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Abstract

Diffusion models are powerful tools for sampling from high-dimensional distributions by
progressively transforming pure noise into structured data through a denoising process.
When equipped with a guidance mechanism, these models can also generate samples from
conditional distributions. In this paper, a novel diffusion-based framework is introduced for
solving inverse problems using a piecewise guidance scheme. The guidance term is defined as
a piecewise function of the diffusion timestep, facilitating the use of different approximations
during high-noise and low-noise phases. This design is shown to effectively balance compu-
tational efficiency with the accuracy of the guidance term. Unlike task-specific approaches
that require retraining for each problem, the proposed method is problem-agnostic and
readily adaptable to a variety of inverse problems. Additionally, it explicitly incorporates
measurement noise into the reconstruction process. The effectiveness of the proposed frame-
work is demonstrated through extensive experiments on image restoration tasks, specifically
image inpainting and super-resolution. Using a class conditional diffusion model for recov-
ery, compared to the pseudoinverse-guided diffusion model (IIGDM) baseline, the proposed
framework achieves a reduction in inference time of 25% for inpainting with both random
and center masks, and 23% and 24% for 4x and 8x super-resolution tasks, respectively,
while incurring only negligible loss in PSNR and SSIM.

1 Introduction

Diffusion models are a class of deep generative models designed to sample from complex data distributions.
Diffusion models have been shown to outperform alternatives like generative adversarial networks (GANs) in
image synthesis tasks and currently represent the state of the art in this domain Dhariwal & Nichol (2021).
The core idea behind diffusion models is to gradually remove the structure from given input data through
a forward diffusion process, transforming it into a tractable distribution, which is typically Gaussian white
noise. The model is then trained to learn the reverse process, effectively denoising the data step by step to
reconstruct a sample that closely approximates the original data distribution. Diffusion models have been
applied across various fields, including computer vision Baranchuk et al. (2021); Amit et al. (2022), natural
language processing Austin et al. (2021); Hoogeboom et al. (2021), audio synthesis Kong et al. (2021), and
medical image reconstruction Chung et al. (2023); Cao et al. (2024).

Once trained on a dataset from a specific distribution, diffusion models can generate samples that follow
that distribution Yang et al. (2023). These samples are inherently random, as the generation process begins
with a noise vector sampled randomly. Consequently, the resulting samples may correspond to any region
within the support of the learned distribution. Diffusion models can be employed for conditional sampling
Kawar et al. (2022) when their denoising process is adapted to incorporate auxiliary information, enabling
the generation of samples that are consistent with the provided conditions.

This conditional sampling capability makes diffusion models promising candidates for solving inverse prob-
lems, where the objective is to reconstruct a degraded signal. The core idea is to recover the original signal
by sampling from the posterior distribution conditioned on the observed degraded input. In the context of
image inverse problems, this approach has demonstrated the ability to produce perceptually high-quality



Under review as submission to TMLR

outputs Blau & Michaeli (2018). This motivates the use of diffusion models as effective tools for solving
inverse problems.

Numerous challenges arise when employing diffusion models to solve inverse problems. These models are
typically large and require extensive computational resources and substantial amounts of data for effective
training. Given the wide variety of inverse problems, it is impractical to train a separate diffusion model for
each specific task Song et al. (2022a); Kawar et al. (2022); Song et al. (2022b). Therefore, a key challenge
is developing a unified framework that can address multiple inverse problems using a single, pre-trained
diffusion model without the need for task-specific retraining. Another key challenge is maintaining high-
quality restoration, typically measured by standard metrics such as the peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM). A general-purpose system must achieve results that are competitive
with models trained specifically for individual inverse problems. In addition, computational efficiency is
critical: The faster the conditional sampling process, the more practical the framework becomes.

1.1 Related Works

Various deep neural network-based techniques have been proposed for solving inverse problems Ongie et al.
(2020); Venkatakrishnan et al.; Romano et al. (2017); Mataev et al. (2019); Bora et al. (2017); Daras et al.
(2021); Menon et al. (2020) and the aforementioned challenges. These methods can be broadly categorized
into supervised (problem-specific) and unsupervised (problem-agnostic) approaches. In supervised methods,
the degradation model is known during both training and inference. In contrast, unsupervised methods
assume that the degradation is only known at inference time. The unsupervised approaches are particularly
appealing, as they better reflect real-world scenarios where access to degradation models during training is
often limited or unavailable, and these approaches do not rely on training problem-specific models.

One class of unsupervised deep neural network techniques addresses inverse problems by iteratively applying
a pretrained model Venkatakrishnan et al.; Romano et al. (2017); Mataev et al. (2019); Sun et al. (2019).
Methods such as plug-and-play (PnP) Venkatakrishnan et al., regularization by denoising (RED) Romano
et al. (2017), and their successors in Mataev et al. (2019) and Sun et al. (2019) incorporate a denoiser
into an iterative recovery process. Another line of work leverages (GANs) Bora et al. (2017); Daras et al.
(2021); Menon et al. (2020), where the latent space of a pretrained GAN is searched to find latent codes that
generate images best aligned with the observed measurements. These methods often require a large number
of iterations to converge to a satisfactory solution making them time inefficient and not practical for real use
cases in which low inference time is critical.

Diffusion models are another class of deep neural networks that can be used for solving inverse problems,
with applications in both supervised Kadkhodaie & Simoncelli (2021); Jalal et al. (2021); Kawar et al.
(2021a;b) and unsupervised Chung et al. (2022); Dhariwal & Nichol (2021); Saharia et al. (2022; 2023)
settings. Denoising diffusion reconstruction models (DDRM) Kawar et al. (2022) represent a diffusion-based
approach for solving unsupervised inverse problems. In this method, denoising is performed in the spectral
domain of the degradation matrix, and the results are subsequently transformed back into the original image
space. While DDRM has demonstrated promising restoration quality, its effectiveness is limited in scenarios
where the relationship between the measurement noise level and the diffusion noise level in the spectral
domain is weak.

Another diffusion-based method for unsupervised inverse problems is the pseudoinverse-guided diffusion
model (IIGDM) Song et al. (2022a). This approach computes the guidance term using a one-step denoising
approximation of the posterior distribution of the data conditioned on the noisy latent diffusion variable.
Unlike DDRM, IIGDM enables updates regardless of the levels of diffusion and measurement noise. Although
effective, IIGDM requires computing the derivative of the denoiser’s output with respect to its input, a
computationally intensive operation, particularly when the denoiser’s complexity and the dimensionality of
the data increase.

The computational and time complexity of GAN-based methods and IIGDM, the sensitivity of DDRM to
measurement noise, and the need for fine-tuning and retraining in supervised approaches highlight the need
for a new, reliable, problem-agnostic framework for solving inverse problems. Such a framework should deliver
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high-quality restoration with low inference time and computational cost, while also explicitly accounting for
measurement noise, which is almost always present in real-world scenarios.

1.2 Contributions

The main contribution of this paper is the introduction of a new diffusion-based framework for solving inverse
problems, which uses a piecewise function to approximate the guidance term. This approach preserves
accuracy while significantly reducing computational complexity. Moreover, the proposed method explicitly
accounts for measurement noise. Specifically, our key contributions include:

o We propose a novel, problem-agnostic, diffusion-based framework for solving inverse problems via
posterior sampling, which employs a piecewise guidance function that depends on both the mea-
surement (with possible additive measurement noise) and the noisy latent variable at each diffusion
time step.

e We show how the proposed method leverages the varying noise and information content of latent
variables across time steps to compute time-dependent guidance values, enabling a more effective
tradeoff between computational efficiency and reconstruction accuracy.

e We derive mathematical expressions that quantify the quality of the approximation in terms of
the Kullback—Leibler (KL) divergence between the true and approximated distributions used in the
guidance computation, providing insights into how problem parameters affect the effectiveness of
the approximation.

o Extensive experiments show that the proposed method reduces inference time while maintaining
comparable performance in terms of PSNR and SSIM. Compared to IIGDM, it achieves a reduction
of 25% for both inpainting with random and center masks, and 23% and 24% for 4x and 8x super-
resolution, respectively, using a class conditional diffusion model.

The rest of this paper is organized as follows. Section 2 introduces the problem and its challenges. Then,
Section 3 details the proposed method. Section 4 presents a theoretical analysis of how the problem param-
eters influence the proposed solution, and Section 5 presents and analyzes the simulation results. Finally,
conclusions are drawn in Section 6.

2 Problem Statement

Inverse problems are a class of signal processing problems whose objective is to recover an original signal
from observed measurements. Consider the following model that relates an original signal o € R™ with a
corresponding measurement y € R™ of that signal:

y=Cuxzo+z, (1)

where C' € R™*" represents the measurement model and z € R™ is an i.i.d measurement noise distributed
according to N'(0,02I). In practical inverse problems m < m. The objective is to recover xy from the
measurement y. Inverse problems are central to domains such as medical imaging Bertero et al. (2021),
computer vision Mohammad-Djafari et al. (2023) (e.g., image deblurring, super-resolution), and astronomy
Craig & Brown (1986).

Inverse problems are inherently ill-posed Calvetti & Somersalo (2018); small changes in the observations can
lead to large variations in the solution. Moreover, solutions to inverse problems may not be unique Calvetti
& Somersalo (2018), requiring the incorporation of prior knowledge and regularization to obtain meaningful
results. This “ill-posedness" and non-uniqueness arise from the indirect, incomplete, and noisy nature of the
measurements. In (1), the incompleteness of the measurement is reflected in the condition m < n.

Different approaches have been proposed for solving inverse problems, such as regularization-based tech-
niques, which impose constraints on the solution, such as sparsity or low-rank structure Bertero et al.
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(2021), and statistical approaches, which assume a prior distribution on the original signal and solve the
problem by finding suitable estimators Bertero et al. (2021). One method that has been shown to produce
high-quality solutions is posterior sampling Blau & Michaeli (2018). The core idea of this approach is to
solve (1) by generating samples from the conditional distribution p(xg|y). Diffusion models can be used for
sampling from such distributions, provided their denoising procedures are appropriately modified.

Diffusion models perform sampling from distributions by first structurally removing data information and
increasing noise. This is achieved by forming a chain of random variables which progressively get noisier.
This procedure is called forward path and it continues until the point that the structure in the data is
reduced to pure noise, where sampling from that is practical. Diffusion models by learning the reverse
process of removing noise gradually from the noisy data known as backward path, achieve sampling from the
distribution.

When the chain of created noisy random variables modeled as a continuum, the forward path of diffusion
models can be expressed by a stochastic differential equation (SDE) of the form

dx = f(x,t)dt + g(t)dwy, (2)

where f : R — R” is the drift term which represents the deterministic trend of the state variable x
and slowly removes the presence of data, g : R — R represents the intensity of the randomness affecting
the state variable and gradually increases the presence of noise in the data and wy; is standard Wiener
processes. One such choice that has been adopted heavily are f(x,t) = —13(t)x and g(t) = \/B(t), in which
B(t) : R — (0,1) is a monotonically increasing function of ¢.

As shown in Anderson (1982), (2) can be solved in reverse by solving

do = [f(@,1) ~ 39(0)*Valogpi(@)] + g(t)duw, Q

where the time variable ¢ moves in the opposite direction of (2), wy is the standard Wiener process in
reverse time, and p; is the probability distribution function (PDF) of the random variable x(t). As shown in
Anderson (1982), (2) and (3) are equivalent in the sense that the PDF of @(t) is the same for the solutions of
both for all ¢. Thus, solving (3) can result in samples from p;(x) for each time step ¢, and ¢ = 0 corresponds
to the PDF of data. In practice, (3) is solved using numerical methods such as Euler—Maruyama, provided
that Vg log p:(x) (the score function) is known for all the noise levels, which can be approximated with using
score estimating models. In numerical solvers the continuous process x(t) is discretized as x(t) = x; where
t€{1,2,...,T}. Then, (3) is solved by assuming that @ is almost pure noise, and a random sample from
that serves as the starting point of the numerical solvers.

In order to use diffusion models for solving inverse problems using posterior sampling, one can solve (3) with
replacing V log p:(x) with its problem specific counterpart, Vg, log p:(@+|y), where p:(x+|y) represents the
PDF of the noisy variable at time step t given the measurement. To calculate the problem-specific score
function, Bayes’ rule can be used

Vaz, logpi(iy) = Va, logpi(:) + Va, log pi(y|z:), (4)

where V, log p:(x;) can be approximated using score estimation networks trained on the original data and it
is part of the diffusion model training process. The second term (guidance term) in (4) adapts the sampling
procedure to produce samples that are consistent with the given measurement.

Unfortunately, the calculation of a closed-form expression for V, logp;(y|®;) is generally intractable. The
reason for this is the presence of the diffusion noise on both sides of p;(y|x;). To elaborate, consider the

following equation derived from (2)

x: = vVarxg + V1 — oye, (5)
where a; = [['_, ar, ax = 1 — f; and f; = f(t) for t € {1,2,...,T} and € ~ N(0, I). Then, for p;(y|x;) we
have

pe(ylz:) = p(y = Cxo + 2|z = Varzo + V1 — aye)
(-G

y= N \/OTtCe—l—zkct) . (6)
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The presence of diffusion noise € in both the conditioned and conditioning parts of (6) makes the calculation
intractable.

The computation of the problem-specific score function is crucial to the performance of diffusion-based
methods for solving inverse problems. For the approach to be practical, the score function must be com-
putable without training a separate model, as model retraining for each new problem reduces generality and
increases computational overhead. Moreover, the computation should be efficient to avoid compromising
inference speed and must account for measurement noise inherent in the observations. To address these
challenges, we propose a method that enables efficient problem-specific score computation that accounts for
measurement noise without model retraining. The next section outlines the key components of our approach.

3 Proposed Conditional Score Estimation

We propose to approximate p;(y|x:) by using a piecewise function that varies across different time steps
along the diffusion path. The idea is that (6) can be simplified if %%?Ce = 0. There is no control over
the value of Ce as the diffusion noise is random and C' is fixed, thus the only way to make the expression
Vi—a,
Vay
lower time steps t, near the end of the backward path as for those values we have a; ~ 1. This condition is
a property of diffusion models and does not depend on the inverse problem, making it a versatile property.

Under this observation, for low values of ¢ in the diffusion path, p;(y|x;) can be computed as follows

x) = = Cx, —
pe(ylz) =p (y o T NGH Ce+ z|wt> ,

1
zp(z:y—\/CTC;cth:t) t < Ty,
t

1 1 9
= Z=y—_Cﬂct>=N<y;_th,0 I)a
( V O VOt z
where T} is the highest time step at which this approximation performs well. The final expression follows
from the assumption that the measurement noise z and the diffusion noise € are independent, which is a

reasonable assumption because measurement plays no role in the creation of the diffusion noise. With this
assumption, the score function will be

small is through the coefficient ( ). By design of the diffusion models, this coefficient is always small at

1 1
Va, 1 =—C" - —C t<Ty. 7
. log pe(y|xy) ng/a <y Ja :ct> < Ty (7)

In order to compute the guidance term for T > t > Ty, we use the approach in Song et al. (2022a) in which
the guidance term is approximated with one-step denoising. To elaborate, note that the following equation
holds:

p(ylee) = / p(ylo, . )p(@ole)daco (8)
- / p(ylo)p ol dizo.

As suggested in Song et al. (2022a), p(xg|x:) can be approximated by the one step denoising that estimates
xo from x; and to account for the randomness in denoising process, p(xo|x;) is modeled as a Gaussian
distribution around the estimated xg. In other words

plaolay) ~ N (&g, 1), (9)

where 2 is the estimate of the x from the given x; obtained from the denoising mechanism of the diffusion
models and r; controls the variance of the approximate distribution. Using (8) and (9), it can be shown that

p(ylae) ~ N(Ca, r{CCT + 021). (10)
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Algorithm 1 Posterior sampling for inverse problems via piecewise guidance

Inputs: y € R™, C € R™*", ¢, n € [0,1], diffusion-based noise predictor model D, r; (estimation noise

sequence) Tp, k1 and ko (for tuning).
Initialize: = ~ N (0,1)
for t=N to 1 do

€ < D(x,1)
N x—/1—a
T T
o 1—ay—
ey (1 - g2 e

CQ%\/lfat_lfcﬁ

if i < T, then

g%klag\l/aCT(y_C\/%)
else
g kg(g—ﬁ)TCT(rfCCT +0l)"(y - C2)
end if
€ ~N(0,I)
T /A1 + cre+ € + Vazg
end for

> Predicts the added noise at time step ¢

> ¢1,co : DDIM coeficients

The score function then follows as

ot - .
Va, log pi(ylz:) ~ (TQE)TCT(@CCT +o2I) 7 (y - Cp).

Putting this altogether, the proposed guidance term will be:

Va, log pi(xi|y) = Ve, logp ()
[ o

where 7y is selected as in Song et al. (2022a)

Algorithm 1 outlines the complete step-by-step implementa-
tion of the proposed method. It reconstructs the original data
from the given measurement matrix C' and the observed mea-
surement y. The key distinction between this approach and
IIGDM lies in the use of a conditional statement that enables
piecewise guidance based on the diffusion time step. Unlike
IIGDM, which uses the same formula to compute the problem-
specific score function across all diffusion time steps, the pro-
posed method employs a computationally simpler function at
lower time steps, leading to accelerated inference at those time
steps.

The computational advantage of using a piecewise guidance
function can be understood by observing (11), which involves
the computation of a vector-Jacobian product. This requires
taking derivatives of the denoiser’s output with respect to its
input, a computationally expensive operation. Additionally,
this expression includes the inversion of a matrix, which fur-
ther increases the computational cost. In contrast to Song
et al. (2022a), which uses these computationally expensive op-
erations across all the diffusion steps, our piecewise guidance

(12)

(13)

if ¢ < To,
(226)TCT (12CCT + 020) Ly — C&}), o,

Value
-
1)
2

1073 4

10‘00 860 660 460 260 6
Diffusion Time Step
Figure 1: Behavior of the coefficient %
across diffusion time steps, shown on a log-
arithmic scale. As characterized by Theo-
rems 1 and 2, the rapid decay of this coef-
ficient at lower diffusion time steps reduces
the KL divergence between the true and
approximated problem-specific score func-
tions, thereby supporting the validity of the
approximation in this regime.

approach substitutes such operations with the simpler form given in (7) for certain time steps, reducing the
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Table 1: High-level comparison of the computational operations required to compute the guidance term.

Method Steps t > T Steps t < Tj
IIGDM matrix multiplication 4+ backpropagation matrix multiplication 4+ backpropagation
Ours matrix multiplication + backpropagation matrix multiplication

Reference center mask n 4 x super-resolution 8 X super-resolution

WA g Wil il

To = 0(NGDM)

T0=50

To = 100

Figure 2: Restoration results on four inverse problems, inpainting with center mask (second column from
left), inpainting with random mask, covering 30% of the pixels (third column form left), 4x super-resolution
(fourth column from left) and 8x super-resolution (the fifth column from left) for different values of the T}
using an image of a dog using class conditional diffusion model. T controls when each component of the
piece-wise guidance term is active. IIGDM corresponds to Ty = 0.

computational cost. Using a piecewise function to approximate the score function takes advantage of the
different levels of diffusion noise at each time step to accelerate sampling in the final diffusion steps. It offers
a reduction in inference time while maintaining performance. The proposed method requires specifying the
parameter Ty. Next, we provide preliminary insights into how Ty influences performance, offering an intuitive
understanding of its selection.
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center mask

b Ll

4 x super-resolution 8 x super-resolution

i il

To = 0(NGDM)
To =50
To = 100

Figure 3: Restoration results on four inverse problems, inpainting with center mask (second column from
left), inpainting with random mask, covering 30% of the pixels (third column form left), 4x super-resolution
(fourth column from left) and 8x super-resolution (the fifth column from left) for different values of the Tj
using an image of a dog using class unconditional diffusion model. T controls when each component of
the piece-wise guidance term is active. IIGDM corresponds to T = 0.

4 Theoretical Analysis of Piecewise Score Estimation

In this section, we present a theoretical analysis of the proposed method by examining the relationship
between the true conditional distribution and its proposed approximation at lower time steps. We derive
explicit expressions for the differences between these distributions, as well as for the differences between
their corresponding guidance terms. This analysis provides insight into the approximation’s effectiveness,
identifies the factors influencing its accuracy, and offers a quantitative basis for selecting Tj.

To formalize this, we begin by considering the Kullback—Leibler (KL) divergence between the ground-truth
conditional distribution po(y|x:) and its proposed approximation p,(y|z;) under the assumption that the
noise term becomes negligible for lower time steps, i.e., %Ce ~ 0 Vt < Ty. We additionally analyze
the deviation between the true and approximated guidance vectors, resulting from these distributions. The
following theorem provides a closed-form expression for these quantities.

Theorem 1. Suppose the value of the added noise for the latent diffusion variable at time step ¢ is v; € R™,
ie., & = Vagxo + /1 — qpvy, then the value of the KL divergence between the true distribution po(y|x;)
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Reference center mask 4 x super-resolution 8 x super-resolution

To = 0(NGDM)
To =50
To = 100

Figure 4: Restoration results on four inverse problems, inpainting with center mask (second column from
left), inpainting with random mask, covering 30% of the pixels (third column form left), 4x super-resolution
(fourth column from left) and 8x super-resolution (the fifth column from left) for different values of the Tj
using an image of a magpie using class conditional diffusion model. T; controls when each component of
the piece-wise guidance term is active. IIGDM corresponds to T = 0.

and the approximated version p, (y|z:) is 525 1:_“&" |Cv;||3. Further more the ¢3-norm difference between the

guidance terms corresponding to these distributions is 7%:5”HCTC1)75||2.

Proof. To prove Theorem 1, we need the following lemma from Hershey & Olsen (2007):
Lemma 1.If X; ~ N(p1,31) € R™ and X5 ~ N (2, X2) € R™, then the KL divergence between the
distribution of these two variables is given by

1 |3

3 [10g = (25 1 20) + (2 — 1) T2 (w2 — Hl)} :

The ground truth conditional distribution po(y|®:) can be written as

_ _ 1
po(ylz:) = p(y = Cxo + 2z|x: = Vouxo + V1 —oqv) = p (z =y— —=Cux + =

:N<_m L

C
vt e

th,J§I> s

5
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Reference center mask

X super-resolution 8 x super-resolution

L R

o 3 3
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Figure 5: Restoration results on four inverse problems, inpainting with center mask (second column from
left), inpainting with random mask, covering 30% of the pixels (third column form left), 4x super-resolution
(fourth column from left) and 8x super-resolution (the fifth column from left) for different values of the Tj
using an image of a magpie using class unconditional diffusion model. T controls when each component
of the piece-wise guidance term is active. IIGDM corresponds to Ty = 0.

where the first line follows from (2) and (1), the second line follows from the assumption that at each time
step t, the corresponding true noise v; is known and the third line follows from the model assumption that
the measurement noise follows N (0, I). For the proposed method, by the assumption of %Cvt = 0 for
low values of ¢, the approximate conditional distribution p,(y|x;) can be written as

Pa(ylzs) = ply = Cxo + 2|21 = VOr0 + V1 — Q1 04)
1 1
= —y— —C = —C 2r).
p(z Yy \/67t sct> .l\/(\/a :ct,az>

Using Lemma 1, we have
1 1—&
202 @

Dxw(po(yle) || pa(yle:)) = v 3- (14)

To compute the ¢5 norm of the difference between the guidance terms, recall that the guidance term is
defined as Vg, logp(y|x:). The ¢ norm of the difference between the guidance computed using the true
distribution and that obtained from the approximation is then given by

10
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d = ||V, logpo(ylz:) — Va, logpa(ylz:)||2 (15)

Since po(y|x;) = /\/( V1o 2t Cuy + rCmt,a I) and po(y|zs) = N (\/%Cmt,afI) we have

1 V19— oy 1 1
d= —_C’T< C’:c—i— Cu)+_CT( —_Cw) 16
[ = —Cux, = Cv el A e 2 (16)
T T 1*0[15 o 1*@,5 T
~I-—=C (Vﬁt Cvt)nav —St e cul,

O

This theorem provides insight into the performance of the proposed approximation. According to Theorem 1,
the KL divergence between the approximate and true conditional distributions, as well as the difference
between the corresponding guidance terms at each time step ¢, are influenced by the parameter a; and the
degradation matrix C. When &y is close to one, these quantities become negligible, indicating that the
approximation closely matches the true distribution. Furthermore, (14) and (16) highlight the role of the
degradation matrix C' in determining the quality of the approximation, as it directly affects both the KL
divergence and the guidance difference.

Next, we derive an expression for the KL divergence between the true conditional distribution p;(y|x:) and
its approximation py,(y|x:), as well as for the deviation between their corresponding guidance vectors. The
approximate distribution is obtained by estimating the added noise using a denoiser.

Theorem 2. Suppose that the added noise for the latent diffusion variable at time step ¢ is denoted by
vy € R, ie., &y = ayxo + /1 — ayvy. Let 9, = D(xy,t) be the estimate of the true noise vy, obtained
by the denoiser D from x; and the time step ¢t. Assume that the denoiser output at each time step t is
centered around the true noise with an additive zero-mean random error, i.e., ¥y = v; + €, where E[e;] = 0.
Then, the KL divergence between the true conditional distribution p:(y|e:) and its approximation pg,(y|x:)

is given by 202 1@?“ ||Ce;||3. Furthermore, the f-norm difference between the guidance terms corresponding

to these distributions is 7vlo_éf“||CTCet||2.

Proof. Similar to the proof of Theorem 1, for the true conditional distribution we have
V1—ay
=N|-—"——
For the approximate distribution p,,(y|x;), we obtain
\/ at vV 1-— at
a = =y— —=C Yo _Ch ) =N -
p /(ylwt) p (Z Yy \/} T+ \/a Uy \/a

Then, by applying Lemma 1, we obtain

C’Ut + CZCt,CTgI> . (17)

1
Vay

Co, +

1
Cz;, 021 ). 18
momdt).  us

11—y

202

z

Dxr(pe(yle:) | par(yl2:)) = (19)

To compute the ¢5 norm of the difference between the corresponding guidance terms, we proceed analogously
to Theorem 1:

d = ||V, logpi(y|zt) — Va, log pa(ylx:) |2 (20)
1 1 vi—a 1 JT=a,
= CT (y - fcmt + OétC'lft) + fCT <y C:cf + atC’f)f) ||2
V Qg V Ot V Ot V O Vo vV at
1-a N 1-a
= Ve o, — vl = VT Cell
t

t

11
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Theorem 2 shows that the KL divergence and the fs-norm of the difference between the guidance terms
can again remain small for lower values of ¢, since a; ~ 1 in those time steps. However, depending on its
performance, employing a denoiser can provide improved accuracy at the cost of increased computational
effort. Specifically, according to Theorem 2, the terms ||Ce;||2 and ||[CTCe;||o decrease when the denoiser
performs well and its estimation error €; is close to zero. Nonetheless, this noise estimation step increases
the computational complexity of the denoising process.

Theorem 1 provides the foundation for analyzing the choice of the parameter Ty, which determines when each
component of the piecewise function becomes active. The following theorem offers a quantitative criterion
for selecting Ty based on the tolerance of the error in the guidance term difference computed from the true
conditional distribution and it’s approximate obtained under the assumption that 7“\/%?“ Cv; =0fort <Ty.

Theorem 3. Suppose that the added noise for the latent diffusion variable at time step ¢ is denoted by
v € R, ie., & = Vagxg + /1 — a:v:. Let po(y|x:) denote the true conditional distribution and p,(y|x:)
its approximate counterpart under the assumption that 7”\/%3“01),5 = 0. Then, for all time steps t < Tj
satisfying ag, > =1

terms corresponding to the true and approximate conditional distributions is bounded by ¢; that is,

, where § = m the expected fo-norm of the difference between the guidance

Eld] = E[[[Va, logpo(y|2:) — Va, log pa(ylz:)lo] < €

Proof. To prove this theorem, by using the result of Theorem 1, we have

1—a 1—a
E[d?] = —5—E [|CTCv,|3] = — 'E [vf (CTC)%v,] . (21)
t

Since, by the structure of the forward process, we have v; ~ N(0,I), (21) simplifies to
E [v{ (CTC)*v,] =tx((CTC)’I) = ||ICTC|3. (22)

Hence, by using Jensen’s inequality we obtain
| < VE@] = Y% et (23)

The condition E[d] < € is guaranteed if 7”5;@HCTC lF < e. Solving this inequality for &;, we find that it

holds when
oo Tl VIt4S L 5 €
Q> ———, where = —+—5.
S ICTCI
Since a; decreases with respect to ¢, the parameter Ty can be chosen as the first time step for which
oy > _1+27 V5H45 holds, ensuring the condition is satisfied for all ¢ < Tj. O

Theorem 3 provides a quantitative criterion for selecting the parameter Ty given a prescribed tolerance §.
This tolerance reflects the allowable error in the guidance term for the inverse problem and depends on the
desired score function estimation accuracy € as well as on the problem-specific degradation operator through
the quantity ||C T C||r. As d increases for a C, the admissible value of Ty increases accordingly, corresponding
to a regime in which larger approximation errors in the score function are acceptable. This, in turn, allows
for larger choices of Ty and consequently reduces the computational cost. The theorem thus provides a
principled starting point for selecting an appropriate Tj once the degradation matrix of the problem C' and
the tolerated guidance error are specified.

5 Simulation Results and Analysis
We evaluate the effectiveness of the proposed method on two inverse problems: Image super-resolution and

image inpainting. All simulations are conducted on 256 x 256 images in alignment with standard settings
adopted in prior work e.g., Kawar et al. (2022) and Song et al. (2022a).
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Figure 6: Average PSNR scores across various inverse problems as a function of the guidance threshold
Ty, which controls when each component of the piece-wise guidance term is active. IIGDM corresponds to
Ty =0.

For these simulations, we primarily use a subset of 50 images selected from the ImageNet dataset Russakovsky
et al. (2015), which is widely used in image generation and restoration tasks. Unless otherwise stated, all
reported results are obtained on this 50-image subset. For a specific experiment, we additionally evaluate the
method on a larger subset of 1000 ImageNet images to assess scalability and robustness. All the following
simulations are done using an NVIDIA H200 GPU (140 GB) on a server with AMD EPYC 7742 CPU.

For the diffusion model, we rely on a publicly available pretrained diffusion model! Dhariwal & Nichol (2021),
trained specifically on 256 x 256 images. The model follows a standard denoising schedule with 1000 diffusion
steps. Our method integrates this model into an inverse problem framework, and we compare its performance
with IIGDM Song et al. (2022a), a recently proposed problem-agnostic approach that has demonstrated
strong empirical performance across various inverse problems, often rivaling task-specific methods.
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Figure 7: Average SSIM scores across various inverse problems as a function of the guidance threshold Tp,
which controls when each component of the piece-wise guidance term is active. IIGDM corresponds to
Ty = 0.

The simulations can be broadly categorized into two settings: class-conditional and class-unconditional. In
the class-conditional case, it is assumed that the class label of the measurement image is known. A class-

Thttps://github.com/openai/guided-diffusion/blob/main/README.md
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conditional diffusion model is employed, where the label is provided to the denoising process and incorporated
during inference. In contrast, the class-unconditional case assumes that the class label is unknown at inference
time; thus, the denoising process must operate solely based on the measurement without access to any class-
specific information.
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Figure 8: Average LPIPS scores across various inverse problems as a function of the guidance threshold

Ty, which controls when each component of the piece-wise guidance term is active. IIGDM corresponds to
Ty = 0.

For the inpainting task, two masking schemes are considered to assess robustness under structured and
unstructured missing data. The first is a central block mask, where a contiguous 128 x 128 square region
at the image center is missing. The second is a random mask, in which 30% of the pixels are randomly
removed throughout the image. In the super-resolution setting, the images are downsampled using average
pooling with scaling factors 4 and 8, aiming to reconstruct the original high resolution images from their low
resolution counterparts.

Time (s)

—&— inpainting (center mask) —&— inpainting (center mask)
359 __ noom 351 —= ncbm
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To To
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Figure 9: Average inference time per image as a function of the guidance threshold Ty for the inpainting task
with a center mask. Ty controls when each component of the piece-wise guidance term is active. IIGDM
corresponds to Ty = 0.

We evaluate performance using both pixel-level and perceptual metrics. Specifically, we report PSNR, SSIM,
and learned perceptual image patch similarity (LPIPS). PSNR is a standard measure of reconstruction
fidelity based on the pixel-wise error. SSIM, measures perceptual similarity by considering aspects such
as luminance and contrast to follow how humans perceive an image, with values closer to one indicating
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Table 2: Quantitative comparison across four inverse problems. Higher is better for
PSNR/SSIM; lower is better for LPIPS and inference time. Tj in our method is 200

PSNR 1 SSIM 1 LPIPS | Time/img (s) |
IIGDM Ours IIGDM Ours IIGDM Ours IIGDM Ours

Inverse problem

Inpainting (center mask) 18.31 18.45 0.69 0.67 0.23 0.31 58.0 53.0
Inpainting (random mask)  27.73  26.57  0.84 0.78 0.10 0.19 58.2 53.1
Super-resolution x4 23.09  23.07 0.64 0.64 0.20 0.24 65.9 57.7
Super-resolution x8 20.09 20.00 0.46 0.47 0.30 0.30 58.8 53.9

better structural fidelity. LPIPS is also a perceptual metric and it leverages deep neural network features to
evaluate perceptual similarity, where lower scores imply higher perceptual quality.

Figure 1 illustrates the behavior of the coefficient 13—5“ across diffusion time steps. As established in Theo-
rems 1 and 2, the rapid decay of this coefficient at lower diffusion time-steps leads to a reduction in the KL
divergence between the true problem-specific score function and its approximation. This behavior explains
why the approximation is particularly accurate at lower diffusion time-steps and motivates the piecewise
treatment adopted in the proposed method.

Figures 2-5 present restored images across different values of Tj, illustrating the visual quality achieved by the
proposed method. Compared to [IGDM, the results show that high-quality reconstructions are maintained
even as T{ increases, which enables faster restoration by reducing the number of computationally expensive
steps.

Figures 2 and 4 correspond to class-conditional models, while Figures 3 and 5 show class-unconditional
results. As expected, class conditioning improves visual quality due to the added label information, but the
proposed method performs robustly in both settings. These findings highlight the efficiency and adaptability
of the proposed method across a range of different inverse problems and diffusion model configuration.

| - inpainting (random mask)
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0 200 400 600 800 0 200 400 600 800
To To
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Figure 10: Average inference time per image as a function of the guidance threshold T for the inpainting
task with a random mask. Tj controls when each component of the piece-wise guidance term is active.
IIGDM corresponds to Ty = 0.

Figure 6 presents the PSNR values across different inverse problems for varying values of 7. The reported
results correspond to the average PSNR computed over all images in the dataset, with the baseline IGDM
represented by the data points at Ty = 0. The figure indicates that increasing T does not lead to significant
variations in PSNR across the considered inverse problems, suggesting that the reduced validity of the
piecewise approximation at higher diffusion time steps has a negligible impact on reconstruction fidelity as
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measured by PSNR. A comparison between Fig. 6a and Fig. 6b further shows that class-conditional diffusion
models achieve slightly higher PSNR, values than their class-unconditional counterparts.

Figure 7 presents the SSIM metric for the same set of inverse problems evaluated at varying values of Tj.
Higher SSIM values indicate better perceptual quality. Similar to the PSNR trends, an increase in T does
not lead to significant variations in SSIM across the considered inverse problems, showing that computational
savings can be realized without significantly compromising the SSIM metric. Among the evaluated tasks,
8 super-resolution exhibits the weakest performance, reflecting its increased difficulty due to the higher
number of missing pixels. A comparison between Figures 7a and 7b again confirms that class-conditional
diffusion models slightly outperform class-unconditional ones in terms of perceptual similarity.

Figure 8 evaluates the performance of the proposed approach 107 —e- inpainting (center mask)
inpainting (random mask)
in terms of the LPIPS metric for restoration results obtained —A— 4 super-esolution '
3 ) oy . . 10° { —4— 8x super-resolution ~
using both class-conditional and class-unconditional diffusion
models across various inverse problems and values of T. Unlike 10° ]
. . . w
pixel-based metrics, LPIPS compares feature representations
extracted by a neural network. In this simulation, AlexNet oty

is used to assess perceptual similarity. Lower LPIPS values
indicate higher perceptual quality. Unlike PSNR and SSIM,
increasing T} leads to a noticeable increase in LPIPS, reflecting : 2 o o 00 o
a degradation in image quality due to the diminished validity To

of the guidance term at higher time steps. However, the loss Figure 11: The score function approxima-
in performance remains minimal when 7j is increased to 200, {ion error curves in each inverse problem as
enabling substantial computational savings corresponding to , function of Tpy, as characterized by Theo-
200 steps of faster score estimation. Among the tasks, 8x
super-resolution and inpainting with center mask exhibits the
greatest performance decline, whereas inpainting with a random mask shows the least. Similar to the
cases of PSNR and SSIM, the class-conditional diffusion model slightly outperforms its class-unconditional
counterpart according to the LPIPS metric.

rem 3.

Table 2 presents a quantitative comparison between IIGDM and the proposed method across four inverse
problems, evaluated on a 1000-image ImageNet subset. The proposed approach consistently reduces inference
time per image by approximately 5-8 seconds across all tasks, while maintaining comparable reconstruction
quality. These results demonstrate the effectiveness of the proposed method with Ty = 200.

Figure 11 illustrates the score function estimation error e for each inverse problem as a function of Tj, as
characterized by Theorem 3. As Tj increases, the estimation error of the score function increases accordingly.
The figure also shows that different inverse problems exhibit distinct error curves, reflecting the influence
of their respective degradation matrices C'. Moreover, the acceptable level of estimation error varies across
problems. For example, as indicated by the LPIPS results in Fig. 8a and Fig. 8b, inpainting with a random
mask can operate with larger values of Ty than 4x super-resolution, despite exhibiting higher score estimation
error. This observation highlights that, when using these curves to identify a suitable initial value for Ty, both
the degradation matrix of the inverse problem and its acceptable error tolerance must be taken into account.
Under these conditions, the error curves provide useful guidance for selecting an appropriate starting point
in the optimization of Tj.

Figures 9-13 present the average inference time per image across various inverse problems and different
values of Ty. Here, inference time refers to the duration required by the algorithm to restore a given image.
In all these figures, the baseline inference time corresponds to the IIGDM algorithm at T, = 0, represented
by a dashed red line. From Figs. 9-13, we can observe that increasing the value of T generally accelerates
the algorithm. This is because a higher Tj implies fewer diffusion steps requiring the derivative computation
of the diffusion model, a computationally expensive operation involved in calculating the guidance term.

Figure 9 presents the inference time per image for the inpainting problem with a center mask, for both
class-conditional and class-unconditional diffusion models. At Ty = 500, where losses in PSNR and SSIM are
negligible, the algorithm achieves speed improvements of 24% and 25% for the unconditional and conditional
models, respectively. The difference in speedup arises because the class-conditional denoising model is more
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complex, making backpropagation for guidance computation more demanding. Consequently, reducing the
number of these backpropagations yields greater computational savings.

Figure 10 illustrates inference times for the inpainting problem with random mask under various Ty values
for both model types. Consistent with previous results, increasing Ty accelerates the algorithm. Notably,
at Ty = 500, where metric losses remain negligible, inference time is again reduced by 24% and 25% for
unconditional and conditional models, respectively.

Figure 12 demonstrates inference times for the 4xsuper-resolution problem. Similar trends are observed:
higher Ty values lead to faster inference. At Ty = 500, where metric degradation is minimal, speed improve-
ments over IIGDM amount to 21% for the unconditional model and 23% for the conditional model.

Finally, Figure 13 presents inference times for the 8 x super-resolution task. From these two figures, we again
observe that increasing Ty decreases inference time. At Ty = 500, the method is faster than IIGDM by 23%
and 24% for the unconditional and conditional diffusion models, respectively.

—8— 4 x super-resolution —8— 4 x super-resolution
401 __ nGp™m 407 - nepm
0 200 400 600 800 0 200 400 600 800
To To
(a) Class conditional (b) Class unconditional

Figure 12: Average inference time per image as a function of the guidance threshold T, for the 4x super-
resolution task. T controls when each component of the piece-wise guidance term is active. IIGDM corre-
sponds to Ty = 0.
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Figure 13: Average inference time per image as a function of the guidance threshold T for the 8x super-
resolution task. Ty controls when each component of the piece-wise guidance term is active. IIGDM corre-
sponds to Ty = 0.
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6 Conclusion

In this paper, a novel framework for solving inverse problems by posterior sampling using diffusion models
has been developed. We have proposed a piecewise function approximation for the guidance term based on
the different levels of diffusion noise determined by the time step. We have shown that in low time steps,
the computation of the guidance term can be simplified to the gradient of a Gaussian function because the
diffusion noise is insignificant in that regime. Our simulation results showed that an inference time reduction
of at least 23% is achievable without loss of PSNR and SSIM in the restored images compared to the baseline
IIGDM.
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