𝑒ℎ
  and �̃�𝑒𝑡

  of the 250 

head and tail events 𝑒ℎ  and 𝑒𝑡  are then imported 251 

into the Event Relationship Builder to obtain the 252 

result of the relationship construction 𝑅. 253 

4.2 Event-level representation modelling 254 

Based on the relationship 𝑅, CoGen-Predictor uses 255 

BART for semantic representation and 256 

incorporates GAT to fuse event-level explicit 257 

correlation knowledge for modelling event and 258 

event chain information. 259 

4.2.1 Event Representation 260 

Using the pre-trained model BART (Lewis et al., 261 

2020) as the underlying semantic representation 262 

model, for the input context events 𝑋 = {𝑥1,∙∙∙, 𝑥𝑛} 263 

and candidate events 𝑌 = {𝑦1,∙∙∙, 𝑦𝑚} , each 264 

consisting of 𝑒 = (𝑒𝑣, 𝑒𝑠, 𝑒𝑜, 𝑒𝑖), 𝑒 ∈ 𝑋, Y , denote 265 

the events as "𝑒𝑠 𝑒𝑣  𝑒𝑜 𝑒𝑖 " to adjust the semantic 266 

order to input BART, the context event sequence 𝑆 267 

is denoted as < 𝑠 > 𝑥1 < 𝑆𝐸𝑃 > 𝑥2 < 𝑆𝐸𝑃 >∙∙∙<268 

𝑆𝐸𝑃 > 𝑥𝑛 </𝑠 > , and each candidate event is 269 

denoted as < 𝑠 > 𝑦𝑚 </𝑠 > , with the candidate 270 

events being placed into the list 𝐶. The sequence of 271 

contextual events 𝑆 and the list of candidate events 272 

𝐶,are input into the BART model for text encoding: 273 

𝑃𝑠, 𝑃𝑐 = 𝐵𝐴𝑅𝑇(𝑆, 𝐶), (3) 274 

𝑃𝑠, 𝑃𝑐 ∈ ℝ𝑑  and 𝑑  is the embedding dimension 275 

of BART. 276 

4.2.2 Related Information Update 277 

Based on the relation 𝑅 , CoGen-Predictor 278 

introduces the graph attention neural network 279 

(GAT) for node updating of context event nodes. 280 

The first step is to partition the events in the context 281 

event sequence into independent event 282 

representations: 283 

{𝑥1, 𝑥2,∙∙∙, 𝑥𝑛} = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑃𝑠), (4) 284 

Linear transformation is performed on each 285 

input node feature to obtain the mapped feature and 286 

the attention coefficient 𝑒𝑖𝑗  is calculated for each 287 

pair of neighbouring nodes 𝑖 and 𝑗: 288 

ℎ′
𝑖 = 𝑊 ∙ 𝑥𝑖 , (5) 289 

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝛼𝑇[𝑊 ∙ 𝑥𝑖||𝑊 ∙ 𝑥𝑗]) (6) 290 

where 𝑊  is the weight matrix, ||  denotes the 291 

connection operation, 𝛼  is the weight vector, and 292 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 is the activation function. 293 

The steps for event node update using GAT 294 

(Velickovic et al., 2017) are as follows: 295 

Attention coefficients of all neighbours of node 296 

𝑖 are normalised using 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function: 297 

 

Figure 3:   Structure of the CoGen-Predictor model. 
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𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

∑ exp(𝑒𝑖𝑘)𝑘∈Ν(𝑖)
, (7) 298 

where Ν(𝑖)  denotes the set of 𝑖 's neighbours. 299 

Weighted summation of neighbouring node 300 

features using normalised attention coefficients to 301 

update node features: 302 

ℎ𝑖
′′ = 𝜎 ( ∑ 𝛼𝑖𝑗𝑊 ∙ 𝑥𝑗

𝑗∈𝑁(𝑖)

) , (8) 303 

where 𝜎 is a nonlinear activation function (e.g., 304 

ReLU). Here the contextual event node 305 

information is updated by GAT: 306 

{𝑥′′
1, 𝑥′′

2,∙∙∙, 𝑥′′
𝑛} = 𝐺𝐴𝑇({𝑥1, 𝑥2,∙∙∙, 𝑥𝑛}), (9) 307 

4.2.3 Candidate Event Scoring 308 

In order to apply both event information and event 309 

chain information, we include the obtained event 310 

chain text representation 𝑃𝑠 when constructing the 311 

context node representation, so the final context 312 

representation is: 313 

𝐻 = {𝑥′′
1, 𝑥′′

2,∙∙∙, 𝑥′′
𝑛}||𝑃𝑠, (10) 314 

The widely used negative Euclidean distance is 315 

used here as a score calculation for candidate 316 

events: 317 

𝑠𝑖 = − ||ℎ𝑖 − ℎ𝑗|| ∗∗ 2, (11) 318 

Here ℎ𝑖  comes from 𝐻  after updating the node 319 

and ℎ𝑗 comes from 𝑃𝑐 which has been encoded by 320 

BART. 321 

Different contextual events and event chains 322 

contribute differently to predicting the correct 323 

candidate event, we use scaled dot product 324 

attention (Vaswani et al., 2017) to aggregate the 325 

distance scores of different nodes: 326 

𝑓 = ∑ 𝛼𝑖𝑠𝑖

𝑛−1

𝑖=0

, (12) 327 

After the above representation modelling the 328 

score of each candidate event relative to the event 329 

node and event chain is obtained. 330 

4.3 Word-level generative modelling 331 

Referring to the approach of Zhu et al. (Zhu et al., 332 

2023), CoGen-Predictor employs a generative 333 

model to model the knowledge of implicit 334 

correlations between textual words, which is 335 

divided into two main phases: event pre-training 336 

and comparison fine-tuning. 337 

4.3.1 Event pre-training 338 

In the event-centred pre-training phase, the script 339 

and the correct candidate event 𝑦𝑡 are concatenated 340 

into an event sequence 𝑆 = {𝑥1, 𝑥2,∙∙∙, 𝑥𝑛, 𝑦𝑡}. Mask 341 

K events in 𝑆, where 𝐾 ∈ (1,2,3), and the masked 342 

events are denoted as the event sequence 𝐸. Denote 343 

the contextual event sequence 𝑆 as < 𝑠 > 𝑥1. 𝑥2. <344 

𝑀𝐴𝑆𝐾 >. ⋯ . < 𝑀𝐴𝑆𝐾 >. ⋯ . 𝑦𝑡 </𝑠 >, where the 345 

masking event is replaced with the token <346 

𝑀𝐴𝑆𝐾 >, and the event sequence 𝐸 is represented 347 

in a similar way. Using the generative model BART 348 

as the backbone, the conditional probability 349 

distribution 𝑃(𝐸|𝑆) is formulated as follows: 350 

𝑃(𝐸|𝑆) =
1

𝑁𝐸
∑ 𝑙𝑜𝑔𝑃𝐿𝑀(𝐸𝑛|𝑆, 𝐸1:𝑛−1)

𝑁𝐸

𝑛=2

, (13) 351 

where 𝑁𝐸  is the token number of the event 352 

sequence 𝐸  in natural language format, 𝐸𝑛  is the 353 

nth token, and 𝐸1:𝑛−1 is the first to n-1th token of 354 

E. 355 

In the event pre-training phase, the CoGen-356 

Predictor generative paradigm part is trained to 357 

maximise 𝑃(𝐸|𝑆). 358 

4.3.2 Contrast fine-tuning 359 

The modified sequence is represented as 𝑋𝑚  by 360 

first adding a marker [𝑀𝐴𝑆𝐾]  at the end of the 361 

script 𝑋. 𝑋𝑚 and each event candidate 𝑋𝑚 are then 362 

converted to a natural language format using the 363 

average of the log probabilities of the descriptive 364 

markers for each event as the score 𝑜𝑖 for the event 365 

𝑦𝑖. 366 

𝑜𝑖 =
1

𝑁𝑦𝑖

∑ 𝑙𝑜𝑔𝑃𝐿𝑀(𝑦𝑖
𝑛|𝑋𝑚, 𝑦𝑖

1:𝑛−1)

𝑁𝑦𝑖

𝑛=2

, (14) 367 

where 𝑁𝑦𝑖
  is the length of event 𝑦𝑖 . Then, the 368 

Softmax function is used to calculate the final score 369 

𝑠𝑖 for each candidate event 𝑦𝑖: 370 

𝑠𝑖 =
exp(𝑜𝑖)

∑ exp(𝑜𝑘)𝑀
𝑘=1

, (15) 371 

Finally, define the loss function as follows: 372 

ℒ𝑐𝑜𝑡 = −𝑙𝑜𝑔(𝑠𝑡) +

1

𝑀 − 1
∑ (

𝑠𝑖

1 − 𝑠𝑡
)

𝑀

𝑖=1
𝑖≠𝑡

𝑙𝑜𝑔 (
𝑠𝑖

1 − 𝑠𝑡
) , (16) 373 

where 𝑡  is the subscript of the right event 374 

candidate 𝑦𝑡  and 𝑀  is the number of event 375 

candidates. 376 

4.4 Integration predictions 377 

Both event-level explicit correlation knowledge 378 

and word-level implicit correlation knowledge are 379 

used for subsequent event judgements. To integrate 380 

the knowledge from the two components, CoGen-381 
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Predictor uses a gating module that sums the 382 

elements weighted by association confidence. The 383 

previous explicit knowledge scoring result 𝑓𝑖  and 384 

the implicit knowledge scoring result 𝑠𝑖  are 385 

obtained, where 𝑖 ∈ (0, 𝑚 − 1): 386 

𝐹𝑖 = 𝑠𝑖 + 𝑝 ∙ 𝑓𝑖 , (17) 387 

For the obtained final score 𝐹𝑖 , we selects the 388 

most likely event with the highest score as the 389 

predicted subsequent event 𝑦𝑝 , where 𝑝 =390 

𝑎𝑟𝑔𝑚𝑎𝑥(𝐹𝑖). 391 

5 Experiments 392 

In this section, CoGen-Predictor is compared to 393 

some baselines to validate its effectiveness. In 394 

addition, an ablation study is performed to 395 

understand the impact of key components of the 396 

model on performance. Finally, a case study is 397 

performed to demonstrate how the model in this 398 

paper predicts subsequent events. 399 

5.1 Dataset 400 

In the task of script event prediction, most of the 401 

existing work selects the public dataset published 402 

by Li, Ding, and Liu (2018). Therefore, this public 403 

dataset is also used in this paper. We follows the 404 

common practice of dataset segmentation used for 405 

training, validation and testing in Table 1. For the 406 

public dataset, each instance has five candidate 407 

events, of which only one choice is correct. 408 

5.2 Experimental setup 409 

The CoGen-Predictor model proposed in this paper 410 

includes both explicit correlation knowledge and 411 

implicit correlation knowledge construction. To 412 

compare with the baseline, experiments are 413 

conducted on 𝐵𝐴𝑅𝑇𝑏𝑎𝑠𝑒  and 𝐵𝐴𝑅𝑇𝐿𝑎𝑟𝑔𝑒 . The 414 

models were optimised by Adam (Kingma & Ba, 415 

2015). The learning rate and weight decay are 1e-5 416 

and 1e-6, respectively. the model in this paper uses 417 

an early stopping strategy to select the best epoch, 418 

and the patience is set to 5. For  𝐵𝐴𝑅𝑇𝑏𝑎𝑠𝑒 , the 419 

Batch Size is set to 32, and for 𝐵𝐴𝑅𝑇𝐿𝑎𝑟𝑔𝑒 , the 420 

Batch Size is set to 24. all the experiments are 421 

carried out on the RTX 4090D. The GPU training 422 

time for event relationship builder module, event-423 

level explicit association representation modelling 424 

and text-level implicit association generative 425 

modelling are about 8, 10 and 6.5. We select the 426 

model with the best results on the validation set and 427 

report the results on the test set, using accuracy as 428 

the evaluation metric. 429 

5.3 Baselines 430 

For the preliminaries, they can be divided into three 431 

categories. Event representation method: 1)Event-432 

Comp (Granroth-Wilding & Clark, 2016) uses 433 

training objectives such as Word2Vec to learn event 434 

embeddings and compute pairwise similarities 435 

between scripted events and candidate events. 436 

2)Pair-LSTM (Wang et al., 2017) uses LSTM to 437 

model the narrative order of script events. 3)SAM-438 

Net (Lv et al., 2019) uses LSTM and self-attention 439 

mechanisms to capture different event fragments. 440 

4)MCPredictor (Bai et al., 2021) obtains event 441 

representations from pre-trained Word2Vec and 442 

augments them with raw sentence representations 443 

obtained from pre-trained BERT, and uses multiple 444 

similar event chains to aggregate script-level 445 

information. 5)MCPredictor-s is an ablation of 446 

MCPredictor that removes additional raw sentence 447 

information. 448 

Public Dataset Number  

Train set 140,331 

Dev set 10,000 

Test set 10,000 

Table 1:  Dataset. 

Method Acc.(%) 

Random 20.00 

Event-Comp 49.57 

Pair-LSTM 50.83 

SGNN 52.45 

SAM-Net 55.60 

GraphBERT 60.72 

SGNN + Int&Senti 56.03 
RoBERTabasⅇ + Rep. Fusion 58.66 
RoBERTabasⅇ  + Know.Model 59.99 
BARTbasⅇ + Contrastive Approcah 62.22 

CoGen-Predictor (BARTbasⅇ) 63.54 

Table 2:  Base model comparison experiment. 

Method Acc.(%) 

BART_large + Contrastive 63.40 

EventBERT 63.50 

RoBERTalargⅇ  + Know.Model 64.62 

ClarET 64.61 

MCPredictor-s 59.24 

MCPredictor 67.14 

CoGen-Predictor (𝐵𝐴𝑅𝑇𝑙𝑎𝑟𝑔𝑒) 65.01 

Table 3:  Large model comparison experiment. 
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Structured information enhancement: 449 

1)RoBERTa + Rep. Fusion (Lv et al., 2020) 450 

integrates external knowledge from episodic 451 

knowledge graphs, ASER (Zhang et al., 2020), and 452 

predicts using RoBERTa. 2)RoBERTa + 453 

Know.Model (Zhou et al., 2021) learns knowledge 454 

models from ASER to predict event relationships.  455 

3)SGNN (Zhongyang et al., 2018) constructs 456 

narrative event evolution graphs through verb co-457 

occurrence frequencies for more effective event 458 

representation.  4)SGNN + Int & Senti 459 

incorporates external intent and affective 460 

knowledge from ATOMIC (Sap et al., 2019) into 461 

event representations. 5)GraphBERT (Du et al., 462 

2022) constructs an event graph similar to SGNN 463 

and enhances BERT with the event graph. 464 

Event-centred pre-training: 1)EventBERT 465 

(Zhou, Geng, et al., 2022) pre-trains RoBERTa in 466 

BOOKCORPUS (Zhu et al., 2015) with three self-467 

supervised comparative learning objectives: 468 

correlation-based event ranking, contradictory 469 

event labelling, and discourse relation ranking. 470 

2)ClarET (Zhou, Shen, et al., 2022) pre-trains 471 

BART on BOOKCORPUS with three additional 472 

self-supervised goals: overall event recovery, 473 

comparative event-related coding, and cue-based 474 

event localisation. 3)BART + Contrastive 475 

Approcah (Zhu et al., 2023) uses both an event-476 

centred pre-training phase and a task-specific 477 

contrastive fine-tuning phase for training. 478 

5.4 Results and analyses 479 

In this paper, the 𝐵𝐴𝑅𝑇𝑏𝑎𝑠𝑒  and 𝐵𝐴𝑅𝑇𝐿𝑎𝑟𝑔𝑒 480 

models are used as the backbone for training and 481 

testing in Tables 2 and 3, respectively, in order to 482 

ensure that the parameters of the comparison 483 

models remain relatively consistent, and the 484 

following observations are made from the results 485 

of the two models: 486 

• CoGen-Predictor shows a 3.55% and 1.32% 487 

improvement over the best baseline 488 

RoBERTa + Know.Model for combining 489 

external knowledge and the best baseline 490 

BART + Contrastive Approcah for 491 

generative modelling of event relationships, 492 

respectively. CoGen-Predictor combines the 493 

GAT model's modelling of external 494 

commonsense correlational information for 495 

GAT model modelling and word-level 496 

correlational information for generative 497 

paradigm modelling, using external 498 

correlational knowledge in combination with 499 

knowledge of correlations within the event 500 

chain to enhance the ability to model 501 

correlational relationships between events. 502 

• The accuracy performance of CoGen-503 

Predictor outperforms strong baselines after 504 

performing extensive event-centred pre-505 

training, such as ClarET (Zhou, Shen, et al., 506 

2022) and EventBERT (Zhou et al., 2021). 507 

Moreover, CoGen-Predictor is more 508 

advantageous in terms of training time and 509 

complexity compared to the previous two 510 

methods. 511 

• CoGen-Predictor performs better in terms of 512 

accuracy relative to MCPredictor-s without 513 

using the original sentence text, and slightly 514 

inferior to MCPredictor. For MCPredictor 515 

extracting the original sentence of the event 516 

is crucial in the training process, and the 517 

accuracy of SCPredictor-s relative to 518 

MCPredictor with a 7.9% decrease in 519 

accuracy after removing the original 520 

text.CoGen-Predictor improves the model's 521 

effectiveness on the SEP task without using 522 

the original content through a more 523 

generalised DISCOS commonsense 524 

knowledge base with more generalisation 525 

capabilities. 526 

5.5 Ablation experiment 527 

Table 4 shows the results of the ablation 528 

experiments for the CoGen-Predictor model. 529 

Firstly, the effect of external knowledge base and 530 

GAT node updates is verified (row 1), and it is 531 

found that the performance decreases by 0.93% 532 

when the external correlation knowledge of GAT is 533 

missing. This is because the external commonsense 534 

correlation knowledge and GAT node updates 535 

provide explicit correlation knowledge that is not 536 

available in the event representation. Secondly, 537 

removing the event-level explicit association 538 

modelling component (line 2) resulted in a 1.34% 539 

decrease in performance because the lack of the 540 

event representation learning module made the 541 

Method Acc.(%) 

CoGen-Predictor 63.54 

w/o GAT & Know 62.61 

w/o Representing learning 62.20 

w/o Generation method 59.36 

Table 4:  ablation experiment. 
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event similarity understanding insufficient. Finally, 542 

the removal of the word-level implicit correlation 543 

generation modelling component (line 3) proves to 544 

be crucial for the SEP task as it comprehensively 545 

models inter-word implicit correlation. 546 

5.6 Parametric studies 547 

The aim of this section is to investigate how the 548 

parameter 𝑝  of the fusion prediction layer affects 549 

the predictive performance of the model. The 550 

parameter 𝑝  represents the fusion ratio between 551 

event-level explicit correlation information and 552 

word-level implicit correlation information. The 553 

prediction results under different parameters are 554 

shown in Table 5. From the results, it can be found 555 

that text-level implicit associative generative 556 

modelling contributes more in the final score 557 

compared to external commonsense correlation 558 

knowledge modelling. This may be due to the fact 559 

that word-level implicit correlations are more 560 

suitable for the SEP task compared to those 561 

generated based on the external commonsense 562 

knowledge base of correlations, but the external 563 

commonsense correlation knowledge injected in 564 

the model in this paper is also essential. 565 

5.7 Case Studies 566 

The case study demonstrates the properties of 567 

CoGen-Predictor and its predictive ability. The G-568 

Score, I-Score, and F-Score in Table 6 represent the 569 

scores for generative models, external knowledge 570 

representation learning, and gated aggregation, 571 

respectively. In Case 1, the correct option "simpson 572 

attack deaths" does not have the highest score in the 573 

G-Score because the generative model can only 574 

handle word-level associations and lacks external 575 

knowledge support. In Case 2, the correct option 576 

"johnson share Monday gold" does not score well 577 

in the I-Score because the external knowledge 578 

alone does not allow for effective differentiation of 579 

textually relevant options. Combining event-level 580 

explicit and word-level implicit associations, F-581 

Score correctly identifies subsequent events, 582 

demonstrating the effectiveness of CoGen-583 

Predictor. 584 

6 Conclusion 585 

In this paper, we propose a novel hybrid generative 586 

and commonsense knowledge model, CoGen-587 

Predictor, for script event prediction, which 588 

combines event-level explicit knowledge and 589 

word-level implicit knowledge and outperforms 590 

other state-of-the-art baseline models in the MCNC 591 

task. Future research will aim to incorporate 592 

external knowledge to better exploit the potential 593 

of generative models. 594 

P Acc.(%) 

0.9 62.41 

0.8 62.65 

0.7 63.02 

0.6 63.42 

0.5 63.51 

0.4 63.54 

0.3 63.36 

0.2 63.06 

0.1 62.94 

Table 5:  Parametric studies. 

Events Case 1 G-Score I-Score F-Score Contextual event 

simpson come up rule 0.092 0.0267 0.1009 'friends know simpson', 'simpson 

become famous', 'simpson re', 

'simpson kill friday', 'simpson write 

press', 'simpson use room', 'convict 

simpson', 'law apply simpson' 

simpson invent defens 0.3479 0.1656 0.4142 

simpson circulate 0.3240 0.0987 0.3634 

simpson attack deaths 0.1886 0.6448 0.4465 

simpson pitch 0.0494 0.0642 0.0751 

Events Case 2 G-Score I-Score F-Score Contextual event 

accord johnson '0.1194 0.0098 0.1233 'johnson finish end', 'johnson break 

record', 'johnson better record', 

'johnson redefine event', 'johnson 

lament', 'johnson contract food', 

'johnson advance', 'johnson claim 

gold' 

lawyer bite johnson 0.0308 0.0943 0.0685 

johnson share monday gold 0.4826 0.2672 0.5895 

johnson be weak 0.3500 0.4908 0.5464 

johnson recruit 0.0171 0.1379 0.0722 

Table 6:  Case Studies. 
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Limitations  595 

Although our proposed method performs well on 596 

publicly available SEP datasets, it still suffers from 597 

several major limitations. Firstly, our method has 598 

requirements on the version format of the input 599 

data, which needs to have the verbs and their 600 

dependencies, and there may be a decrease in 601 

accuracy for problems with missing some 602 

parameters. Second, the dataset used in this paper 603 

is the standard dataset proposed in 2018, which 604 

may have poor portability due to the fact that only 605 

one dataset was used for the experiments. Third, 606 

our model uses BART as the backbone and may 607 

suffer from insufficient ability to generalise when 608 

dealing with specific linguistic contexts, which 609 

requires more cross-linguistic validation and 610 

adaptation tests. In addition, our experimental 611 

setup assumes the stability of data distribution, but 612 

changes in data distribution in real applications 613 

may affect the performance of the model. Finally, 614 

although our method performs well on the script 615 

event prediction task, its effectiveness in handling 616 

unstructured data needs to be further explored and 617 

improved. 618 
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